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Abstract. Facial expression recognition (FER) becomes research focus in affec-
tive computing, as it already plays an important role in public security application
scenarios such as urban safety management and safety driving assistance systems.
Modeling the spatiotemporal information of facial expression sequences in a tar-
geted manner, integrating and utilizing them appropriately is challenging. In this
paper, a facial expression recognition method based on spatial-temporal decision
fusion network (STDFN) is proposed. Firstly, the facial expression sequences are
divided into four sub-sequences according to face regions, and BiLSTM are used
for each of sub-sequences to extract local temporal features. The local morpholog-
ical features of facial expressions can be captured in more detail to maximize the
utilization of the temporal features of dynamic facial expressions. Then, VGG19
is utilized to extract the shallow spatial features of peak expression frame, and the
channel weights of spatial features is assigned by squeeze-and-excitation mod-
ule to attain the weighted spatial features. This allows valid spatial features to be
purposefully retained to avoid overfitting. Finally, temporal features and spatial
features are used separately calculating expression classification results. And a
decision-level fusion module is designed to fuse the two results to obtain the final
FER result. Extensive experimental results demonstrate that on three FER datasets
CK+, Oulu-CASIA and MMI, achieves 98.83%, 89.31% and 82.86% accuracy,
which proved that STDFN effectively improved the recognition accuracy of FER.
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1 Introduction

Facial expressions, as the most commonly used fashion in human affective interac-
tion, are the key factor for machines to perceive human emotions. With the exponential
increase of computer computing power, facial expression recognition (FER) has gradu-
ally become a highlight in human-computer interaction and is widely used in areas such
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as urban safety management, criminal investigation assistance and safety driving assis-
tance [1, 2]. Due to previous ground-breaking research, FER can be classified into two
types: static image-based approach that focuses more on spatial features and dynamic
sequence-based approach that focuses more on temporal features [3]. The static image-
based FER methods can effectively extract spatial information, but cannot model the
dynamic information of facial expressions. Dynamic sequence-based methods extract
temporal features by capturing the evolution of facial expressions and usually achieve
good performance. However, FER is a rather complex facial analysis task, and even
humans are unable to recognize the emotions of others by focusing only on a single facial
feature information. It is difficult to improve the performance of FER based on spatial or
temporal features only. Hence, a key challenge for FER is to extract the spatiotemporal
features in a targeted manner and integrate the information of both complementarily.

To this end, a FER method based on spatial-temporal decision fusion network
(STDFN) is proposed. In order to get the utmost out of the temporal and physical features
of dynamic facial expression, we designed temporal feature extractionmodule to capture
the expression evolution information between frames. The bi-directional long short-term
memory (BiLSTM) [19] is used to learn the mode between frames in two directions, pay
more attention to the context relationship between frames to obtain more accurate tem-
poral information. In addition, the occurrence of facial expressions is often coupled with
dynamic changes in the combination of facial parts [4]. For capture the morphological
features of facial expressions in a more detailed way, our model first divides each frame
of image sequence into four parts and produces four groups of sub-sequences. Then,
using sub-sequence training four groups of BiLSTM to obtain local temporal features,
and spliced to globe temporal features. At the same time, we designed spatial feature
extraction module based on VGG [18] and SENet [5] (VGG-S). The shallow spatial
feature maps of peak expression images are extracted by VGG19, channel weights are
assigned to the shallow spatial feature maps using SENet, the obtained weighted feature
maps are used to calculate the classification results of face expressions. Finally, an adap-
tive decision fusion module is designed to integrate the expression classification results
of the two modules to obtain the final face expression classification results.

The main works of this paper are as follows:

(1) We peoposed FERmethod based on spatial-temporal decision fusion network, tem-
poral and spatial feature extraction module were designed separately to capture
spatiotemporal information, and an adaptive decision fusion module to integrate
spatiotemporal information.

(2) We designed temporal feature extraction module based on BiLSTM, with divided
facial landmarks into different areas to learn the details of facial expression evolu-
tion, which effectively utilizes the information before and after expression changes
in various facial regions;

(3) We designed spatial feature extraction module based on VGG19-S, adopting
VGG19 extract shallow features maps and SENet assign weight to shallow feature
channels, which is helpful for accurate collection of useful spatial information.

