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Abstract. Tomitigate the disadvantages of the K-means algorithm, an evolution-
ary factor-driven concise bacterial foraging optimization algorithm is proposed to
handle customer data clustering tasks (EFCBFOK). First, to decrease the comput-
ing complexity of BFO, a concise BFOwith a simplified structure is used. Second,
driven by the evolutionary factors, a modified step size strategy is designed. Third,
evolutionary factor-driven chemotaxis operation is proposed to make the bacte-
ria select the learning objects from multiple generations of personal historical
best and global best; it can expand the search space and enhance the population
diversity. To evaluate the performance of the EFCBFOK, EFCBFOK is compared
with the other three algorithms on three validity indexes of five customer datasets.
Experimental results show that EFCBFOK outperforms the other three clustering
algorithms in terms of solution quality, three validity indexes, and computing time.

Keywords: Evolutionary factor · Bacterial foraging optimization · K-means ·
Customer clustering

1 Introduction

Data clustering is the process of dividing data into multiple clusters or groups based
on similarity. Clustering has applications in many fields, including exploratory data
analysis, image segmentation, and mathematical programming [1]. Many traditional
clustering algorithms have been proposed, and K-means is one of the important algo-
rithms. However, K-means is sensitive to the initialization, which greatly impacts the
clustering results; once the quality of initial cluster centers is poor, effective clustering
results may not be obtained and easily fall into local optimum [2].
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To improve the quality of traditional clustering methods, researchers have started to
study the combination of swarm intelligence and clustering algorithms. Swarm intelli-
gence is a computational technique based on the behavioral rules of biological groups.
It is inspired by social insects and swarming vertebrates, which have the characteristics
of autonomy and robustness and are used to solve distributed problems. Various swarm
intelligence algorithms have been proposed, and these algorithms have been used to solve
data clustering tasks. For example, cohesive hierarchical clustering is introduced into the
brainstorming algorithm [3], particle swarm algorithm (PSO) is efficiently mixed with
fuzzy clustering [4], fireworks algorithm is combined with hard clustering technique [5],
brainstorming algorithm is combined with K-means for numerical optimization [6], etc.

The bacterial foraging optimization algorithm (BFO), as a newmember of the swarm
intelligence, mimics the foraging behaviors of bacteria. It has received much attention
recently and has been combined with clustering techniques to solve practical problems
[7, 8]. To further explore the potential of BFO in solving data clustering problems, in this
paper, an evolutionary factor-driven concise bacterial foraging optimization algorithm
(EFCBFO) is proposed to solve the customer data clustering problems (EFCBFOK).
Due to the original BFO having high computing complexity, a concise BFO (CBFO)
[9] with a simplified structure is employed. The main improvements of this paper are
as follows. (1) Based on the evolutionary factor [10], a modified step size updating
strategy is proposed to make it change with the evolutionary states, which can better
balance exploration and exploitation. (2) To guide the bacteria to find global optimum
and escape local optimum, an improved chemotaxis operation is designed that integrates
the delayed information. Based on this, during each iteration, bacteria can select learning
objects frommultiple generations of personal historical best and global best individuals,
expanding the search space and enhancing the population diversity. (3) Combining the
EFCBFO with K-means, EFCBFOK is designed to handle the customer data clustering
problems. Comparative experiments verify that EFCBFOK has better performance than
its competitors in terms of solution quality, three validity indexes, and computing time.

The remaining parts of this paper are organized as follows. Section 2 briefly intro-
duces the traditional BFO and the K-means algorithm; Sect. 3 presents and discusses
the EFCBFOK in detail. Section 4 presents the experiments and analyses. Section 5
concludes the whole paper and provides an outlook for future work.

2 Background

2.1 Bacterial Foraging Optimization Algorithm

The BFO is a stochastic search algorithm proposed by Passino in 2002 that mainly
simulates the food searching behaviors of E. coli in the human intestine [11]. In this
paper, three operations of BFO, chemotaxis, reproduction, and elimination-dispersal,
are included [12] and described in detail.

