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Abstract. Accurate recognition of human emotions through EEG data is of great
significance in human-computer interaction, mental health, intelligent medical
care and other fields. EEG signal contains a large number of meaningful and
extractable features. Therefore, effective feature selection plays an essential role
in reducing feature dimensions and avoiding redundancy. In order to select the
emotion related features from hundreds of features and achieve better emotion
recognition results, we propose an enhanced firefly algorithm (EFA) for EEG
emotion recognition, which is based on brightness-distance based attraction and
roulette-based local search strategies. Then, we apply EFA to select features for
EEG emotion recognition and provide a novel encoding method of fireflies to
distinguish the importance of channels and bands respectively. We conduct com-
parative experiments to evaluate the performance of EFA on DEAP database. The
experimental results confirm the superiority of the proposedmethod inAUC score.

Keywords: Emotion recognition · Feature selection · Swarm intelligence ·
Fire-fly algorithm · EEG

1 Introduction

Emotionplays an important role in human life.With the development of human-computer
interaction (HCI) technology, there aremany researches on emotion recognition in recent
years. Generally, emotion recognition is mainly based on two kinds of signals: physical
signals such as facial expression [1] and speech [2], and physiological signals such
as electroencephalogram (EEG) [3] and respiration (RSP) [4]. Among them, EEG has
attracted extensive attention of researchers because it is more objective and handier than
other signals.

EEG-based emotion recognition usually involves the following steps: preprocess-
ing, feature extraction, feature selection and classification. There are different kinds of
features can be extracted from EEG signals, such as time-domain features, frequency-
domain features, time-frequency features and nonlinear features [5]. Since most EEG
signals are collected in the form of time domain, and it need to transform the signals
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from time domain to frequency domain by some algorithms, like fast Fourier transfer
(FFT) [6], short-time Fourier transform [7] and wavelet transform [8]. Furthermore,
band power, power spectral density and differential entropy can be calculated from the
frequency bands.

Since hundreds of features can be extracted fromEEG signals, it is necessary to select
features before classification to reduce the feature dimension and avoid redundancy.
Principal component analysis (PCA) is the most commonly used dimension reduction
technique, which decomposes EEG signals into independent components and removes
interference [9, 10]. Swarm intelligence (SI) algorithms have been proposed to solve
the problem of feature selection and achieved good results. Particle swarm optimization
(PSO) is utilized to select the emotion related features for EEG emotion recognition
[11]. Nakisa et al. [12] apply ant colony optimization and PSO for the feature selection
of EEG datasets.

Recently, Firefly Algorithm (FA) [13] has been applied in various fields due to its
advantages of less parameters and simple operation. In the aspect of distance-based
attraction mechanism, FA can automatically divide the whole colony into multiple sub-
colonies, which can naturally and effectively deal with nonlinear and multi-modal opti-
mization problems [14]. However, it has the limitations of slow convergence speed, early
maturity and low accuracy in the late iterations.

To tackle the limitations of FA and achieve better emotion recognition results for
EEG data, we propose an enhanced FA for emotion recognition. Firstly, we transform
signals from time domain to frequency domain by FFT and calculate their band power
characteristics. Then, we propose an enhanced FAwith brightness-distance based attrac-
tion and roulette-based local search strategy. Subsequently, we apply this enhanced FA
to select the most important features for EEG emotion recognition. In brief, the main
contributions of this work are as follows:

1. We propose an Enhanced Firefly Algorithm (EFA) with two strategies: brightness-
distance based attraction (BDA) and roulette-based local search strategy (RLS).

2. We apply the enhanced firefly algorithm to select features for EEG emotion recogni-
tion and provide a novel encoding method of fireflies to distinguish the importance
of channels and bands respectively.

3. We conduct extensive experiments on a public database DEAP [15] to demonstrate
the effectiveness of proposed method. The results show that EFA based feature
selection algorithm outperforms other competitive feature selection algorithms in
EEG-based emotion recognition.

