
Chapter 6

MANIPULATION OF G-CODE TOOLPATH
FILES IN 3D PRINTERS: ATTACKS AND
MITIGATIONS

Elizabeth Kurkowski, Alyxandra Van Stockum, Joel Dawson, Curtis
Taylor, Tricia Schulz and Sujeet Shenoi

Abstract Additive manufacturing or 3D printing is commonly used to create
mission-critical parts in the critical infrastructure. This research focuses
on threats that target the key slicing step of additive manufacturing,
when design files that model part geometry are converted to G-code
toolpath files that convey instructions for printing parts layer by layer.
The research leverages a hitherto unknown slicing software vulnerability
where G-code corresponding to part slices is stored as plaintext ASCII
characters in heap memory during execution. The vulnerability was
discovered in two open-source, full-featured slicing software suites that
support many 3D printers.

Experiments with a toolkit developed to target slicing software in real
time demonstrate that the attacks are surreptitious and fine-grained.
Two attacks, temperature modification and infill exclusion, performed
against G-code generated for fused filament fabrication printers demon-
strate the ability to sabotage printed parts as well as print environments.
Although the vulnerability can be mitigated using strong authentication
and access controls along with G-code obfuscation, the ability to auto-
mate surreptitious, fine-grained attacks that degrade printed parts in
ways that are imperceptible to the human eye and undetectible by non-
destructive testing methods is a serious concern.

Keywords: Additive manufacturing, fused filament fabrication, G-code attacks

1. Introduction
Additive manufacturing (AM) or 3D printing is the process of deposit-

ing layers of material to create 3D objects. Additive manufacturing is a

c© IFIP International Federation for Information Processing 2022

Published by Springer Nature Switzerland AG 2022

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XVI, IFIP AICT 666, pp. 155–174, 2022.

https://doi.org/10.1007/978-3-031-20137-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20137-0_6&domain=pdf

156 CRITICAL INFRASTRUCTURE PROTECTION XVI

rapidly-growing segment of the manufacturing sector; its market value
increased by 21.2% to $11.867 billion in 2019 alone [11].

Additive manufacturing is a competitive alternative to traditional sub-
tractive manufacturing with many economic and environmental advan-
tages. It enables complex internal structures to be created during a single
print run due to the layer-by-layer part printing process. To obtain sim-
ilar results, traditional manufacturing often requires the creation and
assembly of multiple individual parts. Additively-manufactured parts
often have improved mechanical properties due to high resolution con-
trol over internal structures [6]. Additive manufacturing enables rapid
prototyping due to quick design-to-product times as well as on-demand
low volume or high-volume production. Also, additive manufacturing
has less material wastage than subtractive manufacturing.

Additive manufacturing is heavily utilized in many critical infrastruc-
ture sectors, including energy, healthcare, transportation and defense [3–
5, 8, 16]. However, a 2021 cyber security audit of defense additive man-
ufacturing systems by the Inspector General of the U.S. Department of
Defense [7] determined that all the reviewed sites did not consistently
manage or secure their systems to prevent unauthorized changes and
ensure the integrity of design data.

This research focuses on threats targeting the key slicing step of addi-
tive manufacturing. During this step, part design files that model part
geometry are converted to G-code toolpath files that cover printer ac-
tions and parameters such as extruder movements in each print layer,
print speed, melt block temperature, material extrusion amount and fan
speed. G-code toolpath files may be targeted by deleting sections of
code (data destruction attacks) or by modifying the code (data integrity
attacks), potentially sabotaging printed parts and print environments.

This research leverages a hitherto unknown vulnerability that G-code
corresponding to part slices is stored as plaintext ASCII characters in
heap memory during execution. The vulnerability was discovered in
two open-source, full-featured slicing software suites that support many
3D printers. Exploiting the vulnerability requires root access (full code
execution privileges) to the controller machine that executes the slicing
software. The attacks access the runtime process image, scan the image
memory, extract the plaintext G-code, perform various modifications to
the G-code and write the code back to image memory.

Experiments using a toolkit developed to target slicing software in
real time demonstrate that the attacks are surreptitious (difficult to
detect) and fine-grained (able to target specific layers of printed parts).
The two experimental attacks, temperature modification and infill exclu-
sion, performed against G-code generated for fused filament fabrication

Kurkowski et al. 157

Figure 1. Additive manufacturing process chain.

printers demonstrate the ability to sabotage printed parts and print en-
vironments. The temperature modification attacks, which reduced the
extruder head temperature from 198◦C to 190◦C while printing just
seven of the 530 total layers, resulted in a 14% drop in the average ten-
sile strength. The infill exclusion attacks, which excluded infill from
five and 25 layers of the 127 total layers of printed parts, reduced the
average compressive strengths by 10.6% and 19.9%, respectively. The
ability to automate surreptitious, fine-grained attacks that significantly
degrade printed parts in ways that are imperceptible to the human eye
and undetectible by nondestructive testing methods demands systematic
efforts at securing additive manufacturing systems from cyber threats.