Chemotaxis is the essential operation in the BFO, which includes two actions: swim-
ming and tumbling. In this stage, the bacterial swarm moves to high nutrients places or
away from low nutrients through these two actions. The chemotaxis operation is shown
as Eq. (1),

θ i(j + 1, k, l) = θ i(j, k, l) + C(i)φ(i) (1)
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where θ i(j, k, l) represents the position of bacteria i during the jth chemotaxis, kth
reproduction, and lth elimination-dispersal operations. C(i) is the step size taken during
the chemotaxis process and φ(i) represents a unit length of the random direction.

The chemotaxis operation is followed by a reproduction operation. At this stage, the
bacteria in poor health conditions are deleted, and bacteria in good health split into two
bacteria at their current position.

For each elimination-dispersal operation, a fixed probability is used to determine
whether a bacterium performs this operation; if the operation is performed, the current
bacteriumwill die, and then a new bacterium is randomly generated in the solution space.

2.2 K-means Algorithm

The K-means is a common and simple clustering technique [13]. K-means randomly ini-
tializes a set of k cluster centers, then proceeds by alternating between two steps: assign-
ment and update [14]. Given a dataset X with n data points, X = {x1, x2, . . . , xn}(i =
1, 2, . . . , n). M is the set of cluster centers, M = {m1,m2, . . . ,mk}(1 ≤ p, q ≤ k). S(t)

p
is the set of data points belonging to pth cluster at the tth generation. The assignment
and update steps are presented as follows.

Assignment Step: compute the Euclidean distances between the data points and
cluster centers, and each data point xi is assigned to the cluster with the least square
Euclidean distance, which is presented in Eq. (2),

S(t)
p =

{
xi :

∥∥∥xi − m(t)
p

∥∥∥2 ≤
∥∥∥xi − m(t)

q

∥∥∥2,∀p, 1 ≤ p ≤ k

}
(2)

wherem(t)
p andm(t)

q imply thepth andqth cluster centers at the tthgeneration, respectively.
Update Step: recalculate the average values of the data points assigned to each

cluster,

m(t+1)
p = 1∣∣∣S(t)

p

∣∣∣
∑

x,∈S(t)
p

xip (3)

where
∣∣∣S(t)

p

∣∣∣ is the number of data points belonging to the pth cluster at the tth generation.

m(t+1)
p is the pth cluster center at the (t + 1)th generation.
Usually, the objective of K-means algorithm is to minimize the sum of squared errors

(SSE), which is presented in Eq. (4),

SSE(t) =
k∑

p=1

∑
xi∈S(t)

p

D
(
xi,m

(t)
p

)2
(4)

where D(, ) is the Euclidean distance, SSE(t) is the SSE at the tth generation.
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3 The Proposed Algorithm

To improve the performance of traditional BFO, this paper proposes an evolutionary
factor-driven concise bacterial foraging optimization algorithm (EFCBFO). Then, the
EFCBFO is combined with K-means (EFCBFOK) to solve customer data clustering
tasks. In the EFCBFOK, based on the evolutionary factors proposed in [10], evolutionary
factor-driven step size and evolutionary-driven chemotaxis are designed. The details of
EFCBFOK are described as follows.

3.1 Evolutionary Factors

Evolutionary factor (Ef ) [10] is the indicator of the discovery of the exploration and
exploitation states of the population. During the evolution process, the population distri-
bution characteristics change not only with the number of iterations but also according
to the Ef [10]. In [10], the Ef can be predicted by the average distance between each
individual. Concretely, at the beginning of the iteration, when the population is more
dispersed, the average distance between each individual will be relatively large; this is
the exploration stage. When the individuals reach the local or global optimal region, the
average distance between each individual will be relatively small; this is the exploitation
stage.

