
Chapter 9

LEVERAGING CONFIDENTIAL
COMPUTING TO ENABLE SECURE
INFORMATION SHARING

Samuel Chadwick, Scott Graham, James Dean and Matthew Dallmeyer

Abstract The emergence of the RISC-V Instruction Set Architecture incentivizes
the critical infrastructure protection community to consider the use of
emerging open-source security mechanisms to facilitate secure informa-
tion sharing. An exemplar is Keystone, a Confidential Computing Con-
sortium project, that offers an accessible open-source framework for
building trustworthy secure hardware enclaves based on the RISC-V
Instruction Set Architecture.

This chapter describes an attempt at extending Keystone to the Hi-
Five Unmatched development platform and proposes enclave applica-
tion development to effectively and affordably supplement deployed su-
pervisory control and data acquisition devices with secure information
sharing capabilities. Since the implementation of confidential comput-
ing principles axiomatically degrades real-time performance, the per-
formance of supervisory control and data acquisition devices must be
characterized to ensure that the devices enhanced with trusted execution
environments meet operational requirements while supporting critical
infrastructure operations with secure information sharing capabilities.

Keywords: Secure information sharing, confidential computing, Keystone enclave

1. Introduction
The persistent desire to securely share information drives the con-

tinuing evolution of mechanisms for enforcing information security that
keeps pace with and responds to technological advancements. This re-
search proposes the application of confidential computing principles to
implement secure information sharing across a wide range of supervi-
sory control and data acquisition used in critical infrastructure assets.
Expressly, the research establishes the plausibility of building trusted
c© IFIP International Federation for Information Processing 2022

Published by Springer Nature Switzerland AG 2022

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XVI, IFIP AICT 666, pp. 235–252, 2022.

https://doi.org/10.1007/978-3-031-20137-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20137-0_9&domain=pdf

236 CRITICAL INFRASTRUCTURE PROTECTION XVI

execution environments using commodity RISC-V personal computer
hardware to supplement deployed SCADA devices with improved com-
munication and operational security at reasonable, or even low, cost.

Keystone, a project of the Confidential Computing Consortium [2],
is the first open-source framework for building customized trustworthy
secure hardware enclaves based on the RISC-V Instruction Set Architec-
ture [3]. The ability to port Keystone security monitor to new RISC-V
hardware enables Linux distribution support and enclave application de-
velopment. The use cases would exploit trusted execution environment
primitives by equipping deployed SCADA devices with secure, isolated
enclaves that appropriately segregate control mechanisms from data col-
lection and sharing protocols.

This chapter describes an attempt at extending Keystone to the Hi-
Five Unmatched development platform, the only commercially-available
RISC-V development platform that satisfies the criteria of form factor
standardization, commodity personal computer hardware compatibility,
Linux operating system support and enhanced system-on-chip monitor-
ing capabilities. This would support enclave application development to
provide deployed supervisory control and data acquisition devices with
secure information sharing capabilities effectively and affordably.

Since the implementation of confidential computing principles ax-
iomatically degrades real-time performance, it is imperative to determine
the performance overhead imposed by trusted execution environment
implementations. This chapter describes synthetic benchmarking con-
ducted for the HiFive Unmatched system that executed 20 compatible
benchmarks from the Stress-NG benchmarking suite. At a price point of
$655, the HiFive Unmatched underperformed competitively-priced x86 -
64 commodity workstations. Nevertheless, as a Linux-capable, native
RISC-V development platform that supports open-source trusted exe-
cution environment implementations, HiFive Unmatched sets the bar in
the emerging RISC-V market.

2. Background and Related Work
This section discusses confidential computing and provides details

about the RISC-V Instruction Set Architecture and Keystone enclave
used in this work. Also, it discusses related work in the area.

2.1 Confidential Computing
The Confidential Computing Consortium is a Linux Foundation ini-

tiative that seeks to secure data in use through open collaboration.
Commonly-deployed encryption techniques enforce confidentiality, in-

Chadwick, Graham, Dean & Dallmeyer 237

Figure 1. Security mechanisms applied to classical computing data states.

tegrity and availability for data at rest in storage media and for data in
transit across public and private networks. However, these techniques
are limited by the conventional computing infrastructure. To adequately
secure data in use, specifically during execution, computations must be
performed in a hardware-based trusted execution environment (TEE) [2]
or properly manipulate encrypted data without decrypting it first, as in
the case of homomorphic computing, which is outside the scope of this
work. Figure 1 illustrates the security mechanisms that apply to classical
computing data states.