2. Background and Related Work
This section describes the additive manufacturing process chain and

research focused on attacking the process chain.

2.1 Additive Manufacturing Process Chain
The additive manufacturing process chain has four steps: designing,

slicing, printing and post-processing. Figure 1 shows the steps in the
process chain.

158 CRITICAL INFRASTRUCTURE PROTECTION XVI

The designing step uses computer-aided design (CAD) software to
create a part design model that is specified as a part file. The popular
stereolithography (STL) part file format uses triangles to model the geo-
metry of a part [10]. The more advanced 3MF file format captures the
geometry of the desired part as well as its properties such as materials
and colors [1].

During the slicing step, a part file is imported by computer-aided
manufacturing (CAM) software. In additive manufacturing, this soft-
ware is referred to as a slicer because it cuts the 3D-part model into 2D
layers for printing.

The slicer enables a user to specify various print options before gen-
erating a toolpath file for a printer. Print options of interest include
adding support material, specifying infill properties and characteristics
such as density and pattern, and selecting the print speed and orienta-
tion. Support material is necessary when a print orientation causes part
overhangs. Other print settings such as infill characteristics and print
speed can affect the strength and other mechanical properties of the
printed parts. All these features are eventually encoded in a toolpath file
for printing. The toolpath commands, commonly called G-code, cover
printer actions and parameters such as extruder movements, print speed,
melt block temperature, material extrusion amount and fan speed.

During the printing step, a printer follows the instructions in a tool-
path file to print a part. The printing time varies based on part size,
geometry and material.

After a part is printed, one or more post-processing steps may be
performed. In some cases, post-processing simply involves removing the
support material and sanding rough edges. In other cases, especially
for metal parts, annealing is performed to obtain the desired mechani-
cal properties. The final post-processing step is quality control, which
ensures that a printed part meets the design specifications.

2.2 Process Chain Attacks
Due to the relative youth of the field, security research on additive

manufacturing systems is limited. Attacks on additive manufacturing
fall into two main categories, theft of technical data and sabotage of
parts or print environments [20]. While malicious attacks against 3D
printers are rare, several potential attacks during the first three steps of
the process chain have been theorized. Attacks during the last (fourth)
post-processing step are possible. However, they are highly specific to
the printing materials and parts. Therefore, they are rarely discussed in
the literature. In any case, they are outside the scope of this research.

Kurkowski et al. 159

During the designing step, attacks typically target part design files.
For example, Belikovetsky et al. [2] proposed a phishing attack to install
a backdoor on the computer hosting the design software; the backdoor
is leveraged to compromise the STL part design file and weaken the
printed parts. Sturm et al. [18] demonstrated that malicious STL file
modifications can cause printed parts to fail prematurely.

Zeltmann et al. [21] theorized several attacks during the slicing step.
These include embedding defects and changing part orientations when
the printing slices are created, sabotaging the parts created during the
printing step.

Attacks targeting the printing step focus heavily on modifying 3D-
printer firmware. Xiao [19] modified the firmware of a desktop RepRap
Prusa printer to alter the temperature feedback loop, leading the printer
to believe that the extruder temperature was double the real tempera-
ture.

Moore et al. [13] performed static and dynamic code analyses of Cura
3D, ReplicatorG, Repetier-Host and Marlin 3D-printer firmware that re-
vealed several vulnerabilities in their code bases. These included buffer
overflows and unencrypted host-printer communications. The security
implications of these vulnerabilities include theft of technical data and
part sabotage. Moore and colleagues also noted that weaknesses in the
G-code structure provide opportunities for printed part manipulation.
In subsequent work, Moore et al. [14] introduced malicious modifications
to Marlin 3D-printer firmware. The modified firmware ignored incom-
ing print commands, substituted malicious print commands in place of
legitimate commands and manipulated extruder feed rates.

Pearce et al. [15] used a Trojan bootloader to infiltrate Marlin-compat-
ible 3D printers and compromise the integrity of printed parts. The at-
tack leveraged bootloader control over the initial printer firmware instal-
lation. The bootloader was able to scan for and modify byte patterns in
the firmware, triggering G-code manipulations that reduced the extru-
sion rate and reordered print commands.

Rais et al. [17] developed novel attacks on fused filament fabrication
printers. Their dynamic thermal and localized filament kinetic attacks
were executed by a printer firmware rootkit that modified G-code tool-
path instructions. The attacks had minimal footprints, but the damage
to the printed parts was significant.

