®

Check for
updates

Auto(mated)nomous Assembly

Yuxi Liu!, Boris BelousovZ, Niklas Funk?, Georgia Chalvatzaki?, Jan Peters?,
and Oliver Tessmann! &9

1 TU Darmstadt, Digital Design Unit, Darmstadt, Germany
{liu, tessmann}@dg.tu-darmstadt.de
21U Darmstadt, Intelligent Autonomous Systems, Darmstadt, Germany
{boris,niklas,georgia, jan}@robot-learning.de

Abstract. The paper presents research on a hierarchical, computational design
approach for the aggregation of dry-joint, interlocking building blocks and their
autonomous assembly by robots. The elements are based on the SL Block system
developed by Shen-Guan Shih. The work proposes strategies to assemble multi-
ple SL blocks to form larger aggregations which subsequently turn into building
elements on another scale. This approach allows reconsidering the resolution of
architectural constructions. Building elements that have previously been consid-
ered as solid and monolithic can now be aggregated by many small SL-Blocks.
Those dry-joint aggregations allow for easy disassembly and reassembly into
different configurations and therefore contribute to a circular reuse of building
elements. In order to facilitate such a permanent transformation, the research also
includes first steps towards the autonomous assembly of building blocks through a
robot including the planning for how to optimally place the parts, as well as ensur-
ing feasible execution by the robot. The goal is a fully autonomous pipeline that
takes as input a user-defined, desired shape, and the available building blocks, and
directly maps to actions that are executable by the robot. As a result, the desired
shape should be optimally resembled through the robot’s autonomous actions. The
research therefore addresses handling the combinatorial search space regarding
the possibilities to combine the available parts, incorporate the constraints of the
robot, creating a feasible plan that ensures the stability of the structure at any
point in the construction process, avoiding collisions between the robot and the
structure, and in the case of SL-Blocks, trying to ensure that the overall structure
is interlocking.

Keywords: Hierarchical assembly - SL-Blocks - 3D Polyomino - Dry-joint
construction - Autonomous assembly - Reinforcement learning

1 Introduction

1.1 Intelligent Construction and Automation

The construction industry that urgently needs an increase in efficiency and productivity
is often meant to be disrupted by borrowing concepts such as vertical integration and
prefabrication from other sectors (Daniel 2021).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Gomes Correia et al. (Eds.): ISIC 2022, LNCE 306, pp. 167-181, 2023.
https://doi.org/10.1007/978-3-031-20241-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20241-4_12&domain=pdf
https://doi.org/10.1007/978-3-031-20241-4_12

168 Y. Liu et al.

In contrast, Danial Hall et al. list a set of specific topics for the fragmented AEC
network of very diverse stakeholders ranging from small craft producers to large scale
construction companies and system providers that need to be developed. Amongst others
the authors see a need for “new technical systems that better support manufacturing and
assembly activities, capture [...] experience and knowledge for continuous improve-
ment” (Hall et al. 2022). Hall et al. furthermore regard the complete move away from
on-site production as a misconception of industrializing construction. Assembling build-
ing parts will always stay an on-site activity. Historically it had large repercussions on the
design of the parts themselves. Bricks for example are dimensioned for manual assem-
bly, including methods for compensating tolerances and dealing with changing material
properties (Berge 2007).

Today architecture and the construction industry are confronted with new demands
and challenges for the assembly of parts. A lack of skilled labor and the need for afford-
able housing requires automation of assembly procedures. Resource scarcity and the
impact of construction on climate change ask for the reuse of building elements. Thus,
dry-joint, reversible constructions and combinatorial versatility for building parts are
necessary, so that they exceed the lifespan of a single building in order to be reused in
future constructions. At the same time the diverse set of materials within a construction
with its various functions such as load bearing, climate regulating, thermal boundary
generating etc. and the different producers of such parts require a common interface to
form a coherent system.

In this research we address the above listed challenges for construction through
the use of the interlocking SL-Block system that is assembled by autonomous robots
using machine learning for task and motion planning and tactile sensing for contact-rich
assembly procedures and the identification of different materials through the robot. The
authors propose to reconsider the scale of building elements and achieve a more circular
material use in architecture through small-scale elements aggregated with hierarchical
design strategies (Fig. 1).