2 Related Work

2.1 EEG Feature Extraction and Selection

Feature extraction and selection play an important role in EEG-based emotion recog-
nition. Feature extraction is mainly to reduce the dimension of EEG data and extract
emotion related features from EEG data to study the emotional state of subjects. As a
key component of emotion recognition, the quality of features directly determines the
performance of emotion recognition model.
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EEG Feature Extraction. In the existing research on EEG emotion recognition, there
are four kinds of extractedEEGsignal features: time-domain features, frequency-domain
features, time-frequency features and nonlinear features [5]. Frequency domain features
are the most widely used features in emotion recognition based on EEG, such as band
power, power spectrum and power spectral density. FFT is used to decompose the EEG
signals into five bands: delta, theta, alpha, beta and gamma, and then extract the log
band energy of these five bands as features [6]. Li et al. [7] adopt short-time Fourier
transform for time-frequency transformation and calculate the power spectral density of
four frequency bands respectively.

EEG Feature Selection. In the research of EEG emotion recognition, more electrodes
are usually placed on the subject’s scalp to obtain more abundant emotional information.
However, with the increase of the number of electrodes, the number of features rises
sharply, which will lead to excessive calculation and reduce the real-time performance of
the system. PCA is used for dimensionality reduction of high-dimensional data, which
projects the data onto the principal components, so as to generate the main features of
emotion-related EEG and remove useless or noisy information [9, 10]. ReliefF-based
channel selection algorithm is applied to reduce the number of channels used in classi-
fication task [16]. SI algorithm is widely used in feature selection and its effectiveness
has been proved. In the recent years, researchers have applied SI algorithm to feature
selection for EEG-based emotion recognition and achieved satisfactory results, such as
PSO [11], FA [17], grey wolf optimizer [18] and cuckoo search [19].

2.2 Firefly Algorithm

FA [13] is a heuristic swarm intelligence approach inspired by the flashing behavior of
fireflies. The optimization problem is solved by simulating the mutual attraction and
movement of fireflies caused by foraging and communication in nature. Fireflies with
less brightness are attracted to the brighter one. The brightness of a firefly is determined
by the objective function. For the maximum optimization problem, the brightness of
a firefly can be simply proportional to the fitness of the objective function. Mutual
attraction depends on the light intensity perceived by the firefly, which diminishes with
distance. If there is no firefly brighter than a specific firefly, it will move randomly.

As the attractiveness of a firefly is proportional to the light intensity which decrease
by distance, the attraction of fireflies is defined as:

β = β0e
−γ rij2 (1)

where β0 is is the attraction of the firefly itself when r = 0, γ is light absorption
coefficient and rij is the distance between the fireflies.

The distance between two fireflies can be calculated by Euclidean distance as follow:

rij = ‖xi − xj‖ =
√∑d

k=1

(
xi,k − xj,k

)2 (2)

where xi and xj are the position of firefly i and j respectively, xi,k is the k-th component
of the firefly i and d is the dimension of the problem.
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Each firefly i compares its brightness with that of other firefly j. If firefly j is brighter
than i, firefly i moves toward firefly j as Eq. (3). Otherwise, firefly i move randomly as
Eq. (4).

xi(t + 1) = xi(t) + β
(
xj(t) − xi(t)

) + αr (3)

xi(t + 1) = xi(t) + αr (4)

where α is a parameter that determines the random search and it decreases with the
increase of the number of iterations t, and r is a d-dimensional Gaussian random vector.

For EEG emotion recognition, it is significant to select features highly correlated
to emotion from hundreds of extracted features. Although FA has been used in feature
selection, it has the limitations of slow convergence speed, early maturity and low accu-
racy in the late iterations. To achieve better emotion recognition results for EEG data,
this paper develops an enhanced FA for feature selection of EEG signals.

3 Enhanced Firefly Algorithm for Emotion Recognition

3.1 General Framework

In this section, we propose an enhanced FA feature selection for EEG emotion recog-
nition. The general framework is presented in Fig. 1. At the first step, we transform
signals from time domain to frequency domain by FFT and calculate their band power
characteristics. Then, we propose an enhanced FAwith brightness-distance based attrac-
tion (BDA) and roulette-based local search strategy (RLS). Subsequently, we apply this
enhanced FA to select the most important features for EEG emotion recognition. More
details are explained as follows.

3.2 Feature Extraction

Data Preprocessing. We leverage DEAP emotion database and its processed EEG sig-
nals data of 32 subjects to recognize emotion in the two dimensions of valence and
arousal. Each subject participated in 40 trials, and 63 s signals data were collected in
each trail. To expand the number of samples per subject without breaking the time con-
tinuity, we segment each 63 s trial into 30 samples (4 s long) by sliding window. The
size and the step of the window are set 4 s and 2 s respectively. Finally, we get a total
of 1200 samples (40 trials × 30 segments) for each subject. The labels of 30 samples
extended from one trail are the same.