The research efforts described above and other research in additive
manufacturing theorize potential attacks against design files and printer
firmware, but few actually implement proof-of-concept attacks. In con-
trast, this research, which focuses on toolpath files created during the
slicing step, allows for generalizable, surreptitious attacks that leverage

160 CRITICAL INFRASTRUCTURE PROTECTION XVI

weaknesses in slicing software. The research has also developed a tool
for deploying the attacks on real 3D-printer process chains.

3. G-Code Toolpath File Attack Surface
This research targets G-code toolpath files by deleting sections of

the G-code (data destruction attacks) or modifying the G-code (data
integrity attacks). Both types of attacks change print layer information,
sabotaging the printed parts.

An attack vector is a means for gaining access to a target, in this case,
an entire G-code toolpath file or portions of its code. The attack surface
of a G-code toolpath file is the collection of attack vectors that target
the designing, slicing and printing steps of the process chain. Since
the three steps are chained, an attack vector that provides access to a
component or service during a preceding step provides indirect access
to a G-code toolpath file in a later step. For example, gaining access to
CAD software in the designing step enables malicious modifications to
the part design file, which are encoded in the G-code toolpath file used
during the slicing step.

The following attack vectors provide (direct or indirect) access to
the G-code toolpath file/code during the designing, slicing and printing
steps:

Designing Step Attack Vectors.

Access to CAD Software from Controller Computer: An
attacker can introduce malicious modifications to CAD software
and/or its runtime process image that change part files unbe-
knownst to a user.

Access to CAD Software via Network: An attacker can intro-
duce malicious modifications to CAD software and/or its runtime
process image that change part files unbeknownst to a user.

Access to CAD Software via Remote Software Update: An
attacker can introduce malicious modifications to a CAD software
update that change part files unbeknownst to a user.

Access to Part Files from Controller Computer: An at-
tacker can introduce malicious modifications by manually editing
part files unbeknownst to a user.

Access to Part Files via Network: An attacker with remote
access to a controller computer can introduce malicious modifica-
tions by manually editing part files unbeknownst to a user. If the

Kurkowski et al. 161

part files are transferred to another controller computer for slicing,
an attacker can assume a man-in-the-middle position to introduce
malicious modifications to part files during transfer.

Slicing Step Attack Vectors.

Access to Slicing (CAM) Software from Controller Com-
puter: An attacker can introduce malicious modifications to slic-
ing software and/or its runtime process image that change G-code
toolpath files unbeknownst to a user. The attacks developed in
this research can leverage this attack vector to target the runtime
process image of slicing software.

Access to Slicing (CAM) Software via Network: An at-
tacker can introduce malicious modifications to slicing software
and/or its runtime process image that change G-code toolpath files
unbeknownst to a user. The attacks developed in this research can
leverage this attack vector to target the runtime process image of
slicing software.

Access to Slicing (CAM) Software via Remote Software
Update: An attacker can introduce malicious modifications to
a CAM software update that change G-code toolpath files unbe-
knownst to a user. The attacks developed in this research can
leverage this attack vector to target the runtime process image of
slicing software.

Access to Toolpath Files from Controller Computer: An
attacker can introduce malicious modifications by manually editing
G-code toolpath files unbeknownst to a user.

Access to Toolpath Files via Network: An attacker with re-
mote access to a controller computer can introduce malicious mod-
ifications by manually editing G-code toolpath files unbeknownst
to a user. An attacker can also assume a man-in-the-middle posi-
tion to introduce malicious modifications to G-code toolpath files
during transfer to a printer.

Printing Step Attack Vectors.

Access to Toolpath Files via Network: Networked printers
enable users to remotely issue print commands and monitor the
print status. An attacker with remote access can maliciously mod-
ify G-code toolpath commands unbeknownst to a user.

162 CRITICAL INFRASTRUCTURE PROTECTION XVI

Access to Toolpath Files from Printer: An attacker can intro-
duce malicious modifications by manually editing G-code toolpath
files unbeknownst to a user.

Access to Toolpath Files via Printer Firmware: An at-
tacker can introduce malicious modifications to printer firmware
that change G-code toolpath files unbeknownst to a user.

4. G-Code Toolpath File Exploitation
This section describes a vulnerability discovered in slicer software from

multiple vendors that can be exploited to attack G-code toolpath files
during the slicing step. Exploiting the vulnerability requires access to
the runtime process image of the slicing software from the controller
computer or network.