While a formal definition of a trusted execution environment has not
been arbitrated, the Confidential Computing Consortium defines it as
an environment that provides a level of assurance of data confidentiality,
data integrity and code integrity [1, 5]. This work uses the definition
of trusted execution environment interchangeably with variations com-
monly used by industry.

Many trusted execution environment implementations are proprietary,
including the Intel Software Guard Extensions, ARM TrustZone and
AMD Secure Encrypted Virtualization. Vendor-specific trusted execu-
tion environment implementations have two distinct disadvantages. The
first is that intellectual property ties new features and bug fixes directly
to vendors. The second is that different threat models have been as-
cribed to specific instruction set architectures. For example, Intel Soft-
ware Guard Extensions focus on server and desktop application isola-
tion, ARM TrustZone addresses vendor-provisioned mobile application
isolation and AMD Secure Encrypted Virtualization focuses on virtual
machine isolation.

In the context of critical infrastructure protection, the disadvantages
of vendor-specific trusted execution environment implementations must
be weighed against emerging open-source alternatives. A Keystone en-
clave provides an extensible open-source trusted execution environment
implementation for the RISC-V Instruction Set Architecture. This re-
search asserts that Keystone and supporting hardware offer an avenue
for extending deployed SCADA devices with secure information sharing

238 CRITICAL INFRASTRUCTURE PROTECTION XVI

functionality while avoiding the deficiencies found in proprietary trusted
execution environments.

2.2 RISC-V Instruction Set Architecture
The free and open RISC-V Instruction Set Architecture is intended to

enable a new era of processor innovation through open standard collab-
oration [8]. The RISC-V Instruction Set Architecture is organized into
an unprivileged instruction set architecture and a privileged instruction
set architecture.

Unprivileged Instruction Set Architecture. The unprivileged in-
struction set architecture comprises the base integer architecture I and
additional optional instruction set extensions. The set of standard ex-
tensions currently includes multiply/divide operations M, atomic opera-
tions A, single- and double-precision floating-point arithmetic operations
F and D, respectively, and compressed 16-bit instructions C [8]. The M,
A, F and D identifiers are standard extensions that are collectively re-
ferred to as G. This research employs 64-bit integer registers with all the
standard and compressed extensions. Thus, the instruction set architec-
ture descriptor used in the research is designated as RV64GC, where
RV denotes RISC-V, 64 denotes the register width, G denotes the base
instruction set architecture with standard extensions and C denotes sup-
port for compressed operations.

Privileged Instruction Set Architecture. The privileged instruc-
tion set architecture covers all aspects of RISC-V systems beyond the
unprivileged instruction set architecture [9]. The features pertinent to
this research are physical memory protection and three of the four spec-
ified privilege levels, user mode (u-mode), supervisor mode (s-mode)
and machine mode (m-mode). The fourth mode, hypervisor mode (h-
mode), is not employed in this research. Keystone makes appropriate
use of these features to enforce isolated execution in trusted execution
environments. These memory-isolated environments are often referred
to as “secure enclaves.” Because Keystone is employed throughout the
creation, execution and destruction lifecycles of the enclaves, they are
named Keystone enclaves.

2.3 Keystone Enclave
As a current project of the Confidential Computing Consortium, Key-

stone offers an accessible open-source framework that provides academia
and industry with resources for building trustworthy secure hardware

Chadwick, Graham, Dean & Dallmeyer 239

Figure 2. Compute system operations with Keystone [3].

enclaves. Keystone is the first open-source framework for building cus-
tomized trusted execution environments [3]. It is designed for and
built on the RISC-V privileged instruction set architecture. By lever-
aging trusted hardware, Keystone enables software-defined, hardware-
enforced, isolated, memory-mapped execution beneath an untrusted op-
erating system [3]. Currently, Keystone supports three standard trusted
execution environment primitives, secure boot, secure randomness source
and remote attestation [3]. Figure 2 shows the distinct Keystone com-
ponents as they operate within the RISC-V Instruction Set Architecture
privilege levels alongside an untrusted operating system.

