
A Reusable Methodology for Player
Clustering Using Wasserstein Autoencoders

Jonathan Tan and Mike Katchabaw(B)

Department of Computer Science, Western University, London, ON, Canada
{jtan97,mkatchab}@uwo.ca

Abstract. Identifying groups of player behavior is a crucial step in
understanding the player base of a game. In this work, we use a recurrent
autoencoder to create representations of players from sequential game
data. We then apply two clustering algorithms–k-means and archetypal
analysis–to identify groups, or clusters, of player behavior. The main
contribution to this work is to determine the efficacy of the Wasserstein
loss in the autoencoder, evaluate the loss’s effect on clustering, and pro-
vide a methodology that game analysts can apply to their games. We
perform a quantitative and qualitative analysis of combinations of mod-
els and clustering algorithms and determine that using the Wasserstein
loss results in better clustering.

Keywords: Data modeling · Autoencoders · Cluster analysis ·
Quantitative user studies · Interpretability

1 Introduction

Video games are differentiated by their genres, artistic designs, stories, and
gameplay mechanics. In addition, they have varying budgets, team sizes, and
production qualities. However, the backbone of all video games is the players,
so understanding the player base is critical for a game studio. This has given
rise to the discipline of game analytics, the study of play and players to provide
insights into making better games and making games in better ways.

Our current work involves clustering players in the popular mobile game My
Singing Monsters.1 Creating clusters, or groups, of players based on their in-game
behavior can help game analysts identify trends in the player base and better
understand the parts of a video game that make it enjoyable or displeasing.
Game producers can then use the clustering results to suggest improvements to
the game or continue releasing content that players will enjoy. Understanding
the player base through clustering is a win-win: the players’ experiences improve,
and the game studio enjoys increased success.

In Sect. 2, we go over some necessary background for our work. Next, we
describe related work in Sect. 3. Then, we walk through the method for our

1 http://www.mysingingmonsters.com.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
B. Göbl et al. (Eds.): ICEC 2022, LNCS 13477, pp. 296–308, 2022.
https://doi.org/10.1007/978-3-031-20212-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20212-4_24&domain=pdf
http://www.mysingingmonsters.com
https://doi.org/10.1007/978-3-031-20212-4_24


Player Clustering Using Wasserstein Autoencoders 297

analysis in Sect. 4 and present the results of the models in Sect. 5. Finally, we
discuss the results as a whole in Sect. 6. The source code of our work is available
at https://github.com/tanjo3/wae-clustering.

2 Background

2.1 Recurrent Neural Networks

Neural networks are a practical and versatile form of function approximation.
However, in their simplest form, they require their inputs to be feature vectors.
Unfortunately, many real-life data, such as images or audio sequences, do not fit
this description, so either we must adapt the input to the model or the model to
the input. Constructing features for this type of data can be laborious, and it is
not always clear how to do so. Recurrent neural networks (RNNs) are designed
to work with sequential data as their inputs to address this issue. Effectively, a
recurrent neural network recursively applies its hidden state over each item in
the input sequence.

2.2 Autoencoders

The goal of an autoencoder is to recreate its input. Thus, an autoencoder consists
of two parts: the encoder, which creates a latent representation, or embedding,
of the input, and the decoder, which reconstructs the original input from the
embedding. If we implement the autoencoder as a neural network, we can train
it end-to-end via backpropagation to learn the weights. We use the standard
mean squared error for the loss function, though any reconstruction error is
possible. Here, we use an autoencoder as a feature extraction method in our
work, creating vector embeddings from sequential player data and using them
as input to clustering algorithms.

2.3 Adversarial Training and Generative Adversarial Networks

For autoencoders, the training procedure looks to minimize the reconstruction
error. However, there is benefit in adding a secondary, competing criterion that
instead seeks to be maximized. Generative adversarial networks (GANs) [10] are
generative models that use such adversarial training. The discriminator tries to
maximize its success rate by separating actual and generated samples, while the
generator aims to generate realistic output to minimize it.

