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Abstract. The recent advances in 3D sensing technology have made
possible the capture of point clouds in significantly high resolution. How-
ever, increased detail usually comes at the expense of high storage, as
well as computational costs in terms of processing and visualization oper-
ations. Mesh and Point Cloud simplification methods aim to reduce
the complexity of 3D models while retaining visual quality and rele-
vant salient features. Traditional simplification techniques usually rely on
solving a time-consuming optimization problem, hence they are impracti-
cal for large-scale datasets. In an attempt to alleviate this computational
burden, we propose a fast point cloud simplification method by learning
to sample salient points. The proposed method relies on a graph neural
network architecture trained to select an arbitrary, user-defined, num-
ber of points according to their latent encodings and re-arrange their
positions so as to minimize the visual perception error. The approach is
extensively evaluated on various datasets using several perceptual met-
rics. Importantly, our method is able to generalize to out-of-distribution
shapes, hence demonstrating zero-shot capabilities.
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1 Introduction

The progress in sensing technologies has significantly expedited the 3D data
acquisition pipelines which in turn has increased the availability of large and
diverse 3D datasets. With a single 3D sensing device [39], one can capture a
target surface and represent it as a 3D object, with point clouds and meshes
being the most popular representations. Several applications, ranging from vir-
tual reality and 3D avatar generation [26,46] to 3D printing and digitization of
cultural heritage [43], depend from such representations. However, in general, a
3D capturing device generates thousands of points per second, making process-
ing, visualization and storage of captured 3D objects a computationally daunting
task. Often, raw point sets contain an enormous amount of redundant and puta-
tively noisy points of points with low visual perceptual importance, which results
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into an unnecessary increase in the storage costs. Thus processing, rendering and
editing applications require the development of efficient simplification methods
that discard excessive details and reduce the size of the object, while preserving
their significant visual characteristics. In particular, triangulation, registration
and editing processes of real-world scans include an initial simplification step to
achieve real-time meshing and rendering. In contrast to sampling methods that
aim to preserve the overall point cloud structure, simplification methods attempt
to solve the non-trival task of preserving the semantics of the input objects [8].
Visual semantics refer to the salient features of the object that mostly correlate
with human perception and determine its visual appearance in terms of curva-
ture and roughness characteristics of the shape [27,33]. As can be easily observed
in an indicative case shown in Fig. 1, effortless sampling techniques, such as FPS
or uniform sampling, can easily preserve the structure of a point cloud. However,
the preservation of perceptually visual characteristics, especially when combined
with structural preservation, remains a challenging task.

Fig. 1. Point cloud simplified using FPS
(left) smooths out facial characteristics of
the input whereas our method preserves
salient features of the input (right).

Traditional simplification methods
manage to retain the structural and
the salient characteristics of large point
clouds [15,42,49] by constructing a
point importance queue that sorts
points according to their scores at every
iteration. However, apart from being
very time demanding, such optimiza-
tions are non-convex with increased
computational requirements and can
not be generalized to different topolo-
gies. On the contrary, an end-to-end dif-
ferentiable neural-based simplification method could leverage the parallel pro-
cessing of neural networks and simplify batches of point clouds in one pass [45].

In this study, we tackle the limitations of the literature on the task of point
cloud simplification and propose the first, to the best of our knowledge, learnable
point cloud simplification method. Motivated by the works that showcase the
importance of perceptual saliency, we propose a method that preserves both the
salient features as well as the overall structure of the input and can be used
for real-time point cloud simplification without any prior surface reconstruction.
Given that our method is fully differentiable, it can be directly integrated to any
learnable pipeline without any modification. Additionally, we introduce a fast
latent space clustering using FPS that could benefit several fields (such as graph
partitioning, generative models, shape interpolation, etc.), serving as a fast (non-
iterative) alternative to differentiable clustering, in a way that the cluster center
selection is guided by the loss function. Finally, we highlight the limitations
of popular distance metrics, such as Chamfer, to capture salient details of the
simplified models, and we propose several evaluation criteria, well-suited for
simplification tasks. The proposed method is extensively evaluated in a series of
wide range experiments.
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2 Related Work