Keystone Security Monitor. The Keystone security monitor, a core
component of a Keystone enclave, relies entirely on the RISC-V stan-
dards for operation. This intentional design constraint promotes porta-
bility across RISC-V hardware platforms. This design principle is lever-
aged to port Keystone security monitor to SiFive’s HiFive Unmatched
development platform, a multi-core, native RISC-V, application-specific
integrated circuit (ASIC) computer. The Keystone security monitor
achieves memory isolation for enclave runtimes and enclave applications
by utilizing physical memory protection hardware built directly into each
hardware application core [6]. The development platform features and
specifications are provided later in this chapter. This research focuses
on extending the Keystone security monitor to the HiFive Unmatched
platform.

240 CRITICAL INFRASTRUCTURE PROTECTION XVI

Keystone Root-of-Trust. Although the root-of-trust is typically de-
picted as a hardware component, Keystone also supports tamperproof
software implementations. The research described in this chapter lever-
ages this feature by employing modified first- and second-stage bootload-
ers to simulate the secure boot primitive. The research does not attempt
to verify, validate or otherwise assess the cryptographic techniques em-
ployed by Keystone to realize trusted execution environment primitives.
Instead, it supports Keystone’s portability claims by extending its use
to previously-unsupported hardware.

Keystone Enclave Applications. With successful modifications to
hardware-specific (m-mode) software (firmware), a HiFive Unmatched
development platform equipped with Keystone could be configured to
execute Keystone enclave applications. Application development would
support any statically-compiled RISC-V binary as long as all the sup-
porting libraries are included in Eyrie, the Keystone runtime environ-
ment. Specifically, secure enclave applications are envisioned that enable
secure information sharing between SCADA devices across internal and
external networks. Thus, sensitive SCADA operations could be appro-
priately decoupled from data collection tasks to shield critical infrastruc-
ture assets from untrusted actors and devices.

2.4 Related Work
Porting the Keystone security monitor to new hardware platforms is

just an initial step on the path towards critical infrastructure device
integration. To fully implement Keystone on contemporary RISC-V
hardware, additional Linux kernel modifications will have to be base-
lined to support Linux distributions. Moreover, to encourage confiden-
tial computing practices, Linux distributions will likely need to provide
flexible tools to facilitate the porting of Keystone enclaves to more de-
vices. To justify the incorporation of trusted execution environments
in deployed SCADA devices, strict performance requirements must also
be maintained. The addition of secure enclave computing unavoidably
impacts system performance. Therefore, characterization studies must
be conducted to effectively evaluate trusted execution environment per-
formance.

Tullos [7] has conducted performance characterizations of embed-
ded RISC-V devices configured with Keystone implemented on field-
programmable gate array (FPGA) hardware. As the RISC-V land-
scape matures, future performance characterizations must include ASIC
hardware implementations with representative system evaluations for
workstation-focused systems such as the HiFive Unmatched platform.

Chadwick, Graham, Dean & Dallmeyer 241

3. Experimental Configuration
The HiFive Unmatched development platform was selected due to its

form factor standardization, commodity personal computer hardware
compatibility, Linux operating system support and enhanced system-
on-chip monitoring capabilities. HiFive Unmatched is currently the only
commercially-available RISC-V development platform that satisfies the
four desired criteria. In particular, it has the Mini-ITX form factor used
by many AMD/Intel x86 64 systems. This standard personal computer
form factor enables straightforward hardware extensions via PCIe and
NVMe interconnects. Moreover, HiFive Unmatched is advertised as the
world’s fastest native RISC-V development platform, which sets it apart
from other platforms by positioning it as an independent, Linux-capable,
RISC-V workstation as opposed to an embedded system.

Importantly, the HiFive Unmatched is manufactured by SiFive, an
industry leader in the RISC-V technology space. The SiFive leadership
includes three co-founders of the RISC-V Instruction Set Architecture.
Their involvement inspires confidence that SiFive will continue to sup-
port its products as the RISC-V specifications evolve.

