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Abstract. The evolution of communication networks has created a huge require-
ment for massive connectivity, efficient spectral utilization, and high reliability.
With the introduction of non-orthogonal Multiple Access (NOMA) technique,
most of the user requirements were satisfied. Since NOMA performs the superim-
posed transmission of user signals in the same resource block, to differentiate these
signals, Successive Interference Cancellation (SIC) technique will be used. Till
now,most of the research has focused on combiningNOMAwith key technologies
such as Reconfigurable Intelligent Surfaces (RIS), massive Multiple Input Multi-
ple Output (MIMO), millimeter Waves, etc. Whereas, few works have been done
on studying the physical layer security of NOMA in direct cooperative satellite
networks. In this paper, we study the connection and secrecy performance of such
a system in the presence of two legitimate users and one eavesdropper. Closed-
form expressions were derived to understand and simulate device performance. To
authenticate these expressions, we also performed the Monte-Carlo simulations.
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1 Introduction

Radio access networks (RAN) grant permission to the user to access particular resources
of the radio spectrum for the purpose of data transmission [1]. With the evolution of
communication networks from 1G to 5G, the performing capability of the network has
also elevated in terms of connectivity, latency and user data rates. Numerous Internet
of Things (IoT) applications have come into existence like smart homes, automated
cars, virtual and augmented reality, etc. These services have demanded the requirements
of high reliability, low latency, huge connectivity and high data speed [2–4]. Energy
limitations are themost significant problem of IoT networks; however, energy harvesting
techniques have also been proposed that have contributed to solving this obstacle [20,
21]. Key technologies such as millimeter wave (mmWave) communications, Multiple
Input Multiple Output (MIMO), beamforming, and non-orthogonal Multiple Access
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(NOMA) techniquewere proposed by the International TelecommunicationUnion (ITU)
to support the development of 5G and 6G communication networks. Integrating the
NOMA techniquewith satellite communication networks is said to be a key development
for 5G [5–8].

Comparing the performance metrics of NOMA and Orthogonal Multiple Access
(OMA) technique, the NOMA has proved to be more efficient than the older technique.
NOMA utilizes the same resource block to transmit the data of multiple users [9–12].
All user signals are superimposed, and these signals are differentiated by allocating
different power level coefficients to the different users. The allocation of power levels
is based on the channel gain of the user. Users with high channel gain will be allotted
less power and low channel gain will be allotted with more power. At the receiver,
these signals are separated by performing the successive interference cancellation (SIC)
technique. The ability of NOMA to perform massive connectivity, acquire less latency
and high reliability has made it a novel approach in many other technologies. Very little
research has been done on integrating NOMAwith terrestrial networks [13, 14]. In [13],
the authors conducted a comprehensive study on Cloud RAN technology employed
by NOMA networks. In [14], the authors have considered integrating NOMA assisted
MIMO technology and NOMA assisted cooperative relay (CR) technology into the
terrestrial network applications.

Research works in [15, 16] have mentioned that the problem of security in satel-
lite terrestrial relay networks (STRN) can be approached using Physical Layer Security
(PLS). The general concept of PLS is to provide access to the legitimate users while
blocking the malicious users and their interception. In [17] and [18], the authors have
investigated the secrecy problems in the cognitive SRTN system. In [22], the authors
have proposed the cooperative multi-hop transmission protocol (CMT) in the underlay
cognitive radio networks and analyze secrecy outage probability (SOP) with the exis-
tence of a secondary eavesdropper. Several studies were performed to understand and
neutralize the secrecy issues in NOMA networks [19] and [23]. In [19], the authors
have studied the application of PLS in NOMA and derived the full analysis of SOP. In
[23], a similar system was studied, but in the presence of perfect SIC and imperfect SIC
in both the power domain NOMA and code domain NOMA was studied. Asymptotic
mathematical expressions were derived to analyze the performance of the system.

To the best of our knowledge, a few paper has considered secure performance of
STRN, this motivates us to study secure STRN relying on multiple antennas.

2 System Model

In this paper, we assume a NOMA cooperative satellite network. We assume a satel-
lite (S), two destinations Di(i ∈ {1, 2}), and an eavesdropper (E) as shown in Fig. 1.
Moreover, (S) is equipped with M antennas. In addition, we denote hi as the M × 1
Shadowed-Rician channel vector form of S toDi and hE is theM × 1 Shadowed-Rician
channel vector form of (S) to E.

