
Chapter 2 
Numerical Solution of Space Fractional 
Advection–Dispersion Equation 
and Application 

Pramod Kumar Sharma, Muskan Mayank, and Pooja Agarwal 

Abstract Generally, advection–dispersion and fractional advection–dispersion 
equations are used to model the transport of solute tracer in a porous medium. 
This study describes the numerical solution of both the general advection– 
dispersion equation and the space fractional advection–dispersion equation. The 
developed numerical model is used to simulate the observed data of chloride concen-
tration obtained in the laboratory using soil column experiments. Different scenarios 
were used to estimate the transport parameters to simulate the concentration profiles 
through experiments. 

Abbreviations 

ADE Advection–dispersion equation 
FADE Fractional advection–dispersion equation 
sFADE Spatial fractional advection–dispersion equation 
BTC Breakthrough curve 
FEM Finite element method 
D50 Mean size particle 
OF Objective function 
NSE Nash–Sutcliffe efficiency coefficient 
RMSE Root mean square deviation
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2.1 Introduction 

Advection is proportional to mean water velocity. Sternberg (2004) demonstrated that 
for a macroscopic condition, the experimentally determined dispersion coefficient 
behaves asymptotically through heterogeneous porous media. It is well understood, 
however, that this coefficient is spatially dependent and that it is not constant in 
heterogeneous porous media (Gelhar et al. 1992). Early breakthroughs and long tails 
characterize breakthrough curves in these cases. This is referred to as non-Fickian 
phenomenon. These anomalous dispersal characteristics cannot be explained by the 
traditional advection–dispersion equation (ADE) with constant coefficients. Benson 
et al. (2001) developed the spatial fractional advection–dispersion equation (sFADE) 
to address this issue. 

Ben-Zvi et al. (2016) proposed a one-dimensional FEM solution by studying 
intro-differential advection–dispersion equations which have important applications 
for anomalous transport in highly disordered porous media. The formulation has 
been used to model the non-Fickian solute transport in porous media. Kundu (2018) 
studied the concentration distribution in suspension for turbulent flows using the 
fractional advection–diffusion equation. In addition, Sharma et al. (2020) conducted 
experiments in soil columns in the laboratory to investigate the non-Fickian behavior 
of solute transport through both homogeneous and heterogeneous porous media. 

In the present study, we briefly discussed the advection–dispersion equation 
and the space fractional advection–dispersion equation. The sFADE model is then 
solved using the numerical explicit finite difference method. Chloride concentration 
profiles were obtained in the laboratory using soil column experiments. To inves-
tigate obtained concentration profiles at different lengths in the direction of flow, 
both the ADE and sFADE models were used. Different scenarios have been used to 
estimate transport parameters and simulated the concentration profiles. 

2.2 Theoretical Concepts 

2.2.1 Equations Influencing ADE 

For reactive solutes with linear isotherm equilibrium adsorption, the equation can be 
written as (Bear and Cheng 2010): 

R 
∂C 

∂t 
+ v 

∂C 

∂x 
= D 

∂2C 

∂x2 
(2.1) 

For nomenclature explanations, refer the list of parameters.
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2.2.2 Equations Influencing sFADE 

Considering a linear isotherm equilibrium adsorption, the one-dimensional FADE 
for reactive solute can be expressed (Benson et al., 2000a, 2000b): 

R 
∂C 

∂t 
+ v 

∂C 

∂x 
=

(
1 

2 
+ 

β 
2

)
D f 

∂αC 

∂xα +
(
1 

2 
− 

β 
2

)
D 

∂αC 

∂(−x)α
(2.2) 

For nomenclature explanations, refer the list of parameters. 
The transition probability for −1 ≤ β ≤ 0 is skewed backward, whereas for 

0 ≤ β ≤ 1, the transition probability is skewed forward. For β = 0, the above 
equation can be expressed as: 

R 
∂C 

∂t 
+ v 

∂C 

∂x 
=

(
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2

)
D f 

∂αC 

∂xα +
(
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2
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∂αC 

∂(−x)α
(2.3) 

