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Abstract. The best-of-N problem in collective decision making is com-
plex especially when the number of available alternatives is larger than
a few, and no alternative distinctly shines over the others. Addition-
ally, if the quality of the available alternatives is not a priori known and
noisy, errors in the quality estimation may lead to the premature selec-
tion of sub-optimal alternatives. A typical speed-accuracy trade-off must
be faced, which is hardened by the presence of several alternatives to
be analyzed in parallel. In this study, we transform a one-shot best-of-
N decision problem in a sequence of simpler decisions between a small
number of alternatives, by organizing the decision problem in a hierar-
chy of choices. To this end, we construct an m-ary tree where the leaves
represent the available alternatives, and high-level nodes group the low-
level ones to present a low-dimension decision problem. Results from
multi-agent simulations in both a fully-connected topology and in a spa-
tial decision problem demonstrate that the sequential collective decisions
can be parameterized to maximize speed and accuracy against different
decision problems. A further improvement relies on an adaptive approach
that automatically tunes the system parameters.

1 Introduction

Collective decisions are key in many natural and artificial systems, from bacteria
to social insects, from organizations to robot swarms [11,18,22,24]. A collective
decision requires that a group of agents agrees on a common solution to a given
problem. Generally speaking, a best-of-N collective decision problem presents
multiple alternative solutions, each characterized by a quality value representing
associated benefits and costs, and the best possible one must be chosen by a
(qualified) majority or through full consensus. Intuitively, the larger is the num-
ber N of alternatives, the harder is the problem of selecting the best one. This
is because a qualified majority is more difficult to form if individual choices can
spread across many competing alternatives, and because correctly evaluating and
comparing multiple alternatives becomes extremely cumbersome and can lead
to spreading of individual biases. Indeed, previous studies on collective decision
making revealed that increasing the number of alternatives negatively affects the
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ability to make accurate decisions. First, the parameter space in which a deci-
sion deadlock is possible is larger when N increases, suggesting that the system
may remain unable to collectively choose any alternative for a long time, and
that sub-optimal alternatives could be selected [16]. Second, the time taken to
select the best alternative increases exponentially with the number of available
alternatives, in adherence with the Hick-Hyman’s law of psychophysics [15].

In the face of the complexity of deciding among multiple alternatives, there is
evidence that the path towards decision does not directly lead to a crisp choice
of the best alternative [7]. Instead, it is likely that one or a group of alter-
natives is discarded quickly to reduce the problem dimensionality. This is the
case for choices among spatially distributed alternatives in both individuals and
collectives, where the feedback between body movements and decision making
allows to select out alternatives when their reachability decreases [23]. Similarly,
optimal decision heuristics in multi-alternative choice problems allow to focus
attention on a limited number of alternatives, often as small as two, reducing the
cognitive load for a comprehensive evaluation [6]. When evidence must be gath-
ered about the available alternatives, a speed-accuracy trade-off arises, where
higher accuracy can be achieved by collecting additional evidence, which slows
down decision making [5]. Selective attention to different alternatives can be
modulated according to value, which implies that low-quality alternatives are
sampled less often [9]. On the other hand, adaptive sampling of alternatives
postulates that increased sampling is dedicated to alternatives when quality
uncertainty is higher [8]. Both these mechanisms suggest that sequential sam-
pling and evidence accumulation in multi-alternative decision problems can lead
to focusing on just the most interesting options, putting aside less valuable ones.

Correlations between alternatives (e.g., spatial location) may require optimal
planning of the sampling effort. This problem has been addressed in robotics
mapping, where a multi-resolution adaptive sampling can optimize evidence
accumulation [10]. On the basis of the gathered evidence, (collective) decision
making can lead to optimal deployment of robots in the area where working
is most valuable [1,2]. In these studies, an m-ary tree is introduced to repre-
sent the spatial correlation between alternatives (i.e., areas where some work is
required). This representation also drives the resolution of the evidence accumu-
lation, enabling to observe multiple alternatives at the same time or to focus on
subgroups.