4.1 Software Execution Vulnerability
The slicing software vulnerability is that G-code corresponding to part

slices is stored in an unprotected manner as plaintext ASCII characters
in heap memory during execution. The vulnerability was discovered
in slicing software suites from two vendors. The software suites were
selected because they are open-source, full-featured and support many
3D printers. For security reasons, details about the slicing software suites
are obfuscated. The two slicing software suites are referred to as Alpha
and Beta.

4.2 Software Execution Attack
The attacker requires root access (full code execution privileges) to

the controller machine that executes the slicing software. The attack
accesses the runtime process image, scans the image memory, extracts
the plaintext G-code, modifies the G-code and writes it back to image
memory.

Figure 2 shows the details of the slicing software execution attack.
An unsuspecting user loads a part file, slices the part and previews the
G-code toolpath data using the slicer graphical user interface. While
the user is previewing the slice layers, the attack modifies the G-code in
runtime process image memory. Since the memory modifications occur
in the background, the graphical user interface continues to present the
original unmodified slices.

After previewing the G-code, the unsuspecting user proceeds to save
the G-code to a file. However, the modified G-code in heap memory is
saved to the toolpath file instead of the original G-code.

Kurkowski et al. 163

Figure 2. Slicing software execution attack.

A toolkit was created to launch slicing software execution attacks.
The toolkit conducts the attack in two phases, layer identification and
layer modification:

Layer Identification: The first attack phase involves scanning
the slicer process heap memory address range for plaintext G-code
layers. The goal is to reconstruct the original G-code toolpath file
to the extent possible.

Each slicer has a slightly different format for header data that can
be used to extract summary data about a print. Each slicer also
has specific start and end delimiters for a toolpath layer that can
be used to track G-code in heap memory. When a G-code layer is
being processed, all the data associated with the layer is stored in
consecutive pages in memory. However, successive layers are not
necessarily stored contiguously. Therefore, the individual layers of
G-code in memory have to be identified. Algorithm 1 specifies the
layer identification procedure.

Layer Modification: After the G-code is reconstructed from
memory, modifications are made to the code. Since G-code has
a standard format [9], it is straightforward to implement attacks
given a complete G-code reconstruction. Layer modification in-
volves parsing the reconstructed G-code, making the malicious G-
code modifications and writing the modified G-code back to the
same locations in memory.

164 CRITICAL INFRASTRUCTURE PROTECTION XVI

Algorithm 1: Identify G-code layers in process heap memory.
Input: startAddress: Start address of slicer process heap memory
Output: layerTable: Hash table containing layer information
layerTable ← LayerStruct[]
page ←initialPage(startAddress)
while page �= End of Memory do

page ← getNextPage()
if startConditionExists then

layer ← new LayerStruct
layer.id ←parseID()
layer.start ← getStartLocation()
while !endConditionExists do

layer.contents ← layer.contents + page
page ← getNextPage()

end
layer.contents ← layer.contents + page
layerTable[layer.id] ← layer

end

end

Since this methodology can modify G-code at the instruction level,
it is possible to execute fine-grained attacks that significantly de-
grade printed parts in a manner that is undetectible by visual
inspection and other nondestructive testing methods.

5. G-Code Toolpath File Attacks
This section discusses the temperature modification and infill exclu-

sion attacks that were performed against G-code generated for fused fil-
ament fabrication printers. The attacks were chosen for their ability to
sabotage printed parts as well as print environments [17], demonstrating
the serious impacts of G-code manipulation.

5.1 Temperature Modification Attacks
A temperature modification attack modifies the extrusion head tem-

perature during printing. The temperature at which a part is printed
determines its physical properties such as layer adhesion and material
phase transformation. An extreme temperature modification from the
baseline temperature for a given material can cause air gaps to form
between printed layers that are visible to the naked eye.

A temperature modification attack also impacts the print environ-
ment. Altering the extruder head temperature affects the printer itself.

Kurkowski et al. 165

Prolonged printer operation outside its normal parameters can induce
printer component wear, material blockage and premature breakage.

5.2 Infill Exclusion Attacks
An infill exclusion attack alters a printed part by selectively remov-

ing material from specified layers. Printed parts may not be completely
solid; often they are printed as shells to conserve printing material (fil-
ament). In such cases, infill with a pattern such as stars or squares fills
the 3D-printed shell. The infill pattern and density affect part strength
and durability, so modifying the infill via G-code manipulation impacts
the mechanical properties of the part.

It can be difficult to detect infill changes by visually inspecting a
completed part. Additionally, removing small percentages of infill from
part layers can reduce part strength without a significant reduction in
weight, making the modification difficult to detect via nondestructive
testing. Indeed, by targeting specific layers of a part during printing,
critical areas of the final part can be compromised.