Fast Fourier Transform. After data preprocessing, we obtain 1200 samples for each
subject, and each sample contains 32 channels of 4-s EEG signals. For each channel of a
sample, we use FFT [20] to transform EEG data from time domain to frequency domain,
and then use band-pass filter to decompose it into five frequency bands closely related
to people’s psychological activities, namely theta (4–8 Hz), alpha (8–12 Hz), low beta
(12–16 Hz), high beta (16–25 Hz) and gamma (25–45 Hz). Since the collected EEG
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Fig. 1. General framework of proposed method

signal is a discrete sequence s(n), , discrete Fourier transfer (DFT) is often applied to
the transformation of EEG data as follow:

S(k) = DFT [s(n)] =
∑N−1

n=0
s(n)Wnk

N =
∑N−1

n=0
s(n)e

−j
(
2π
N

)
nk

(k = 0, 1, . . . ,N − 1)

(5)

where N represents the number of sample points and WN = e
−j

(
2π
N

)
is a transform

matrix. Due to the high computational complexity of DFT, FFT improves its efficiency
by replacing the computation of one larger DFT with the computation of several smaller
DFTs.

Band Power. Band Power, a common feature extracted from EEG signals is used to
recognize the emotion [5]. The power of a specific frequency band corresponding to
channel T in sample i is calculated as

piT = 1

N

∑N

k=1

∣∣∣X iT
N (k)

∣∣∣2 (6)

where X iT
N (k) is the FFT of the EEG signals for channel T in sample i, N is the length

of FFT and equals the sample length 512 points (4 s).
A 512-point fast Fourier transform (FFT) is used to compute the power of each

frequency band and 160 (32 channels × 5 bands) features are obtained for each sam-
ple. In order to eliminate the influence of scale differences between features and treat
each feature equally, Z-score normalization is applied to each feature. For the feature fi
belonging to sample i, the Z-score normalized value was computed as

f normi = fi − μf

σf
(7)
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where μf and σf are the mean and the standard deviation of the feature f across all
samples respectively.

3.3 Enhanced Firefly Algorithm

FA has the advantages of less parameters, simple operation and easy implementation.
However, conventional FA updates its location by moving towards the brighter one and
their attractiveness just depends on the light intensity which decrease with the distance as
presented in Eq. (1) and (3). In brief, the attraction between two fireflies only depends on
their distance. However, we think that the attraction between fireflies depends not only on
their distance, but also on their brightness difference. On the other hand, FA has the limi-
tations of slow convergence speed, early maturity and low accuracy in the late iterations.
Therefore, we propose two strategies to tackle these challenges, namely brightness-
distance based attraction (BDA) and roulette-based local search strategy (RLS). The
flow chart of the algorithm is shown in Fig. 2.

Fig. 2. Flow chart of enhanced firefly algorithm for maximum problem

Brightness-Distance Based Attraction (BDA). For conventional FA, the firefly will
move toward the brighter one and their attraction depends on the light intensity which
decrease with the distance as presented in Eq. (1) and (3). We think that the attrac-
tion between fireflies depends not only on their distance, but also on their brightness
difference. If firefly j is much brighter than firefly i, their attraction will be stronger.

To depict this, we propose a relative brightness influence factor c to represent the
brightness difference of mutual attraction between fireflies.

c = f (xj) − f (xi)

max
[
f (x)

] − min[f (x)] (8)
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where f (xi) is the brightness value of the firefly i,max
[
f (x)

]
andmin[f (x)] are the max-

imum and minimum brightness values of the current population respectively. Therefore,
the movement of fireflies as Eq. (3) can be modified as:

xi(t + 1) = xi(t) + c · β
(
xj(t) − xi(t)

) + αr (9)

Roulette-Based Local Search Strategy (RLS). To tackle the limitations of slow con-
vergence speed, early maturity and low accuracy of firefly algorithm, we propose
Roulette-based Local Search Strategy (RLS). Firstly, we apply Roulette algorithm to
select the individuals with higher fitness values. The probability of an individual being
selected is proportional to its fitness Pr(xj) ∝ f (xj). The selection strategy of roulette
algorithm is shown as follow:

P
(
xj

) = f
(
xj

)
∑n

j=1f (xj)
(j = 1, 2 . . . n) (10)

where P
(
xj

)
is the probability of individual xj selection, f (xj) is the fitness value of

individual xj and n is the total number of fireflies.
After selecting a subset of fireflies that performwell, we take Gaussian perturbations

on these individuals and move them around themselves. The position of the movement
can be expressed as:

x
∧

j = xj + αr (11)

where xj is the current position of firefly j, x
∧

j is the position after the update, r is an
n-dimensional Gaussian random vector and α is a parameter that determines the random
search. Finally, we choose the position with the best performance as follow:

new_xj = best(x
∧

j, xj) (12)

3.4 Enhanced Firefly Algorithm for Feature Selection

Encoding of Fireflies. As presented in Sect. 3.2, each sample contains 32 channels,
including Fp1, AF3,…, PO4 andO2. Each channel can be transformed from time domain
to frequency domain by FFT, and then decomposed into five frequency bands. After
that, we calculate the band power of each frequency band. Therefore, we can obtain
160 features (32 channels × 5 bands) for each sample. We adopt enhanced FA to select
some important features from these 160 features. Due to this specific method of feature
extraction, each firefly can be decoded into 37 dimensions, of which 32 dimensions are
channel importance weightsωc ∈ R1×32, and 5 dimensions are band importance weights
ωb ∈ R1×5.

The encoding of a firefly x is presented in Fig. 3. We can obtain importance weights
W for 160 features as follow:

W = ωb
T · ωc (13)
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Fig. 3. Encoding scheme for a firefly

where ωFp1_θ represent the importance weight for band power that extracted from
frequency bands θ of channel Fp1.

After that, we select features whose important weights are higher than the threshold,
and the threshold is set to the average of all feature weights. The selection coefficient of
feature f is calculated as:

Cf =
{
0,wf < w
1,wf ≥ w

(14)

where wf is the weight of the feature f and w is the average of all feature weights. The
strategy for choosing the features as follow:

feature_list = {f |Cf = 1} (15)

Fitness Function. Fitness function is used to evaluate the performance of classification
practice after selecting the most important features. We select K-Nearest Neighbor algo-
rithm [21] as the classifier because of its advantages of simplicity and high precision.We
adopt widely used area under ROC curve (AUC) as model performance measurement
metrics. Therefore, the fitness is as follows:

fitness = AUC = 1

m+m−
∑

x+εD+
∑

x−εD− I(x+, x−) (16)

I
(
x+, x−) =

⎧⎨
⎩

1,
0.5,
0,

Px+ > Px−
Px+ = Px−
Px+ < Px−

(17)

wherem+ andm− are the number of positive samples and negative samples respectively,
D+ and D− represent the set of positive samples and negative samples respectively and
Px is the prediction of sample x.

4 Experiments

4.1 Experimental Settings

Datasets. We conducted experiments on DEAP, a database for emotion analysis using
physiological signals, which was published by Koelstra [15]. DEAP is based on the
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three-dimensional emotion model of Valence-Arousal-Dominance (VAD), and its EEG
data can be used for emotion recognition research. In the process of data collection, a
total of 32 subjects were selected for the experiment, including 16 males and 16 females,
ranging in age from 19 to 37. In the data collection experiment, the physiological signals
of the subjects were collected through 40 channels, among which the top 32 were EEG
channels and the last eight channels were peripheral physiological signals. As this paper
is about the correlation analysis of EEG data, our analysis is mainly based on the EEG
data collected from the first 32 EEG channels.

Evaluation Protocols. We conducted subject-dependent experiments on DEAP
database. Since each subject participated on 40 trials that was not enough for our exper-
iments, we segmented each trial into 30 samples with the sliding window (size of 4 s
and step of 2 s). Therefore, we totally obtained 1200 samples (40 trials × 30 segments)
for each subject. The labels of 30 samples segmented from one trail are the same. For
each subject, 960 samples were taken as training set and 240 samples as testing set. We
evaluated our proposed model on 2 dimensional emotions, namely Valence and Arousal,
and the threshold to divide samples into two classes was set to 5. We applied AUC as a
criterion to evaluate the accuracy of the algorithm in emotion recognition.