Moreover, (S) sends the signal s = √
(a1)x1 + √

(a2)x2, where a1, a2 are the power
allocation coefficient and x1, x2 are themessage ofD1,D2. Therefore, the received signal
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Fig. 1. System model of secure STRN relying on cooperative NOMA.

from S to Di is given by

yDi = h†i wi

(√
PS

(√
a1x1 + √

a2x2
)) + νi (1)

where PS denotes the power transmit at S, a1 and a2 are the power allocation coefficient,
(.)† is the conjugate transpose, νi ∼ CN (0, σ 2

i ) denotes the additive white Gaussian
noise (AWGN),wi is theM ×1 transmit weight vector andwi = hi||hi||F as [28], in which
‖·‖F is Frobenius norm.

Next,D2 is decodedwith the signal x2 and the signal-to-interference-plus-noise-ratio
(SINR) is given by

γD2,x2 = PSa2‖h2‖2F
PSa1‖h2‖2F + σ 2

2

= η2a2
η2a1 + 1

(2)

where ηS = PS
σ 2
i
is the transmitted signal-to-noise ratio (SNR), ηi = ηS‖hi‖2F . Then, D1

is decoded with the signal x1 and the SINR is given by.

γD1,x1 = PSa2‖h1‖2F
PSa1‖h1‖2F + σ 2

1

= η1a2
η1a1 + 1

(3)

with NOMA protocol in [24], by applying SIC to decode its own signal x1 at D1, the
SNR is given by

γD1,x1 = η1a1 (4)

Meanwhile, the received signal at E is given by

yE = hEwH
E

(√
PS

(√
a1x1 + √

a2x2
)) + νE (5)
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where νE ∼ (CN , σ 2
E) Then the SINR of E to detect the signal x2 of D2 is given by [25]

γE,x2 = PSa2‖hE‖2F
PSa1‖hE‖2F + σ 2

E

= ηEa2
ηEa1 + 1

(6)

where ηS = PS
σ 2
E
, ηE = ηS‖hE‖2F . Similar to D1, the SINR of E to detect the signal x1 of

D1 is given by

γE,x1 = ηEa1 (7)

In the next section, we intend to examine two performance metrics to highlight
advances of Non-Orthogonal Multiple Access (NOMA) and multiple antennas scheme
to the considered system.

3 Performance Analysis

In this section, we analyze the connection outage probability (COP) and secrecy outage
probability (SOP) of Di. First, the probability density function (PDF) of the channel
coefficient hjz with z ∈ {1, 2,E} is given by [26]

f∣∣∣hjz
∣∣∣2
(γ ) = αze

−βzγ
1 F1(mz; 1; δzγ ), γ > 0, (8)

where αz = 1
2bz

(
2bzmz

2bzmz+	z

)mz
, δz = 	z

2bz(2bzmz+	z)
, mz is the fading severity parameter,

	z and 2bz are the average power of LOS and multipath components, respectively, and
1F1(., ., .) denotes the confluent hypergeometric function of the first kind [29, 9 .201.1].
Based on [27], we can simplify (8) as

f∣∣∣hjz
∣∣∣2
(γ ) = αze

−(βz−δz)γ

mz−1∑
b=0

ζz(b)γ
b, (9)

where ζz(b) = (−1)b(1 − mz)bδ
b/(b!)2 and (.)b is the Pochhammer symbol [29]. Thus,

with i.i.d. Shadowed-Rician fading, the PDF of ηz can be expressed by

fηz (γ ) =
mz−1∑
b1=0

. . .

mz−1∑
bN=0

�(z)

(ηS)
�

γ �−1e
− (βz−δz )

ηS
γ
, (10)

3.1 COP of D2

The COP of D2 is given by [25]

PCOP
2 = Pr

(
γD2,x2 < ε2

)
(11)

where εi = 2Ri − 1 and Ri denotes the target rate.
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Proposition 1: The COP of D2 can be obtained as

PCOP
2 =

m2−1∑
b1=0

. . .

m2−1∑
bN=0

�(2)

(β2 − δ2)
�

γ

(
�,

(β2 − δ2)ε2

ηS(a2 − ε2a1)

)
(12)

Proof: With help (2), COP of D2 can be rewritten as

PCOP
2 = Pr

(
η2 <

ε2

(a2 − ε2a1)

)
=

ε2
(a2−ε2a1)∫

0

fη2(x)dx (13)

Substituting the PDF in (10) into (13), we obtain the following.

PCOP
2 =

m2−1∑
b1=0

. . .

m2−1∑
bN=0

�(2)

(ηS)
�

ε2
a2−ε2a1∫

0

x�−1e
− (β2−δ2)

ηS
x
dx (14)

Based on [29, 3.351.1], the closed-form of D2 is given by

PCOP
2 =

m2−1∑
b1=0

. . .

m2−1∑
bN=0

�(2)

(β2 − δ2)
�

γ

(
�,

(β2 − δ2)ε2

ηS(a2 − ε2a1)

)
(15)

where γ (a, b) is the upper incomplete gamma functions.
The proof is completed.