Fig. 1. Left: Construction typologies based on dry-jointed elements. Right: Robotic assembly
with visuo-tactile sensors integrated into the gripper (Image: DDU)

Auto(mated)nomous Assembly 169

2 State of the Art

The concept of dry-joint construction can be traced back to the ancient Inca structures, in
which all elements are immobilized by their geometric interface, preventing the assem-
bly from falling apart (Protzen 1985). Contemporary research, involving computational
techniques (combinatorial, parametric, generative, algorithmic) and digital fabrication
in architecture empowers architects to rethink the entire process chain of the construc-
tion system and various possibilities of designing interlocking elements. Notably, the
concept of digital materials (Gershenfeld 2012) describes materials as compositions
of a set of finite discrete elements with discrete connection details whereby the build-
ing components can be reversibly constructed into various configurations responding to
architectural needs.

Within such discrete systems, topological interlocking (Dyskin et al. 2001) is a design
principle by which building blocks of special shape can form a freely spanning, non-
monolithic, reversible load-bearing system only through their geometry and the topology
of their jointing. Estrin et al. studied multi-layer interlocking elements while exploring
the use of hybrid materials (Estrin et al. 2011). Meanwhile, Mather et al. developed the
finite element method (FEM) to investigate the mechanical properties of such systems
(Mather et al. 2012). Tessmann presented parametrically designed interlocking elements
for rebuilding planar and curved surfaces (Tessmann 2012). Weizmann et al. investigate
the correlation between block geometry and structural behavior in flat assemblies of
convex interlocking blocks (Weizmann et al. 2021). To enable more flexibility in the
design phase of dry-joint elements, researchers from Nanyang Technological University
and Tel Aviv University developed a recursive, computational approach for designing
interlocking 3D puzzles (Song et al. 2012). In 2017, the same team further developed a
computational solution to support the design of a set of interlocking joints that can be
connected in different ways to create reconfigurable interlocking furniture (Song et al.
2017).In 2016, Shen-Guan Shih discovered a specific type of polycube called SL-Block.
It is an octacube formed by S-and L-shaped tetracubes. Two SL-Blocks can be joined
into six different conjugate pairs called SL-Engagements (Fig. 2), each represented with
a string (h, a, d, s, t, y) and based on a corresponding geometric transformation (Fig. 3).

% S block bt
iy
> @ L block SL Block

Fig. 2. SL Block and its conjugate pair.

A conjugate pair

170 Y. Liu et al.

wwwww

\IFT‘ . I) - H "Jf’\] S d engagement a engagement Y engagement
R(190) et Ru(160) Re(50) L Rel e T00-1 RCo0T-10) Ri90) 0112

Fig. 3. Assembly Rules for SL Blocks (Image: Yuxi Liu, DDU, 2021)

SL-Engagements can be aggregated into a wide variety of new 3D geometries called
SL-Strands. A mathematical representation using polynomial expressions for combina-
tions of SL-Blocks simplifies the notification of the hierarchical construction process
of multiple SL-Strands (Shih 2018). Wibranek et al. configured various interlocking
building elements (e.g., column, wall, and slab) on the basis of multiple SL-Strands and
used reference geometry, such as curves, to sequentially align SL-Blocks along them
(Wibranek et al. 2022).

SL-Blocks introduce the potential of 3D polyomino (space filling 3D puzzles) in
dry-joint architectural construction. 3D polyomino puzzles are based on initially 2D
polyomino. Introduced by Golomb in 1954, a polyomino is a planar geometric figure
formed by joining one or more squares edge to edge. The goal of a polyomino tiling
problem (Golomb. 1966) is to cover a finite surface using a set of repetitive elements
without any overlaps or blanks. 3D polyomino seek to achieve the same in 3d space.
They are known to be an NP-complete combinatorial optimization problem. Human
designers need to find optimal solutions from randomly generated samples, the number of
which has increased exponentially. To help tackle this problem, various probabilistic and
approximated algorithms have been explored such as the Parallel Algorithm (Takefuji and
Lee 1990), Transfer-Matrix Algorithm (Clisby and Jensen 2012), Quantum Annealing
(Eagle etal. 2019). However, tiling a planar figure with a fixed number of polyominoes is
a typical combinatorial problem in mathematics. The generated solutions do not directly
perform as interlocking architectural structures. To explore the design possibilities of 3D
polyominoes for interlocking assemblies, concepts like 3D Polyomino Puzzle (Lo et al.
2009), Recursive Interlocking Puzzles (Song et al. 2012), Reconfigurable Interlocking
Furniture (Song et al. 2017) develop top-down computational approaches to design
interlocking parts for assembly.

