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Abstract. Skeleton-based action recognition is a crucial and challeng-
ing task, which has promoted remarkable progress in diverse fields. Nev-
ertheless, how to capture long-range temporal relationships remains a
challenging problem, which is vital to reducing the ambiguity of indis-
tinguishable actions. Towards this end, we propose a novel Multi-Level
Temporal-Guided Graph Convolutional Network (ML-TGCN) to tackle
the above problem. We leverage the multi-level temporal-guided mecha-
nism to learn diverse temporal receptive fields for mining the discrimina-
tive motion patterns. Moreover, most current approaches cannot effec-
tively explore the comprehensive spatial topology due to the skeleton
graph is heuristically predefined, thus we propose a cross-space GCN to
capture global context and maintain strengths of GCNs (i.e., hierarchy
and local topology) jointly beyond the physical connectivity. The exper-
imental results on the challenging datasets NTU RGB+D and Kinetics-
Skeleton verify that ML-TGCN can achieve state-of-the-art performance.
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1 Introduction

With the prosperity achieved in deep learning and computer vision, action recog-
nition has accomplished better development in recent years and already appli-
cated in various fields, such as human-computer interaction, eldercare, video
surveillance and healthcare assistance. Current action recognition baselines can
be categorized into video-based and skeleton-based. Rapid developments in 3D
depth cameras such as Microsoft Kinect and Intel RealSense sensors, besides,
human pose estimation algorithms make it more convenient to obtain 2D or 3D
skeleton coordinates quickly and accurately. The skeleton-based action recog-
nition methods have received more attention for their excellent topology-based
representation and robustness to the environmental changes. Nowadays, the most
dominative method to achieve skeleton-based action recognition has become
Graph Neural Networks (GNNs), especially, GCNs have been investigated to be
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very effective in modeling non-Euclidean data. ST-GCN [1] is the first model
that uses the spatial-temporal skeleton graph for action recognition. Latter,
diverse variants based on ST-GCN have boosted the recognition performance.
Despite the fact that ST-GCNs have made remarkable progress, the structural
constraints have limited the expressive ability of GCNs.

For ST-GCNs [1–3], the topology of the spatial graph represents the physical
connection and is pre-designed for all layers, which can hinder the expressive abil-
ity due to the limited spatial-temporal receptive field. Particularly, message prop-
agation can only flow along a fixed path when graph links are directed. Numerous
studies have shown that the relationship between body joints not associated in
the spatial graph is still crucial for recognition, such as “dancing” that left hand is
apart from right hand. To better guide the encoder about where and when to focus
on jointly, we attempt to overcome the aforementioned limitations by introduc-
ing a novel Multi-Level Temporal-Guided Graph Convolutional Network to jointly
learn discriminative local-global spatiotemporal features. Intuitively, diverse tem-
poral levels are determined by the size of the corresponding temporal segment,
which can allow the model to learn fine-grained features of highly similar relations
and effectively reduce the ambiguity of indistinguishable actions. Furthermore, the
proposed cross-space GCN learns global context and local information by captur-
ing the dependencies of non-local joints in the spatial graph. To summarize, the
main contributions of this work lie in three folds:

– We propose a novel Multi-Level Temporal-Guided Mechanism (ML-TGM)
to capture diverse temporal receptive fields, which can significantly improve
recognition performance on hard samples, i.e., reducing the ambiguity of
highly similar actions.

– With the aim to capture the optimal spatial topology, we develop an effective
cross-space GCN to learn global context and local information simultaneously,
allowing the model can mine relationships between the joints that are far away
from each other in the anatomy-based graph.

– The experimental results on two large-scale datasets NTU RGB+D [4] and
Kinetics-Skeleton [1] indicate our ML-TGCN can exceed state-of-the-art.

2 Methodology

In this section, we mainly illustrate the proposed method in two core parts.
First, we present the proposed ML-TGM in detail. Subsequently, we analyze the
drawbacks of traditional GCNs and introduce the principle of cross-space GCN.