6. Attack Results and Mitigations
This section describes the results of experiments that used the toolkit

to launch slicing software execution attacks on two software suites that
create G-code toolpath files for a variety of fused filament fabrication
printers. The toolkit, written in C, runs on the same Ubuntu 20.04 vir-
tual machine as the slicing software suites. Since the software execution
attack has root access, the toolkit code is able to search for the slicer
process ID and attach to the runtime process image in order to scan and
modify the memory.

For each slicing software suite, an attack was executed against the
first slice on a clean boot of the virtual machine. After the execution,
the modified G-code toolpath file was saved for transfer to a printer
using an SD card. Modified G-code toolpath files in the temperature
modification experiments were submitted to an Ender 3 fused filament
fabrication printer. Modified G-code toolpath files in the infill exclusion
experiments were submitted to a Prusa i3 Mk3S fused filament fabrica-
tion printer. Both the printers employed polylactic acid (PLA) filament
as the printing material.

6.1 Attack Effectiveness Experiments
The first set of experiments evaluated toolkit performance. The exe-

cution time metric, corresponding to the duration of a successful attack,
was used to evaluate attack detectibility based on its impact on user

166 CRITICAL INFRASTRUCTURE PROTECTION XVI

Table 1. Average attack execution times over ten runs.

Attack Software Execution Time

Temperature Modification Slicer Alpha 22ms
Temperature Modification Slicer Beta 32ms
Infill Exclusion Slicer Beta 184 ms

experience. An attack attaches to the runtime process image, which
freezes slicer software execution, impacting user experience and poten-
tially raising an alarm. In the experiments, temperature modification
attacks were executed on G-code generated by slicers Alpha and Beta
whereas infill exclusion attacks were only executed on G-code generated
by slicer Alpha. The reason for not executing infill exclusion attacks on
slicer Alpha is explained below.

Table 1 shows the average durations of the two attacks. The aver-
age attack execution times obtained for the temperature modification
attacks on Alpha and Beta G-code were 22 ms and 32 ms, respectively.
The average attack execution time obtained for the infill exclusion attack
on slicer Beta G-code was 184 ms. The low execution times are expected
for the temperature modification attacks because only two lines of G-
code in two different layers need to be modified to successfully implement
the attacks. In contrast, the infill exclusion attacks require considerable
time because every line of G-code in multiple layers is modified. Never-
theless, the 22 ms to 184 ms attack execution window is well within the
acceptable response time [12], so attack execution would not change the
normal user experience. The attacks were also surreptitious because the
firmware in the two printers did not raise any exceptions or warnings
about malformed G-code produced by the two slicing software suites.

The second set of toolkit performance experiments evaluated the abil-
ity of the toolkit to identify G-code in memory corresponding to individ-
ual print layers. This is important because the greater the percentage
of individual layers detected at runtime, the finer the granularity and
more insidious the attacks.

Table 2 shows the average percentages of G-code layers identified for
the two slicing software suites. Exceptional G-code layer identification
of 99.73% was obtained for slicer Beta. The G-code layer identification
of 41.29% for slicer Alpha is modest, but the temperature attacks were,
nevertheless, successful. Note that the low layer identification percentage
obtained for the G-code generated by slicer Alpha renders infill exclusion

Kurkowski et al. 167

Table 2. Average G-code layers identified over ten runs.

Software G-Code Layers

Slicer Alpha 41.29%
Slicer Beta 99.73%

attacks infeasible. This is because the attacks require every line of G-
code in multiple layers to be modified.

6.2 Temperature Modification Experiments
Temperature modification attacks were launched against G-code tool-

path files generated by slicer Alpha. In the attacks, the extruder head
temperature was reduced by 8◦C from the normal operating temperature
of 198◦C while printing just seven centrally-located layers of the 530 total
layers of the parts before being returned to the original temperature.

The printer did not indicate any issues with the lower temperature
during printing. No discernible pauses in printing occurred while the
temperature was decreased and increased. The temperature modifica-
tions did not result in any observable differences in the printed parts.

Tensile tests were performed on parts that were printed in the stan-
dard ASTM dogbone shape. However, the test samples were modified
slightly by printing two holes near the two ends to mount them on a
servohydraulic tensile testing system. Ten control samples were printed
at the temperature of 198◦C and ten attack samples were printed with
the 8◦C drop in temperature for seven centrally-located layers.

Table 3. Tensile test results for the temperature modification attacks.