Mesh Simplification is a well studied field with long history of research. A
mesh can be simplified progressively by two techniques, namely vertex decima-
tion and edge collapse. Although the first approach is more interpretable, since
it assigns importance scores to each vertex [36,51,52], it requires careful re-
tessellation in order to fill the generated holes. Edge folding was first introduced
in [18], where several transforms such as edge swap, edge split and edge collapse
were introduced to minimize a simplification energy function. In the seminal
works of [15,50], the authors associated each vertex with the set of planes in
its 1-hop neighborhood and defined a fundamental quadric matrix quantifying
the distance of a point from its respective set of planes. A Quadric Error Metric
(QEM) was proposed to measure the error introduced when an edge collapses,
ensuring that edges with the minim error are folded first. Several modification
of the QEM cost function have been proposed to incorporate curvature features
[22,23,38,62], mesh saliency [2,40,59] or to preserve boundary constrains [3]
and spectral mesh properties [34,37]. Recently, [17] proposed a learnable edge
collapse method that learns the importance of each edge, for task-driven mesh
simplification. However, the edges are contracted in an inefficient iterative way
and the resulting mesh can only be decimated approximately by two.

Point Cloud Simplification and Sampling: Similar to mesh simplification,
iterative point selection and clustering techniques have also been proposed for
point clouds [16,42,49,53,64]. In particular, point cloud simplification can be
addressed either via mesh simplification where the points are fitted to a surface
and then simplified using traditional mesh simplification objectives [1,14], or via
direct optimization on the point cloud where the points are selected and deci-
mated according to their estimated local properties [32,42,47,53,64]. However,
similar to mesh simplification, computationally expensive iterative optimization
is needed, making them inefficient for large scale point clouds. The point cloud
simplification methodology presented in this paper attempts to address and over-
come the inefficiencies of the aforementioned approaches using a learnable alter-
native that works with arbitrary, user-defined decimation factors.

In a different line of research, sampling methods rely on a point selection
scheme that focuses on retaining either the overall structure of the object or
specific components of the input. A huge difference between simplification and
sampling is founded upon their point selection perspective. Sampling methods
are usually utilized for hierarchical learning [48] in contrast to simplification
methods that attempt to preserve as much of the visual appearance of the input
even at very low resolutions. Farthest Point Sampling (FPS) [12], along with sev-
eral modification of it, remains the most popular sampling choice and has been
widely used as a building block in deep learning pipelines [47,48,61]. Neverthe-
less, as we experimentally showcase, FPS directly from the input xyz-space can
not preserve sharp details of the input and thus is not suitable for simplification
tasks. Recently, several methods [11,25] have been proposed as a learnable alter-
native for task-driven sampling, optimized for downstream tasks. However, they
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require the input point clouds to have the same size which limits their usage
to datasets with different topologies. In addition, they explicitly generate the
sampled output using linear layers which is not scalable to large point clouds.
Although the learnable sampling methods are closely related to ours, they only
sample point clouds in a task-driven manner and as a result, the preservation of
the high frequency details of the point cloud is not ensured.

Assessment of Perceptual Visual Quality: Processes such as simplification,
lossy compression and watermarking inevitably introduce distortion to the 3D
objects. Measuring the visual cost in rendered data is a long studied problem
[9,30]. Inspired by Image Quality Assessment measures, the objective of Percep-
tual Visual Quality (PVQ) assessment is to measure the distortion of an object
in terms directly correlated with the Human Perceptual System (HPS). Sev-
eral methods have been proposed, acting directly on 3D positions, to measure
the PVQ using Laplacian distances [21], curvature statistics [24,28,54], dihe-
dral angles [55] or per vertex roughness [9]. Several studies [10,13,29,63] utilized
crowdsourcing platforms and user subjective assessments to identify the most
relevant geometric attributes that mostly correlate with human perception. The
findings demonstrated that curvature related features along with dihedral angles
and roughness indicate strong similarity with the HVS. In this work, motivated
by the aforementioned studies we utilized curvature related losses and quality
measures to train and assess the performance of the proposed model and we
refer to them as perceptual measures.