Besides the structural and combinatorial difficulties, fully autonomous robotic
assembly additionally requires the automation of both task and motion planning, i.e.,
determining the order of assembly actions and the execution trajectories, respectively.
Assembling architectural structures is a long-horizon manipulation task consisting of
several stages of decisions and sub-task executions. Classical approaches for task-and-
motion planning (TAMP) typically rely on a complete problem description, including
kinematics and dynamics (Toussaint 2015; Kaelbling and Lozano-Pérez 2010). As these
fully-optimization based approaches are usually computational expensive, lately, meth-
ods combining classical TAMP and learned heuristics have been proposed (Garrett et al.

Auto(mated)nomous Assembly 171

2016, Driess et al. 2021). Notably, Hartmann et al. developed a multi-agent TAMP
framework for handling the problem of constructing a large pavilion from many geo-
metrically unique building elements while using multiple robots (Hartmann et al. 2020).
Garret et al. present a formulation for 3D robotic spatial extrusion taking into account
structural stiffness and potential collisions between the robot and the new structure (Gar-
rett et al. 2020). Contrary to the previous approaches, there also exist many works that
approach the problem through end-end learning, thereby directly mapping from prob-
lem definition to low-level actions without requiring any additional modeling. Instead, a
simulation is required to investigate the action’s effects for steering the training process.
Exemplarily, (Bapst et al. 2019) train policies for 2D construction problems using graph
representations and reinforcement learning. Wibranek et al. use Reinforcement Learning
(RL) to assemble a sequence of SL-Blocks into an interlocking structure (Wibranek et al.
2021). Most recently, Funk et al. presented a first method that jointly tackles the problem
of combinatorial optimization for block placement and robotic TAMP through combin-
ing graph-based reinforcement learning and Monte Carlo Tree Search. Therefore, this
method is capable of autonomously reassembling arbitrary structures (predefined by a
human), with a robot, given a set of available polycubes (Funk et al. 2022a).

3 SL Blocks for Architectural Design and Construction

In our research we are developing dry-joint constructions in which aggregations of ele-
ments unfold structural behavior through interlocking. Elements are constrained in their
rotational and translational freedom by neighboring elements. Interlocking is different
from merely stacking or layering elements in that the connections between the elements
lock various degrees of freedom (DoF) allowing for not only compression-active con-
structions. Dry-jointed interlocking elements can be easily assembled, disassembled and
reassembled for a circular use in construction. SL Blocks are of particular interest as they
can be assembled in many different configurations. We study the six SL-Engagements
through physical models with SL-Blocks made from different materials and explore the
dry-joint construction process of assembling SL Block into a branching column that can
be used as a load-bearing structure for a roof. (Fig. 4) Through one-directional scaling
we design elements that become interfaces between the SL-Block system and monolithic
building elements (Fig. 5).

Subsequently, we explore two main challenges for architectural design with SL
Blocks with a computational approach: i) Automating the currently manual and tedious
string input to generate interlocking SL-Strands that follow the compositional rules. ii)
Develop hierarchical design strategies to systematically aggregate those SL-Strands into
architectural constructions.

172 Y. Liu et al.

h engagement
5 = o

- ”*1 - <
R 2k ek}

a engagement

w kg v bl

¥ 2k ¢k

d engagement
%5 = ddadd

pr K 3 Lol ;
V'ﬂ ‘* ﬂ:;n:;.

s engagement
5= sssss

T kA ™ x
‘t Wk Qe

t engagement
5=t

“*"*
L LTS 90*

y engagement
¥'S = yyyyy

> constrained by friction === constrained by other SL-blocks

Fig. 4. Left: Constraint analysis and physical models of repetitively assembled SL-Engagements.
Right: A branching column assembled with SL-Blocks made from different materials.