Inspired by the above considerations, we study whether collective decision
making can benefit from a hierarchical organization of the N available alter-
natives, which can direct the evidence accumulation and decision process. We
choose a hierarchical organization as the most straightforward way of aggregating
alternatives, by maintaining possible correlations (e.g., closeness in space) and
recursively creating macro-alternatives that group together some of the avail-
able options. Our working hypothesis is that a complex decision process can
be simplified by reducing it to a sequence of decisions between a smaller num-
ber of groups of alternatives. Evidence accumulation is performed at the group
level, hence with a reduced resolution (i.e., aggregating randomly sampled val-
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ues within a group). Decisions are collectively taken following a decentralized
algorithm inspired by house-hunting honey bees [17], which can be controlled
by a single parameter describing the ratio of interactions with respect to indi-
vidual decision. We complete the algorithm with quorum sensing, which enables
to efficiently serialize the decision making process over the defined hierarchy
[14,21]. We show that the hierarchical approach allows to solve different decision
problems with the same parameterization, while the non-hierarchical approach
does not present a single parameterization that both maximizes accuracy and
is capable of breaking deadlocks among equivalent alternatives. These results
are robust to noisy evidence accumulation—owing to the possibility of agents to
share their local knowledge and collectively minimize the estimation error—and
to local quorum estimation. We also introduce an adaptive parameterization of
the collective decision-making algorithm based on the residual uncertainty about
the quality of alternatives. Thanks to this mechanism, it is possible to improve
the speed-accuracy trade-off for all tested hierarchies. Finally, we demonstrate
that the proposed approach can be adapted well to spatial best-of-N decisions.

2 Experimental Setup

2.1 Problem Description

In best-of-N decisions, N different alternatives are present, each characterized
by a quality value vi, i ∈ [1, N ]. A group of M agents must collectively choose
the alternative with the highest quality, or one of the equal-best alternatives.
Without loss of generality, we assume that one alternative has maximum value
(here, vM = 10), while all other alternatives have the same, small value (vm =
κvM , κ ∈ [0, 1]). We consider that a decision has been made by the group of
agents when a quorum Q ∈ (0.5, 1] is reached for one of the alternatives, that is,
a minimum fraction Q of agents has selected the same alternative.

In our hierarchical problem formulation, the alternatives are organized in a
m-ary tree, that is, a tree where each parent node has at most m children. Each
alternative corresponds to a leaf node in the tree, while non-leaf nodes represent
groups of alternatives. Given N alternatives, the minimum depth of an m-ary
tree is D = �logm N�. Hence, a binary tree with depth D = 5 contains at most
N = 32 alternatives. Conversely, when m = N , the depth of the tree is D = 1
meaning that there is no hierarchical organization of the alternatives, which are
all children of the root node. A node at level d ∈ {0, . . . , D} of the tree entails
a decision between at most m alternatives. We consider here only perfect m-ary
trees, where each non-leaf node has exactly m child nodes and all leaf nodes
are at the same depth. A tree node is labeled by nd

j , where d is the depth and
j ∈ 1, . . . , md is an univocal index. The sub-tree defined by nd

j is referred to as
Sd

j . The root node (n0
1) is the starting point for collective decision making.

2.2 Collective Decision Process

The collective decision process extends a design pattern for decentralized decision
making [17] with quorum sensing to move at different tree depth. We start by
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describing the ideal case in which agents have knowledge about the number and
quality of the alternatives, as well as about the number of agents that are in
their same sub-tree. Later, we relax these assumptions.

Agents with Perfect Knowledge. In the hierarchical collective decision
model, at any time t an agent i is characterized by a tuple ai = 〈si, ci〉, where
si is the node in which the agent resides, and ci is a desired destination node. If
ci = si, the agent is said to be “uncommitted at si”, that is, the agent has not
selected a desired destination. Otherwise, ci can be any children of si and the
agent is said to be “committed to ci”. At start, all agents are initialized with the
tuple 〈n0

1, n
0
1〉, that is, they are uncommitted at the root node. We denote with

Pd
j the sub-population of agents residing at any node in the sub-tree starting

from nd
j . Note that P0

1 is the entire agent population, with |P0
1 | = M .