C(x, t) = C0

[
1 − Fα

(
x − vt/R 
(�t)1/α

)]
(2.4a) 

where � =  |cos(πα/2)|D f /R, Fα(y) is the probability function that is symmetric 
α-stable: 

Fα(y) = C(α) + 
sign(1 − α) 

2 

1∫
0 

exp
(−y 

α 
α−1 Uα(ϕ)

)
dϕ (2.4b) 

where ϕ is the integration variable, sign(1 − α) is −1, 0 and +1 for  α >  1, α = 1 
and α <  1, respectively, and, C(α) and Uα can be expressed as: 

C(α) =
{

1 for  α >  1 
0.5 for  α <  1 

(2.4c) 

Uα(ϕ) =
(
sin(παϕ/2) 
cos(πϕ/2)

)( α 
1−α ) 

(2.4d) 

2.2.3 sFADE Equations and Its Numerical Solution 

Derivation of a numerical scheme to solve sFADE is described in Meerschaert and 
Tadjeran 2004 and 2006, as:
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∂αC(x, t) 
∂xα = lim Lim 

M+→∞ 

1 

h 
α 
+ 

M+∑
k=0 

gkC(x − kh, t) (2.5a) 

And, 

∂αC(x, t) 
∂(−x)α = lim Lim 

M−→∞ 

1 

h 
α 
+ 

M−∑
k=0 

gkC(x + kh, t) (2.5b) 

The Grunwald weights gk are defined as follows: 

g0 = 1 (2.6a) 

gk = (−1)k 
α(α − 1)(α − 2) . . .  (α − k + 1) 

k! (2.6b) 

∂αC(xi , tn) 
∂ xα

= 
1 

hα 

M∑
k=0 

gkC(xi − (k − 1)h, tn) (2.7a) 

Conversely, the right-sided fractional derivatives with the shifted Grunwald 
approximation 

∂αC(xi , tn) 
∂(−x)α = 

1 

hα 

M∑
k=0 

gkC(xi + (k − 1)h, tn) (2.7b) 

The Grunwald weights are represented by gk in these expressions. 
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In the internal points of the spatial domain, (i = 1, . . . ,  M − 1), one has 

Cl+1 
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(2.9) 

The stability condition is
(

v�t 
h + α D f �t 

hα

)
≤ 1.
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2.2.4 Experimental Procedure 

On a 300 cm long horizontally placed soil column, a soil column experiment was 
carried out. Chloride was chosen as a non-reactive tracer for the experiment. The soil 
column is densely packed with sand of the mean particle size (D50). The value of 
the cumulative distribution’s particle size diameter is at 50%. The calculated value 
of mean particle size (D50) for fine sand is 0.75 mm, D10 = 0.37 mm, D30 = 
0.68 mm, D60 = 0.8 mm, Cc = 1.56 mm, Cu = 2.16. During the solute transport 
experiment, the soil column was gradually saturated with de-aired tap water from 
the soil column’s inlet. As a result, the soil column’s entrapped air was removed. 
A peristaltic pump was used to inject a common salt (NaCl) solution with an initial 
solute concentration of C0 = 60 mg/L. The total volumetric water content of the soil 
media within the column was estimated to be 0.34. The soil media’s calculated dry 
bulk density was found to be 1.71 g/cm3. 

2.2.4.1 Goodness-of-Fit and Estimation of Parameters 

The inverse problem method was used to estimate the mathematical model’s param-
eters. An inverse model with the following objective function was created to obtain 
the parameters (Moradi and Mehdinejadiani 2020). 

