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Abstract. Mobile robots have already made their way into warehouses,
and significant effort has consequently been devoted to designing effective
algorithms for the related multi-agent path finding (MAPF) problem.
However, most of the proposed MAPF algorithms still rely on central-
ized planning as well as simplistic assumptions, such as that robots have
full observability of the environment and move at equal and constant
speeds. The resultant plans thus cannot be executed directly on physi-
cal robots where these assumptions generally do not hold. To mitigate
these issues, we consider the decentralized partially observable multi-
robot setting where robots do not have access to the full state of the
world. Instead, each robot coordinates with neighbors within a limited
communication range. In the proposed approach, each robot indepen-
dently plans its own path using A* without taking into account other
robots, and the robots then solve potential conflicts locally as they occur.
Experimental results obtained in various benchmark scenarios confirm
that the proposed decentralized approach is effective and scales well to
large numbers of robots.

1 Introduction
With the rapid development of low-cost sensors and computing devices, it is
becoming increasingly feasible to deploy large-scale systems of mobile transporta-
tion robots in industrial environments. Nowadays, many industrial applications
benefit from fleets of mobile robots transporting goods and materials between
workstations and storage pipes [27]. The increased use of robot fleets has given
rise to a number of challenging optimization problems, such as multirobot path
planning [24] and multirobot scheduling [1].

Planning conflict-free paths for a team of mobile robots, known as the multi-
agent path finding (MAPF) problem, remains a major challenge [15,20]. Given
a set of agents, each with a pre-specified initial location and a pre-specified goal
location in a known environment, MAPF is concerned with finding collision-
free paths for the agents such that certain objectives are minimized. MAPF is
inspired by real-world applications, such as automated warehouses [11], traffic
management [3], and valet parking [12].
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MAPF is NP-hard to solve optimally [25]. As a result, a significant amount
of research has been conducted and the resulting state-of-the-art algorithms can
be divided into four categories [7]:

Systematic search algorithms are centralized planning approaches, which
enable finding all possible solutions, including an optimal one. In this category,
numerous algorithms have been proposed, such as the branch-and-cut-and-price
(BCP) algorithm [5], pairwise symmetry reasoning [8], conflict-based search
(CBS) algorithms and their variants [8,9]—which are currently among the most
popular algorithms for solving the MAPF problem optimally. Although these
planners achieve optimal or bounded sub-optimal solutions, they often suffer
from a computational complexity that increases exponentially with the problem
size.

Rule-based algorithms, in which the agents move step-by-step following
ad-hoc rules [13]. For instance, the graph abstraction approach [16], the conflict
classification-based algorithm [26], biconnected graphs [21], and parallel-push-
and-swap (PPS) [17]. These algorithms are polynomial-time but can still fail to
find solutions within a reasonable amount of time for large instances.

Learning-based algorithms use reinforcement learning techniques for find-
ing cooperative and competitive behaviors for solving conflicts [15]. Different
learning-based algorithms have been proposed in literature for solving MAPF,
see for instance [2,18]. Even though learning-based approaches have proven to
be more robust to uncertainties in practical applications than the algorithms
discussed above, they do not provide guarantees on solution quality [13,18].

Priority-based algorithms, in which the MAPF problem is decomposed
into a series of single-agent path planning problems, where the agents plan their
paths sequentially according to a priority scheme. Popular algorithms include the
prioritized planning algorithm [14], searching with consistent prioritization [10],
the hierarchical cooperative A* approach (HCA), and priority inheritance with
backtracking [13]. The prioritized planning algorithm provides a practical solu-
tion to applications with large numbers of robots. However, the quality of the
resulting solutions depends on the choice of the prioritization scheme, especially
in dense environments with limited path choices [23].

The algorithms described above rely on simplistic assumptions and have dif-
ferent objectives. Most of them assume that robots always move at their nominal
speed, ignore kinematic constraints, and do not take into account imperfect plan-
execution capabilities [4]: in practical scenarios, a robot may need to slow down
or come to a complete halt when facing a challenging situation, such as entering a
narrow corridor or turning on the spot. The execution will therefore deviate from
the plan found offline, and variation in the robots’ speeds can thus significantly
affect the applicability of these approaches.

