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Abstract. Air transportation is eminent for its fast speed and low cargo damage
rate among other ways. However, it is greatly limited by emergent factors like
bad weather and current COVID-19 epidemic, where irregular flights may occur.
Confronted with the negative impact caused by irregular flight, it is vital to rear-
range the preceding schedule to reduce the cost. To solve this problem, first, we
established a multi-objective model considering cost and crew satisfaction simul-
taneously. Secondly, due to the complexity of irregular flight recovery problem,
we proposed a tabu-based multi-objective particle swarm optimization introduc-
ing the idea of tabu search. Thirdly, we devised an encoding scheme focusing
on the characteristic of the problem. Finally, we verified the superiority of the
tabu-based multi-objective particle swarm optimization through the comparison
against MOPSO by the experiment based on real-world data.

Keywords: Crew recovery · Irregular flight · Tabu-based multi-objective
particle swarm optimization · Tabu search

1 Introduction

In the third year of facing COVID-19, the world is still suffering under the highly
infectious variant Omicron. Though the dynamic clearing policy adopted by Chinese
government reduces the loss greatly, the following lockdown and quarantine lead to flight
circuit breaker mechanism. Moreover, weather anomaly generated by global warming
may also cause irregular situation.

According to the Normal Statistical Method of Civil Aviation Flight [1] released by
Civil Aviation Administration of China, normal flights can be defined as follows “flights
depart 10 min or shorter after scheduled departure time without sliding back, veering
or preparing for landing, or arrive within 10 min before scheduled arrival time.” And
irregular flights refer to those do not obey above conditions. Usually, the occurrence
of irregular flight happens days or even hours before takeoff, which requires airline to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. Xu et al. (Eds.): ML4CS 2022, LNCS 13657, pp. 121–132, 2023.
https://doi.org/10.1007/978-3-031-20102-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20102-8_10&domain=pdf
https://doi.org/10.1007/978-3-031-20102-8_10


122 T. Zhou et al.

recover it correctly and timely. The recovery is composed of route, flight, aircraft and
crew recovery. And only crew recovery problem takes humanistic factors into account
amongst them, which is a channel to exhibit airline’s corporate responsibility and also a
crucial means to improve onboard services. Hence the main question addressed in this
paper is crew recovery problem.

Plenty of scholars have studied the irregular flight recovery problem from a wide
variety of angles. Chutima et al. [2] considered cost, workload and pilots’ preference at
the same time. Wen et al. [3] took flight flying time variability into account. Zeighami
et al. [4] and Zhou et al. [5] separately developed an algorithm based on alternating
Lagrangian decomposition and ant colony algorithm in solving the problem. Doi et al.
[6] and Quesnel et al. [7] respectively studied the impact of fair working time and crews’
preferences on crew recovery problem. Antunes et al. [8] emphasized the robustness
of schedule. Wen et al. [9] studied the relationship between manpower availability and
crew scheduling strategies. Evler et al. [10] and Jin et al. [11] adopted rolling horizon
algorithmand columngenerationmethod respectively in copewith the recovery problem.
However, each of them indeed had come up with a way to either actualize the problem
or speed the convergence velocity. In this paper, we introduced crew’s satisfaction of
work time to the previous single objective model of cost, which was highly associated
with the efficiency and effectiveness of rearrangement. In addition, it also enriched the
diversity of the original recovery problem.