2.4 Wasserstein Distance

While GANs are handy and flexible models, they are infamously susceptible to
unstable training [2]. Arjovsky, Chintala, and Bottou [3] introduce the Wasser-
stein GAN to fix this instability. They show that optimizing for the Wasserstein-
1, or Earth-Mover (EM), distance results in more stable training than optimizing
for the Jensen-Shannon (JS) divergence as the original GAN formulation does.

https://github.com/tanjo3/wae-clustering


298 J. Tan and M. Katchabaw

2.5 Clustering Metrics

Clustering is an unsupervised learning task that looks to group similar examples
meaningfully. However, without knowing exactly how many clusters there are
and to which each player should be assigned, there is no strict way to evaluate
the quality of a clustering. However, we can use metrics that evaluate what
one would expect from a “good” clustering, such as dense clusters and clear
separation between clusters. These are, of course, not necessary nor sufficient
criteria for good clustering, but they serve as a qualitative measure without
ground truth labels. We use two different metrics: the Calinski-Harabasz index
[5] and the Davies-Bouldin index [7]. The Calinski-Harabasz index prefers high
values, while the Davies-Bouldin index prefers low values.

2.6 Archetypal Analysis

In this work, we compare the performance of two different clustering algorithms.
Both algorithms produce cluster representatives, which we will use to interpret
the properties and behaviors of the players in those clusters. The first is the
traditional k-means algorithm [12], which produces k centroids representing their
cluster. The centroids represent an average over its cluster members. However,
the algorithm has a couple of key weaknesses. The first is that the centroids
identified by the algorithm do not correspond to an actual member of the data
set, which can result in illegitimate values for features, such as fractional values
for features like player level. The second weakness is that centroids of similar
clusters may be difficult to distinguish. For example, if the centers of mass of two
clusters are close, the average values represented by the corresponding centroids
could also be comparable.

We also apply archetypal analysis (AA) [6] to our data set for these reasons.
AA instead finds k archetypes representing extreme members of each cluster.
Since archetypes are members of the original data set, their features will always
be valid and directly interpretable. Additionally, they are generally easily distin-
guishable among other archetypes. For example, consider a data set of all sports
athletes. The k-means centroids for tennis and badminton players might be sim-
ilar, and since they do not represent real players, they are possibly hard to
interpret. On the other hand, the archetypes for the same clusters might be
Roger Federer and Lin Dan. Comparing these two data points is easier since
they are real players and exemplars of their respective sports.

3 Related Work

Understanding player behavior in games is an active area of research. For exam-
ple, Drachen et al. [8] use self-organizing maps (SOMs) to identify four player
classes in Tomb Raider: Underworld. However, the input to their model uses six
hand-crafted features extracted from game data. Our work uses recurrent neural
networks to avoid hand-crafting such features. In another study, Drachen et al.



Player Clustering Using Wasserstein Autoencoders 299

[9] compare and contrast k-means and simplex volume maximization (SiVM)
for clustering players in Tera and Battlefield 2: Bad Company 2. SiVM is an
algorithm based on archetypal analysis. The authors find that while both meth-
ods produce a similar number of clusters, behaviors were easier to distinguish
when using SiVM. In our work, we compare k-means to archetypal analysis on
the players of My Singing Monsters, while also comparing different autoencoder
models.

To our knowledge, the Wasserstein loss was first adapted to autoencoders by
Tolstikhin et al. [15]. They demonstrate the training procedure and provide two
different implementations differing in the penalty used in the autoencoder. One
of the implementations uses the GAN penalty, which we adapt for our work.
Furthermore, we modify the training procedure to use recurrent neural networks
and the gradient penalty presented by Gulrajani et al. [11]. Our contribution is
to evaluate the Wasserstein autoencoder’s performance in clustering, providing
both a quantitative and qualitative analysis of player data.

Boubekki et al. [4] introduce the Clustering Module (CM), which adds a
single-layer autoencoder to the existing autoencoder structure. This autoencoder
minimizes the reconstruction error on the embeddings and additional loss terms
that derive from viewing the k-means clustering algorithm as a Gaussian mix-
ture model. Their autoencoder system demonstrated performance on par with
other state-of-the-art deep clustering methods as measured by several clustering
metrics that use the true labels of the dataset. Unfortunately, we do not know
the true labels for our work, so we cannot use these same metrics. Additionally,
optimizing for k-means clustering may not be entirely appropriate for our data.
Regardless, we demonstrate the performance of CM-augmented autoencoders
with and without the Wasserstein loss in our work.

4 Method

This section describes the process we take to prepare and perform our clustering
analysis. Below, we provide an enumerated list of the steps in performing our
clustering analysis.