Based on this concept, the Ef is calculated as follows. The first step is to calculate the
average distance between the ith individual and the other individuals in the population
by using the Euclidean distance. The equation is as follows.

di = 1

S − 1

S∑
j=1,j �=i

√√√√ D∑
d=1

(
θ id − θ jd

)2 (5)

wheredi is the average distance of the ith individual.S andD are the number of population
and dimensions, respectively. θ id and θ jd are the position vectors of ith and jth individual
in the dth dimension.

Based on the average distances of all the individuals, three important distances, dg ,
dmin, and dmax, are defined. Specifically, dg is the average distance of the global best
individual. dmin and dmax are the minimal and maximal average distances in all the
average distances, respectively. After getting these distances, the Ef is calculated as,

Ef = dg − dmin
dmax − dmin

(6)

It can be seen that the Ef is located in the range [0,1]. It will be relatively small when
the average distance between bacteria is relatively close and relatively large when the
average distance between bacteria is relatively far.

According to the Ef , evolutionary states can be obtained [10, 15]. In [15], four types
of evolutionary states are exploration state, exploitation state, convergence state, and
jump-out state. These states denoted ξ(k) can be acquired by dividing the Ef into four
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equal intervals, which is presented in Eq. (7),

ξ(k) =

⎧⎪⎪⎨
⎪⎪⎩

1, 0 ≤ Ef < 0.25
2, 0.25 ≤ Ef < 0.5
3, 0.5 ≤ Ef < 0.75
4, 0.75 ≤ Ef ≤ 1

(7)

When ξ(k) is equal to 1, 2, 3, and 4, it is the convergence, exploitation, exploration,
and jumping-out states, respectively.

3.2 Evolutionary Factors-Driven Step Size

In the original BFO, the step size C(i) is the length of each step during the swimming
action, which is a constant. However, if C(i) is too small, the bacteria focus on local
search/exploitation, and it may take a long time to find the optimal value; if C(i) is too
lager, the bacteria focus on global search/exploration, and the optimal value may be
missed. Based on these analyses, it can be observed that Ef shares some characteristics
with the C(i), i.e., Ef is relatively large in the exploration and jump-out states and
relatively small in the convergence state [10]. Therefore, C(i) can be defined based on
the Ef , which is presented in the following equation,

C(i) = (Cmax − Cmin)Ef + Cmin (8)

where Cmax and Cmin are the maximal and minimal step sizes, respectively. This paper
sets Cmax as 0.1 and Cmin as 0.01. The step size varies with the Ef , and a larger C(i) will
be more favorable for global search in the jump-out and exploration states; the smaller
C(i) in the convergence state favors the local search.

3.3 Evolutionary Factors-Driven Chemotaxis Operation

To make better use of the historical information, delayed information of bacterial swarm
is used to guide the bacteria to move to the optimal directions. Concretely, two indicators
denoted εi(k) and εg(k) are employed. Among them, k is the information delay interval,
which implies that the personal historical best and global best of recent k generations
should be recorded and used. εi(k) and εg(k) are two uniformly generated integers in the
range of [1, k]. i and g represent the indexes of personal best and global best, respectively.

Additionally, another two indicators denoted as si(k) and sg(k) are used in this paper.
Combining the evolutionary states, the values of si(k) and sg(k) are shown in Table 1.
In the convergence state, the bacteria are expected to reach the region near the global
optimum, so the value of si(k) and sg(k) is taken as 0. In the exploitation state, as much
local information as possible needs to be used, so the value of si(k) is taken as Ef (k). In
the exploration state, more global information needs to be used, so the value of sg(k) is
taken as Ef (k). In the jump-out state, the bacterial subsets desire to jump out from the
region near the local optimum, so the value of Ef (k) needs to be taken at the same time
to provide more information for the bacteria to jump out from the local optimum.
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Table 1. Values of indicators.