3 Method

3.1 Preliminaries: Point Curvature Estimation

Calculating the local surface properties of an unstructured point cloud is a non-
trivial problem. As demonstrated in [19,42], covariance analysis can be an intu-
itive estimator of the surface normals and curvature. In particular, considering a
neighborhood Ni around the point pi ∈ R3 we can define the covariance matrix:

C =
1

k − 1

k∑

i=1

(pi1 − pi)T (pi1 − pi), pij ∈ Ni (1)

Solving the eigendecomposition of the covariance matrix C we can derive the
eigenvectors corresponding to the principal eigenvalues that define an orthogo-
nal frame at point pi. The eigenvalues λi measure the variation along the axis
defined by their corresponding eigenvector. Intuitively, the eigenvectors that cor-
respond to the largest eigenvalues span the tangent plane at point pi, whereas
the eigenvector corresponding to the smallest eigenvalue can be used to approxi-
mate the surface normal ni. Thus, given that the smallest eigenvalue λ0 measures
the deviation of point pi from the surface, it can be used as an estimate of point
curvature. As shown in [42], we may define:

κ(pi) =
λ0

λ0 + λ1 + λ2
, λ0 < λ1 < λ2 (2)
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as the local curvature estimate at point pi which is ideal for tasks such as
point simplification. Using the previously estimated curvature at point pi we can
estimate the mean curvature as the Gaussian weighted average of the curvatures
around the neighborhood Ni:

K̄(pi) =

∑
j∈Ni

κ(pj) exp (−‖pj − pi‖2/h)
∑

j∈Ni

exp (−‖pj − pi‖2/h)
(3)

where h is a constant defining the neighborhood radius. Finally, we can define an
estimation of the roughness as the difference between curvature and the mean
curvature at point pi as: R(pi) = |κ(pi) − K̄(pi)|

3.2 Model

The main building block of the proposed architecture is a graph neural network
that receives at its input a point cloud (or a mesh) P1 with N points pi and
outputs a simplified version P2 with M points, M << N . It is important to note
that the simplified point cloud P2 does not need to be a subset of the original
point set P1. The proposed model is composed by three modules: the Projection
Network, the Point Selector and the Refinement Network. Figure 2 illustrates
the architecture of the proposed method.
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Fig. 2. Overview of the proposed method. Initially a point cloud (or a mesh) is passed
through a projection network (green) and embedded to a higher dimensional latent
space. FPS is used to select points from the set of latent representations (blue) that
can be conceived as cluster centers of the input. Finally, a k-NN graph is constructed
between the cluster centers and the input points that is used to modify their positions
using the refinement layer (purple). (Color figure online)

Projection Network and Point Selector: In this study, we formulate sam-
pling as a clustering problem. In particular, we aim to cluster points that share
similar perceptual and structural features and express the simplified point cloud
using the cluster centres. To do so, we designed a Projector Network that embeds
(x, y, z) coordinates to a high dimensional space, where points with similar fea-
tures are close in the latent space. In other words, instead of directly sam-
pling from the Euclidean input space, we aim to sample points embedded to
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a high dimensional latent space that captures the perceptual characteristics of
the input. Clustering the latent space will create clusters with latent vectors of
points that share similar perceptual characteristics.

Based on the observations that Farthest Point Sampling (FPS) provides a
simple and intuitive technique to select points covering the point cloud struc-
ture [48], we built a sampling module on top of this sampling strategy, where
points are sampled from a high dimensional space instead of the input xyz -space.
Although any clustering algorithm could be adequate, we utilized FPS module
since it covers sufficiently the input space without solving any optimization prob-
lem. Intuitively, using this formulation we are allowed to interfere the selection
process and transform it to a learnable module that is trained to select point
embeddings that cover the perceptual latent space, enabling the preservation of
both structural and perceptual salient features of the input.