1. Game Identification and Understanding. The first step is to identify the
game to be analyzed clearly. In our case, we first introduce the core gameplay
mechanics for My Singing Monsters to better understand what exactly might
be the gameplay features we use for analysis. After identifying which game-
play we will accumulate, we need to decide the period during which and the
frequency with which we will collect the data. What is appropriate depends
on the game that is being analyzed. In our case, we opt to aggregate features
by day over 60 days, but being more or less granular may be appropriate for
different games.

2. Data Collection and Preprocessing. The next step is to collect the data
and preprocess it. Ensuring that the data passed to the model makes sense is
vital. We want to look at interesting gameplay behavior, and as a result, we
only choose to look at players with activity past a certain threshold. Other



300 J. Tan and M. Katchabaw

analyses may make use of different criteria. It is also important that we do not
impose too many biases on the data selection and preprocessing at this stage.
We want the sampling of players to be random; otherwise, our inferences will
also be biased.

3. Model Definition and Construction. The next step is to define and con-
struct the models. Models such as neural networks will have hyperparameters,
and it is important to do a hyperparameter search at this stage to compare
models as closely as possible. As a result, the optimization criterion needs
to be clearly defined. For our work, this would be the reconstruction errors
of our autoencoders. A key contribution of this work is the exploration of
autoencoder models augmented with the Wasserstein loss. This methodology
can also be applied to other models and approaches to data modeling, as we
will demonstrate with the Clustering Module [4].

4. Analysis of Results. We then compare the clustering performance of the
models. Again, the comparison needs to be quantitatively defined. We use
two clustering metrics to determine how many clusters we will consider and
compare one model against another quantitatively.

5. Translation Into Actionable Interpretations. The last step is to visual-
ize both the embeddings and the clusterings. The former helps us understand
the distribution of the player base. The latter allows us to infer the represen-
tative behaviors of the players in our game. In a game studio, not everyone is
familiar with data science. Game analysts can more easily communicate the
results to non-technical parties through visualization. Translating the data
into actionable interpretations is arguably the most critical step, and so we
split this discussion in our work here into its own section below.

4.1 Game Identification and Understanding: My Singing Monsters

My Singing Monsters is a mobile game developed by Big Blue Bubble that is free
to download and start playing. It was first released on iOS in 2012 and has since
been released on numerous other platforms. It is a world-building game where
players buy and breed singing monsters to place on their island. Each monster
has a unique timbre and will sing or play a part of a song depending on which
islands the player places them. One implicit goal of the game is to collect all
the different types of monsters available on an island to get the complete island
song. The usual method of obtaining new monsters is to breed two monsters
that the player already owns to receive a monster egg. The player must then
incubate the egg until it hatches. Both the breeding and incubation processes
take real-world time. The player can speed up this process through diamonds or
watching advertisements. The primary way to acquire diamonds is to purchase
them from the store using real-world currency, but the player can also earn them
passively in-game, albeit very slowly.

Additionally, the player can buy decorations using coins to beautify their
islands. The singing monsters generate coins at a fixed rate depending on their
breed and level. The player can level up a monster by feeding them treats. The
player bakes treats at the cost of coins, and baking takes real-world time. Again,



Player Clustering Using Wasserstein Autoencoders 301

the player can speed up this process by using the premium currency of diamonds
or watching in-game advertisements.

4.2 Data Collection and Preprocessing

Ultimately, each action that the player makes in the game is anonymized, times-
tamped, and recorded into a database. Thus, gigabytes of data are collected daily
with a large player base. So how should we represent the player? We could look at
every player’s action since account creation, but that could be thousands of data
points to consider. Traditionally, analysts will instead aggregate the data. How-
ever, selecting features that represent players well takes time and domain exper-
tise. There is also the risk of human biases leaking through, intentionally or not.

For this reason, we try to adhere to the natural representation of the data
as a sequence of events. We aggregate events by day since looking at individual
actions might be too much. In particular, for each player, we consider 16 dif-
ferent gameplay features aggregated by day. These features are (1) the number
of sessions (i.e., the number of times they log in that day); (2) the number of
seconds played; their (3) minimum and (4) maximum player level; the number
of (5/6) coins, (7/8) diamonds, and (9/10) treats earned/spent; the number of
(11) monsters bred, (12) bought, and (13) sold; and the daily number of (14)
ads watched, (15) in-game purchases made, and (16) offers completed. We col-
lect these daily features for each player over the 60 days since account creation.
We perform a preliminary filter to include only US players who (a) created their
accounts between January 1, 2018, and June 1, 2018; (b) who have at least one
game session after 60 days; and (c) who reached a maximum level of at least 4.
We also remove players for whom we have incomplete data. From the remaining
players, we choose 99,840 of them at random as our training set.

