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Abstract. Gesture recognition pertains to recognizing meaningful expressions of
motion by human, it is utmost important in medical rehabilitation, robot control as
well as prosthesis design. Compared with gesture recognition based on machine
vision, the gesture recognition based on wearable device, especially wearable
surface electromyogram (sEMG) signal acquisition equipment, has more impor-
tant theoretical and practical application prospects. However, there are still many
urgent problems in sEMG signals, involving the signal acquisition and recogni-
tion accuracy of multi-channel sEMG signals, to be solved. For these problems,
we designed a wearable sEMG armband with convenient acquisition and high
precision to record sEMG signals and then done the gesture recognition based on
deep learningmethod. Firstly, sEMG signals are classified, denoised and extracted
features, and then extended data by sliding window. Then, Convolutional Neural
Networks (CNN) and Multilayer Perceptron (MLP) were constructed to classify
the 9 predefined gestures. The result showed that bothmethods achieve high offline
recognition rate. The average gesture recognition accuracy of CNN is 99.47%; The
average gesture recognition accuracy of MLP is 98.42%.
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1 Introduction

Hand is an important part of the human body, many things in daily life have to complete
relying on the hand. Hand function is delicate and complex [1, 2], and it is difficult to
recover after injury or hemiplegia, which seriously affect the normal life of patients [3,
4]. The traditional rehabilitation therapy is mainly based on one-to-one rehabilitation
training between therapist and patient. In this process, patients’ subjective participation
is low but the cost is high, so many patients cannot get effective treatment. However,
clinical data shows that the repeated active motor intention of hemiplegic patients can
accelerate the recovery of injured motor nerves and help shorten the recovery time.
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Decoding human motion intentions from surface EMG signals is an important method
to realize prosthesis control [5]. Therefore, in order to better apply sEMG signals to
human-computer interface control, decoding and recognizing handmotion patterns from
sEMG signals has received extensive attention in recent years [6, 7].

In the early stage, the domestic research on EMG signal was mainly through the use
of multiple electrodes to detect the EMG signal of specific muscle tissue including radial
wrist flexor, ulnar wrist extensor, superficial flexor digitorum, palmaris longus and so on
[8, 9]. But in this study, we designed a novel sEMG armband using 5 equidistant placed
Delsys sEMG sensors to collect sEMG signals from subjects’ forearm. The armband
simplifies the acquisition process of sEMG signals and makes it more convenient for
users to wear. Meanwhile, two machine learning methods, convolutional neural network
and multi-layer perceptron were selected as classifiers in this experiment in order to
achieve a high classification rate and lay the foundation for prosthetic hand control.

2 Signal Acquisition and Processing

2.1 Experimental Preparation

9 healthy right-handed subjects (5males and 4 females) with an average age of 23.3 years
were recruited for the experiment. Each subject was given an informed consent prior to
the experiment. The experimental procedures were approved by the Institutional Review
Board of Shandong University and were in accordance with the Declaration of Helsinki
(Fig. 1).

Nine commongestureswere selected in the experiment, involving singlefingermove-
ments, multiple fingers movements and grasping movements. Single finger movements
include thumb opposite palm (TOP), index finger bending (IFB), middle finger bend-
ing (MFB) and ring finger bending (RFB); Multi-finger movements include pinching
the index finger and thumb (TIP), keeping the five fingers together (KFT) and bending
the three fingers (TFB) which is index finger, middle finger and ring finger; Grasping
movements include clenching fist (CF) and cylinder grasping (CG), as shown in Fig. 2.

Data 

Acquisition

Prepro-

cessing

Sliding

Window 

treatment
CNN

Classification

Result

Feature 

Extraction 

with Sliding 

Window

Feature 

Splicing
MLP

Classification

Result

Fig. 1. Experimental process.
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Fig. 2. The nine predefined gestures.

2.2 sEMG Acquisition

In this study, we designed a novel sEMG armband using 5 equidistant placed Delsys
sEMG sensors to collect surface EMG signals from subjects’ forearms (Fig. 4), and the
sampling frequency was 1000 Hz. To ensure sEMG signal quality, the corresponding
arm skin of subjects were cleansed with a scrub and disinfected with 75% alcohol before
wearing the armband, and then, which was placed at the position from about 1/3 of the
left forearm to the elbow joint (Fig. 3).
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The sEMG signal acquisition program was designed by the software LabView. The
acquisition process mainly include the following steps. First, we used a test procedure to
checkwhether the collected sEMGsignalswere normal or not. Next, Subjectswere asked
to sit using a prescribed seated position with their left forearm placing on a mat about
15 cm on the table (Fig. 4). And the sEMG signals of 9 hand gestures were collected
in random order. There were 243 trials (9 hand gestures, 9 subjects, 3 times for one
trial) in the experiment. One trial included 3 s of gesture forming time, 77 s of gesture
holding time, and 3 s of gesture recovery time, as shown in Fig. 5. In order to facilitate
the experiment of subjects, every trial has corresponding prompt tone, and the subjects
can be also familiar with the experimental process before the formal experiment. 30-s
rest was set between trials for subjects to prevent muscle fatigue.
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Fig. 6. Raw sEMG signals