Modes States si(k) sg(k)

ξ(k)= 1 Convergence 0 0

ξ(k)= 2 Exploitation Ef (k) 0

ξ(k)= 3 Exploration 0 Ef (k)

ξ(k)= 4 Jumping-out Ef (k) Ef (k)

Based on the aforementioned analysis, an improved chemotaxis operation is
designed, which is shown as follows,

θ i(j + 1, k, l) = θ i(j, k, l) + C(i)φ(i)
+si(k)C(i)r1

(
pi(k − εi(k)) − θ i(j, k, l)

)
+sg(k)C(i)r2

(
pg

(
k − εg(k)

) − θ i(j, k, l)
) (9)

where r1 and r2 are the uniformly generated numbers in [0,1]. pi(k − εi(k)) And
pg

(
k − εg(k)

)
are the selected personal historical best and global best individuals,

respectively. It can be seen that the designed chemotaxis operation includes four parts.
The first and second parts are the same as the original BFO. The third and fourth parts
are the self-learning and global learning parts with delayed information. Based on the
evolutionary states, the bacteria can learn from different individuals.

3.4 The Framework of EFCBFOK

Combining EFCBFO and K-means, EFCBFOK is designed to handle customer cluster-
ing tasks. In EFCBFOK, SSE is the objective function. The framework of EFCBFOK is
described as follows (Fig. 1).

Step 1. Initialize the position of the population and the parameters of the algorithm.
Step 2. Evaluate the fitness values of the population, and store their personal historical
best and global best.
Step 3. Iteration loop.
Step 3.1. Obtain the evolutionary factors according to Eq. (6), and obtain Table 1
according to Eq. (7).
Step 3.2. Update the positions of the population by implementing evolutionary factors-
driven chemotaxis operation.
Step 3.3. If the iteration number is a multiple of reproduction frequency (Fre), implement
the reproduction operation.
Step 3.4 If the iteration number is a multiple of elimination-dispersal frequency (Fed ),
implement the elimination-dispersal operation.
Step 4. Repeat step 3 until the conditions are met.
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Fig. 1. The framework of EFCBFOK.

4 Experiments and Analyses

4.1 Datasets and Experimental Parameters

To demonstrate the superiority of the EFCBFOK, five datasets, Taiwan, German, Aus-
tralian1, Marketing, and Hotel2, are selected as the testing datasets. The missing and
invalid data are deleted before clustering. The description of the five testing datasets is
shown in Table 2.

1 Data source: https://archive.ics.uci.edu/ml/datasets.php.
2 Data source: https://www.kaggle.com/

https://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/
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Table 2. The description of the testing datasets.

Dataset Samples Features Clusters

German 1000 24 2

Marketing 2216 25 2

Australian 690 14 2

Taiwan 30000 23 2

Hotel 6665 9 4

Additionally, three algorithms are selected as the competitors, which are K-means,
PSO-based clustering technique (PSOK) [16], and CBFO-based clustering algorithm
(CBFOK) [9]. The parameters of EFCBFOK, PSOK, and CBFOK are listed as follows.
The population size is 100; the number of independent runs and iterations are 10 and
100, respectively. For EFCBFOK and CBFOK, the reproduction frequency is 5, and the
elimination-dispersal frequency is 2. For PSOK, the C1andC2 are 2. These algorithms
are coded using PyCharmCommunity Edition 2021. To evaluate the clustering quality of
all the algorithms, inter-cluster distance, Silhouette [17], and F-measure [18] are selected
as validity indexes.

4.2 Experimental Results and Analysis

Table 3 gives the average optimal solutions of three validity indexes over 10 runs. Table 3
also gives the computation times for the four algorithms. This paper uses boldface
with underline and boldface to highlight the best and second-best values of the four
algorithms on different metrics. Figure 2 shows the SSE convergence curves for all
algorithm traversals in the five datasets, respectively. From Table 3 and Fig. 2, three
observations can be concluded.