Projector Network comprises of a multi-layer perceptron (MLP) applied to
each point independently, followed by a Graph Neural Network (GNN) that
captures the local geometric properties around each point. The update rule of
the GNN layer is the following:

f ′
i = Wcfi +

1
Ni

∑

j∈Ni

Wnfj (4)

where fi denotes the output of the shared point-wise MLP for point pi and
Wc,Wn represent learnable projection matrices. The connectivity between
points can be given either by the mesh triangulation or by a k-nn query in
the input space (we used a small neighborhood of k = 7 as in [44]). Following
the Projector Network, Point Selector utilizes FPS to select points, i.e. clus-
ter centers, based on their latent representations, in order to cover the latent
space. Given the cluster centers selected by FPS, a k-nn graph is constructed
that connects the center points with their k-nearest neighbours, based on their
3D positions.

Attention-Based Refinement Layer: Cluster centers, their neighboring point
positions along with their respective embeddings from the projection networks
are passed to the attention-based refinement layer (AttRef) that modifies the
positions of the cluster centers. This layer can be considered as a rectification step
that given a neighborhood and its corresponding latent features, displaces the
cluster center points in order to minimize the visual perceptual error. Given that
the latent embeddings of each point can be considered as its local descriptor, the
refinement layer generates the new positions based on the vertex displacements
along with the neighborhood local descriptors. The final positions of the points
as predicted by AttRef are defined as follows:

p′
ci = pci + γ

⎛

⎝ 1
Nci

∑

j∈Nci

αijφ([fj‖pj − pci ])

⎞

⎠ (5)

where γ and φ are MLPs, Nci the k-nearest neighbors of point pci (we used
k = 15), fj the latent features of point pj and αij the attention coefficients
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between center pci and point pj . The attention coefficients αij are computed

using scaled dot-product [56], i.e. αij = softmax
(

θq(fj)
T θk(fi)√
d

)
, where θq, θk are

linear transformations mapping features f to a d-dimensional space.

3.3 Loss Function

The selection of the loss function to be optimized is crucial for the task of sim-
plification since we seek for a balance between the preservation of the object’s
structure and its underlying salient features. A major barrier of most common
distance metrics is the uniform weighting of points that can not reflect the per-
ceptual differences between objects. As shown in many studies [20,35,58] the
commonly used Chamfer distance (CD) between two point sets P1,P2 defined as:

dP1,P2 =
∑

x∈P1

min
y∈P2

‖x − y‖2 +
∑

y∈P2

min
x∈P1

‖x − y‖2 (6)

can only describe the overall surface structure similarity between the two sets
without taking into account the high frequency details of each point cloud.
Figure 1 illustrates an example of such case. Similarly, the point to surface dis-
tance between points of a set P and a surface M as well as the Hausdorff distance
can not preserve salient points of the object rather than its global appearance.
To train our model task it is essential to devise a loss function that preserves
both the salient features along with the structure of the point cloud.

Adaptive Chamfer Distance: As can be easily observed, the first term of Eq.
(6) measures the preservation of the overall structure of P1 by P2, in a uniform
way. To break the uniformity of the first term of CD we introduc a weighting
factor wx in Eq. 7 that penalizes the distances between the two sets at the points
with high salient features ensuring that they will be preserved at the simplified
point cloud. We define the modified adaptive Chamfer distance as:

dAdapt
P1,P2

=
∑

x∈P1

wK̄(x) min
y∈P2

‖x − y‖2 +
∑

y∈P2

min
x∈P1

‖x − y‖2 (7)

where P1 denotes the initial point cloud, P2 the simplified one, and wK̄(x) a
weighting factor proportional to the mean curvature K̄ at point x1. Since we
only aim to retain salient points of P1, we avoid applying a similar weighting
factor to the second term of Eq. (6) to prevent the optimization process from
getting trapped at local minima.

Curvature Preservation: Additional to the adaptive CD, we make use of a
loss term to reinforce the selection of high curvature points of the input. To
quantify the preservation of salient features of the input we introduce an error
to measure the average point-wise curvature distance between the two point
clouds:
1 We define the weights wx using the sigmoid of the normalized curvatures divided by

a temperature scalar τ = 10 to amplify high curvature values.
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Ec =

(
1

|P1|
∑

x∈P1

‖K̄1(x) − K̄2(NN(x,P2))‖2
)1/2

(8)

where NN(x,P2) denotes the nearest neighbour of x in set P2, and K̄(·) the mean
curvature. We refer to this error as Curvature Error (CE).