Agents change their residence node only if a quorum of committed agents has
been reached for the child node they are committed to. Specifically, an agent i
residing in node si = nd

j and committed to the child node ci = nd+1
l moves

its residence to the latter if |Pd+1
l | ≥ QM . Once such a quorum is reached, all

committed agents change their residence node, ensuring that a large fraction of
the population moves down the hierarchical structure towards the leaf nodes.
This also means that agents never need to move back to the parent node (but
see below when imperfect quorum sensing is implemented). The process ends if
a quorum is reached for one of the leaf nodes representing one of the available
options. In other words, agents remain in their residing node unless a quorum is
reached, and then move to the selected child node. Given that a sufficiently large
quorum is the result of a collective decision, the agent population is expected to
perform a sequence of D decisions leading to the selection of one leaf node.

The commitment state of an agent changes according to stochastic processes
inspired by the decision process of house-hunting honeybees [17]. In particular,
we exploit the parameterization extensively studied in [15,16]. To this end, the
quality of a node must be considered, which must be a function of the group of
alternatives that a node represents. Here, we consider that the quality of a node
v(nd

j ) is recursively computed as the maximum quality among the child nodes:

v(nd
j ) = max

n∈C(nd
j )

v(n), (1)

where C(nd
j ) is the set of child nodes of nd

j . This allows to propagate up in the
hierarchy the best value of the underlying alternatives represented in the leaf
nodes, without loosing in resolution. See Sect. 4 for a discussion.

At time t, an agent i uncommitted at nd
j (ai = 〈nd

j , n
d
j 〉) can spontaneously

become committed to a randomly selected child node nd+1
l with probability:

Pγ = k
v(nd+1

l )
vM

, (2)

where k is a tunable parameter chosen to scale the probability. At the same time,
the agent i may get recruited by another agent b ∈ Pd

j , with ab = 〈sb, cb〉. This is
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implemented by choosing a random agent from Pd
j and computing the following

recruitment probability:

Pρ =
{

h v(cb)
vM

cb �= nd
j

0 otherwise
, (3)

where h is a scaling factor. Note that commitment and recruitment are evaluated
in parallel, requiring that Pγ + Pρ ≤ 1. Hence, we impose that h + k = 1.

When an agent i is committed to nd+1
l , it can spontaneously become uncom-

mitted at nd
j with an abandonment probability inversely proportional to quality:

Pα = k
1

1 + v(nd+1
l )

, (4)

where k is the same scaling factor as in (2). Also, the agent i may get inhibited
by another agent b ∈ Pd

j , with ab = 〈sb, cb〉. This is implemented by choosing a
random agent from Pd

j and computing the inhibition probability:

Pσ =
{

h v(cb)
vM

cb �= nd
j ∧ cb �= nd+1

l

0 otherwise
, (5)

where h is the same scaling factor as in (3). Also in this case, we must enforce
that Pα + Pσ ≤ 1, which is still the case if we ensure that h + k = 1.

Note that, with a flat hierarchy (D = 1), the collective decision process
reduces to the standard best-of-N decisions previously studied [15,16]. In anal-
ogy with previous work, we introduce a single control parameter r = h

k to tune
the relative strength of stochastic processes based on interactions with other
agents (i.e., recruitment and inhibition) with respect to spontaneous stochastic
processes (i.e., commitment and abandonment).

Estimation of the Alternative Quality. Moving beyond the ideal case pre-
sented above, we introduce here the more realistic case in which agents are aware
about the maximum number N of alternatives and their hierarchical organiza-
tion, but are not aware of their quality, which is perceived with noise. At every
decision step, an agent i makes an observation of a node n chosen according to
its state: if the agent is uncommitted at nd

j , it observes the child node selected
for the computation of the commitment probability (2). Otherwise, the agent
observes the desired destination ci. If the observed node n is a non-leaf node,
then a random leaf in the sub-tree of n is chosen for observation, and all parent
nodes are updated according to (1). Upon observation of a leaf node nD

j , agent
i updates its quality estimate ṽi according to a moving average:

ṽi(nD
j ) ←

{
v(nD

j ) + N(0, σD
j ) tDj = 0

λṽi(nD
j ) + (1 − λ)(v(nD

j ) + N(0, σD
j ) otherwise , (6)

where tDj counts the number of observations previously performed, λ represents
the smoothing factor and σD

j represents the variance of a Gaussian noise. This



Best-of-N Collective Decisions on a Hierarchy 71

simple exponential filter allows to rapidly converge on a stable estimation of the
quality of the alternatives, and also allows to adapt to changing qualities—a
possibility not explored in this study. Additionally, by limiting the observations
to the sub-tree where an agent resides, the estimation is focused on the relevant
alternatives, avoiding to waste time for those that have been discarded earlier.