2.1 Multi-level Temporal-Guided Mechanism

As previously emphasized in Sect. 1, understanding long-term temporal depen-
dencies is vital for efficient relations modeling, especially for indistinguishable
actions. Therefore, we propose a Multi-level Temporal-guided Mechanism (ML-
TGM) to accomplish the above goal. As shown in Fig. 1, we first use a hier-
archical backbone, i.e., several layers of regular ST-GCN, to obtain the general
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Fig. 1. Conceptual diagram of our ML-TGCN. The skeleton-based features are fed into
multi-level temporal-guided GCN to extract long-range spatial-temporal relationships.
The module of each level consists of the temporal convolution and the proposed cross-
space GCN. Eventually, the fused multi-level features are utilized for action recognition.

features representation Fg ∈ R
T×C . Then, the model learns multi-level temporal

dependencies via the proposed mechanism. Each level consists of a temporal con-
volution and ×K cross-space GCN, which corresponds to the different receptive
fields. Earlier levels mine the fine-grained behaviour features with more temporal
series, whereas the latter levels learn a coarse representation with fewer series,
we leverage the interaction of different levels to guide our model for understand-
ing long-range temporal relations. Moreover, to better model network hierarchy,
temporal features merging is the essential one, thus we adopt a transformation
function T to ensure the representation of different levels can obtain a uni-
fied feature representation Fu ∈ R

T×Cm , which attempts to resample the series
across temporal dimensions. Specifically, we accomplish it by utilizing an inter-
polate function and a linear mapping to the richer semantic space. We denotes
the representation of each level as F(n) ∈ R

T

2n−1 ×αn−1C , α is the channel-wise
scale factor. The transformed features F(n)

T ∈ R
T×Cm via the function T can be

denoted as:
F(n)

T = Interpolation(F(n)Θ(n)) (1)

Θ(n) is the feature transformation at each level. Intuitively, earlier levels have
lower semantics, whereas the latter levels have higher semantics. To balance the
interaction of them, we adopt a trainable weight λ(n) at each level for exploring
the appropriate relationships. The transformed features can be described as:

F̃(n)
T = λ(n)F(n)

T (2)

Here, the temporal length of all the refined representations is the same. Eventu-
ally, we merge the features at each level along the channel dimension to get the
multi-level temporal representation, which can be formulated as follows:

F̃T = F̃(1)
T ⊕ F̃(2)

T ⊕ ... ⊕ F̃(n)
T (3)
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⊕ represents the channel-wise concatenation. The refined features F̃T contain
diverse temporal receptive fields, which can benefit the more comprehensive
long-range temporal modeling and boost the model to distinguish highly similar
actions more accurately.

2.2 Cross-space GCN

Generally, the skeleton graph is described as G = (V, E), where V =
{v1, v2, ..., vN} is composed of N joints, E represents the edge set accomplished
by a symmetric adjacency matrix A ∈ R

N×N . The action is represented as
graph sequences X ∈ R

T×N×C , and the original input is defined by features X
and graph structure A jointly. Existing GCN-based approaches mostly model
the skeleton data by a spatial GCN and temporal convolution, which typically
introduce incremental modules to enhance the expressiveness ability. However,
the formed spatial-temporal receptive fields are pre-defined heuristically and dis-
tant nodes have weak information interaction. Therefore, we attempt to merge
multi-scale structural features to learn higher-order polynomials of the adjacency
matrix for mining global relations. The regular multi-scale formulation can be
denoted as:

X ′ =
K∑

k=0

D̂(k)−
1
2 Â(k)D̂(k)−

1
2 XW (4)

where K is the number of scales for aggregation, Â(k) is the adjacency matrix
of A at kth scale, D(k) is the diagonal degree matrix of Â(k) and W is the
trainable linear transformation. Many investigations have verified that ordinary
multi-scale mechanisms still concentrate more on the local region due to cyclic
walks. The self-loops can create more space for cycles, resulting in the bias of
the receptive field. To solve the above problem, we modify the above formulation
to suppress redundant dependencies. Specifically, we propose a mechanism φ to
reformulate the adjacency matrix at each scale, which can be formulated as:

Â(k) = μÂ(k) + (μ − 1)Â(k−1) + I (5)

μ ∈ [0, 1] is a learnable parameter and I is the identity matrix, self-loops I is
essential for learning the k-hop relationships and accelerating convergence.