3.2 COP of D1

The COP of D1 is written as [25]

PCOP
1 = Pr

(
γD1,x1 < ε1

)
(16)

Substituting (4) into (16), (16) can be rewritten as

PCOP
1 = Pr

(
η1 <

ε1

a1

)
=

ε1
a1∫

0

fη1(x)dx (17)

Similar in Proposition 1, the closed-form of COP for D1 is given by

PCOP
1 =

m1−1∑
b1=0

. . .

m1−1∑
bN=0

�(1)

(β1 − δ1)
�

γ

(
�,

(β1 − δ1)ε1

ηSa1

)
(18)
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3.3 SOP of D2

As the main result is reported in [25], the SOP of D2 is expressed as

PSOP
2 = Pr

(
γE→x2 > εS2

)
(19)

where εSi = 2Ri−RSi − 1 is the secrecy rate of Di.

Proposition 2: The exact closed-form SOP of D2 is given by.

PSOP
2 =

mE−1∑
b1=0

. . .

mE−1∑
bN=0

�(2)

(βE − δE)�
γ

(
�,

(βE − δE)εS2

ηS
(
a2 − εS2a1

)
)

(20)

Proof: By (6), the SOP of D2 can be rewritten as.

PSOP
2 = Pr

(
ηE >

εS2

a2 − εS2a1

)
=

∞∫

εS2
a2−εS2 a1

fηE (x)dx (21)

With the help of the CDF of ηE (10), we can write (21) as

PSOP
2 =

mE−1∑
b1=0

. . .

mE−1∑
bN=0

�(E)

(ηS)
�

εS2
a2−εS2 a1∫

0

x�−1e
− (βE−δE)

ηS
x
dx (22)

Using [29, 3.351.2], the closed-form SOP of D2 is given by

PSOP
2 =

mE−1∑
b1=0

. . .

mE−1∑
bN=0

�(2)

(βE − δE)�
�

(
�,

(βE − δE)εS2

ηS
(
a2 − εS2a1

)
)

(23)

where �(a, b) denotes the lower incomplete gamma function.
The proof is completed.

3.4 SOP of D1

As [25], the SOP of D1 can be expressed as.

PSOP
1 = Pr

(
γE→x1 < 2R1−RS1 − 1

)
(24)

In similar to Proposition 2, the exact closed-form of D1 is formulated by

PSOP
1 =Pr

(
ηE >

εS1

a1

)
=

∞∫

εS1
a1

fηE (x)dx

=
mE−1∑
b1=0

. . .

mE−1∑
bN=0

�(E)

(βE − δE)�
�

(
�,

εS1

ηSa1

)
(25)
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4 Numerical Result And Discussions

In this section, we set a2 = 0.8, a1 = 0.2, R2 = 0.5 R1 = 1, RS
1 = 0.5 and RS

2 = 0.1.
Moreover, we consider the Shadowed-Rician fading parameters for the satellite links
is the heavy shadowing with m1 = m2 = mE = 1, b1 = b2 = bE = 0.063 and
	1 = 	2 = 	E = 0.0007.

In Fig. 2, the simulations were performed to COP versus transmit SNR to analyze
the connection outage performance of the system by varying the number of antennas
at the satellite. As we can observe, the performance of the system has comparatively
increased when the number of antennas were increased from 1 to 2.

Fig. 2. The connection outage performance vs ηS (dB) varying the antenna of SM .

In Fig. 3, the simulations were performed to SOP versus transmit SNR to analyze
the secrecy performance of the system. We can observe that, with the rise in the number
of antennas, the SOP of the system shows better performance. We can also observe that
increasing a single antenna shows a huge performance gap between the lines. Therefore,
we can understand that the number of antennas plays a major role in the efficiency of
the system.
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Fig. 3. The secrecy outage performance vs ηS (dB) varying the antenna of SM .

5 Conclusion

In this paper,we considered aNOMAnetwork assisting a cooperative satellitewith anten-
nas equipped at the satellite, in the presence of two legitimate users and an eavesdropper.
We aimed to investigate the connection performance and the secrecy performance of the
system by varying main parameters such as the number of antennas. We have derived
the closed-form expressions for COP and SOP and analysed the system behaviour by
changing the number of antennas and keeping the remaining parameters constant for fair
comparison. We understood that the increase in the number of antennas at the satellite
will help the communication links for efficient data transmission.
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