When solving models with more than one objective, it usually fails to meet the
demand of accuracy and timeliness bymerely changing the multi-objective problem into
single-objective one. Andmulti-objective algorithms, likeMOPSO, can satisfy the needs
of multiple objectives and show their merits like fewer adjustment parameters. However,
it also inherits the shortcomings like easily falling into local optimum, which is the main
focus of recent studies. Zhang et al. [12] developed a competitive mechanism to further
improve the global and personal best particles. Luo et al. [13] introduced an indicator and
direction vectors to enhance the capability of local exploration and maintain the non-
dominated solution. Cui et al. [14] proposed a two-archive mechanism to emphasize
convergence and diversity separately. Devaraj et al. [15] hybridized MOPSO and firefly
algorithm tominimize the search space.Quet al. [16] andLiang et al. [17] both introduced
a self-organized basedMOPSO to locatemultiple Pareto optimal solutions. Liu et al. [18]
used objective space divisionmethod to find Pbest andGbest.Mohd et al. [19] hybridized
dynamic boundary search method withMOPSO. Goyal et al. [20] came up with a hybrid
algorithm of RSM (Response SurfaceMethodology) andMOPSO.Mahapatra et al. [21]
introduced a hesitant fuzzy MOPSO algorithm to MORRA problem. Sellami et al. [22]
suggested a MOPSO combined with MATPOWER toolbox. Whereas, recent studies in
the field ofMOPSOhave only focused on the improvement of its internalmechanism and
search methods, but few attempt to integrate other algorithms into MOPSO. Therefore,
in this paper, we combined MOPSO with tabu search to improve the local optimum
problem.

The main contributions of this paper include three parts. First, the crew recovery
model would be closer to real-world situation after we considered the satisfaction of crew
members besides recovery cost. Secondly, we proposed a tabu-basedmulti-objective par-
ticle swarm optimization enabling the primary algorithm to overcome the local optimum
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problem. Thirdly, we established a coding scheme based on the characteristics of the
problem.

The paper has been organized in the following way. Section 2 states the multi-
objective model. Section 3 describes the tabu-based multi-objective particle swarm opti-
mization. Section 4 explains the encoding scheme. Section 5 presents the simulation
results against comparative algorithms. Section 6 concludes the paper and points out the
future directions.

2 Model of Multi-objective Crew Recovery Problem

This section describes the model of crew recovery problem. The model considering cost
and satisfaction is listed below. Table 1 explains the meaning of parameters displayed
in the mathematical model.

Table 1. Definition of symbols

Symbols Meaning of symbols

F Set of flight

K Set of crew member’s number

A Set of crew base

P Set of crew task pairing

i Subscripts of flight, i ∈ F

j Subscripts of crew task list, j ∈ P

a Subscripts of airport, a ∈ A

k Superscripts of crew, k ∈ K

p Subscripts of flight sequence executed by crew k, p = 1, 2, · · ·n
ci Cost of canceling flight i

ha Number of flights for airport a executing original schedule after recovery

dkj Cost of crew k executing crew task list j

sj , fj Start and finish time of crew task list j

PVN Sum of vacation of all members

xkj Whether crew k executes task list j

yi Whether flight i is canceled

aij Whether flight i is contained in crew task list j

bpa , epa Whether the p th task is started or ended at airport a

xkj The j th task executed by crew k

tkj Working time possessed by the j th task executed by crew k

tk Average working time executed by crew k, tk = ∑
j∈P xkj t

k
j /

∑
j∈P xkj
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min Z1 =
∑

k∈K

∑

j∈P
dk
j x

k
j +

∑

i∈F
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min Z2 =
∑

k∈K

∑

j∈P
(xkj t

k
j − xkj t

k)
2

(2)

Our model includes two objective functions. Objective function (1) demands the
lowest executing cost and canceling cost. Objective function (2) requires the minimum
of crew member’s worktime variance, which means the fairness of the worktime of each
crew is preferred.

s.t.
∑

k∈K

∑

j∈P
aijx

k
j + yi = 1 ∀i ∈ F (3)

∑

k∈K
xkj ≤ 1, ∀j ∈ P (4)

∑

j∈P
xkj (fj − sj) ≤ 100, ∀k ∈ K (5)

∣
∣
∣xkj+1sj+1 − xkj fj

∣
∣
∣ ≥ xkj x

k
j+1 ∀k ∈ K, j ∈ P (6)

xkpbpa = xkp+1e(p+1)a, ∀k ∈ K, ∀a ∈ A, p ∈ Z (7)

Constraint (3) ensures each flight can only be executed by single crew, or canceled.
Constraint (4) guarantees each crew can execute at most one task list. Constraint (5)
requires the duration of crew executing task every month is less than 100 h. Constraint
(6) restricts the rest time of crew between two consecutive tasks is more than 1 h.
Constraint (7) ensures the ending airport of preceding task is the same as the following
task’s airport.