2.3 Feature Extraction

The data in the gesture holding time was used to the further research. The raw sEMG
signals of 9 handmotions during 1-s gesture holding time fromone representative subject
are shown in Fig. 6. The sEMG signals should be preprocessed before feature extraction.
In this study, a Butterworth bandpass filter (10-Hz–450-Hz) was used to filter the sEMG
signals, and a 50 Hz odd notch filter was used to eliminate the specific power frequency
interference. Meanwhile, in order to expand the amount of data and facilitate the training
of neural network, the data in the gesture holding time was extracted via sliding window
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method with 200-ms window width and 200-ms sliding distance. The data after sliding
window processing was directly input into the CNN network for classification, and the
features of the data are automatically extracted by the convolution layer.

Similarly, 9 time domain features were extracted via sliding window method in the
phase of feature extraction, including mean value (MEAN), root mean square value
(RMS), variance (VAR), standard deviation (SD), mean absolute value (MAV), number
of zeros crossing (ZC), waveform length (WL), number of slope sign changes (SSC)
and Willison amplitude (WAMP), as shown in Table 1. The window width and sliding
distance are the same as above. Then the 9 features were sequentially arranged as the
MLP network’s input for training.

Table 1. 9 time domain features.

Feature Formula
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N
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√
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√
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(continued)
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Table 1. (continued)

Feature Formula

MAV MAV = 1
N

N∑

k=1
|xk |

3 Classifier Design

3.1 CNN Design

The model of the classification method based on CNN is shown in Fig. 7. The model
consists of an input layer, an output layer and two convolution blocks. Every convolution
block has a convolution layer (3 × 3 convolution kernel) and a down-sampling layer (2
× 2 convolution kernel), which had 32 filters in the first convolution block, but 64 filters
in the second convolution block. Besides, we added the dropout layer after two convo-
lutional layers to prevent overfitting. The softmax function were used in output layer to
achieve 9 classification problems. Adam optimizer and cross entropy loss function were
selected in this CNN design.
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Fig. 7. The model of CNN

3.2 MLP Design

The model of the classification method based on MLP is shown in Fig. 8. The model
consists of one input layer, three hidden layers and one output layer, and the number
of three hidden layer nodes are 64, 32 and 16 respectively. In addition, the layers are
fully connected with each other in this model, and data labels adopts a form of One-Hot
Encoding. Similar to the classification model design based on CNN, Adam optimizer
and cross entropy loss function were used in the MLP classification model design.

The parameters of the two networks including the kernel size, the number of layers
and hidden nodes were determined by experiment.
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4 Experimental Results and Analysis

The data from 9 gestures of 9 subjects who met the experimental requirements were
analyzed and classified by two kinds of networks which were built with Python’s keras
library. We used about 80% of the data as the train set and the remaining 20% as the test
set. The results showed that both methods have high classification accuracy but there is
a big difference in time consumption. We calculate the average accuracy of the network
by taking 10 accuracies on the test set. The average accuracy of CNN network in the test
set is 99.47%. The average accuracy of MLP network in the test set is 98.42%. This lays
the foundation for the online recognition of hand movements and is of great significance
for the rehabilitation of hand motor function in patients with hemiplegia in the future.
In the case of obtaining similar accuracy, the time consumed by CNN network is longer
than that consumed by MLP network. One round of training on CNN network takes
about 1 min, but one round of training on MLP network takes about 1−s. A training
process of CNN is shown in Fig. 9 and a training process of MLP is shown in Fig. 10.

Fig. 9. A training process of CNN
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Fig. 10. A training process of MLP

5 Conclusion

This paper realizes the high accuracy classification of array sEMG signals. In this paper,
a convenient EMG armband is designed to collect the sEMG signal of forearm. The
method of machine learning is used to realize the off-line gesture recognition based on
sEMG, and the high accuracy is achieved, which lays the foundation for the precise
control of prosthesis control.
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