(4) Numerous experiments have shown that STDFN achieved 98.83%, 89.31% and
82.86% accuracy on three FER datasets include CK+, Oulu-CASIA and MMI,
demonstrating the effectiveness of the proposed method.
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The rest of this paper is organized as follows. Section 2 presents the research progress
of FER methods. Section 3 describes STDFN in detail, and Sect. 4 presents our exper-
imental results. Finally, in Sect. 5 we summarize the conclusions and point out the
direction of our future work.

2 Related Works

2.1 Facial Expression Recognition

As an essential task in computer vision, early FER methods extracted features by hand-
crafted and designed classifiers to classify the features to obtain expression recogni-
tion results. Klaser et al. [6] extended the traditional hand-designed feature approach
by designing a local descriptor to model the temporal information contained in facial
expression sequences, and effectively improves FER performance. Liu et al. [7] pro-
posed STM-ExpLet for streaming modeling of videos, which models each video clip
as a spatiotemporal streaming module (STM) to improve feature discrimination. How-
ever, most handcrafted features are susceptible to the external environment and has poor
characterization capability. With the rapid development of deep learning algorithms,
deep neural networks can draw on large amounts of data to learn the required features
autonomously, effectively bypassing complex manual feature extraction.

2.2 Deep FER Based on Spatio-Temporal Features

The occurrence of facial expressions as a continuous human action possesses an innate
temporal correlation, so researchers have proposed deep spatiotemporal networks based
on expression sequences to model the more capable spatiotemporal features. Jung et al.
[8] proposed a FER approach containing two sub-networks, which were used to extract
the appearance features and temporal geometric features, and features were integrated
for the expression recognition task, which effectively improved the expression recog-
nition accuracy. Zhang et al. [9] proposed a temporal-spatial recurrent neural network
to effectively improve the accuracy of FER tasks by building multiple RNNs to capture
spatiotemporal information with high discriminative power by scanning from different
angles. Zhao et al. [10] proposed a peak-piloted deep network (PPDN) for learning the
evolutionary information between peak expressions and non-peak expressions, which
improves models’ generalization ability when facial differences between individuals are
larger. However, existing methods do not capture the dynamic information of critical
areas of the face in a targeted manner, and most of them are commonly based on the
spatiotemporal information of facial expressions at the image level, which results in
increased computational complexity of models and vulnerability to noise during image
transmission.

3 The Proposed Method

Figure 1 shows the framework of our proposed approach. Our model starts from the
input of the original image sequence and preprocesses the data first. To minimize the
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complexity of the calculation, 16 key frames are selected from original sequences to
represent the dynamic evolution of the whole sequence and these 16 images contain the
first and last frames. For the sequences with insufficient frames, the last frame is used
to fill backward until they are sufficient. Then, facial clipping is performed for the key
frames, and the gray processing is to avoid the influence of light and facial color on
the classification results. To avoid overfitting due to the small amount of data, rotation
and flipping are used to expanding the dataset. The sequence data is divided into two
modules, one is directly used to extract temporal information and the other selects a peak
expression frame (the last frame) from the sequence data to extract spatial information.
The two modules are used to predict facial expression classification respectively. In the
end, classification by integrating the predicted values from twomodules. In the following,
we will introduce the details of the two modules and the method of decision fusion.

3.1 Temporal Feature Extraction Based on BiLSTM

The occurrence of facial expressions is coupled with the dynamic evolutionary process
of key facial parts. For instance, happiness can be expressed as the corner of the mouth
up and eyebrows open; sadness is the corner of the mouth down, eyes smaller; surprise
is characterized that the eyes become larger and mouth opens. In fact, facial landmarks
can well reflect these dynamic evolution processes. Therefore, the facial landmarks are
divided into four parts for model training to attain four local features, which is employed
to focus more on a particular part of the face over time. Local features of the four parts
are fused to ensure the integrity of the extracted facial expression information. Then,
BiLSTM is adopted to learn temporal feature, which can not only effectively avoid
the gradient disappearance in long-term learning, but effectively capture the context
information between image frames.
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Fig. 1. Framework of spatial-temporal decision fusion network.