3 Improved Multi-objective Particle Swarm Algorithm

In this section, we present our tabu-based multi-objective particle swarm algorithm,
abbreviated as MOPSO-TS, which combining the primary MOPSO and tabu search.
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3.1 Primary MOPSO

Multi-objective particle swarm optimization is based on single-objective PSO, finding
global excellent solution set through establishing non-dominant solution set and selecting
one particle in non-dominant set as guiding solution. Through randomizing the location
of each point, iterating and updating towards different directions and broadly exploring
the unknown space, a Pareto front will be obtained finally.

3.2 Tabu-Based Multi-objective Particle Swarm Algorithm

Due to MOPSO’s drawback of prematurity and local optima, we introduced tabu search
to the primary MOPSO.

Tabu search algorithm is an iterative search algorithm simulating human intelligence.
It can avoid roundabout searching by setting up tabu list and tabu principle, therefore
escape from local optimal point and enhance the ability of global search.

Targeting at the shortcoming of MOPSO, we combine the MOPSOwith tabu search.
Since the initial solution shows a great impact on the effectiveness of tabu search algo-
rithm, firstly, we introduce tabu search algorithm after optimizing iteratively byMOPSO.
Then updating the tabu list on the basis of comparatively excellent group which is con-
stituted by non-dominant solution and partly dominant solution. And searching in the
neighborhood until the terminal condition is met. The process in detail is presented in
Fig. 1 and the improvement is circled in red.

Fig. 1. Flow chart of MOPSO with tabu search
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Fig. 2. Encoding scheme of crew recovery problem

3.3 Tests and Results

Intending to verify the performance of MOPSO-TS, we adopted the ZDT1, ZDT2 and
ZDT3 as test functions forwarded by famous scholar Deb [23].

This paper compared MOPSO-TS with primary MOPSO under the same test func-
tions and conditions, and evaluated these algorithms through IGD andHV. Table 2 shows
the average number of each index after 30 times of independent experiments.

Table 2. Results of test functions

Test function Index MOPSO MOPSO-TS

ZDT1 IGD 9.57E−03 6.56E−03

HV 7.11E−01 7.15E−01

ZDT2 IGD 9.21E−03 6.54E−03

HV 4.17E−01 4.40E−01

ZDT3 IGD 1.21E−02 8.18E−03

HV 5.95E−01 5.97E−01

According to the table, the Pareto fronts concluded by MOPSO-TS in the three
test functions are all better than MOPSO. And among the algorithms, MOPSO-TS has
the smallest IGD and biggest HV, indicating that MOPSO-TS is better in convergency,
diversity and overall performance.
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4 Encoding Scheme

According to the model and the characteristic of the problem, we adopted the encoding
scheme in Fig. 2.

Eachparticle in the group represents one scheduling scheme.Thenumber of particle’s
dimension refers to the total number of flights. For each dimension which equals to k, it
represents the corresponding flight is executed by the kth crew. If the dimension value
is 0, it means the flight is canceled.

Table 3. Primary flight schedule

Flight Departure airport Arrival airport Departure time Arrival time Flying time

1481 BOS CLE 730 930 158

1519 BOS GSO 1015 1210 155

1687 CLE BOS 740 940 156

789 CLE EWR 1100 1225 119

1867 CLE GSO 1335 1450 113

1609 CLE GSO 1650 1805 112

1568 CLE GSO 2150 2305 110

1601 EWR GSO 700 843 117

1779 EWR GSO 830 1015 121

1690 EWR CLE 955 1134 124

1531 EWR GSO 1155 1330 130

1431 EWR GSO 1300 1440 136

1626 GSO EWR 1220 1353 129

1670 GSO CLE 1240 1355 124

1678 GSO CLE 1545 1700 108

1591 GSO CLE 1630 1758 121

1720 GSO CLE 1725 1843 116

1698 GSO EWR 1825 1957 130

5 Experiments and Results

In this section, we simulated the rescheduling process due to the cancelation of cer-
tain flight under the force majeure like inclement weather and natural disaster on
MATLAB2020a, while balancing the minimal recovery cost and even worktime.
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Table 4. Primary crew schedule