To take advantage of the collective sensing abilities, agents exchange their
current estimates upon interaction: when agent i interacts with agent b, it
receives from b the quality estimates of all the N alternatives. These estimates
are treated in the same way as independent observations to update the indi-
vidual estimates with (6). Overall, this leads to a fast convergence towards the
average.

Quorum Sensing. If agents cannot reliably count how many agents are com-
mitted to a given node, an estimate can be obtained by keeping memory of the
last interactions. At every time step t, an agent i that interacts with another
agent b records in a list L a tuple 〈b, cb, tb = t〉. In case an element is present in
L with the same id b, the corresponding timestamp tb is updated. Finally, old
elements are purged from L when t − tb > TM , where TM is a maximum period
for retaining past interactions. As agents have only one interaction per time step,
it follows that |L| ≤ TM . Quorum sensing is implemented looking at the infor-
mation in L. An agent i committed to nd+1

l counts the number Ld+1
l of elements

in the list where cb ∈ Sd+1
l . If Ld+1

l is larger than a threshold LM , the agent has
recently interacted with a sample of the population with the same commitment.
Hence, the agent considers the quorum reached and changes its residing node to
si = nd+1

l . This estimation is however prone to errors, because of small samples
or because old information does not represent any more the current population.
Hence, a recovery mechanism allows robots to move to the parent node. Given
that L shrinks if an agent resides in a node in which the population is small
(e.g., when a real quorum was not actually reached), an agent uncommitted at
nd

j changes its residence to the parent node if |L| < Lm, where Lm < LM ≤ TM .

Adaptive Parameter Selection. The parameter r = h
k can determine if and

how fast the group converges to a shared choice [16]. High values correspond
to fast but possibly inaccurate decisions, as social information is given more
importance than individual quality estimation. To improve the decision making
process, social feedback should increase when the uncertainty about the avail-
able options decreases. Agents measure uncertainty by learning two independent
Gaussian models for each alternative—i.e., updating one model every second
observation. Then, the Hellinger distance Hd ∈ [0, 1] between the two is com-
puted and associated to the corresponding leaf node. Non-leaf nodes receive the
maximum distance of their children. High Hd corresponds to insufficient sam-
pling, hence high uncertainty. An agent i committed to nd+1

l uses the Hd(nd+1
l )

to compute a value ri = g(1−Hd), where g is a gain to adjust the range. During
the decision process, an agent i interacting with agent b receives from the latter
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the value rb. This allows to tune the process strength after the uncertainty of the
interacting agent, where low uncertainty corresponds to stronger interactions.

Decision Making on a Spatial Hierarchy. We also consider the spatial case
in which agents have to identify the most valuable area within a given region. The
region is divided in N areas, and a hierarchical organization is imposed recur-
sively partitioning the region in smaller areas. The root node of the hierarchical
structure represents the whole region, which is partitioned in m sub-regions,
and each is recursively divided further until N areas are obtained. Similarly to
the non-spatial setup, only one area has maximum quality vM , while all other
areas have the same quality vm = κvM . We consider here the case of binary and
quad-trees, usually employed to represent a 2D space. Agents move according
to a random waypoint model [4]: an agent i selects a random position within
the region corresponding to the node ci within the hierarchy, and moves there
at constant speed. To focus on the effects of spatiality, we ignore collisions, as if
the agent body size were negligible with respect to the dimensions covered (e.g.,
in case of drones monitoring a large field [2]). In the future, this assumption can
be relaxed via efficient velocity-obstacle collision avoidance [3].