OF = 
1 

N 

N∑
i=1

(
Ccalc 
i − Cobs 

i

)2 
(2.10) 

The root mean square error, coefficient of determination, and Nash–Sutcliffe 
efficiency coefficients are all expressed below: 

R2 = 

⎡ 

⎢⎢⎣
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)(
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⎤ 
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(2.11) 

RMSE =
√√√√ 1 

N 

N∑
i=1

(
Cobs 
i − Ccalc 

i

)2 
(2.12) 

Nash–Sutcliffe efficiency coefficient (NSE) can be calculated by: 

NSE = 1 −
∑N 

i=1

(
Cobs 
i − Ccalc 

i

)2
∑N 

i=1

(
Cobs 
i − C obs

)2 (2.13)
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2.2.5 Results and Discussion 

The results have been predicted for three cases. In the first case, we estimated the ADE 
as well as sFADE transport parameters at various points and used these estimates 
to simulate the observed chloride concentration profiles. Transport parameters were 
estimated at a distance of x = 40 cm in the second case, while in the third case, 
we estimated the values of transport parameters for observed breakthrough curves at 
upstream, i.e., at x = 300 cm, and used to simulate observed breakthrough curves at 
downstream distances. 

2.2.5.1 Estimation of Transport Parameters of ADE and sFADE 
at Various Points 

Table 2.1 shows the evaluated values of parameters for ADE along with sFADE, 
as well as the allied values of and NSE at various points in the flow direction. A 
constant value of pore velocity (v = 2.12 cm/min) was used in this simulation. The 
estimation of the predicted profile of concentrations at 40 cm using both the ADE 
and sFADE models is shown in Fig. 2.1a. Similarly, Fig. 2.1a–g shows simulations 
of observed concentration profiles at different points. These concentration profile 
simulation results show that the sFADE model outperforms the ADE model. The 
estimated results show that the coefficient of determination and NSE values for the 
ADE and sFADE models are nearly identical. The RMSE values, on the other hand, 
have varied. It demonstrates that the RMSE is lower for simulated results of observed 
concentration profiles at distances of 40 and 300 cm. Furthermore, for all distances, 
the estimated values of for the sFADE model are less than 2. This implies that the 
behavior of solute transport is non-Fickian. 

Table 2.1 Estimated parameters for ADE and sFADE at variable distances 

Distance 
(cm) 

ADE sFADE 

D (cm2/min) R2 RMSE NSE Df cmα /min α R2 RMSE NSE 

40 0.812 0.997 0.0339 0.994 0.982 1.861 0.996 0.030 0.995 

80 1.365 0.996 0.0344 0.994 1.656 1.846 0.987 0.050 0.987 

120 1.768 0.998 0.0322 0.995 2.012 1.824 0.990 0.045 0.990 

160 2.051 0.997 0.0354 0.994 2.134 1.787 0.989 0.049 0.988 

200 2.562 0.998 0.0426 0.990 2.765 1.756 0.988 0.050 0.987 

250 2.893 0.998 0.0374 0.993 3.050 1.785 0.987 0.052 0.986 

300 3.014 0.999 0.0347 0.994 3.126 1.864 0.997 0.025 0.997
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Fig. 2.1 a BTCs (at x = 40 cm) using ADE and sFADE, b BTCs of Cl− (at x = 80 cm) using 
ADE and sFADE, c BTCs of Cl− (at x = 120 cm) using ADE and sFADE, d BTCs of Cl− (at x = 
160 cm) using ADE and sFADE, e BTCs of Cl− (at x = 200 cm) using ADE and sFADE, f BTCs 
of Cl− (at x = 250 cm) using ADE and sFADE, g BTCs of Cl− (at x = 300 cm) using ADE and 
sFADE
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Table 2.2 Estimated parameters at 40 cm are used to simulate data at 80, 120, 200, 250 and 300 
cms 

Distance 
(cm) 

ADE sFADE 

D (cm2/min) R2 RMSE NSE Df cmα /min α R2 RMSE NSE 

40 0.812 0.997 0.034 0.994 0.983 1.86 0.996 0.030 0.995 

80 0.812 0.995 0.041 0.991 0.983 1.86 0.997 0.027 0.996 

120 0.812 0.998 0.040 0.992 0.983 1.86 0.999 0.015 0.999 

160 0.812 0.993 0.053 0.986 0.983 1.86 0.995 0.033 0.995 

200 0.812 0.991 0.064 0.978 0.983 1.86 0.996 0.036 0.993 

250 0.812 0.987 0.069 0.975 0.983 1.86 0.993 0.043 0.990 

300 0.812 0.989 0.063 0.980 0.983 1.86 0.995 0.034 0.994 

2.2.5.2 Transport Parameters were Estimated at Distance of x = 40 cm. 
Simulation Done at Distances of x = 80, 120, 160, 200, 250 
and 300 cm 

In this case, the observed breakthrough curves at different points upstream in the 
flow direction were simulated using estimated transport parameters for the observed 
concentration profile at x = 40 cm (Table 2.2). The coefficient of determination and 
NSE have roughly the same value, as can be seen. The RMSE value, however, is lower 
in the sFADE model than in the ADE model, as shown in Table 2.2 and Fig. 2.2a–f. 