4.3 Model Definition and Construction

We prepare four recurrent autoencoder models. All models are constructed using
PyTorch [14] and have hyperparameters as determined by an optuna [1] hyper-
parameter study over 200 trials. We execute the optimization study on a Linux
GPU server consisting of 4 NVIDIA GeForce GTX 1060 6 GB GPUs. We utilize
the study’s default optuna parameters, and record results locally to a database
file. Each trial runs for 16 training epochs, and we select the model with the
lowest objective value for the clustering analysis.

In our work, we first construct a basic recurrent autoencoder, the RAE. For our
second model, we follow Tolstikhin et al. [15] and construct a Wasserstein autoen-
coder (WAE) that uses the Wasserstein distance. Our third model augments the
base RAE model with the Clustering Module [4]; we refer to this model as RAE-
CM. Similarly, we augment the WAE with the Clustering Module for our fourth
and final model to construct the WAE-CM. We omit details on the hyperparam-
eters of these models here for brevity, but the interested reader can find the code
and final hyperparameters at https://github.com/tanjo3/wae-clustering.

https://github.com/tanjo3/wae-clustering


302 J. Tan and M. Katchabaw

We then apply two different clusterings to their learned embeddings with
our trained models: k-means and archetypal analysis. To determine the appro-
priate number of clusters, we first apply these algorithms to the entire data set
while varying the number of clusters. We then evaluate the clusterings based on
the metrics described in Subsect. 2.5. Finally, we proceed to analyze the com-
position of these clusters empirically. Note that the number of clusters acts as
a hyperparameter for the RAE-CM and WAE-CM models. Regardless, we will
select the number of clusters using the same clustering metrics as we use for
the RAE and WAE models to unify the selection procedure for the number of
hyperparameters.

k-means Clustering. We focus our attention on clustering metrics for k-means.
Since we do not know the “true” number of clusters in our data set, we run the
k-means algorithm multiple times, varying the number of clusters from 2 to 8.
We plot the results of this analysis in Fig. 1. A first observation is that the RAE-
CM has quite aberrant values in the Davies-Bouldin index for two clusters. A
second observation is that models that use the Wasserstein distance have better
values than their non-Wasserstein counterparts, suggesting that the Wasserstein
distance helps produce better clusters. Finally, a third observation is that models
with the Clustering Module typically perform better than without it. Based on
this analysis, we choose three clusters for the RAE, WAE, and RAE-CM models
and six clusters for the WAE-CM model.

Fig. 1. Clustering metrics for different numbers of clusters using k-means. Recall that
a higher value of the Calinski-Harabasz index is better, while we prefer a lower value
for the Davies-Bouldin index. Our final determination for the number of clusters is
three for the RAE, WAE, and RAE-CM and six for the WAE-CM.

Archetypal Analysis. We perform a similar analysis using archetypal analysis
and plot the clustering metrics on these results in Fig. 2. Generally speaking, the
RAE performs the worst of the four models. The WAE model performs the best
on the Calinski-Harabasz index and improves over the RAE and RAE-CM for
the Davies-Bouldin index. On the other hand, the WAE-CM model performs



Player Clustering Using Wasserstein Autoencoders 303

comparably to the RAE and RAE-CM for the Calinski-Harabasz index. The
less-noticeable performance improvements of the models that use a Clustering
Module may be due to the different clustering criteria that archetypal analysis
uses over k-means. Based on these results, we choose three archetypes for the
RAE, WAE, and WAE-CM models and five archetypes for the RAE-CM model.

Fig. 2. Clustering metrics for different numbers of clusters using archetypal analysis.
Our final determination for the number of clusters is three for the RAE, WAE, and
WAE-CM and five for the RAE-CM.

5 Translation into Actionable Interpretations: Clustering
Analysis

In the previous section, we found that utilizing the Wasserstein loss in our
autoencoders’ training can improve the clusterings’ performance, as given by
our metrics. Furthermore, combining this with the Clustering Module can add
further performance. This section performs an empirical analysis of the cluster-
ing and interprets some of our formed clusters.

5.1 Player Visualizations

To start, we first project the learned embeddings into 2D space for visualization
purposes. To accomplish this, we use UMAP [13]. We then overlay various player
metrics to understand if there are correlations between player features and these
player metrics.