Fig. 5. Left: Interfaces for connecting SL-Blocks. Right: Process of assembling interface and
SL-Blocks into closed-loop SL-Strands

Auto(mated)nomous Assembly 173

3.1 Hierarchical Design Strategy

Hierarchical classification is an effective approach to understanding interdependencies
between elements of the interlocking system and bringing order to the design space. Shih
first introduced the strand hierarchy where the lowest level of interlocking SL Strands is
built upon the conjugate pair (Shih 2016). In addition to Shih’s hierarchy, we reveal the
geometrical hierarchy within the conjugate pair of SL Block: Cube, three Tetracubes, and
three Octacubes. As shown in Fig. 6, three types of Tetracube can recursively composite
the same form of a conjugate pair. Furthermore, we add two more levels that will be
defined below: SL-Strand Merge, and SL-Strand Aggregation (Fig. 7).

Level 1 Tetracube ® ® ®

Level 2 Octacube < S ®

Level 3 Aconj pair

Fig. 6. A hierarchical classification of the conjugate pair of SL Block

Level 3—4 shows the above-described SL-Block engagement strategy and their
representation as a transformation matrix.

Level 4 shows SL-Strands forming shapes that resemble building components such
as beams, columns, frames, and bracings. However, those elements are not monolithic
but assembled from a multitude of dry-joint SL-Blocks that can be easily disassembled
and reassembled into other shapes.

Level 5 shows SL-Strand Aggregations: SL-Strands from Level 4 assembled into
larger geometric and tectonic systems. SL-Strand Aggregations no longer rely on the
intricate interlocking logic of SL-Blocks and therefore offer an interface to more con-
ventional constructions. Three connections are developed: Joinery connections links to
traditional construction, nested and borromean connection are rather mathematical con-
cepts (D Auckly 2020) that we are aiming to investigate in terms of applicability within
combinatorial assemblies.

174 Y. Liu et al.

A conjugate pair L3 @

® (%

PP,
N e
! I N
&S L
Nog D P
Level 4 SLStrand " 4 ® - N w&;ﬂv i gﬁ

Level 5 Geometric System L5@

Fig. 7. SL Strand Merge and SL Strand Aggregation

3.2 Automate Generation of SL-Strands

The generation of SL-Strands is based on the sequential assembly of six SL-
Engagements, each standing for a type of geometric transformation that can be rep-
resented by a transformation matrix. The transformation matrix defines the position and
orientation of the elements within the assembly. Since the assembly process starts with
one determined initial engagement and adds other engagements one by one, we can
consider the connection rule of each step as a new transformation matrix that results
from the multiplication between the matrix of the currently used SL-engagement and
the matrix of the previous step. Therefore, the string sequence for generating SL-Strands
is equal to a sequence of the transformation matrix. (Fig. 8).

Defining the number of steps and the type of SL-Engagements, we use brute-force
search to find all possible assemblies. However, not all resulting SL-Strands are appli-
cable to architectural design. We chose those SL-Strands that form a closed system,
in which all elements are kinematically constrained by each other. Thus, the last SL-
Engagement must interlock with the first SL-Engagement to close the loop. Closing the
loop of a SL-Strands is important to ensure that the resulting element is compatible with
more conventional construction elements by interfacing with planar surfaces (see Fig. 4:
Level 4 shapes)..

This problem can be seen as how to find the Hamilton Cycle(closed-loop) within a
directed graph (Fig. 9). We extract the center points of the first-placed and last-placed
SL-Engagements from all possibilities and choose only those results in which their
coordinates are the same. Although successful in automatically finding the closed SL-
Strands from SL-Engagements, this approach is a unidirectional search algorithm that
only allows finding the optimal results assembled by less SL-Engagements. In a Uni-
directional search algorithm, if we want to find closed SL-Strands from the assembly
of n conjugate Pairs using h and a SL-Engagements. First, we need to generate all the
possibilities, the number of which is 2". The code was written in python. Even if we