Sample Average Standard Strength P(T≤t)
(Temperature) Breaking Deviation Reduction Two-Tailed

Force Test

Control (198◦C) 964.9 N 72.1 N – –
Attack (190◦C) 829.7 N 29.2 N 14.0% 0.00019

Table 3 shows the results of the tensile tests on the printed samples.
The average breaking forces for the control and attack samples were
964.9 N and 829.7 N, respectively. This corresponds to a 14% reduction
in the average tensile strength of parts due to the temperature modi-
fication attacks. A two-tailed t-test indicated a statistically-significant

168 CRITICAL INFRASTRUCTURE PROTECTION XVI

Figure 3. Control and attack samples in the infill exclusion experiments.

difference between the attack and control sample populations. Exami-
nation of the attack samples revealed that all the samples failed at the
seven layers that were printed when the temperature was reduced.

6.3 Infill Exclusion Experiments
The infill exclusion experiments employed solid ASTM cylinders with

6.35 mm radius and 25.4 mm height printed using G-code toolpath files
generated by slicer Beta. Figure 3 shows three sample prints. The cylin-
der on the left is a control sample. The attack sample in the center had
infill excluded from five centrally-located layers of the 127 total layers.
The attack sample on the right had infill excluded from 25 centrally-
located layers of the 127 total layers.

Printing the control and attack samples took the same amount of time
because the extruder head went through the same motions for all the
samples, except that no infill was printed in some layers of the attack
samples. The reduction in mass due to infill exclusion was negligible. As
seen in Figure 3, the only discernible differences are small blobs of extra
filament at the attacked layers. However, it is common for parts printed

Kurkowski et al. 169

Table 4. Compresssion test results for the infill exclusion attacks.

Sample Average Standard Strength P(T≤t) Average
(Layers Failure Deviation Reduction Two-Tailed Mass
Removed) Force Test

Control (0) 2,446.7 N 130.9 N – – 2 g
Attack (5) 2,187.2 N 53.8 N 10.6% 0.0082 2 g
Attack (25) 1,959.5 N 233.9 N 19.9% 0.00018 1.9 g

via fused filament fabrication to have small masses of extra filament that
are broken off or sanded down during the post-processing step.

The attacked cylinders were evaluated by performing compression
tests using a universal testing machine. In the experiments, five con-
trol samples and 20 attack samples (ten for each of the two attacks)
were compressed with increasing force until failure.

Table 4 shows the compression test results. Excluding infill from five
of the 127 layers resulted in a 10.6% decrease in the average compres-
sive strength of the printed parts. As expected, excluding infill from
25 of the 127 layers resulted in a significant decrease of 19.9% in the
average compressive strength. Two-tailed t-tests indicated statistically-
significant differences between each attack sample population and the
control sample population.

Figure 4 shows the average compression failure curves for the control
and attack samples. Note that the peaks in the curves correspond to
the points of part failure. As expected, the average failure force for the
control samples is higher than the average failure force for the attack
samples. Moreover, the greater the number of layers with excluded infill,
the lower the average failure force.

6.4 Discussion
The experimental results demonstrate that slicing software attacks

weaken printed parts with little or no discernible differences. Further-
more, temperature modification and infill exclusion are just two of many
attacks on G-code in toolpath files. G-code specifies print speed, fan
speed and other printer parameters, all of which affect the properties
of printed parts. Manipulating printer parameters by modifying G-code
could also damage the printer itself.

Executing the slicing software attacks developed in this research re-
quires root access, but it is an attractive attack option despite the many
opportunities offered by arbitrary code execution. This is because the

170 CRITICAL INFRASTRUCTURE PROTECTION XVI

Figure 4. Average failure curves for the infill exclusion attacks.

software execution exploit can be executed and operated autonomously,
without the need for Internet access. Also, the current toolkit could
be reconfigured as malware that runs in the background and constantly
scans runtime process images and manipulates G-code. Although tar-
geted attacks on parts would produce more extreme effects on printed
products, the malware would not need to know the precise parts being
printed in order to launch attacks such as temperature modification and
infill exclusion. Indeed, the malware could run independently and attack
parts and print environments with little or no human intervention. Thus,
slicing software exploitation can result in surreptitious attacks that are
difficult to detect and mitigate.

The main limitations of the slicing software execution attacks are that
they apply to ASCII-encoded G-code and require G-code to be extracted
from heap memory. As a result, the attacks only target slicers that store
dynamic copies of toolpath files. However, this characteristic is common
in slicers that permit users to send G-code toolpath files directly to
printers and to dynamically manipulate G-code toolpath settings.

Another limitation is that certain layers of G-code were not recov-
erable in the case of slicer Alpha. Future research will employ reverse
engineering to investigate this anomaly and create fine-grained attacks.

Finally, a limitation with direct memory modification is one-to-one
byte replacement. This increases the creativity needed to craft attacks.
Of course, attacks against G-code could be performed with more freedom
using other attack vectors such as direct access to a G-code toolpath file

Kurkowski et al. 171

via the network or controller computer. These opportunities eliminate
the need to exploit a memory vulnerability, rendering G-code attacks
widely applicable and a major concern.