The decision process is implemented through space as follows. An agent i
randomly selects a position in ci and moves there. Once the random position is
reached, it broadcasts information about its ID i, its current state ai, the current
quality estimates for the N alternatives, and a timestamp ti. Broadcast messages
can be received within a limited communication radius Rc. Upon reception of a
new message, an agent re-broadcasts it, and stores the information in a list N of
detected neighbors, overwriting any older message from the same sender. Qual-
ity estimates are updated according to the information received from neighbors.
Messages older than TM are purged from N . When the agent reaches the desired
position, a noisy observation is made at the agent location, and the tree struc-
ture is updated accordingly. Then, the decision process takes place. If the agent
is uncommitted at nd

j , it computes the commitment probability for the child
node nd+1

l corresponding to the current agent position. A random neighbor is
selected from N and the recruitment probability is computed. Similarly, if the
agent is committed to nd+1

l , the abandonment probability is computed with the
latest quality estimate, and the inhibition probability from the randomly selected
neighbor from N . In any case, the information from the selected neighbor is used
to update the list L for quorum sensing, similarly which is implemented as in
the non-spatial case. Note that quorum is not computed on the list N because
to avoid overestimating the opinion of the local population, and to keep the
decision process aligned with the non-spatial case. Note also that in the spatial
case, decisions are taken only when a new observation is made at the randomly
selected position, contrary to the non-spatial case in which decisions occur at
any time step. Hence, the spatial case evolves slowly, but an equivalence can be
make looking at the average number of decisions made within the population.
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3 Results

We measure accuracy as the percentage of runs (out of 100) in which the best
alternative—or one of the equal-best when κ = 1—was correctly identified by at
least QM agents. As a proxy for decision speed, we measure the convergence time
taken by the agents to reach a collective decision. To this end, we employ the
Kaplan-Meier estimator [12] to compute the empirical cumulative distribution of
convergence times, censoring the runs that do not converge within the maximum
allotted time. We fit a Weibull distribution and use the fitted function to compute
average and standard deviation of the convergence times.

First of all, we consider the non-spatial case in which agents have perfect
knowledge. We consider a relatively easy decision problem with κ = 0.75, a more
difficult one with κ = 0.85, and a symmetry breaking problem with κ = 1. The
parameter r = h

k is used as control parameter to tune convergence speed. Figure 1
shows how the accuracy varies across problems for different configurations were
flat, binary and quad-trees are employed (the latter only for N = 16). For any
value of N we tested, the binary tree provides the highest accuracy when r = 1.
A lower value (r = 0.5) is equally good unless N ≥ 16 and κ = 1, where several
runs do not terminate within the allotted time T . Indeed, when r is small,
the collective decision process cannot take full advantage of the positive and
negative feedback loops, making symmetry breaking very difficult. Conversely,
higher values of r may excessively rely on social information, which may lead to
a loss in accuracy when the decision problem is difficult (κ = 0.85).

Non-hierarchical structures (m = N) struggle to consistently provide good
results across all problem configurations, especially for large N . There exist
parameterizations leading to good results (e.g., when N = 16, r = 3 for κ ≤ 0.85,
or r = 5 for κ = 1), but no single one performs systematically well across different

Fig. 1. Accuracy of different hierarchical structures (m = 2, 4, N , indicated by line
type) for different values of κ ∈ {0.75, 0.85, 1} with varying number of options N and
parameter r (line color). Other parameters: M = 100, Q = 0.8, T = 1000 time steps.
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Fig. 2. Performance evaluation over 100 independent runs of different hierarchical
structures (m = 2, 4, N) with varying number of options N (point color) and parame-
ter r (color intensity). For each value of N , the Pareto frontier is displayed connecting
points that are non-dominated. Dominated points are smaller than non-dominated
ones. Left: κ = 0.75. Right: κ = 0.85. Other parameters as in Fig. 1.

values of k and N . Similarly, the quad trees deployed for N = 16 display a good
overall performance for r = 3, but still not comparable with the binary trees.

Overall, we found that hierarchical decisions perform better as they allow
to serialize the best-of-N problem in a sequence of smaller problems, which can
be better parameterized to deal with different complexity levels. However, high
accuracy may come at the cost of slowing down the decision process, and this
could be especially the case if a long sequence of decisions must be performed.
In Fig. 2, we study the speed-accuracy trade-off for κ = 0.75 (left) and κ = 0.85
(right).1 In both cases, the hierarchical approach produces solutions that lay
on the Pareto frontier, often dominating non-hierarchical solutions. Hence, fast
convergence is ensured also in case of a sequence of D decisions.