Auto(mated)nomous Assembly 175

Rx(180) T(200)
A A

1.00 [o0.00 0.00 | 2.00

Rx(180) ‘I:V {1
0= 0.00 | -1.00 | 0.00 | 0.00
= 0.00 | 0.00 | -1.00 | 0.00
0.00 [0.00 [0.00 |1.00
 original position (0,0.0)
i Rx(180) T(2,0.0) with matrix
® target position h engagement

T(200)

2200} | ool | 000 [2EY istep-2 istep-3 Step-4 istep-5

1.00 [0.00 | 0.00 | 3.00 9.00 | 1.00 | 0.00 | 4.00 1.0 | 9-00 | 0-00 [3.00

ED I IR
o R

‘ O I I D o O D

O [[[0.00 | 0.00 | 0.00 | 1,00 0.00 | 0.00 [000 | 1.00

100 [0.00 | 0.00 | .00

©

.00 [0.00 | .00 | 0.00

Matrix Multiply T

.00 | 0.00 [0.00 | 1.00

Matrix Multiply

Matrix Multiply

.00 | 0.00 | 1.00 | -1.00

0.00 | 0.00 | 0.00 | 1.00

0.00 [1.00] 0.00 | 1.00

T.00 [0.00 | 0.00 | 1.00

o[o0 [e0 [nww Y,

00 [000 [10| 10 |

0.00 | 0.00 | 0.00 | 1.00

Fig. 8. Transformation matrix and SL-Engagements in the process of being assembled.

implement the code in C++, which would increase the computational speed, the combi-
natorial search space of 2" still remains a severely limiting factor (i.e., considering 100
SL blocks there are 2190 possibilities that have to be explored).

In order to increase the calculation efficiency and the number of assembled blocks, we
proposed a bidirectional search approach and extended the initial six SL-Engagements
to twelve types through the inverse of the transformation matrix. SL-Strands can be
generated by simultaneously assembling SL-Engagements along with clockwise and
anti-clockwise directions (Fig. 10).

Compared with the unidirectional search approach, bidirectional search replaces
a single search graph with two smaller sub graphs. In each direction, we only have
to explore a combinatorial search space of 202 and can then afterwards efficiently
compare whether the end-points of both directions match, which significantly improves
the computational speed and the tractability of the algorithm. The use of bidirectional
significantly improves the computational efficiency of generating SL-Strands (Fig. 10).

176 Y. Liu et al.

X
(C) 14 2-a3a 14 2-a 3-h
g
o e e
I |]
1 g
14 2:h 3-h 4h 14 2-h 3-h 42 14 2h 3-a 4h 14 2-h3-a 42

1+ 2-a 3-h 4-h 1-i 2-a 3-h 4-a 1+ 2-a 3-a 4-h

Fig. 9. Unidirectional example graphs showing the process of finding the closed SL-Strands from
all possible results of assembling four conjugate pairs with h and a SL-Engagements. (the node
of the graph represents the transformation matrix of the current assembled SL-Engagement, the
edge of the graph represents the interlocking relation between SL-Engagements).

Lwere e s

y engagement

¥ engagement

© Azl 2N SA2A 2038 A1 2330 AEA v a3
(¢

Fig. 10. Left: The twelve types of SL-Engagements and their corresponding transformation

matrix. Right: Bidirectional example graphs showing the process of finding the closed SL-Strands
assembled by four conjugate pairs with H, h, A and a SL-Engagements.

Auto(mated)nomous Assembly 177

3.3 Towards Fully Autonomous Construction — from Shape Input to Robotic
Assembly

Parallel to the exploration of design strategies for discrete, dry-joint elements we aim at
automating the assembly of those elements with autonomous robots. The above shown
methods still depend on hand-crafted heuristics and do not consider the robot-in-the-loop,
i.e., the robotic execution of the part placements. Yet, the ultimate goal of autonomous
assembly would be a fully autonomous pipeline, that takes as input a user-defined, desired
shape, and the available building blocks, and directly maps to actions that are executable
by the robot. As a result, the desired shape should be optimally resembled through the
autonomous actions by the robot. To achieve this, we need to come up with an approach
that is capable of i) handling the combinatorial search space regarding the possibilities
to combine the available parts, ii) taking the constraints of the robot into account, such as
for instance its limited workspace, iii) creating a feasible plan that ensures the stability
of the structure at any point in the construction process, iv) avoiding collisions between
the robot and the structure, and v) in the case of SL-Blocks, trying to ensure that the
overall structure is interlocking.