Development Board Specifications and Features. The HiFive
Unmatched platform is powered by a SiFive Freedom U740 system-
on-chip, a multi-core, 64-bit dual-issue, superscalar RISC-V processor
whose advertised performance is comparable to the ARM Cortex-A55.
The Freedom U740 system-on-chip contains four Linux-capable U74 ap-
plication cores that support RV64GC operations and includes a fifth S7
monitor core that supports RV64IMAC operations. All the cores have
dual-issue in-order execution pipelines that support peak sustained exe-
cution rates of two instructions per cycle and maintain a fully-coherent
2MB shared L2 cache. Additional board specifications include 16 GB
DDR4 SDRAM, 32 MB Quad-SPI flash memory, MicroSD card expan-
sion, Gigabit Ethernet, four USB 3.2 Gen 1 Type A ports, a microUSB
JTAG console port, x16 PCIe Gen 3 expansion slot, M.2 M-Key slot for
NVMe 2280 SSD modules and M.2 E-Key slot for Wi-Fi and Bluetooth
modules.

Figure 3 shows the test platform configuration. The test configuration
utilized the M.2 M-Key NVMe slot to leverage a 500 GB Samsung 980
PRO PCIe 4.0 SSD. Additional components were not strictly required in
the research, but they enhanced performance by providing faster memory
technology for testing in environments without wired Internet access.
The PCIe expansion slot was not used in the research; the graphical
capabilities are left for future investigations.

242 CRITICAL INFRASTRUCTURE PROTECTION XVI

Figure 3. HiFive Unmatched Mini-ITX development platform configuration.

Boot Flow Modifications. The SiFive FU740-C000 manual details
the boot process of the HiFive Unmatched platform [6]. Figure 4 shows
the unmodified (standard) boot flow for the test HiFive Unmatched plat-
form configuration. The boot operations proceed in the following order
of precedence: power on reset (PoR) (0), zeroth stage bootloader (ZSBL)
stored in on-chip mask read-only memory (1), first stage bootloader (U-
Boot secondary program loader (SPL)) (2), secondary bootloader (SBL)
containing the U-Boot image tree blob (ITB), device tree blob (DTB)
and OpenSBI (3), EXTLINUX (4) and Linux kernel (5). In order to per-

Chadwick, Graham, Dean & Dallmeyer 243

Figure 4. Standard boot flow.

form baseline performance characterizations of the HiFive Unmatched
system without the Keystone security monitor, a preinstalled Ubuntu
server image was employed. The bootable image was flashed to a mi-
croSD card, which was used to boot the HiFive Unmatched platform
successfully with Ubuntu.

In order to implement the Keystone security monitor on the Hi-
Five Unmatched platform, OpenSBI was used as the interface between
the bootloader and platform-specific firmware executing in m-mode.
OpenSBI is an independent RISC-V Foundation project that provides an
open-source reference implementation of a platform-independent static
library to implement a serial binary interface [4]. OpenSBI also provides
platform-specific support, including Freedom-U740-specific libraries re-
quired to modify the HiFive Unmatched development kit.

To construct the modified bootable microSD card image, the Key-
stone security monitor was built in OpenSBI using an out-of-tree plat-

244 CRITICAL INFRASTRUCTURE PROTECTION XVI

Figure 5. Modified boot flow with the Keystone security monitor.

form build configuration supported by the OpenSBI toolchain. All the
development work was conducted on an external x86 64 Kubuntu Linux
workstation, although the Linux distribution used for development was
arbitrary. Because Keystone does not officially support the HiFive Un-
matched development platform, several Keystone components required
the manual application of patch files provided by SiFive; the modifica-
tions included platform-specific changes to OpenSBI, U-Boot and the
Linux kernel. Figure 5 highlights the boot flow modifications required
to implement the Keystone security monitor on the test platform.

After the Keystone security monitor was configured in the OpenSBI
platform build, the fw dynamic.bin platform configuration binary used
by U-Boot was created. Next, the u-boot.itb image tree blob and
u-boot-spl.bin binary files required to build the U-Boot bootloader
were created. These two files, which comprise the U-Boot bootloader,
were flashed to the microSD card image.