To overcome the aforementioned challenges, we propose a decentralized app-
roach based on online conflict resolution, wherein each agent autonomously plans
its path using A* while initially ignoring the other agents. Our approach does
thus not require the robots to have complete information about the state of the
environment. Instead, we consider that robots operate in a partially-observable
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Fig. 1. Example of a warehouse layout. (Color figure online)

world, where each robot can only communicate with neighbors within its vicin-
ity. Additionally, the proposed approach can be used in scenarios where agents
have a sequence of goals, which makes it promising for practical scenarios, where
agents are continually assigned new goal locations and are required to compute
paths online [2].

2 Environment Model and Assumptions

In many practical applications, the layout of a warehouse is fixed, and robots
can only move along a predefined roadmap [24]. Accordingly, in this study, we
consider automated warehouses with predefined roadmaps, in which a set of
m mobile robots {r1, ..., rm} perform their assigned transportation tasks. The
robots are assumed to know the roadmap and their own position and orientation
in the map. Figure 1 illustrates an example of a warehouse layout modelled as
a 36× 15 grid map: the red circles and yellow circles represent the robots and
their designated targets, respectively, the green squares represent obstacles, and
the black squares represent free space where the robot can move.

In real-world scenarios, wireless communication can be noisy and the robots
often have a limited field-of-view [2,19]. Therefore, to reduce the gap between
simulation and real-world scenarios, we assume that each robot can only access
the state of its neighbors within limited communication range (2 squares). At
each time step, if robot j is in communication range of robot i, we say that robot
j is in robot i’s neighborhood j ∈ N t

i .
A warehouse layout can be abstracted into an undirected graph G = (V,E),

where nodes V correspond to locations arranged in the grid and the edges E cor-
respond to straight lines between locations that can be traversed by the robots.
At every time step t, each robot i occupies one of the graph nodes nt

i, referred to
as the location of that robot at time t, and can choose to perform an action ai.
The action can be either move to an adjacent node or wait in its current node.
The multi-agent path finding problem consists of computing collision-free paths
for the team of agents from their current locations to their respective targets.
The objective is to minimize the sum-of-costs (or flow time), that is, the sum
over all agents of the time steps required to reach their target locations [22].
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3 Proposed Approach

In this section, we present our decentralized cooperative multi-agent path finding
approach (DCMAPF) enabling large-scale systems of autonomous mobile robots
to operate effectively in shared warehouse environments.

The proposed DCMAPF is presented in Algorithm 1. DCMAPF has two
phases: (i) Path planning and (ii) Execution and motion coordination. In the
first phase, the robots individually plan the shortest paths from their initial loca-
tion to their targets using A*. In the second phase, robots follow their planned
paths while detecting and resolving local conflicts at each time step. To reduce
the complexity of local coordination, we introduce a leader-follower concept for
adjacent robots moving in the same direction. At time step t, robot k is a fol-
lower of robot i if nt+1

k = nt
i. Since followers relay messages, a leader can have

an arbitrary number of followers, and the followers of robot i consist of robot
k and its followers. If a conflict occurs, the leader negotiates on behalf of itself
and its followers. Moreover, to achieve effective decentralized conflict resolution,
manually designed local rules are adopted that determine which robot should
be given priority. Giving priority to a robot means that it will move first, and a
robot occupying the next node in higher priority robot’s path must give way.

Hereinafter, the following concepts are used:

– remainingNodes: the local list of remaining nodes n0
i , ..., n

T
i in the planned

path for robot i. The list is updated at each time step (a node is removed)
and during conflict resolution (nodes are added if a robot needs to give way).

– giveWayNode: a free neighboring node that can be used by a robot to move
out of the way and allow another, higher priority robot to pass.

– numberRequestsMyNode: the number of robots having their nt+1
i or nt+2

i , ∀i ∈
{1, ...,m}, equal to the robot’s nt

id.
– numberFollowers: the number of followers of the robot.