To handle all these different levels of complexity altogether, we propose an approach
based on model-free reinforcement learning, in particular, Q-learning (Mnih et al. 2013).
Thereby, we avoid having to create an analytical model that would be capable of capturing
all the desires, but instead directly try to predict the quality of all the actions that are
currently available, and choose to execute the best one. Nevertheless, this necessitates
a simulation environment (cf. Figure 11), as initially, the quality of the actions are
unknown, and have to be learned during the so-called training process. Exemplarily,
the quality of action a, given current state s, is given by Q(s,a) = r(s,a) + max(a’)
Q(s',a’), where r(s,a) is the immediate reward of executing action a in state s (i.e.,
assigning a positive reward if the filling of the desired shape increased and the action
was successful, and a negative one otherwise), and max(a’)Q(s’,a’) represents the value
of the best available action in the state s’ that we end up in, thereby, taking the taks’s long
horizon into account, as we can only judge at the end whether all the actions optimally
resemble the desired target shape. For predicting the quality of the actions, we make
use of a graph-based neural network (cf. Figure 12) (Scarselli et al. 2008). As shown in
the figure, we discretize the desired structure that is to be built, and also represent all
the available building blocks through the voxels that they are made up of. This allows
us to define a graph, with nodes, representing the centers of the respective voxels. To
predict the action values, we first exchange information between all the nodes in the
graph to get a better understanding of the assembly scene, and finally predict all the
values for moving one of the voxels of an unplaced block, to a position in the grid that
is still unoccupied. Despite the fact that it is straightforward to represent the assembly
scene as a graph, graph-based representations come at the additional advantage of being
invariant to the problem size as the exchange of information is defined locally between
nodes. Thus, the absolute number of nodes is irrelevant. Therefore, we can use the same
learned graph-representation to handle problems with different sets of available building
blocks and desired target shapes.

178 Y. Liu et al.

Fig. 11. Illustration of the robotic assembly simulation environment, with the set of available
building blocks on the left hand side, a robotic manipulator (Franka Panda), and the voxelized
target shape. The pink voxels should be occupied during the construction process, while the green
voxels should be left empty. Figure 13 illustrates the sequential robotic assembly using the trained
policy.

Encoded graph used for Action
Quality Estimation (Q(s,a))

Input Graph Representation Encoding graph by passing
Assembly Scene Simplified)

Fig. 12. Depicting the process of decision making using the graph neural network. Given the
assembly scene, we create a graph based representation of it. Note that we only display a simplified
version of the assembly scene in which there are 4 voxels (3 green ones that should remain empty,
and 1 pink one that should be filled), and two building blocks (an L-shaped block, visualized by the
3 interconnected white nodes in the middle left, and a single block, visualized by the single node
in the bottom left). Next follow some rounds of message passing in which the nodes exchange
information along the edges to create a more global understanding of the assembly scene. In the
last step, the encoded graph is obtained for action selection. With the red arrows we exemplarily
visualize predicting the values for all the actions of placing the single block at all the unoccupied
spaces. Note, we also estimate the values for all the other white nodes that correspond to voxels
of building blocks that are not placed yet. Lastly, we execute the action with the highest value and
then repeat the process.

After having learned this graph-based representation, Fig. 13 illustrates one rollout
of the learned policy in which a desired structure is built from the rectilinear poly-
cubes. Yet, in its current form, the goal of the overall structure to be interlocking is not
taken into account. Note however that the algorithm is fully autonomous, i.e., it only
receives as the input the desired target shape and the available building blocks, and the

Auto(mated)nomous Assembly 179

rest, i.e., the part placement and robotic actions are exclusively handled by the previ-
ously presented algorithm. For more details on graph-based reinforcement learning for
autonomous assembly, please see (Funk et al. 2022b).

Fig. 13. Illustration of the step-wise assembly process of the structure shown in Fig. 11. As shown,
the autonomous assembly agent successfully combines 6 building blocks to optimally recreate the
desired, predefined structure.