As shown in Fig. 2, the evolution process between image frames is abstracted as
the coordinate change process of facial landmarks. First of all, the input layer of the
network maps the facial landmark points of each frame into a one-dimensional vector,
so that each facial region is represented as a matrix, which is respectively used as the
input of the corresponding BiLSTM. Four partial local features are extracted by the
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corresponding BiLSTM and the local features are stitched and fused to obtain the global
features. Finally, Softmax is used as the classification layer.

Fig. 2. BiLSTM structure for extracting temporal information.

BiLSTM extends the single-way LSTM by introducing a second layer, in which the
connections between the hidden layer flow in reverse chronological order, exploiting
the temporal information of “past” and “future”. In our model, the original images
are divided into four parts, including eyebrows, eyes, nose, and mouth, and they are
represented as one-dimensional vectors as the input of BiLSTM. Partial based local
features Fb,Fe,Fn,Fm are obtained from the output layer. Then the local features are
combined by Formula (1), which obtain the global features Fbenm:

Fbenm = [Fb ⊕ Fe ⊕ Fn ⊕ Fm] (1)

where Fb,Fe,Fn, and Fm are the features of eyebrows, eyes, nose and mouth,
respectively, and ⊕ denotes the concat operation

Take Fb as an example to explain the hidden layer process of BiLSTM, the formula
of forward propagation cell structure in BiLSTM is as Formula (2–7):

fbt = σ
[
wbf (hbt−1, xbt) + bbf

]
(2)

ibt = σ
[
wbi(hbt−1, xbt) + bbi

]
(3)

ĉbt = tanh(wbĉ(hbt−1, xbt) + bbĉ) (4)

cbt = ĉbt ∗ ibt + fbt ∗ cbt−1 (5)

obt = σ
[
wbo(hbt−1, xbt) + bbo

]
(6)
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⇀

hbt = obt ∗ tanh(cbt) (7)

where, t denotes the number of frames, w denotes the weight matrix,xbt is the input
vector, fbt is the oblivion gate, which decides to discard the information in the previous
state. ibt is the input gate, which determines the information currently to be retained. σ
denotes the sigmoid activation function, tanh denotes the hyperbolic tangent activation
function. ĉbt expresses the alternative update units, and cbt is the updated cell state,
which multiplied by the old cell state and forgetting gate and added to the new candidate
values. cbt uses an sigmoid layer to determine the output of updated cell state. The cell
states are processed by tanh and the multiplied with the output of the sigmoid layer
to obtain

−→
hbt , where

−→
hbt denotes the embedding representation of the forward-LSTM.

The backward calculation process is similar to the forward process, and
←−
hbt denotes the

embedding representation of the backward-LSTM.
Then, the forward and backward outputs of the BiLSTM are combined by Formula

(8–10):

−→
hbt = −−−→

LSTM (hbt−1,wbt, cbt−1) (8)

←−
hbt = ←−−−

LSTM (hbt+1,wbt, cbt+1) (9)

Fb = hbt = −→
hbt ⊕ ←−

hbt (10)

where
−−−→
LSTM represents the forward LSTM and

←−−−
LSTM represents the backward LSTM.

hbt denotes the BiLSTM hidden layer output and is taken as Fb.
Finally, global feature Fbenm is fed to Softmax for estimate the facial expression. The

calculation process of Softmax is shown in Formula (11).

yi = S(Z)k = ezk
∑K

j=1 e
zj

(11)

Among them, yi represents the calculated softmax value and k ∈ [1,K], K denotes
the number of expression categories, Z represents the output of the previous layer.

The loss function uses cross entropy calculated by Formula (12), where Tk ∈ [0, 1].