Upon starting the execution, all the robots are located in their initial nodes.
In every time step, each robot i identifies all neighbors within communication
range and sends them its local data, such as its next node nt+1

i , remainingNodes,
and numberFollowers. After receiving data from its neighbors, the robot checks
for potential conflicts with its neighbors. Since conflict detection and handling
is done online, only the robot’s next node nt+1

i is used for conflict detection. If
a conflict is detected, the robots coordinate to solve the conflict as described in
Algorithms 2 and 3 (details can be found in Sect. 3.1), then each robot calcu-
lates its action ai and updates its remainingNodes accordingly. If no conflict is
detected and if a robot has any followers, it checks if its immediate follower’s
path is longer than its own. If so, the robot gives way to its follower if it has a
free neighboring node. This step is essential to avoid deadlocks in certain regions,
such as narrow corridors.

In the subsequent step, the robot’s action ai and its updated remainingNodes
list will be used in a post coordination process, see Algorithm 4. This process
is executed by the robots involved in resolving conflicts in the previous steps to
check for further potential conflicts resulting from their previous decisions. In
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Algorithm 1: Proposed DCMAPF approach
input: map, n0

myID, Targets[]

phase 1: Path planning
remainingNodes ← A∗(map, n0

myID, Targets[])
phase 2: Execution and motion coordination
while remainingNodes �= φ or neighbors.remainingNodes �= φ do

nt
myID ← remainingNodes[0]

pathLength ← Length(remainingNodes)
N t

myID ← GetNeighbors()
send(nt+1

myID,pathLength,numberFollowers,numberRequestsMyNode)
for i in N t

myID do
if (nt+1

myID = nt
i ) and (nt+1

i = nt
myID) then

criticalNode ← {nt+1
myID, nt

i}
amyID ← Algorithm3(criticalNode, N t

myID)

else if (nt+1
myID = nt+1

i ) then
criticalNode ← nt+1

myID

amyID ← Algorithm2(criticalNode, N t
myID)

else
//no conflict detected
nextAction ← move
follower← GetMyFollower()
if (follower.pathLength > pathLength) then

giveWayNode ←GetFreeNeighboringNode()
if (giveWayNode is not None) then

Insert the giveWayNode into remainingNodes

nt+1
myID ← remainingNodes[0]

send(nt+1
myID, plannedAction)

amyID ← PostCoordination(nt+1
myID,amyID)

if (amyID = move ) then
move to nt+1

myID

Remove nt+1
myID from remainingNodes

this process, detected conflicts are resolved using the same steps and algorithms
as described above. Afterward, the robots involved in the negotiation process
send their calculated action ai and next node nt+1

i (∀i ∈ N t
i ) to their neighbors.

Accordingly, leaders ensure that their followers adapt their actions to the out-
come of the negotiation process. Once a robot i has calculated its ai and updated
its remainingNodes, the robot moves to nt+1

i if ai = move, or remains stationary
in its current node nt

i if ai = wait. The steps presented in Algorithm 1 are
reiterated until all robots have reached their target.
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Fig. 2. Conflict illustrations and critical nodes. (a) Intersection conflicts, and (b) Oppo-
site conflict.

3.1 Cooperative Conflict Resolution Strategy

In this work, we divide potential conflicts into the two types illustrated in Fig. 2:
(i) intersection conflict and (ii) opposite conflict (swapping conflict). The inter-
section conflict occurs when two or more robots have planned to pass through
the same node in the same time step. In this type of conflict, there is only one
critical node, which is the shared next node in the robots’ paths. On the other
hand, an opposite conflict occurs when two robots are located on two adjacent
nodes and need to move in opposite directions. In this type of conflict, the robots’
current nodes are the critical nodes.

The conflict resolution strategy has two steps. First, the robots negotiate to
determine the highest priority robot (see below). In the second step, the robots
calculate their actions to give way to the highest priority robot and to then pass
through the critical node one by one.

Priorities: The procedure for defining the highest priority robot is based on six
rules that prevent congestion and reduce the number of additional giveWayNodes
necessary for the robots to pass through the critical node without collision. The
following rules are applied in order and determine priority:

– rule1: a robot occupying a critical node is given priority.
– rule2: a robot moving out of another robot’s way is given priority.
– rule3: the robot with the largest numberFollowers is given priority.
– rule4: a robot having a free neighboring node is given priority.
– rule5: the robot having the largest numberRequestsMyNode is given priority.
– rule6: the robot with the longest remaining path is given priority.