7. Mitigations
In the experiments, the attacks that modified ASCII-encoded G-code

in heap memory leveraged access to slicing software from a controller
computer. However, the same exploits could be applied by leveraging
access to slicing software from a network or access to a slicing software
update. The attack impacts include intellectual property theft as well
as part and print environment sabotage.

The first set of mitigations should combat the attack vectors that
provide access to a controller computer, network and slicing software
update. These are accomplished by instituting strong user authentica-
tion and access controls on the controller computer and network, and
requiring signed and encrypted slicing software updates. If an attacker
breaches these defenses, the next set of defenses should protect ASCII-
encoded G-code in heap memory. This is accomplished by obfuscating
the G-code in heap memory, which would make it difficult to identify
the toolpath layers. Another mitigation technique is to detect and block
common behavior sequences (such as scanning runtime process image
memory) that occur when attempts are made to identify, extract and
modify G-code.

However, G-code attacks beyond modifying code images in heap mem-
ory could be launched by leveraging other attack vectors and other vul-
nerabilities. This emphasizes the need to conduct a comprehensive anal-
ysis of the attack vectors, targets, target vulnerabilities and attacks that
enable G-code manipulation, along with countermeasures for combating
the attack vectors that provide access to targets and attacks that exploit
the identified vulnerabilities.

8. Conclusions
3D printing is commonly used to create mission-critical parts in the

energy, healthcare, transportation and defense sectors. A 2021 cyber se-
curity audit of U.S. Department of Defense additive manufacturing sites
determined that all the reviewed sites did not consistently manage or
secure their systems to prevent unauthorized changes and ensure design
data integrity. Since additive manufacturing is constantly exposed to
cyber threats, it is imperative to continually analyze the attack surface,
identify vulnerabilities, devise exploits and institute countermeasures.

172 CRITICAL INFRASTRUCTURE PROTECTION XVI

This research has identified a novel slicing software vulnerability where
G-code corresponding to part slices is stored as plaintext ASCII char-
acters in heap memory during execution. The vulnerability was discov-
ered in two open-source, full-featured slicing software suites that support
many 3D printers. Exploiting the slicing software vulnerability requires
full code execution privileges (root access) to the controller machine that
executes the slicing software. The attacks access the runtime process
image, scan the image memory, extract the plaintext G-code, perform
various modifications to the G-code and write the code back to image
memory.

The temperature modification and infill exclusion attacks demonstrate
the ability to sabotage printed parts and print environments. The tem-
perature modification attacks, which reduced the extruder head tem-
perature by just 8◦C while printing less than 1.5% of the part layers,
resulted in a 14% drop in the average tensile strength. The infill exclu-
sion attacks, which omitted infill from less than 4% of the part layers,
reduced the average compressive strength by 10.6%.

Although the discovered vulnerability can be mitigated using strong
authentication and access controls along with G-code obfuscation, the
ability to automate surreptitious, fine-grained attacks that significantly
degrade printed parts in ways that are imperceptible to the human eye
and undetectible by nondestructive testing methods is a serious concern.
Clearly, strong, systematic efforts must be directed at securing additive
manufacturing systems from cyber threats.

Acknowledgement
This research was supported by the National Science Foundation un-

der Grant no. DGE 1501177 and by UT-Battelle under Contract no.
DE-AC05-00OR22725 with the U.S. Department of Energy.

References

[1] 3MF Consortium, 3MF Specification, San Francisco, California
(3mf.io/specification), 2020.

[2] S. Belikovetsky, M. Yampolskiy, J. Toh, J. Gatlin and Y. Elovici,
dr0wned – Cyber-physical attack with additive manufacturing, pre-
sented at the Eleventh USENIX Workshop on Offensive Technolo-
gies, 2017.

[3] I. Birrell, 3D-printed prosthetic limbs: The next revolution in
medicine, The Guardian, February 19, 2017.

Kurkowski et al. 173

[4] J. Burke, 3D printing off to the races, Oak Ridge National Labora-
tory Blog, Oak Ridge National Laboratory, Oak Ridge, Tennessee
(www.ornl.gov/blog/3d-printing-races), April 26, 2019.

[5] J. Ellis, 3D-printed nuclear reactor promises faster, more eco-
nomical path to nuclear energy, Oak Ridge National Laboratory
News, Oak Ridge National Laboratory, Oak Ridge, Tennessee
(www.ornl.gov/news/3d-printed-nuclear-reactor-promises-
faster-more-economical-path-nuclear-energy), May 11, 2020.