4 Conclusion and Future Work

In this work, we have presented hierarchical design approaches enabling the use of SL
blocks in architectural design and construction processes. The developed tools aim at
identifying how to combine multiple SL blocks together to form larger structures. As
presented in the paper, this allows the building of larger installations entirely from SL-
blocks, as well as the seamless integration of elements made from SL blocks with con-
ventionally manufactured ones, which is highly desirable as these interlocking elements
can be disassembled and reassembled to something new, thereby making construction
more resource efficient and going towards the concept of a circular economy.

Future research is required to develop these tools further. These investigations should
explore the hierarchical structural systems built with SL Blocks on different scales. The
complex combinatorics of aggregating SL Blocks into stable building structures are
currently under investigation to be automated with recursive searching and learning
algorithms. The structural behavior and analysis of such aggregations will be examined
with the Finite Element Method and Discrete Element Method. The computational sim-
ulation enables us to understand the forces and movement of individual SL blocks within
a discrete structural system, rationalizing the material distribution of SL blocks.

Finally, we have also presented a method that is capable of handling all the inherent
difficulties of fully autonomous construction, thereby handling both the planning for
how to optimally place the parts, as well as ensuring feasible execution by the robot. In
the future, this method has to be extended to allow for building more complex structures
consisting of more parts, and in particular, SL-Blocks, as well as being capable of
reasoning about the interlocking of the entire structure by incorporating insights from
recursive interlocking puzzles.

Acknowledgment. This research is funded by the Bundesinstitut fiir Bau-, Stadt- und Raum-
forschung on behalf of the Bundesministeriums des Innern, fiir Bau und Heimat with funds from

180 Y. Liu et al.

the Zukunft Bau research grant programme. Niklas Funk acknowledges the support from the Arti-
ficial Intelligence in Construction (AICO) grant by the Nexplore/Hochtief Collaboration Lab at
TU Darmstadt.

References

Auckly, D.: Folklore, the Borromean rings, the icosahedron, and three dimensions. Math. Mag.
93(5), 330-342 (2020)

Bapst, V., Sanchez-Gonzalez, A., Doersch, C., Stachenfeld, K., Kohli, P., Battaglia, P., Hamrick, J.:
Structured agents for physical construction. In: International Conference on Machine Learning
(2019)

Berge, B.: Ecology of Building Materials. Routledge (2007). https://doi.org/10.4324/978008050
4988

Clisby, N., Jensen, L.: A new transfer-matrix algorithm for exact enumerations: self-avoiding
polygons on the square lattice. J. Phys. A: Math. Theor. 45(11), 115202 (2012)

Daniel, D.: Katerra’s $2 billion legacy. Architect Magazine. https://www.architectmagazine.com/
technology/katerras-2-billion-legacy_o (2021). Last Accessed 01 May 2022

Driess, D., Ha, J.S., Toussaint, M.: Learning to solve sequential physical reasoning problems from
a scene image. Int. J. Robot. Res. 40(12-14), 1435-1466 (2021)

Dyskin, A.V., Estrin, Y., Kanel-Belov, A.J., Pasternak, E.: Toughening by fragmentation—how
topology helps. Adv. Eng. Mater. 3(11), 885-888 (2001)

Eagle, A., Kato, T., Minato, Y.: Solving tiling puzzles with quantum annealing. In: arXiv preprint
(2019)

Estrin, Y., Dyskin, A.V., Pasternak, E.: Topological interlocking as a material design concept.
Mater. Sci. Eng., C 31(6), 1189-1194 (2011)

Funk, N., Chalvatzaki, G., Belousov, B., Peters, J.: Learn2Assemble with Structured Represen-
tations and Search for robotic architectural construction. In: Conference on Robot Learning
(2022a)

Funk, N., Menzenbach, S., Chalvatzaki, G., Peters, J.: Graph-based reinforcement learning meets
mixed integer programs: an application to 3D robot assembly discovery. In: arXiv preprint
(2022b)

Garrett, C., Huang, Y., Lozano-Perez, T., Mueller, C.: Scalable and probabilistically complete
planning for robotic spatial extrusion. In: Proceedings of Robotics: Science and Systems (2020)