While the first three rules prevent deadlocks, the last three rules reduce the
number of additional giveWayNodes introduced in the robots’ path and thus
enable the robots to avoid one another in fewer time steps.
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Conflict-Dependent Action Selection:

Intersection conflict: Algorithm 2 details the action selection process. Once
the highest priority robot (PriorityAgent) has been determined, the node
nt+2
PriorityAgent is either free or occupied by another robot. In the first case,

the robot with higher priority passes through the critical node first and the
other robots have to wait in their current nodes for one time step. However,
in the second case, the robot occupying the node nt+2

PriorityAgent must give
way to the robot with higher priority to pass and the other robots wait for
one time step. The robot requested to move out of the way chooses a free
neighboring node. If no free neighboring node is found, the robot chooses the
node of another robot from its neighbors and informs the concerned neighbor
to move out of the way, and so on.

Opposite conflict: The approach to solve an opposite conflict is shown in
Algorithm 3. The robot with priority passes (i.e. its action ← move) and
the other robot moves out of the way to a free neighboring node. If no free
neighboring node is found, the robot with lower priority chooses the node of
its follower robot (move backward) and informs the follower to move out of
the way.

Note that any neighboring node calculated during the conflict resolution
process will be inserted as the first elements in the remainingNodes list of the
robot. Accordingly, if the robot’s action is move, then the robot selects the first
node in its remainingNodes.

4 Experimental Results and Performances Analysis

In this section, we present the results of an extensive set of experiments con-
ducted to assess the performance of DCMAPF. These tests were performed using
benchmark maps with varying sizes, obstacles densities, and number of robots.
We implemented DCMAPF in Python and the experiments were conducted on
a workstation equipped with an AMD Ryzen 9 5950X 16-core CPU @3.40GHz
and 32 GB RAM.

4.1 Benchmarks and Setup

For our experiments, we chose three types of maps, empty, random and ware-
house from the MAPF benchmark maps [20]. Specifically, we used the following
maps: empty-48-48, random-32-32-20, random-64-64-20, and warehouse-20-40-
10-2-2. For each combination of map and number of agents, we selected 25
scenarios from the MAPF benchmark.

We compared our DCMAPF approach to four state-of-the-art planners,
namely: CBS with its improvement technique [8] as an optimal planner,
EECBS [9] as a state-of-the-art bounded sub-optimal search-based planner, and
PIBT and PIBT+ [13] as prioritized planners. Note that, for all planners, the
implementations coded by their respective authors were used with default param-
eter settings [13]. The source code for these planners is available in [6].
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Algorithm 2: Solve intersection conflict
input : criticalNode, N t

i

output: amyID

step 1: Determine the highest priority agent
PriorityAgent←CheckPriorityRules()
Action ← Empty list
step 2: Calculate the action
Action[PriorityAgent] ←move
if (nt+2

PriorityAgent is Free) then
for i in N t

i and i �= PriorityAgent) do
Action[i]←wait

if criticalNode is not Free then
giveWayNode← GetFreeNeighboringNode()
Action[Agent occupying the criticalNode] ← move
Insert the giveWayNode into the remainingNodes of the agent

else
for i in N t

i do
if (nt

i = nt+2
PriorityAgent) then

Action[i]←move
giveWayNode← GetFreeNeighboringNode()
Insert the criticalNode into the remainingNodes set of the agent

else
Action[i]←wait

Return(Actions[myID])

Algorithm 3: Solve opposite conflict
input : criticalNode, N t

i

output: amyID

step 1: Determine the highest priority agent
PriorityAgent←CheckPriorityRules()
Action ← Empty list
step 2: Calculate the action
Action[PriorityAgent] ←move
for i in N t

i do
if (i �= PriorityAgent) then

Action[i]←move
giveWayNode← GetFreeNeighboringNode()
Insert the giveWayNode into the remainingNodes of the agent

Return(Actions[myID])