Overall Objective: We used a combination of the two aforementioned losses
as the total objective to be minimized:

L(P1,P2) = dAdapt
P1,P2

+ λEc, (9)

where λ is used as a scaling factor set to 0.1. The first term ensures that the
selected points cover the surface of the input, while the latter enforces the selec-
tion of high curvature points.

4 Evaluation Criteria

To assess the performance of the simplified models generated by our method in
terms of visual perception we define several metrics that measure the similarity
between the two point cloud models.

Roughness Preservation: Roughness describes the deviation of a point from
the surface defined by its neighbours and has been identified as a salient feature
in many visual perception studies [33,57]. Similar to the curvature preservation
loss, we calculate the roughness preservation error by substituting the curvature
values with roughness in Eq. (8). We refer to this error as RE.

Point Cloud Structural Distortion Measure: Additionally to curvature
and roughness preservation metrics, we also calculate the structural similarity
score between the two point clouds that has been shown to highly correlate
with human perception [31]. In particular, the point cloud Structural Distortion
Measure (SDM) can be defined as:

D(P1,P2) =
αL(pi, p̂i) + βC(pi, p̂i) + γS(pi, p̂i)

α + β + γ
(10)

L(pi, p̂i) =
||K̄1(pi) − K̄2(p̂i)||

max(K̄1(pi), K̄2(p̂i))
, C(pi, p̂i) =

||σK̄1
(pi) − σK̄2

(p̂i)||
max(K̄1(pi), K̄2(p̂i))

(11)

S(pi, p̂i) =
||σK̄1

(pi)σK̄2
(p̂i) − σK̄12

(pi, p̂i)2||
σK̄1

(pi)σK̄2
(p̂i)

(12)

where K1, K2, σK̄1
, σK̄2

, σK̄12
(pi, p̂i) are the mean, the gaussian-weighted stan-

dard deviation and the covariance of the curvatures for point pi in P1 and its cor-
responding point p̂i in P2, respectively. We establish the correspondence between
the two point clouds using the 1-nearest neighbor for each point. The global sim-
ilarity score is obtained using Minkowski pooling as suggested in [28].
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Normals Consistency: Point normals are highly related to visual appearance
as indicators of sharp and smooth areas. We measure the consistency of normals’
orientations between the two models using the cosine similarity loss:

En =
1

|P1|
∑

x∈P1
y∈NN(x,P2)

1 − nx · ny

‖nx‖‖ny‖ +
1

|P2|
∑

y∈P2
x∈NN(y,P1)

1 − nx · ny

‖nx‖‖ny‖ (13)

where nx denotes the normal at point x and NN(x,P2) the nearest neighbour
of x in set P2, calculated as described in Sect. 3.1.

5 Experiments

In this section we extensively evaluate the proposed method with both quanti-
tative and qualitative experiments.

Baselines. We compare our approach against several sampling and simplifica-
tion methods including: uniform sampling (random), FPS, PointASNL adaptive
sampling method [61], quadric error metric (QEM) simplification [15], spectral
mesh simplification [37], feature preserving point cloud simplification [49] along
with a top curvature points sampling (TCP) where the top-k curvature points
are selected from the input point cloud. We failed to compare with recent sim-
plification methods [34,41] that rely on the eigendecomposition of the Laplacian
matrix, since they entail an overwhelmingly large processing run-time and mem-
ory consumption (≈ 15 min for a mesh with ≈ 15K points).

Datasets. We evaluated the proposed method using several publicly avail-
able 3D datasets, with different characteristics. The simplification benchmark
TOSCA [6] dataset comprises 80 synthetic high-resolution meshes with 9 differ-
ent deformable objects. It is an excellent candidate to assess feature-preserving
simplification, since most of its meshes are non-smooth consisting of high cur-
vature regions. Additionally, we used the popular ModelNet10 dataset [60] and
the fixed topology high-resolution MeIn3D face dataset [5]. All datasets used
were randomly split in 80%–20% train-test sets, taking care that none of the
identities/shapes used for training are present in the respective test set.