Chadwick, Graham, Dean & Dallmeyer 245

Kernel Modifications. After successfully building the modified boot-
loader with the Keystone security monitor, the next step was to build
the Linux kernel in order to apply the Keystone security monitor and
SiFive patches and cross-compile the build for the RV64GC target. The
Keystone kernel build process produced the Image.gz Linux kernel for
the OpenEmbedded distribution; this is an artifact of hardware support
for the discontinued HiFive Unleashed development platform. The build
used a makefile script to generate the hifive-unmatched-a00.dtb de-
vice tree blob containing the specific board hardware descriptor. The
Linux kernel for the Ubuntu distribution was employed for unmodi-
fied device performance characterization. These Linux kernels, created
by Canonical, are provided in pre-built server images for HiFive Un-
matched. Performance characterizations of the modified Linux kernel
for the OpenEmbedded distribution are available for future testing ef-
forts.

Root Filesystem and Distribution. Since the research did not re-
quire building a root filesystem from scratch, pre-built server images
provided by Canonical were employed. The research used various daily
builds of Ubuntu distributions, including 21.04 (Hirsute Hippo), 21.10
(Impish Indri) and 22.04 LTS (Jammy Jellyfish).

Bootable Image. The development concluded by creating a bootable
image file and flashing it to a microSD card. The modified Ubuntu image
was built by flashing the desired pre-built server image to the microSD
card to create a default bootable medium. The dd tool was then used
to overwrite the image tree blob and device tree blob boot partitions
with the modified U-Boot bootloader and the included Keystone security
monitor.

The OpenEmbedded distribution was built by creating an empty im-
age file, which was partitioned with the appropriate disk identifiers. The
bootloader partitions were written, following which the root filesystem
was created and mounted. Next, the root filesystem was unpacked and
the Linux kernel packages were copied to the root filesystem. Following
this, the Linux kernel was installed, the image tree blob and device tree
blob were copied to the correct partitions and the extlinux.conf file
for EXTLINUX was created. Finally, the newly-created image file was
flashed to the microSD card and the root partition was resized.

Upon inserting the microSD card into the HiFive Unmatched plat-
form and booting the device, the serial console shown in Figure 6 was
displayed. The U BOOT ROOT environment variable was then set to use

246 CRITICAL INFRASTRUCTURE PROTECTION XVI

Figure 6. U-Boot serial console output.

the preconfigured NVMe drive with the Ubuntu operating system. Fig-
ure 7 shows the Ubuntu terminal after system login.

4. Proposed Development
The ability to port Keystone security monitor to new RISC-V hard-

ware enables Linux distribution support and enclave application develop-

Chadwick, Graham, Dean & Dallmeyer 247

Figure 7. Ubuntu 21.04 (Hirsute Hippo) terminal.

ment, especially for critical infrastructure protection applications. These
use cases would exploit trusted execution environment primitives by
equipping SCADA devices with secure, isolated enclaves that segregate
control mechanisms from data collection and sharing protocols.

Supplementing deployed SCADA devices with open-source trusted ex-
ecution environments would be a practical secure information sharing
solution that avoids the large-scale replacement of proprietary imple-
mentations. By leveraging Keystone, the RISC-V Instruction Set Archi-
tecture and a growing list of compatible commodity personal computer
hardware components, legacy SCADA devices can be made extensible
by augmenting information sharing responsibilities with emerging na-
tive RISC-V devices. Promising scenarios would employ capable RISC-
V platforms such as HiFive Unmatched to empower decision makers by
operating as intermediary confidential computing networks that securely
obtain relevant data from SCADA devices, process the data in secure
enclaves and transmit encrypted information for secure collection.

As the RISC-V landscape evolves, it is anticipated that confidential
computing practices will be adopted widely. In particular, low-cost na-
tive RISC-V platforms with commodity personal computing hardware
augmented with open-source trusted execution environments – such as

248 CRITICAL INFRASTRUCTURE PROTECTION XVI

Figure 8. Baseline performance configuration.

Keystone – would be used to affordably facilitate confidentiality, in-
tegrity and availability across all the data states.

5. Experimental Results and Analysis
Before endowing deployed SCADA devices with trusted execution en-

vironments and secure information sharing features, it is important to
obtain a thorough understanding of system performance requirements.
Specifically, it is imperative to determine the performance overhead im-
posed by a trusted execution environment implementation. In the case
of Keystone and the HiFive Unmatched system, synthetic benchmarking
can yield insights for evaluating system performance.