Garrett, C., Kaelbling, L., Lozano-Pérez, T.: Learning to rank for synthesizing planning heuristics.
In: IICAI (2016)

Gershenfeld, N.: How to make almost anything: the digital fabrication revolution. Foreign Aff.
91, 43 (2012)

Golomb, S.W.: Tiling with polyominoes. J. Comb. Theory 1(2), 280-296 (1966)

Hall, D.M., Lessing, J., Whyte, J.: New business models for industrialized construction. In: Bol-
pagni, M., Gavina, R., Ribeiro, D. (eds.) Industry 4.0 for the Built Environment. SI, vol. 20,
pp- 297-314. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82430-3_13

Hartmann, V., Oguz, O., Driess, D., Toussaint, M., Menges, A.: Robust task and motion planning
for long-horizon architectural construction planning. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (2020)

Kaelbling, L., Lozano-Pérez, T.: Hierarchical planning in the now. In: Workshops at the Twenty-
Fourth AAAI Conference on Artificial Intelligence (2010)

Mather, A., Cipra, R., Siegmund, T.: Structural integrity during remanufacture of a topologically
interlocked material. Int. J. Struct. Integr. 3(1), 61 (2012)

https://doi.org/10.4324/9780080504988
https://www.architectmagazine.com/technology/katerras-2-billion-legacy_o
https://doi.org/10.1007/978-3-030-82430-3_13

Auto(mated)nomous Assembly 181

Mnih, V., et al.: Playing atari with deep reinforcement learning. In: arXiv preprint (2013)

Protzen, J.P.: Inca quarrying and stonecutting. J. Soc. Archit. Hist. 44(2), 161-182 (1985)

Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network
model. IEEE Trans. Neural Netw. 20(1), 61-80 (2008)

Shih, S.G.: On the hierarchical construction of sl blocks—a generative system that builds
selfinterlocking structures. Advances in Architectural Geometry, 37784 (2016)

Shih, S.G.: The art and mathematics of self-interlocking SL blocks. In: Proceedings of Bridges
2018: Mathematics, Art, Music, Architecture, Education, Culture (2018)

Song, P., Fu, C.W., Cohen-Or, D.: Recursive interlocking puzzles. ACM Trans. Graph. (TOG)
31(6), 1-10 (2012)

Song, P, et al.: Reconfigurable interlocking furniture. ACM Transactions on Graphics (TOG)
36(6), 1-14 (2017)

Takefuji, Y., Lee, Y.C.: A parallel algorithm for tiling problems. IEEE Trans. Neural Netw. 1(1),
143-145 (1990)

Tessmann, O., Rossi, A.: Geometry as interface: parametric and combinatorial topological
interlocking assemblies. J. Appl. Mech. 86(11) (2019)

Tessmann, O.: Topological interlocking assemblies. In: Physical Digitality—Proceedings of the
30th International Conference on Education and Research in Computer Aided Architectural
Design in Europe (2012)

Toussaint, M.: Logic-geometric programming: an optimization-based approach to combined
task and motion planning. In: Twenty-Fourth International Joint Conference on Artificial
Intelligence (2015)

Weizmann, M., Amir, O., Grobman, Y.J.: The effect of block geometry on structural behavior of
topological interlocking assemblies. Autom. Constr. 128, 103717 (2021)

Wibranek, B., Liu, Y., Funk, N., Belousov, B., Peters, J., Tessmann, O.: Reinforcement learning
for sequential assembly of SL-blocks-self-interlocking combinatorial design based on machine
learning. In: Proceedings of the 39th eCAADe Conference (2021)

Zhanat, K., Corrales, J.A., Perdereau, V.: Tactile sensing in dexterous robot hands. Robot. Auton.
Syst. 74, 195-220 (2015)

	Auto(mated)nomous Assembly
	1 Introduction
	1.1 Intelligent Construction and Automation

	2 State of the Art
	3 SL Blocks for Architectural Design and Construction
	3.1 Hierarchical Design Strategy
	3.2 Automate Generation of SL-Strands
	3.3 Towards Fully Autonomous Construction – from Shape Input to Robotic Assembly

	4 Conclusion and Future Work
	References