In real scenarios, the performed actions always have complex cross-space
connectivity, thus we attempt to make a more exhaustive feature interaction.
Specifically, current methods treat the spatial aggregation as the fusion along
the channel dimension, i.e., each channel shares the same human topology, but
actually different channels have independent spatial context and should have
the trainable adjacency matrix respectively. Therefore, we further modify graph
convolution along the channel dimension. To be specific, we split channels into
G groups, each channel in a group shares the joint-level learnable adjacency
matrix. The model refines features by the operation Φ, which can be denoted as:

F̂ = ψ(Âc
1,:,:F:�C

G �,:||Âc
2,:,:F�C

G �:� 2C
G �,:||...||Âc

i,:,:F� (i−1)C
G �:� iC

G �,:
) 1 ≤ i ≤ G

(6)
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where F ∈ R
C×N is the transformed feature by using the mechanism φ,

Âc ∈ R
G×N×N is the grouped adjacency matrix, || and ψ is the channel-wise

concatenation and shuffle operation. The combination of φ and Φ forms the
proposed cross-space GCN, with the aim to enhance the features interaction of
different joints and explore the optimal spatial topology beyond the physical
connectivity.

3 Experiments

3.1 Datasets

NTU RGB+D. NTU RGB+D is the widely used and extensive dataset of 3D
joint coordinates. It contains 56880 human action video sequences in 60 classes.
The publishers of NTU RGB+D recommend two benchmarks: Cross-Subject (X-
Sub) and Cross-View (X-View). This dataset is composed of two benchmarks:
1) Cross-subject (X-Sub): The volunteers of each subset perform 40320 actions
for training, and the complement subset contains 16560 clips for evaluation.
2) Cross-view (X-View): This benchmark includes 37920 and 18960 clips for
forming the train and evaluation set respectively. These videos are captured
by three Kinetic depth sensors of equal height but different viewpoints. Each
skeleton graph of NTU RGB+D consists of 25 body key points denoted by 3D
coordinates.

Kinetics-Skeleton. Kinetic-Skeleton dataset contains about 300,000 video clips
in 400 classes collected from the Internet. The captured skeleton information
contains 18 body joints, along with their 2D coordinates and confidence score.
Different from NTU RGB+D, skeleton sequences are not provided by the depth
cameras but estimated by the publicly available OpenPose toolbox. There are
240,436 samples for training and 19794 samples for testing. Following the con-
ventional evaluation method, Top-1 and Top-5 accuracies are reported.

3.2 Implementation Details

All experiments are conducted on four RTX 3080 TI GPUs with the PyTorch
deep learning framework. We trained our models for a total of 140 epochs with
batch size 32 and SGD as optimizer on NTU RGB+D, while on Kinetics-Skeleton
we trained our models for a total of 80 epochs, with batch size 128. The learning
rate is set to 0.1 at the beginning and then reduced by a weight decay of 10 at
the epochs 60, 90, 120 and 45, 55, 70 for NTU RGB+D and Kinetics-Skeleton
respectively. Moreover, we preprocessed the data with the same procedure used
in [3]. In all of these experiments, we use the standard cross-entropy loss for
optimization.

3.3 Ablation Studies

We analyze the proposed module by experiments on the X-View benchmark
of NTU RGB+D dataset. The Top-1 accuracy of classification is used as the
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evaluation criterion. For this ablation study, we verify the performance of ML-
TGM and cross-space GCN. Moreover, we visualize the learned skeleton graph
and corresponding adjacency matrix for a more convincing explanation.

The Effectiveness of ML-TGM. Here we focus on verifying the benefits of
applying the proposed ML-TGM. From Fig. 2, we can see the accuracy of ML-
TGM with different levels. The proposed ML-TGM can be viewed as the general
temporal modeling when we only use a single level, and the experimental results
indicate that the recognition performance can actually obtain the improvement
when we utilize ML-TGM. Based on the intuition of the effectiveness and effi-
ciency, we adopt 4 levels in our ML-TGCN. Furthermore, we make a comparison
of the strong baseline (left) and ML-TGM (right) to verify the performance on
the hard classes. As shown in Fig. 3, we visualize the normalized confusion matrix
to show the accuracy of each hard class, and especially use red rectangles to mark
classes with significant improvement, which indicates that ML-TGM can reduce
the ambiguity of highly similar actions (reading and writing, etc.) indeed.

Fig. 2. The effectiveness of ML-
TGM with different levels.

Fig. 3. The normalized confusion matrix
of the strong baseline and ML-TGCN.

Fig. 4. The learned skeleton graph and
corresponding adjacency matrix.

Table 1. The comparison of cross-space
GCN and existing GCNs.