Our comparison metrics are sum-of-costs and success rate, which is the per-
centage of the MAPF instances solved within a runtime limit. It is important to
note that CBS, EECBS, PIBT and PIBT+ are centralized planners and have
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Algorithm 4: Post coordination
input : nt+1

myID,amyID

output: amyID

plannedAction ← amyID

step 1: Check for further potential conflicts
N ← GetNeighbors()
for i in N do

if (nt+1
myID = nt+1

i ) and (the action of robot i is move) then
criticalNode← nt+1

myID

amyID ←Algorithm2(criticalNode, N t
myID)

step 2: Followers adapt their actions to those of their leader
Leader=GetAgentOccupyingNextNode(N t

myID)
if (aleader = wait ) then

amyID ←wait

else if (aleader = move) and (nt+1
leader = nt

myID) then
amyID ←move
giveWayNode← GetFreeNeighboringNode()
Insert the giveWayNode into the remainingNodes of the agent

else
amyID ← plannedAction

Return(amyID)

access to the whole state of the system, whereas DCMAPF is a decentralized
approach where the robots’ decisions are based only on their local observation
and messages shared between robots within a limited communication range.
Since DCMAPF resolves conflicts online, we allowed a maximum of 300 time
steps for 32 and 48-sized maps, and 600 time steps for the other maps. The
other offline planners were given a time limit of 30 s to plan the paths for all
robots as is commonly used [13,20]. An execution was considered unsuccessful
if the robots failed to resolve a conflict or a planner failed to provide a solution
within the time limit.

4.2 Results

The obtained results are presented in Fig. 3. The first clear trend is that
the DCMAPF performs well in terms of success rate in all maps no matter
the map size or the number of robots. Secondly, a prominent trend observed in
all plots of the metric sum-of-costs is that DCMAPF outperforms the prioritized
planners PIBT and PIBT+ for small fleet sizes. Additionally, it is evident that
the sum-of-costs of DCMAPF tends to increase relative to the other planners
as the maps become more challenging with higher numbers of robots.

In maps with low obstacle densities, such as empty-48-48, all planners have
very high success rates, except CBS that has lower success rate in most exper-
iments involving more than 100 robots due to its computational complexity.
In terms of solution cost, DCMAPF outperforms PIBT and PIBT+ when the
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Fig. 3. Comparative results in terms of success rate and sum-of-costs of successful runs
on four benchmark maps.
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number of robots is less than 450 since in conflict resolution, robots with low pri-
ority have enough space to quickly give way to higher priority robots. However,
when the robot count hits 450, we notice that the performance of DCMAPF is
slightly worse than PIBT and PIBT+. On the random-32-32-20 map and on the
random-64-64-20 map, a similar, but more pronounced trend is observed. This
is due to the decentralized nature of DCMAPF where each robot relies only on
a partial observation of the environment. This can make it difficult to resolve
conflicts that involve large numbers of robots and can result in robots getting
stuck in undesirable looping behavior. The looping behavior could potentially
be corrected by introducing a mechanism to detect and avoid this undesirable
behavior. Importantly, the success rate on the random-32-32-20 map reached
100% and is high for both the empty-48-48 map and the random-64-64-20 map.
Interesting results can be observed for the warehouse map, where DCMAPF
shows high performance and outperforms PIBT and PIBT+, and yields similar
results to those of the sub-optimal planner EECBS and the optimal planner
CBS, further substantiating the efficacy of DCMAPF.

In summary, the performance of DCMAPF compares well to that of central-
ized planners, except for scenarios with very high robot densities. Its solution
quality is better than that of the prioritized planners PIBT and PIBT+ with a
high success rate in multiple scenarios. The one exception is the particularly con-
strained scenario of the small map random-32-32-20, where DCMAPF’s perfor-
mance is worse than the other planners, specifically when the robot count exceeds
150. Notwithstanding the increase in sum-of-costs in this map, the 100% success
rates demonstrate the robustness of DCMAPF in demanding circumstances. In
a nutshell, the obtained results highlight the effectiveness of DCMAPF and that
decentralized coordination is a promising approach to solve MAPF problems.
Example runs can be found in the supplementary video: https://youtu.be/5_
5TdVuM8kI.

5 Conclusions

In this work, we presented a decentralized multi-agent path finding approach for
mobile robots with a limited communication range. In the proposed approach,
each robot plans its shortest path offline and then autonomously coordinates
with its neighbors to solve potential conflicts as they occur during task execu-
tion. Through an extensive set of experiments, we showed that the DCMAPF
produces competitive results compared to state-of-the-art centralized planners,
and therefore can be considered a promising decentralized approach to solve
MAPF problems. Future work will focus on implementing a strategy to avoid
robots getting stuck in undesirable looping behavior in highly constrained maps.
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