Crew Flight
number

Departure
airport

Arrival
airport

Departure
time

Arrival time Flying time

E1 1601 EWR GSO 700 843 117

1626 GSO EWR 1220 1353 129

E2 1779 EWR GSO 830 1015 121

1670 GSO CLE 1240 1355 124

1609 CLE GSO 1650 1805 112

E3 1690 EWR CLE 955 1134 124

1867 CLE GSO 1335 1450 113

1678 GSO CLE 1545 1700 108

E4 1531 EWR GSO 1155 1330 130

1591 GSO CLE 1630 1758 110

1568 CLE GSO 2150 2305 110

E5 1687 CLE BOS 740 940 156

1519 BOS GSO 1015 1210 155

1698 GSO EWR 1825 1957 130

E6 1481 BOS CLE 730 930 158

789 CLE EWR 1100 1225 119

1431 EWR GSO 1300 1440 136

1720 GSO CLE 1725 1843 116

5.1 Parameter Setting

This paper used data in Table 3 and Table 4 [24] to verify the performance ofMOPSO-TS
in solving irregular flight recovery problem, involving 18 flights and 6 crews. The total
flying time must be less than 100 h and the gap between two continual flights is ought to
be longer than one hour. The canceling cost is 100 thousand yuan and switching cost is
20 thousand yuan. Table 5 is the detailed parameter setting of MOPSO-TS. To simulate
abnormal situation, we assume that flight 1720 is canceled due to epidemic.

Table 5. Parameters of algorithm

Symbols Meaning Value

MOPSO-related

I Maximum iteration time 2000

D Dimension of particle 17

(continued)
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Table 5. (continued)

Symbols Meaning Value

NP Number of particles 100

NR Number of repository 100

NC Number of candidate 150

W Inertia weight 0.9

Wdamp Inertia weight damping rate 0.9

vmax ; vmin Lower and upper bound of variables 6;0

c1 Personal learning coefficient 1.5

c2 Global learning coefficient 1.5

Tabu Search-related

TI Maximum iteration time of tabu search 500

mu Mutation rate 0.7

nGrid Number of grid per dimension 7

Alpha Inflation rate 0.1

Beta Leader selection pressure 2

Gamma Deletion selection pressure 2

TL Tabu length 9

5.2 Experiment Result

We adopted MOPSO-TS and MOPSO to solve the problem independently for thirty
times, and compared the Pareto Front of them. Pareto front has many points, and we

Table 6. Recovered crew schedule

Crew Flight
number

Departure
airport

Arrival
airport

Departure
time

Arrival time Flying time

E1 1601 EWR GSO 700 843 117

1670 GSO CLE 1240 1355 129

1609 CLE GSO 1650 1805 112

E2 1779 EWR GSO 830 1015 121

1626 GSO EWR 1220 1353 124

E3 1690 EWR CLE 955 1134 156

1867 CLE GSO 1335 1450 155

1678 GSO CLE 1545 1700 108

E4 1531 EWR GSO 1155 1330 124

1591 GSO CLE 1630 1758 110

(continued)
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Table 6. (continued)

Crew Flight
number

Departure
airport

Arrival
airport

Departure
time

Arrival time Flying time

1568 CLE GSO 2150 2305 110

E5 1687 CLE BOS 740 940 130

1519 BOS GSO 1015 1210 116

1698 GSO EWR 1825 1957 136

E6 1481 BOS CLE 730 930 158

789 CLE EWR 1100 1225 119

1431 EWR GSO 1300 1440 136

Fig. 3. The Pareto Front of MOPSO-TS, MOPSO

choose one of the point with the lowest cost to exhibit the specific recovery scheme,
which is shown as Table 6.

According to the Pareto Front curves in Fig. 3, the front of MOPSO-TS was closer to
the bottom left of target space thanMOPSO,which demonstratedMOPSO-TSperformed
better in the solution of our model.

6 Conclusions and Future Directions

In this paper, we studied irregular flight recovery problem, created a multi-objective
model considering the fare and satisfaction concurrently and proposed an improved
multi-objective particle swarm optimization hybridizing tabu search. In the future, we
will apply our algorithm to other problems with multiple objectives and come up with
new elements to enrich our model.
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