[6] S. Ford, Additive manufacturing technology: Potential implications
for U.S. manufacturing competitiveness, Journal of International
Commerce and Economics, vol. 6(1), pp. 40–74, 2014.

[7] Inspector General, U.S. Department of Defense, Audit of the
Cybersecurity of Department of Defense Additive Manufactur-
ing Systems, Washington, DC (media.defense.gov/2021/Jul/07/
2002757308/-1/-1/1/DODIG-2021-098.PDF), 2021.

[8] J. Keller, The navy can now 3D-print submarines on the fly
for SEALs, Task and Purpose (taskandpurpose.com/gear-tech/
navy-3d-printing-submarines), July 31, 2017.

[9] T. Kramer, F. Proctor and E. Messina, The NIST RS274NGC In-
terpreter – Version 3, NIST Interagency/Internal Report 6556, Na-
tional Institute of Standards and Technology, Gaithersburg, Mary-
land, 2000.

[10] Library of Congress, STL (Stereolithography) File Format
Family, Washington, DC (www.loc.gov/preservation/digital/
formats/fdd/fdd000504.shtml), September 9, 2019.

[11] T. McCue, Additive manufacturing industry grows to almost $12
billion in 2019, Forbes, May 8, 2020.

[12] R. Miller, Response time in man-computer conversational transac-
tions, Proceedings of the AFIPS Fall Joint Computer Conference,
Part I, pp. 267–277, 1968.

[13] S. Moore, P. Armstrong, T. McDonald and M. Yampolskiy, Vulner-
ability analysis of desktop 3D printer software, Proceedings of the
2016 Resilience Week, pp. 46–51, 2016.

[14] S. Moore, W. Glisson and M. Yampolskiy, Implications of malicious
3D printer firmware, Proceedings of the Fiftieth Hawaii Interna-
tional Conference on System Sciences, 2017.

[15] H. Pearce, K. Yanamandra, N. Gupta and R. Karri, FLAW3D: A
Trojan-Based Cyber Attack on the Physical Outcomes of Additive
Manufacturing, arXiv: 2104.09562 (arxiv.org/abs/2104.09562),
2021.

174 CRITICAL INFRASTRUCTURE PROTECTION XVI

[16] B. Post, B. Richardson, P. Lloyd, L. Love, S. Nolet and J. Han-
nan, Additive Manufacturing of Wind Turbine Molds, Document
ORNL/TM-2017/290, Oak Ridge National Laboratory, Oak Ridge,
Tennessee, 2017.

[17] M. Rais, Y. Li and I. Ahmed, Dynamic thermal and localized fila-
ment kinetic attacks on a fused-filament-fabrication-based 3D print-
ing process, Additive Manufacturing, vol. 46, article no. 102200,
2021.

[18] L. Sturm, C. Williams, J. Camelio, J. White and R. Parker, Cyber-
physical vulnerabilities in additive manufacturing systems: A case
study attack on the .STL file with human subjects, Journal of Man-
ufacturing Systems, vol. 44(1), pp. 154–164, 2017.

[19] C. Xiao, Security attack on 3D printing, presented at the xFo-
cus Security Conference (www.claudxiao.net/Attack3DPrinting
-Claud-en.pdf), 2013.

[20] M. Yampolskiy, W. King, J. Gatlin, S. Belikovetsky, A. Brown,
A. Skejellum and Y. Elovici, Security of additive manufacturing:
Attack taxonomy and survey, Additive Manufacturing, vol. 21, pp.
431–457, 2018.

[21] S. Zeltmann, N. Gupta, N. Tsoutsos, M. Maniatakos, J. Rajendran
and R. Karri, Manufacturing and security challenges in 3D printing,
Journal of the Minerals, Metals and Materials Society, vol. 68(7),
pp. 1872–1881, 2016.

	Chapter 6 MANIPULATION OF G-CODE TOOLPATH FILES IN 3D PRINTERS: ATTACKS AND MITIGATIONS
	1. Introduction
	2. Background and Related Work
	2.1 Additive Manufacturing Process Chain
	2.2 Process Chain Attacks

	3. G-Code Toolpath File Attack Surface
	4. G-Code Toolpath File Exploitation
	4.1 Software Execution Vulnerability
	4.2 Software Execution Attack

	5. G-Code Toolpath File Attacks
	5.1 Temperature Modification Attacks
	5.2 Infill Exclusion Attacks

	6. Attack Results and Mitigations
	6.1 Attack Effectiveness Experiments
	6.2 Temperature Modification Experiments
	6.3 Infill Exclusion Experiments
	6.4 Discussion

	7. Mitigations
	8. Conclusions
	Acknowledgement
	References