When the quality of the alternatives is not known a priori, a (slow) estimation
is necessary from noisy observations. With hierarchical structures, estimation
errors may lead to wrong decision in the early stages (e.g., nearer to the tree
root) that cannot be easily recovered. Also, errors in quorum sensing can lead a
whole group down the wrong path. In such conditions, the flat hierarchy could be
advantaged. Our simulations demonstrate that estimation errors have an impact,
but still hierarchical structures provide a sensible advantage (see Fig. 3 and 4).
In this case, r = 0.5 performs best also when κ = 1, because small differences
between identical alternatives due to estimation errors get amplified, accelerating
convergence towards any option. For r ≥ 1, instead, estimation errors can lead to
a wrong decision especially when alternatives are similar (κ = 0.85). Flat trees
and quad trees instead do not present solutions that are systematically good,
similarly to the case in which agents could exploit perfect knowledge. The Pareto
diagrams in Fig. 4 highlight that noisy estimation leads to a loss in accuracy and
speed, especially with κ = 0.85. When N = 16, binary trees are not always
Pareto optimal, but lay close to the frontier and can be accepted.

1 For κ = 1, decision speed is very similar across different configurations, and the
trade-off is dominated by solutions with high r that quickly converge to any option.
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Fig. 3. Accuracy over 100 independent runs of different hierarchical structures with
noisy observation and quorum sensing (M = 100, Q = 0.8, λ = 0.8, σD

j = 1, TM = 12,
LM = 10, Lm = 2, T = 1000 time steps). Black lines indicate the adaptive approach.

The slow evidence gathering process requires a small value of r to provide
good accuracy, but this leads to a slow collective decision process. An adaptive
approach can prove best if it gathers evidence to minimize uncertainties and
increases speed when sufficient information is available. By linking the parameter
r to the uncertainty, collective decisions can be both accurate and fast. Figure 3
and 4 show results of simulations with an adaptive approach, where the gain
g has been tuned to maximize decision accuracy. An adaptive approach proves
very advantageous especially with binary trees and complex decision problems,
where both accuracy and speed are improved (see Fig. 4 right).

Finally, we analyse a proof of concept where mobile agents need to select
the best area among N (see videos at [13]). Here, the adaptive approach is
employed. Results shown in Fig. 5 demonstrate that binary trees provide the
best solutions and also optimize the speed-accuracy trade-off. Hence, despite

Fig. 4. Pareto diagram corresponding to simulations with noisy observation and quo-
rum sensing. Left: κ = 0.75. Right: κ = 0.85. Other parameters as in Fig. 3.
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Fig. 5. Left: Accuracy of the spatial simulations for different configurations. Right:
Pareto diagram for κ = 0.85. Other parameters: M = 100, Q = 0.8, λ = 0.8, σD

j = 1,
TM = 100, LM = 10, Lm = 2, T = 10000 time steps.

the spatial correlations that may slow down decision-making, the hierarchical
approach outperforms non-hierarchical configurations. Somewhat surprisingly,
quad trees do not lead to good performance, despite they are the best choice for
representing 2D spaces. Further studies should be performed to verify if different
parameterizations lead to better results.

4 Conclusions

This study demonstrates that collective decision making can benefit from a hier-
archical representation of the alternatives. A number of assumptions have been
made, such as the a priori knowledge of N and of the tree structure. Such assump-
tion can be relaxed, providing agents with the ability to build the hierarchy on
the fly—possibly in a collective, decentralized way—or discovering it through
observations, should this be related to the decision problem. Another assump-
tion is related to the propagation of the maximum value from the leafs up the
tree, which requires knowledge of what leaf is being observed from any non-leaf
node. If such knowledge is not available, all observations must be aggregated
at the non-leaf node, for instance via a (moving) average. This however reduces
the ability to distinguish between different alternatives at the beginning of the
process, as preliminary experiments have demonstrated (data not shown). We
hypothesize that, by means of an adaptive sampling approach (e.g., Thompson
sampling [20]), better alternatives could be sampled more frequently, leading to
approximate the propagation of the maximum value. This will be studied in the
future, along with implementation with Kilobots [19].
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