Loss = −
∑K

k=1
Tk ln yk (12)

3.2 Spatial Feature Extraction Based on VGG19-S

To extract the spatial information of facial expressions, the peak frame from the sequence
is selected as the input of VGG19-S. The shallow convolutional layer of pre-trained
VGG19 is used to extract shallow features, and then SENet is employed to learn the
channel weights of the shallow features, assign the weights to the shallow features to
obtain a weighted feature map, and use Softmax for classification.
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As shown in Fig. 3, the structure of the spatial feature extraction model VGG19-S
is illustrated. The input dimension is 64 × 64 × 1 gray image, and the shallow features
are obtained after convolution operations with two 3 × 3 × 64 layers, two 3 × 3 ×
128 layers, four 3 × 3 × 256 layers and one 3 × 3 × 512 layer. Next, SENet is used
to explicitly model the interdependence among feature channels, and the significance
degree of each one is automatically obtained through learning. Then, according to this
importance degree, channels with higher scores are promoted and those channels with
lower scores are suppressed. With squeeze operation, feature compression is performed
and each 2D feature channel is turned into a 1D constant, which has a global receptive
domain. This is achieved by using the global average pool to generate channel statistics.
For a shallow feature U, each channel has a spatial dimension m× n, and a statistic V is
generated for each channel, such that the c th element of V is calculated with Formula
(13).
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Fig. 3. VGG19-S structure for extracting spatial information.

VC = Squeeze(U ) = 1

m × n

∑m

a=1

∑n

b=1
uc(a, b) (13)

Next, the Excitation is required to fully capture the channel dependencies. Weights
are assigned to each feature channel by w to simulate channel correlation information.
The calculation process as Formula (14).

S = Excitation(V ,w) = σ(w2δ(w1V )) (14)

where δ denotes theReLU function, andw1 ∈ R
C
r ×C ,w2 ∈ RC× C

r , r is a hyperparameter,
usually r = 16.



Deep Spatio-Temporal Decision Fusion Network for FER 113

Finally, S is treated as the significance of each feature channel. The weighted result
fc of the feature channel c is calculated as Formula (15).

fc = Scale(Uc, Sc) = Sc · Uc (15)

FS = {f1, f2, . . . , fc} (16)

where Scale(Uc, Sc) denotes the channel-wise multiplication between Sc and Uc, and
FS denotes the spatial features of the peak frame.

3.3 Weighted Decision Fusion

For sequence images of facial expressions, there are two kinds of information: temporal
domain and spatial domain.We use the two kinds of information to analyze facial expres-
sions respectively. However, better results are often obtained by integrating the two kinds
of information. A weighted fusion method of decision levels is used to integrate the two
dimensions. In order to facilitate fusion, Softmax is used for classification of the two
networks, PT (0 ≤ PT (k) ≤ 1) = [PT (1),PT (2), . . . ,PT (K)] represents the classifi-
cation of the temporal network and PS(0 ≤ PS(k) ≤ 1) = [PS(1),PS(2), . . . ,PS(K)]
represents the classification of the spatial network. The prediction results are calculated
by Formula (17). Where α is the parameter.

Prediction = argmax(αPT (k) + (1 − α)PS(k)) (17)

3.4 Algorithmic Description

The description of STDFN is shown in Algorithm 1.
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Algorithm 1. STDFN( , , , , , , num_cell, )

Input Landmark points set ,
, Peak frame image set Lable set 

Larning rate Number of LSTM neurons 
; Hyperparameter .

Output Prediction result set .
Initialization Initialize the parameters to be learned in the STDFN model.
Process
1 For i =1 to I
2 Temporal features are extracted by BiLSTM:
3
4
5
6
7
8
9 Spatial features are extracted by VGG-S:
10
11
12
13 // SENet to assign channel weights to shallow features.
14 // get the spatial features
15 Calculate classification results:
16
17
18
19 End For
20
21 return

4 Experiments and Discussion

4.1 Datasets

TO extensively and objectively evaluate the performance of STDFN, we experimented
on three widely used sequences collected under laboratory control facial expression
datasets: the CK+ [12], the Oulu-CASIA [13], and the MMI [17]. The expression
sequences are the evolution of neutral face frames to peak expression frames, where
6-class basic expression recognition tasks of anger, surprise, disgust, fear, happiness,
and sadness are performed on both Oulu-CASIA and MMI datasets. In the CK+ dataset,
contempt was added to perform the 7-class classification task. To ensure fairness, ran-
dom 5-fold cross-validation was used on datasets to obtain the evaluation performance
of the models.
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4.2 Data Preprocessing

Face Clipping and Gray Processing. FER database is uncropped, and removing back-
ground can eliminate the influence of the surrounding environment in the image on the
accuracy of FER. The dlib tool is used to crop the facial image out to 64 × 64 pixels.
Then, to prevent the effects of factors such as illumination intensity on the prediction
results, we convert the facial images to gray images.