Comparison Algorithms. In order to evaluate the performance of enhanced FA (EFA),
we selected three heuristic algorithms as our comparison algorithms, namely PSO, GA
and FA. We selected features by these four SI-based algorithms and then adopted KNN
algorithm for emotion classification. Additionally, ReliefF-PNN [16], an algorithm that
selected channels by ReliefF algorithm and classified the emotion by probabilistic neural
network (PNN), was selected as a comparison algorithm to verify the effectiveness of
SI-based feature selection in classification tasks.

Parameter Settings. For four SI-based algorithms, the candidate solutions were ini-
tialized between 0 and 1, and the lower and upper boundaries were set to 0 and 1. The
population size of SI-based algorithms was set to 50 and the maximum number of iter-
ations was set to 100. We searched the existing literature and found the most commonly
used and recommended parameter settings for SI algorithms. EFA and FA shared the
same parameters. For ReliefF-PNN, we traversed the sigma values from 0.1 to 0.9 with
a step size of 0.1, and finally selected 0.1 with the highest accuracy.

4.2 Experimental Results

Classification Results and Number of Selected Features. We conducted 10 indepen-
dent runs for all methods, and calculate average AUC as overall performance. Figure 4
displays the overall performance of our proposed EFA and the other four algorithms.
It can be seen that four SI-based algorithms perform better than ReliefF-PNN in most
subjects. It confirms the effectiveness of SI-based feature selection for emotion recog-
nition. Among the four SI-based algorithms, EFA achieves the highest accuracy on both
Valence and Arousal, evident from the positive effect of our proposed BDA and LRS
strategies of EFA. Figure 5 depicts the number of features selected by five algorithms
for each subject. As shown in the figure, the feature numbers of GA and ReliefF-PNN
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for all subjects are the least, followed by EFA and FA algorithm, and the number of
features of PSO is much more than that of other algorithms. Table 1 shows the average
performance (AUC) of 10 runs for each subject in more details. It can be found that EFA
achieves the best accuracy in almost all subjects.

Fig. 4. Testing performance (AUC) of comparison algorithms in valence and arousal

Optimization Results. Figure 6 shows the fitness optimization for subject 01 and 32
with iteration process. Compared with FA, EFA is featured by the faster convergence
speed in the first 10 iterations and converge to higher fitness.Webelieve that the improved
performance of EFA benefits from the BDA and RLS strategies. For BDA strategy, the
attraction of fireflies depends on brightness and distance, which help fireflies move
faster to the brighter position. For RLS strategy, it provides opportunity for fireflies with
higher fitness to achieve the better results. Furthermore, PSO has fast convergence while
it obtains the lower AUC value, which may be caused by trapping into local optimum.
The convergence of GA is slow and converge to lower fitness.



192 B. Niu et al.

Fig. 5. The number of selected features in valence and arousal

Table 1. Average AUC performance (%) of 10 runs for each subject

Sub Valence Arousal

ReliefF PSO GA FA EFA ReliefF PSO GA FA EFA

01 93.83 92.97 92.31 94.38 95.61 93.82 94.51 93.38 95.05 96.43

02 77.88 78.96 80.15 82.05 83.85 71.54 71.89 76.57 78.18 82.38

03 88.99 85.86 86.11 87.74 89.55 90.31 79.70 81.46 82.52 85.61

04 70.99 79.57 79.71 79.20 80.06 68.03 72.83 74.86 74.56 76.75

05 69.25 76.20 76.82 79.19 80.60 63.51 72.24 71.17 72.75 75.51

06 74.59 78.88 77.21 79.95 82.87 70.26 82.14 80.39 84.34 86.94

(continued)
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Table 1. (continued)