2.2.5.3 Estimation of Transport Parameters for Observed 
Breakthrough Curves at Upstream (x = 300 cm) used 
for Simulation at Downstream Distances 

In this case, the parameter values (i.e., D, D f and α) are estimated at x = 300 cm 
in the flow direction and are shown in Table 2.3. These parameters have been 
used to estimate the obtained concentration profiles at variable points as shown in 
Fig. 2.3a–f. In this case, the values of the coefficient of determination are greater in 
the ADE model than in the sFADE model. Furthermore, the RMSE values for the 
ADE model are lower than those for the FADE model (Table 2.3). 

2.2.5.4 Estimation of the Mean Values of Solute Transport Parameters 

In this case, mean value of parameters, i.e., D, Df and α for ADE and sFADE, 
has been utilized to estimate the obtained concentration profiles at various points 
as shown in Table 2.4. Simulated concentration profiles employing both ADE and 
sFADE models are shown in Fig. 2.4a–g. Values of RMSE indicate that the best 
simulation is obtained from sFADE model at distances of x = 200 cm, 250 cm, and 
300 cm, respectively. When comparing the ADE model to the sFADE model, the
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Fig. 2.2 a BTCs of Cl− at x = 80 cm using estimated parameters of ADE and sFADE at x = 
40 cm breakthrough curves, b The BTCs of Cl− at x = 120 cm using estimated parameters of ADE 
and sFADE at x = 40 cm breakthrough curves, c BTCs of Cl− at x = 160 cm using estimated 
parameters of ADE and sFADE at x = 40 cm breakthrough curves, d BTCs of Cl− at x = 200 cm 
using estimated parameters of ADE and sFADE at x = 40 cm breakthrough curves, e BTCs of 
Cl− at x = 250 cm using estimated parameters of ADE and sFADE at x = 40 cm breakthrough 
curves, f BTCs of Cl− at x = 300 cm using estimated parameters of ADE and sFADE at x = 40 cm 
breakthrough curves
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Table 2.3 Estimated parameters at 300 cm are used to simulate data at 250, 200, 160, 80 and 40 
cms 

Distance 
(cm) 

ADE sFADE 

D (cm2/min) R2 RMSE NSE Df cmα /min α R2 RMSE NSE 

40 3.014 0.976 0.070 0.974 3.126 1.864 0.964 0.095 0.952 

80 3.014 0.990 0.047 0.989 3.126 1.864 0.982 0.066 0.978 

120 3.014 0.990 0.050 0.987 3.126 1.864 0.984 0.059 0.982 

160 3.014 0.995 0.038 0.992 3.126 1.864 0.987 0.052 0.986 

200 3.014 0.998 0.043 0.990 3.126 1.864 0.992 0.039 0.992 

250 3.014 0.998 0.037 0.993 3.126 1.864 0.993 0.039 0.992 

300 3.014 0.999 0.035 0.994 3.126 1.864 0.997 0.025 0.997 

RMSE value is lower (at x = 40, 80, 120 and 160 cm). This means that the ADE 
model provides better simulation at a few distances while the sFADE model provides 
better simulation at other distances.