Evaluation. We quantitatively evaluate the quality of the simplified point
clouds in three folds. Primarily, we measure the low-level structural and per-
ceptual measures, as described in Sect. 4, in Sect. 5.1. We additionally use an
pre-trained objective classifier to measure the preservation of high-level seman-
tics along with a user-study that aims to access the conceivable human perceptual
similarity between the input and the simplified models. Furthermore, we access
the importance of the major components of the proposed method using abla-
tions studies, as well as the performance of the proposed method under noisy
conditions and real-world scans. Due to space limitations several of the afore-
mentioned experiments are reported on the supplementary material along with
additional qualitative results.
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5.1 Point Cloud Simplification

In this section, we showcase the simplification performance of the proposed
method. For each dataset, we report both structural (i.e. CD, NC) as well as per-
ceptual metrics (i.e. CE, RE, SDM) for the proposed and the baseline methods.
Table 1 indicates the superiority of the proposed method to maintain the percep-
tual features of the input (i.e. low SDM) without sacrificing the overall structure
(i.e. low CD) of the shape at three indicative simplification ratios. Results for
larger simplification ratios can be found in the supplementary material. In con-
trast to TPC method where the selection of high curvature points leads to an
increased Chamfer distance, the proposed method achieves a fair balance between
structure (CD and NC) and saliency (SDM and RE). Additionally, the proposed
method exhibits lower perceptual error (SDM) compared to FPS and PointASNL
[61] methods that sample points directly from the xyz-space. This may be also
observed in Fig. 3 where sampling from the perceptual latent space can effectively
induce the preservation of the details of the input cloud.

Table 1. Simplification performance tested on TOSCA (top), ModelNet10 (middle)
and MeIn3d (bottom) datasets. Best approaches are highlighted in bold and second
best in red. We refer to the dataset used for training as “Proposed-Dataset”

Method TOSCA

Ns/Norg = 0.2 Ns/Norg =0.1 Ns/Norg =0.05

CD NC RE(×10−4) SDM(×10−4) CD NC RE(×10−4) SDM(×10−4) CD NC RE(×10−4) SDM(×10−4)

Random 1.63 0.312 4.45 6.07 3.35 0.342 4.91 10.7 6.68 0.369 5.71 19.2

TCP 51.3 0.625 4.99 9.52 129.4 0.732 6.42 17.8 172.5 0.793 6.20 32.4

FPS 0.81 0.307 4.71 5.13 1.93 0.341 4.82 9.64 3.94 0.321 5.56 18.3

QEM 1.35 0.291 4.01 5.36 2.64 0.310 4.79 10.4 4.77 0.338 5.53 18.4

Liu et al. [37] 2.17 0.358 4.39 5.39 3.12 0.331 4.96 10.4 5.62 0.441 5.96 18.5

Qi et al. [49] 2.49 0.303 4.45 7.37 3.46 0.353 4.51 13.18 6.15 0.372 5.34 23.18

Yan et al. [61] 1.17 0.301 4.27 5.41 2.54 0.321 4.48 9.51 5.14 0.357 5.27 18.1

Proposed MeIn3D 1.14 0.293 4.15 5.64 2.53 0.313 4.47 8.15 5.36 0.364 5.01 17.7

Proposed ModelNet 1.15 0.310 4.01 5.53 2.51 0.312 4.81 9.72 5.19 0.341 4.99 17.4

Proposed TOSCA 1.12 0.290 3.91 5.01 2.45 0.307 4.41 7.84 4.93 0.333 4.93 16.5

Method ModelNet

Ns/Norg = 0.2 Ns/Norg =0.1 Ns/Norg =0.05

CD (×10−4) NC RE(×10−5) SDM(×10−3) CD(×10−5) NC RE(×10−5) SDM(×10−3) CD(×10−4) NC RE(×10−5) SDM(×10−3)