Sub Valence Arousal

ReliefF PSO GA FA EFA ReliefF PSO GA FA EFA

07 96.14 97.81 97.88 98.63 99.17 96.15 96.59 96.47 97.72 97.97

08 77.49 84.51 84.67 86.44 86.78 78.59 84.82 84.66 86.21 87.21

09 90.01 91.00 92.00 93.25 94.50 81.79 91.31 91.49 93.81 94.09

10 94.37 94.50 94.51 95.33 95.79 76.17 87.78 89.14 91.18 92.51

11 77.92 76.16 80.09 80.11 83.04 89.31 83.83 85.54 87.93 90.49

12 71.03 77.21 76.94 79.42 80.24 60.48 74.03 73.36 75.35 77.39

13 87.98 86.62 86.47 88.75 90.30 87.19 85.36 84.25 87.36 88.20

14 80.22 81.03 79.65 81.99 84.55 73.02 78.44 76.94 79.47 82.81

15 94.21 91.89 91.77 92.87 93.42 95.03 91.90 91.66 93.00 93.81

16 97.16 96.73 95.59 97.69 97.92 96.48 96.00 96.19 97.13 97.70

17 66.52 75.41 75.10 77.37 80.36 70.26 77.45 77.23 78.98 80.08

18 84.47 88.73 86.70 89.75 91.66 74.57 81.23 82.02 83.36 85.22

19 81.34 84.45 85.66 87.70 90.27 84.96 87.27 85.06 89.09 91.34

20 82.75 89.31 89.64 91.21 92.42 73.70 86.02 86.21 88.37 90.11

21 75.03 76.86 76.82 77.75 80.32 75.07 69.08 69.61 71.25 74.73

22 75.81 73.55 74.43 75.05 79.44 70.46 67.72 66.84 68.62 71.31

23 95.30 94.25 93.82 95.08 94.99 98.29 97.90 97.72 98.65 98.94

24 58.84 76.02 75.15 75.84 78.77 71.80 69.72 71.54 71.12 72.61

25 72.39 70.13 71.63 71.25 74.04 72.23 73.40 73.36 73.86 75.03

26 61.83 73.42 73.42 75.23 76.99 58.26 77.66 77.95 79.14 83.10

27 69.16 88.23 89.57 90.74 92.58 67.06 92.26 92.64 93.61 94.79

28 76.31 78.07 77.03 80.32 81.69 65.98 73.98 73.43 75.84 80.00

29 78.57 84.63 85.49 87.26 89.37 83.67 85.88 85.97 88.03 90.81

30 77.02 84.08 84.07 86.78 88.49 79.59 89.07 88.85 91.01 91.72

31 84.43 86.77 86.55 87.27 89.29 85.07 86.52 86.34 87.97 90.51

32 94.41 92.97 93.80 95.35 95.63 95.84 92.50 93.83 95.31 96.06

Ave 80.51 83.96 84.09 85.65 87.33 78.70 82.84 83.00 84.71 86.63

Channel Importance and Band Importance. We obtained the optimal solution for
each subject through 4 SI-based algorithms. According to our encoding method, the
optimal solution contains 37 dimensions, among which the top 32 are the importance
weights for channels and the last 5 dimensions are the importance weights for bands.
Table 2 shows the average importance of five frequency bands of all subjects in Valence
and Arousal classification tasks. It reveals that frequency bands with higher frequency
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Fig. 6. Fitness optimization for subject 01 and 32 in valence and arousal

are more significant for predicting emotion classification. We calculated the average
importance of channels of all subjects and found out the top 10 important channels as
shown in Fig. 7. It shows that the top 10 channels of valence are mainly located in frontal
and parietal brain regions related to emotion processing, while top 10 channels of arousal
are mainly located in parietal and occipital brain regions.

Table 2. The importance of different bands in valence dimension

Band name Valence Arousal

PSO GA FA EFA PSO GA FA EFA

Theta 0.4449 0.1421 0.1977 0.2010 0.4358 0.1477 0.1996 0.1840

Alpha 0.5563 0.2316 0.3192 0.3116 0.5732 0.2316 0.3000 0.3004

Low-beta 0.7590 0.4312 0.4859 0.4843 0.7510 0.4306 0.4861 0.4949

High-beta 0.9012 0.5233 0.6333 0.6216 0.7943 0.5383 0.5720 0.5556

Gamma 0.9246 0.7125 0.7582 0.8305 0.8847 0.7518 0.7433 0.8058
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Fig. 7. Top 10 important channels in valence and arousal

5 Conclusion

In this work, we propose Enhanced Firefly Algorithm (EFA) with brightness-distance
based attraction (BDA) and roulette-based local search strategy (RLS), which provide
faster convergence and higher accuracy. We apply EFA to EEG-based emotion recogni-
tion and provide a novel encoding method of fireflies, which can distinguish the impor-
tance of channels and bands respectively. We conducted subject-dependent experiments
on DEAP database, and the experimental results show that the EFA achieves the highest
accuracy among the competitive feature selection methods in emotion classification of
arousal and valence. Our proposed algorithm requires further improvement to reduce the
number of selected features. In future studies this problemwill be handled by considering
multi-objective optimization for feature selection.
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