Baseline benchmarking was conducted to evaluate SiFive’s perfor-
mance claims about the HiFive Unmatched system. Figure 8 specifies
the baseline performance configuration.

The Phoronix Test Suite, an open-source, comprehensive testing and
benchmarking tool, was employed to run 20 compatible benchmarks from
the Stress-NG benchmarking suite (version 1.4.0). Table 1 describes the
benchmarks used in the baseline performance evaluation.

Table 2 shows the baseline performance for the benchmark stress tests
in bogo-ops/s, where higher scores indicate better performance. Each
benchmark test was trialed three times or trialed repeatedly until a
standard deviation of less than one was obtained.

The results establish an upper threshold for typical HiFive Unmatched
system performance. With the inclusion of trusted execution environ-
ments via Keystone, subsequent benchmark scores are expected to de-
cline. At a price point of $655, the HiFive Unmatched dramatically

Chadwick, Graham, Dean & Dallmeyer 249

Table 1. Selected benchmarks from Stress-NG 1.4.0.

Benchmark Description

MMAP Memory map
NUMA Non-uniform memory access
MEMFD Anonymous kernel memory management
Atomic Atomic operations
Crypto MD5, SHA-256, SHA-512, scrypt, NT,

yescrypt

malloc Memory allocation
Forking CPU forking
io uring Asynchronous input/output
SENDFILE Read/write
CPU Cache Cache thrashing
CPU Stress Integer, multiplication, floating point,

double precision
Semaphores Shared resources
Matrix Math Two- and three-dimensional matrix

operations
Vector Math 128-bit vector operations
Memory Copying memcpy method operation
Socket Activity IPv4, TCP congestion control
Context Switching Memory clobbering
glibc C String Functions glibc C string functions
glibc Qsort Functions glibc Qsort functions
System V Message Passing System V message passing

underperformed competitively-priced x86 64 PC workstations. For the
CPU stress test, the average time required to complete the benchmark
for all publicly-listed systems at openbenchmarking.org was only 1.8
minutes whereas it exceeded 16 minutes for HiFive Unmatched. Com-
pared against a quad-core ARM Cortex-A55 system-on-chip, the HiFive
Unmatched system recorded an average of 208.20 bogo-ops/s that out-
performed the average 156.28 bogo-ops/s recorded by the ARM Cortex-
A55 system-on-chip; this meets the advertised HiFive Unmatched per-
formance claims for CPU operations. Substantially cheaper ARM al-
ternatives, such as the Raspberry Pi 400, which does not fully support
ARM TrustZone and hardware-enforced trusted execution environments,
handily doubled the CPU stress performance achieved by HiFive Un-
matched. Nevertheless, as a Linux-capable, native RISC-V development
platform that supports open-source trusted execution environment im-
plementations, HiFive Unmatched sets the bar in the emerging RISC-V
market.

250 CRITICAL INFRASTRUCTURE PROTECTION XVI

Table 2. Baseline performance.

Benchmark Score (bogo-ops/s)

MMAP 1.55
NUMA 12.66
MEMFD 7.49
Atomic 55,245.91
Crypto 91.75
malloc 1,572,568.61
Forking 3,163.54
io uring 2,440.31
SENDFILE 7,338.63
CPU Cache 16.52
CPU Stress 208.20
Semaphores 119,929.34
Matrix Math 617.00
Vector Math 440.98
Memory Copying 34.48
Socket Activity 177.85
Context Switching 144,396.00
glibc C String Functions 18,746.18
glibc Qsort Functions 5.68
System V Message Passing 375,212.46

6. Conclusions
Supplementing deployed SCADA devices with open-source trusted ex-

ecution environments is a practical secure information sharing solution
that eliminates the large-scale replacement of proprietary implementa-
tions. By leveraging Keystone, the RISC-V Instruction Set Architecture
and a growing list of compatible commodity personal computer hardware
components, legacy SCADA devices can be made extensible by augment-
ing information sharing responsibilities with emerging native RISC-V
devices. Promising scenarios would employ capable RISC-V platforms
such as HiFive Unmatched to empower decision makers by operating as
intermediary confidential computing networks that securely obtain rele-
vant data from operational SCADA devices, process the data in secure
enclaves and transmit encrypted information for secure collection.