Data Augmentation. FER based on deep learning algorithm needs enough effective
training data, which can prevent overfitting in deep neural network training and ensure
the generalization performance of FER. However, the current open FER database lacks
sufficient training data. Therefore, data augmentation becomes an indispensable part
of deep learning algorithm-based FER. as shown in Fig. 4, We use an off-line data
augmentation method, rotated each pre-processed training image at angle of {−15°, −
10°, −5°, 0°,15°, 10°, 15°}, then the rotated image is flipped on the X-axis. in the end,
a single original image will produce a 14-fold image sample.

Original 
Image

+15° +10° +5° 0° -5° -10° -15°

Horizontal 
Flip

Rotation

Fig. 4. Data augmentation in CK+. The first batch of images were obtained by rotation of 0°, 5°,
10°, 15°, −5°, −10°, −15°, then the second batch of images were obtained by inversion of the
first batch.

4.3 Results and Analysis

Implementation Details and Parameters. We marked the whole face with 68 coordi-
nates points, which were divided into 4 facial regions: eyebrows with 10 coordinates;
eyes with 12 coordinates; nose with 9 coordinates; mouth with 19 coordinates. All the
LSTMmodules used 3× 256 structure, which is three layers of LSTM subnet, each layer
is set with 256 neurons. After learning each sequence, update weights. On the VGG-S
model, SGD is used to optimize the parameters. The momentum is 0.9, the weight decay
is 0.004, and the initial learning rate is 0.001.
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Fig. 5. The accuracy under different parameters α on three datasets.

In order to balance the information provided by the time network and the space
network, we study the weight by changing the hyperparameter α of formula (16) from
0 to 1. When α = 0, only the information provided by the spatial network is retained,
when α = 1, only the information provided by the temporal network is retained, and the
change step of α is set to 0.1. Figure 5 shows the changes in the accuracy of FER on
the CK+, Oulu-CASIA and MMI datasets with the change of α. In order to prevent the
contingency of the experiment, the figure shows the average accuracy obtained by the
5-fold cross-validation method.

Ablation Experiments. The performance of the spatial-temporal information decision
fusion network is mainly determined by the respective performance of the temporal
network and the spatial network. In order to evaluate the respective functions of the two
networks, we conducted ablation experiments on three datasets. Table 1 summarizes
the ablation experimental results. The experimental results show that both the spatial
network and the temporal network can complete the facial expression recognition task
separately. However, due to the limited integrated feature information, a single network
cannot achieve high recognition accuracy. After the decision fusion method, our model
achieves the best performance.

Table 1. Ablation experiments on three datasets.

Method Descriptor CK+ Oulu-CASIA MMI

Temporal network BiLSTM 96.56% 85.76% 79.37%

Spatial network VGG19-S 95.71% 86.21% 80.95%

Ours STDFN 98.83% 89.31% 82.86%

Comparative Experiments. Table 2 shows the performance comparison of the pro-
posed method with the SOTA method on three datasets. Most researchers chose to
implement the 7-class recognition task on the CK+ dataset. The current known best
performance for 7-class is PHRNN-MSCNN, which achieved 98.50% accuracy. On the
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7-class classification task, our method achieved 98.83% recognition accuracy, surpass-
ing the existing methods. Moreover, the PPDN achieved 99.30% accuracy on 6-class
classification task for the CK+ dataset. We also performed a 6-class classification task
by removing contempt, achieved recognition accuracy by 99.39%.

Table 2. FER accuracy (%) of various methods on CK+, Oulu-CASIA and MMI database.