2.2.5.5 Variation of RMSE and Coefficient of Determination 

An attempt has been made to plot the variation of RMSE and coefficient of determi-
nation with distances in the flow direction. Four cases are selected; i.e., parameters 
are estimated at different distances (Case-A), estimated parameters at x = 40 cm
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Fig. 2.3 a BTCs of Cl− at x = 40 cm using estimated parameters of ADE and sFADE at x = 
300 cm breakthrough curves, b BTCs of Cl− at x = 80 cm using estimated parameters of ADE 
and sFADE at x = 300 cm breakthrough curves, c BTCs of Cl− at x = 120 cm using estimated 
parameters of ADE and sFADE at x = 300 cm breakthrough curves, d BTCs of Cl− at x = 160 cm 
using estimated parameters of ADE and sFADE at x = 300 cm breakthrough curves, e BTCs of 
Cl− at x = 200 cm using estimated parameters of ADE and sFADE at x = 300 cm breakthrough 
curves, f BTCs of Cl− at x = 250 cm using estimated parameters of ADE and sFADE at x = 300 cm 
breakthrough curves
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Fig. 2.3 (continued) 

Table 2.4 Mean values of parameters are used to simulate data at different distances 

Distance 
(cm) 

ADE sFADE 

D (cm2/min) R2 RMSE NSE Df cmα /min α R2 RMSE NSE 

40 2.066 0.987 0.051 0.986 2.464 1.818 0.969 0.089 0.958 

80 2.066 0.994 0.037 0.993 2.464 1.818 0.984 0.062 0.980 

120 2.066 0.996 0.036 0.993 2.464 1.818 0.985 0.057 0.983 

160 2.066 0.997 0.036 0.993 2.464 1.818 0.988 0.050 0.988 

200 2.066 0.998 0.044 0.990 2.464 1.818 0.991 0.040 0.991 

250 2.066 0.997 0.043 0.990 2.464 1.818 0.991 0.043 0.990 

300 2.066 0.998 0.039 0.992 2.464 1.818 0.998 0.022 0.998

have been used to determine the obtained concentration profiles at different points 
(Case-B), estimated parameters at x = 300 cm are used to simulate concentration 
profiles (Case-C), and mean values of parameters are used to simulate concentra-
tion profiles at various distances (Case-D). Figures 2.5 and 2.6 indicate the variation 
of coefficient of determination with distance for ADE as well as sFADE models.
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�Fig. 2.4 a BTCs of Cl− at x = 40 cm using mean value of parameters of ADE and sFADE, b BTCs 
of Chloride at x = 80 cm using the mean value of parameters of ADE and sFADE, c BTCs of Cl− 

at x = 120 cm using mean value of parameters of ADE and sFADE, d BTCs of Cl− at x = 160 cm 
using mean value of parameters of ADE and sFADE, e BTCs of Cl− at x = 200 cm using mean 
value of parameters of ADE and sFADE, f BTCs of Cl− at x = 250 cm using the mean value of 
parameters of ADE and sFADE, g BTCs of Cl− at x = 40 cm using mean values of parameters of 
ADE and sFADE 

The value of the coefficient of determination remains constant across all cases—A, 
B, C, and D. Figures 2.7 and 2.8 show the variation of RMSE with distance for 
various cases for both the ADE and the sFADE models. These findings show that the 
variation of RMSE at different distances is not uniform for both models.

Fig. 2.5 Variation of 
coefficient of determination 
with distance in the flow 
direction for ADE 
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Fig. 2.6 Variation of 
coefficient of determination 
with distance in the flow 
direction for sFADE 
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Fig. 2.7 Variation root 
mean square error (RMSE) 
with distance in the flow 
direction for ADE 
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Fig. 2.8 Variation root 
mean square error (RMSE) 
with distance in the flow 
direction for sFADE 
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2.3 Summary 

This study attempted to investigate the performance of the ADE and sFADE models. 
The solution of the sFADE equation was obtained using an explicit finite difference 
method. For both the ADE and sFADE models, transport parameters are estimated 
for various cases. The order of fractional differentiation () in the sFADE model 
is less than 2. It implies that solute transport is not Fickian in porous media. The 
determination coefficient and NSE for both the ADE and sFADE models are nearly 
constant across cases. The RMSE, on the other hand, varies with distance for both 
models. The RMSE value of the sFADE model is lower when compared to the ADE
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model. As a result, the non-Fickian transport model more accurately reproduces 
observed chloride breakthrough curves through porous media. 
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