The RISC-V Instruction Set Architecture is new and does not yet
rival the market share of AMD/Intel x86 64 and ARM instruction set
architectures. It was only in December 2021 that the RISC-V privi-
leged instruction set was officially ratified for a few compatible hardware-
optimized applications and devices. Nevertheless, the experimentation

Chadwick, Graham, Dean & Dallmeyer 251

with RISC-V hardware and software demonstrates a renewed interest in
instruction set architecture development. Clearly, proprietary computer
architectures with undisclosed security mechanisms will not suffice for
future data security applications. Therefore, it is important to advocate
open technologies that offer innovative solutions for securing data in use.
As the RISC-V landscape evolves, it is anticipated that confidential com-
puting practices will be adopted widely. In particular, low-cost native
RISC-V platforms with commodity personal computing hardware aug-
mented with open-source trusted execution environments like Keystone
would be attractive because they can affordably facilitate information
confidentiality, integrity and availability across all the data states.

Future research will focus on Keystone enclave application develop-
ment for comparative benchmarking as well as on Keystone enclave de-
velopment.

The views expressed in this chapter are those of the authors, and
do not reflect the official policy or position of the U.S. Air Force, U.S.
Space Force, U.S. Department of Defense or U.S. Government. This
document has been approved for public release; distribution unlimited
(Case #88ABW-2021-1035).

References

[1] Confidential Computing Consortium, A Technical Analysis of Con-
fidential Computing (v1.1), The Linux Foundation, San Francisco,
California (confidentialcomputing.io/wp-content/uploads/si
tes/85/2021/03/CCC-Tech-Analysis-Confidential-Computing
-V1.pdf), 2021.

[2] Confidential Computing Consortium, What is the Confidential
Computing Consortium? The Linux Foundation, San Francisco,
California (confidentialcomputing.io), 2022.

[3] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic and D. Song, Key-
stone: An open framework for architecting trusted execution en-
vironments, Proceedings of the Fifteenth European Conference on
Computer Systems, article no. 38, 2020.

[4] opensbi Contributors, RISC-C Open Source Supervisor Binary
Interface, GitHub (github.com/riscv-software-src/opensbi),
2021.

[5] M. Sabt, M. Achemlal and A. Bouabdallah, Trusted execution en-
vironment: What it is and what it is not, Proceedings of the IEEE
International Conference on Trust, Security and Privacy in Com-
puting and Communications, pp. 57–64, 2015.

252 CRITICAL INFRASTRUCTURE PROTECTION XVI

[6] SiFive, SiFive FU740-C000 Manual (v1p6), San Mateo, California
(sifive.cdn.prismic.io/sifive/1a82e600-1f93-4f41-b2d8-8
6ed8b16acba_fu740-c000-manual-v1p6.pdf), 2021.

[7] J. Tullos, Characterizing Security Monitor and Embedded System
Performance Across Distinct RISC-V IP-Cores, M.S. Thesis, De-
partment of Electrical and Computer Engineering, Air Force Insti-
tute of Technology, Wright-Patterson Air Force Base, Ohio, 2021.

[8] A. Waterman and K. Asanovic (Eds.), The RISC-V Instruction Set
Manual Volume I: Unprivileged ISA, Document Version 20191213,
RISC-V Foundation, Department of Electrical Engineering and
Computer Sciences, University of California Berkeley, Berkeley, Cal-
ifornia, 2019.

[9] A. Waterman, K. Asanovic and J. Hauser (Eds.), The RISC-V In-
struction Set Manual Volume II: Privileged Architecture, Document
Version 20211203, RISC-V Foundation, Department of Electrical
Engineering and Computer Sciences, University of California Berke-
ley, Berkeley, California, 2021.

	Chapter 9 LEVERAGING CONFIDENTIAL COMPUTING TO ENABLE SECURE INFORMATION SHARING
	1. Introduction
	2. Background and Related Work
	2.1 Confidential Computing
	2.2 RISC-V Instruction Set Architecture
	2.3 Keystone Enclave
	2.4 Related Work

	3. Experimental Configuration
	4. Proposed Development
	5. Experimental Results and Analysis
	6. Conclusions
	References