Method Descriptor CK+ Oulu-CASIA MMI

Klaser et al. [6] HOG 3D 91.44 70.63 60.89

Liu et al. [7] STM-Explet 94.19 74.59 75.12

Zhang et al. [9] STRNN 95.40 – –

Ding et al. [16] FN2EN 96.80 87.71 –

Jung et al. [8] DTAGN 97.25 81.46 70.24

Yang et al. [11] DeRL 97.30 88.00 73.23

Hu et al. [14] CTSLSTM – – 78.40

Zhang et al. [4] PHRNN-MSCNN 98.50 86.25 81.18

Liu et al. [15] MIC – – 81.29

Zhao et al. [10] PPDN 99.30 (6) – –

Spatial-temporal networks STDFN (6-class) 99.39 – –

Spatial-temporal networks STDFN (7-class) 98.83 89.31 82.86

Previously, the best performance was achieved the 88.00% accuracy by DeRL on
Oulu-CASIA dataset. They trained a generating model to generate roughly neutral faces
for pictures of facial expressions, and learned to recognize facial expressions by learning
the residual information from the generating model. STDFN achieves the highest recog-
nition accuracy of 89.31%, which is better than the most advancedmethods at present. In
addition, comparedwith PHRNN-MSCNN,which is based on spatial-temporal network,
our model achieves a relatively satisfactory performance improvement. And our STDFN
achieves 82.86% FER accuracy on theMMI dataset, which indicates that the method has
a strong generalization capability. Our method has surpassed among currently known
methods, both manual feature-based and spatiotemporal network-based methods.

As shown in Fig. 6 (a), onCK+, STDFNhas achieved very high accuracy in recogniz-
ing the five expressions of happiness, anger, disgust, fear and surprise, which indicates
that our model has been able to fully recognize these labels. However, contempt and
sadness are still less effective, perhaps because the facial changes in some samples of
both expressions are too slight. The confusion matrix results of STDFN in Oulu-CASIA
dataset are shown in Fig. 6 (b). STDFN has high accuracy in identifying happiness, anger
and surprise, and low accuracy in identifying fear, sadness and disgust. Especially for
disgust, our method has a low recognition accuracy, most of which will be confused with
anger, indicating that our method is still unable to accurately capture the subtle changes
of facial expressions. It is worth mentioning that although the recognition accuracy of
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disgust is low, our method does not appear serious confusion in expression recognition,
and is generally more balanced. This shows that our method has a certain robustness.
Figure 6 (c) shows the distribution of samples with classification errors in STDFN on
the MMI dataset, and the two expression classes with low classification accuracy are
disgust and fear. This is because some of the sample labels of these two classes in the
original dataset are inaccurate.

(a) CK+ (b) Oulu-CASIA (c) MMI

Fig. 6. Confusion matrix for STDFN implements the facial expression recognition task on three
datasets. (a) Confusion matrix for the CK+ dataset; (b) Confusion matrix for the Oulu-CASIA
dataset; (c) Confusion matrix for the MMI dataset.

5 Conclusion and Future Works

In this paper, a FER method based on spatial-temporal decision fusion network is pro-
posed. From the perspective of temporal information, we use BiLSTM to consider the
time correlation between the frames before and after the image sequence, and integrate
the local features of facial expressions through the division of facial regions. To the
spatial information, VGG19 is used to obtain the shallow spatial features of the peak
frames, and SENet is applied to module to learn the weight between feature channels.
Finally, a decision fusion method is used to successfully combine the temporal and
spatial dimension information of facial expression images. We not only implemented a
spatial-temporal network-based FER method, but effectively improved the accuracy of
the FER system. Finally, we discuss the parameter selection of decision fusion method,
and compared ourmethodwith the current SOTAmethod. The experimental results show
that our method has achieved an accuracy of 98.83%, 89.31% and 82.86% respectively
on the most commonly used datasets CK+, Oulu-CASIA and MMI.

In future, wewill focus onmore extensive research on consciousness recognition and
emotion recognition to further explore valuable information, and set out to develop more
powerful methods to capture subtle evolution in facial expressions to further improve
the accuracy of FER. We further intend to integrate physiological signals data into the
FER system to realize the human emotion analysis system of multi-modal information
fusion.
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