• The EFCBFOK algorithm performs well than its competitors regarding to the three
validity indexes on all five datasets, especially on German and marketing datasets. As
for the F-measure, EFCBFOK obtains overwhelming advantages over its peers. This
implies that the EFCBFOK algorithm effectively improves the clustering quality of
customer datasets. Conversely, PSOK has the worse performance among these four
algorithms, which only gets several second ranking on some datasets regarding one
validity index.

• In terms of computing time, although K-means performs optimally, the EFCBFOK
uses less time on the five data sets compared to the swarm intelligence-based clustering
algorithms. This implies that the proposed EFCBFOK has a faster convergence speed
than that of CBFOK and PSOK.

• From the iterative curves, it can be seen that the iterative curve of EFCBFOK is below
the other algorithms. This means that the EFCBFOK outperforms the other three
algorithms in terms of global optimality regardless of the dataset.
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Table 3. The experimental results of EFCBFOK and its competitors on five datasets.

Datasets Metrics EFCBFOK CBFOK PSOK K-means

German Inter-cluster distance 5.00E−01 2.55E−01 2.53E−01 3.60E−01

Silhouette 4.76E−02 4.74E−02 4.14E−02 1.18E−01

F-measure 5.80E−01 5.76E−01 5.80E−01 5.38E−01

Time(s) 8.30E+01 8.90E+01 8.88E+01 8.22E+01

Marketing Inter-cluster distance 4.20E−01 3.23E−01 2.78E−01 3.08E−01

Silhouette 1.62E−01 7.67E−02 7.86E−02 8.18E−02

F-measure 6.28E−01 6.04E−01 6.03E−01 6.12E−01

Time(s) 2.26E+02 2.37E+02 2.29E+02 2.23E+02

Australian Inter-cluster distance 4.01E−01 4.08E−01 3.54E−01 4.96E−01

Silhouette 1.87E−01 1.38E−01 1.76E−01 1.70E−01

F-measure 6.65E−01 6.26E−01 6.43E−01 6.49E−01

Time(s) 3.93E+01 4.02E+01 4.03E+01 3.40E+01

Taiwan Inter-cluster distance 4.55E−01 5.03E−01 5.00E−01 3.38E−01

Silhouette 3.34E−01 3.39E−01 2.55E−01 2.67E−01

F-measure 6.01E−01 5.79E−01 5.61E−01 5.77E−01

Time(s) 2.27E+02 2.30E+02 2.30E+02 2.06E+02

Hotel Inter-cluster distance 1.67E+00 1.62E+00 1.69E+00 1.72E+00

Silhouette 1.64E−01 1.52E−01 1.60E−01 2.33E−01

F-measure 3.36E−01 3.26E−01 3.35E−01 3.16E−01

Time(s) 9.71E+01 9.72E+01 9.85E+01 8.46E+01
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Fig. 2. SSE iterative curves of four algorithms on five datasets

5 Conclusion

This paper proposes a concise evolutionary factor-driven bacterial foraging optimiza-
tion algorithm to solve the customer clustering problem (EFCBFOK). First, the concise
BFO with a simplified structure is used to decrease the computing complexity of BFO.
Then, a modified step size strategy is proposed according to the evolutionary factors.
Additionally, driven by the evolutionary factor, an improved chemotaxis operation is
proposed to let the bacteria select the learning individuals from multiple generations of
personal historical best and global best; it can expand the search space and enhance the
diversity. To validate the effectiveness of the EFCBFOK, EFCBFOK is compared with
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the other three algorithms on three validity indexes of five customer datasets. Experi-
mental results demonstrate that EFCBFOK has better performance than its competitors
regarding solution quality, three validity indexes, and computing time.

In future work, EFCBFOKwill be used to solvemulti-objective data clustering tasks.
Furthermore, more strategies should be designed to enhance the performance of BFO.
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