Method Accuracy (%)

ST-GCN [1] 93.6

2s AGCN [3] 94.1

2s AGCN (Non-Local) [3] 94.4

MS-G3D [5] 94.9

Cross-space GCN 95.2↑1.6

The Performance of Cross-Space GCN. To analyze the region of space that
the model focuses on when performing actions, we visualize the learned skeleton
graph and corresponding adjacency matrix. As shown in Fig. 4, we randomly
select a test sample of “fall down” class in NTU RGB+D dataset, and the learned
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skeleton graph (left) shows that the model pays more attention on hands, knees
and hips, which indicates that our model focuses actually on the action-related
region. Moreover, in the learned adjacency matrix (right), we can also observe
that the model actually learns global relationships, e.g., the feet and hands
are apart from each other, whereas the corresponding value of the adjacency
matrix is non-zero. The above result indicates that cross-space GCN captures
global context beyond the physical connectivity indeed. To further verify the

Table 2. The comparisons with our ML-TGCN on NTU RGB+D dataset.

Datasets Approaches Top-1 (%)

NTU RGB+D (X-Sub) ST-GCN [1] 81.5

STGR-GCN [6] 86.9

AS-GCN [2] 86.8

2s-AGCN [3] 88.5

DGNN [7] 89.9

MS-G3D [5] 91.5

Ta-CNN++ [8] 90.7

SMotif-GCN+TBs [9] 90.5

ML-TGCN 91.5

NTU RGB+D (X-View) ST-GCN [1] 88.3

STGR-GCN [6] 92.3

AS-GCN [2] 94.2

2s-AGCN [3] 95.1

DGNN [7] 96.2

MS-G3D [5] 95.2

Ta-CNN++ [8] 95.1

SMotif-GCN+TBs [9] 96.1

ML-TGCN 96.6

Table 3. The comparisons with our ML-TGCN on Kinetic-Skeleton dataset.

Datasets Approaches Top-1 (%) Top-5 (%)

Kinetic-Skeleton ST-GCN [1] 30.7 52.8

AS-GCN [2] 34.8 56.8

2s-AGCN [3] 36.1 58.7

DGNN [7] 36.9 59.6

MS-G3D [5] 38.0 60.9

MST-GCN [10] 38.1 60.8

Hyper-GNN [11] 37.1 60.0

SMotif-GCN+TBs [9] 37.8 60.6

ML-TGCN 38.5 61.2
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superiority of cross-space GCN, we make comparisons with other state-of-the-
art methods and adopt the same temporal model for a fair comparison. From
Table. 1, we can observe that cross-space outperforms the baseline 1.6% and
have a competitive performance compared with other state-of-the-art methods.

3.4 Comparison with the State-of-the-Art

We compare our method with state-of-the-art algorithms on NTU RGB+D (X-
View) and NTU RGB+D (X-Sub) respectively to verify the excellent perfor-
mance of our proposed ML-TGCN. As shown in Table. 2, we report the Top-1
accuracy of these methods on both cross-subject and cross-view benchmarks of
the NTU RGB+D dataset. For NTU RGB+D (X-Sub), we can observe that ML-
TGCN has a competitive performance compared with state-of-the-art methods.
For example, ML-TGCN outperforms Ta-CNN++ [8] 0.8% and MST-GCN [10]
1.6% respectively. For NTU RGB+D (X-View), we can also see a clear superior-
ity as reported previously. For Kinetic-Skeleton, the same as current state-of-the-
art methods, we leverage Top-1 and Top-5 accuracy as our evaluation metrics.
As shown in Table. 3, ML-TGCN also has an obvious improvement in recogni-
tion accuracy, e.g., our model has a 0.8% performance gain compared with [9].
The above experimental results demonstrate the superiority of our ML-TGCN.

4 Conclusions

In this work, we innovatively present a Multi-Level Temporal-Guided Mecha-
nism (ML-TGM) to capture long-range temporal relationships, which can sig-
nificantly improve the recognition accuracy of indistinguishable actions, i.e., the
proposed model can effectively reduce the ambiguity of highly similar actions.
Moreover, we propose a cross-space GCN to capture the global context and
enhance local information jointly beyond physical connectivity, with the aim to
explore the optimal spatial topology. The combination of them forms a novel net-
work called Multi-Level Temporal-Guided Graph Convolutional Network (ML-
TGCN). Experimental results on two challenging datasets NTU RGB+D and
Kinetics-Skeleton indicate our approach can achieve the known state-of-the-art.
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