Day-120 LTVs. A player’s day-120 lifetime value (D120 LTV) is defined as
the total revenue that the player has generated after 120 days since account
creation. We are interested to see if there is any correlation with the gameplay
over the first 60 days with long-term LTV. We map the log-transformed D120
LTV of each player with their UMAP embeddings for all four models in Fig. 3.



304 J. Tan and M. Katchabaw

Immediately, we can see some correlation of D120 LTV with clustering. Players
in the sparser parts of the clustering tend to have lower LTVs than those in the
denser parts. Further analysis, omitted here for brevity, generally shows that the
denser the cluster, the higher the D120 LTV. Additionally, these dense areas are
where the smallest cluster of players exists, suggesting that high LTV players
have more distinctive playstyles than low LTV players.

Fig. 3. A scatter plot showing the players and their log-transformed D120 LTVs. We
show the color scales for the LTVs to the right of each plot. (Color figure online)

Acquisition Source. Next, we observe how organic vs. non-organic players are
clustered. An organic player is one that was not introduced to the game via a
user acquisition (UA) campaign. These campaigns are expensive to start and
maintain. We plot the players color-coded by their status in Fig. 4. We can see
that most of the players are organic and that the distribution of organic players is
largely uniform. We can conclude that the game features do not indicate whether
a player is organic, contrasting with D120 LTVs. It would seem to suggest that
a player acquired through a UA campaign is not predisposed to spend more on
the game or that the UA campaigns run in the past did not necessarily attract
higher LTV players.



Player Clustering Using Wasserstein Autoencoders 305

Fig. 4. A scatter plot showing organic and non-organic players.

5.2 Representative Analysis

Finally, we take a look at the daily features of the representatives of some of
the clusters. For k-means, we look at the average of all players in the group, as
represented by the cluster centroid. For archetypal analysis, we look at the player
selected as the archetype of that cluster. We only consider some of the features
for brevity and only look at one model each for both clustering algorithms. For k-
means, we choose to look at the centroids of the WAE-CM model. For archetypal
analysis, we will compare archetypes from the RAE-CM model.

k-Means: WAE-CM Model. We show the plot of a selection of the daily
features for the k-means WAE-CM clustering in Fig. 5. There are six centroids
in the WAE-CM model, and we can immediately see that the smallest cluster,
Cluster 6, is interesting. Because of the extreme early activity in the clusters,
the scale of many plots is distorted, making it hard to discern the values for the
other centroids. Interestingly, based on the number of sessions and seconds spent
on islands, the centroids of all clusters seem to reach similar values after 60 days.
Players in Cluster 4 seem to watch more ads in the first 30, but Cluster 6 takes
over for the last 30 days. Players in Cluster 5 seem to breed more monsters in
the first 30 days before Cluster 6 again takes over.



306 J. Tan and M. Katchabaw

Fig. 5. Line plots showing the 6 of the 16 daily features of the centroids of the WAE-CM
model. These values are averages of the values over all players in the cluster.

Archetypal Analysis: RAE-CM Model. Next, we look at a selection of
the daily features of the archetypes identified by the RAE-CM model. We plot
the daily features in Fig. 6. We can note that with the maximum level feature,
the lines are stepwise since these are the features for an actual player. For this
reason, the behavior exhibited in these plots is less subdued than with the k-
means clustering. We see that the archetype for Cluster 2 gets to level 7 early
on but is inactive until after 50 days. The archetype for Cluster 1 is more active
but does not progress past level 10 over the 60 days. The remaining clusters
have fairly consistent activity. The archetype for Cluster 5 makes many in-game
purchases and achieves the highest level but does not log any more sessions than
the other active clusters do. The archetype for Cluster 3 almost reaches the same
level but with much fewer in-game purchases. They seem to play most of the
five archetypes and might represent primarily active free-to-play players.

Fig. 6. Line plots showing the 6 of the 16 daily features of the archetypes of the RAE-
CM model. Note that these are the features of an actual player, restricting the values
to legal values. Note the stepwise appearance of the maximum level feature and the
spikiness of the other features.



Player Clustering Using Wasserstein Autoencoders 307

6 Discussion

This work has provided a reusable methodology for player clustering that game
analysts can adapt and follow with their games, giving valuable insight into
the game and its players. We demonstrate the methodology’s application by
an analysis of the players of My Singing Monsters. This methodology includes
the application of creating player representation from sequential game data, the
application of a clustering algorithm, and the evaluation of the results.

We use UMAP to visualize player embeddings, giving us a sense of distance
between players. The visualization clearly shows that the clusterings are corre-
lated to D120 LTV but not the player’s organic statuses. Displaying this informa-
tion as text or tables would not be as effective. Through contrasting k-means and
archetypal analysis, we also demonstrate differences in conveying player behav-
ior within a cluster. We note that by using archetypal analysis, particularities
of a cluster’s behavior are more apparent. By not having averaged values, the
analysis is more interpretable.

Future work includes drilling down into these clusters to identify more specific
trends, possibly even labeling the clusters with player profile names such as
“optimizers” and “island decorators”. In addition, Wasserstein models add a
level of regularization. Exploring other regularization methods could yield better
clustering results; we explore the Clustering Module’s effect in this chapter.
Another avenue for future work includes identifying or developing other metrics
for evaluating clusterings. Metrics that do not inherently favor dense clusters
could be of particular interest. Finally, we can apply the methodology outlined
in this chapter to other games or refine the process further to suit the specific
needs of a game studio.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-
generation hyperparameter optimization framework. In: Proceedings of the 25rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (2019)

2. Arjovsky, M., Bottou, L.: Towards principle methods for training generative adver-
sarial networks (2017). arXiv:1701.04862

3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017). arXiv:1701.07875
4. Boubekki, A., Kampffmeyer, M., Brefeld, U., Jenssen, R.: Joint optimization of an

autoencoder for clustering and embedding. Machine Learning 110(7), 1901–1937
(2021). https://doi.org/10.1007/s10994-021-06015-5

5. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-
Theory Methods 3(1), 1–27 (1974). https://doi.org/10.1080/03610927408827101

6. Cutler, A., Breiman, L.: Archetypal Analysis. Technometrics 36(4), 338–347 (Nov
1994). https://doi.org/10.1080/00401706.1994.10485840

7. Davies, D.L., Bouldin, D.W.: A Cluster Separation Measure. IEEE Trans. Pattern
Anal. Mach. Intell. PAMI-1(2), 224–227 (1979). https://doi.org/10.1109/TPAMI.
1979.4766909

http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1701.07875
https://doi.org/10.1007/s10994-021-06015-5
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1080/00401706.1994.10485840
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1109/TPAMI.1979.4766909


308 J. Tan and M. Katchabaw

8. Drachen, A., Canossa, A., Yannakakis, G.N.: Player modeling using self-
organization in tomb raider: underworld. In: 2009 IEEE Symposium on Compu-
tational Intelligence and Games, pp. 1–8. IEEE, Milano, Italy (2009). https://doi.
org/10.1109/CIG.2009.5286500

9. Drachen, A., Sifa, R., Bauckhage, C., Thurau, C.: Guns, swords and data: cluster-
ing of player behavior in computer games in the wild. In: 2012 IEEE Conference
on Computational Intelligence and Games (CIG), pp. 163–170. IEEE, Granada,
Spain (2012). https://doi.org/10.1109/CIG.2012.6374152

10. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in Neural Information
Processing Systems, vol. 27. Curran Associates, Inc. (2014), https://proceedings.
neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved
Training of Wasserstein GANs (2017). arXiv:1704.00028

12. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Infor. Theory 28(2),
129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489

13. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and
projection for dimension reduction (2020). arXiv:1802.03426

14. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F.d., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

15. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein Auto-Encoders
(2019). arXiv:1711.01558

https://doi.org/10.1109/CIG.2009.5286500
https://doi.org/10.1109/CIG.2009.5286500
https://doi.org/10.1109/CIG.2012.6374152
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://arxiv.org/abs/1704.00028
https://doi.org/10.1109/TIT.1982.1056489
http://arxiv.org/abs/1802.03426
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1711.01558

	.26em plus .1em minus .1emA Reusable Methodology for Player Clustering Using Wasserstein Autoencoders
	1 Introduction
	2 Background
	2.1 Recurrent Neural Networks
	2.2 Autoencoders
	2.3 Adversarial Training and Generative Adversarial Networks
	2.4 Wasserstein Distance
	2.5 Clustering Metrics
	2.6 Archetypal Analysis

	3 Related Work
	4 Method
	4.1 Game Identification and Understanding: My Singing Monsters
	4.2 Data Collection and Preprocessing
	4.3 Model Definition and Construction

	5 Translation into Actionable Interpretations: Clustering Analysis
	5.1 Player Visualizations
	5.2 Representative Analysis

	6 Discussion
	References