Random 8.01 0.568 5.91 2.83 20.4 0.655 6.19 4.92 41.02 0.793 6.57 8.19

TCP 197.3 0.898 7.25 3.87 403.1 0.937 7.84 7.11 611.6 0.952 7.01 12.81

FPS 3.12 0.505 6.05 2.74 7.56 0.641 6.39 4.81 16.01 0.744 6.48 8.38

QEM 3.45 0.513 5.94 3.01 9.45 0.625 6.13 5.19 21.43 0.724 6.25 9.12

Liu et al. [37] 4.21 0.537 5.99 3.05 10.32 0.632 6.75 5.32 21.54 0.792 6.52 9.44

Qi et al. [49] 5.64 0.515 6.03 3.47 10.97 0.654 6.54 5.71 26.37 0.745 6.39 9.17

Yan et al. [61] 6.28 0.514 5.87 2.89 11.08 0.643 6.29 5.04 20.69 0.428 6.37 8.61

Proposed-MeIn3D 4.02 0.531 5.93 2.86 29.31 0.610 6.08 4.76 45.12 0.701 6.33 8.02

Proposed-ModelNet 3.32 0.515 5.79 2.68 8.24 0.606 6.06 4.61 17.24 0.696 6.25 7.92

Proposed-TOSCA 4.35 0.523 5.77 2.72 9.42 0.603 5.91 4.64 22.18 0.688 6.04 7.96

Method MeIn3D

Ns/Norg = 0.2 Ns/Norg =0.1 Ns/Norg =0.05

CD (×10−4) NC RE(×10−5) SDM(×10−3) CD(×10−5) NC RE(×10−5) SDM(×10−3) CD(×10−4) NC RE(×10−5) SDM(×10−3)

Random 1.42 0.198 4.15 2.81 3.46 0.313 6.73 5.92 5.52 0.481 7.05 12.4

TCP 158.3 0.801 3.46 3.73 421.1 0.910 6.02 7.38 556.0 0.934 11.87 14.2

FPS 1.12 0.121 3.64 2.96 1.93 0.195 6.29 5.98 3.45 0.484 7.43 11.8

QEM 2.01 0.185 4.53 3.01 2.52 0.198 6.31 5.71 3.65 0.331 8.13 11.3

Liu et al. [37] 2.92 0.215 4.92 3.12 3.14 0.199 6.67 5.92 3.88 0.392 8.46 11.9

Qi et al. [49] 3.12 0.193 4.74 3.45 3.55 0.211 6.51 5.95 4.07 0.405 8.22 12.6

Yan et al. [61] 2.75 0.193 4.70 2.95 3.05 0.205 6.34 5.41 3.76 0.374 9.17 11.4

Proposed-MeIn3D 1.24 0.128 3.15 2.30 2.01 0.192 5.69 4.91 3.25 0.305 6.47 10.6

Proposed-ModelNet 1.75 0.189 3.65 2.45 3.23 0.196 5.73 5.10 4.02 0.369 7.02 10.9

Proposed-TOSCA 1.54 0.168 3.29 2.41 2.32 0.194 5.98 5.06 3.82 0.342 6.49 10.8

Significantly, it can be observed in Table 1 and Fig. 4, the proposed method
outperforms recent methods [37,49,61] under all metrics, and QEM in terms
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Fig. 3. Qualitative comparison between FPS (top row) and the proposed (bottom row)
methods, at different simplification ratios. Differences between the two methods can be
found at coarse and smooth areas, where the proposed model favours the preservation
of high-frequency details of the input point cloud.

of perceptual error. Figure 5, demonstrates the superiority of our method to
remarkably retain the salient points of the input using just 1% of the input
is retained, in contrast to QEM that performs poorly at coarse areas of high
curvature. The selection of salient points of the input is demonstrated in Fig. 3,
where the proposed method favours point selection around the chair’s arm, the
face’s eyes and nose in contrast to points at smooth areas, such as the forehead.
Intuitively, smooth areas require only a few points to describe their associated
planes compared to coarse areas that demand many points in order to preserve
their curvature.

We also experimented with a cross-dataset generalization scenario where
different datasets were used for training and testing the model (bottom rows
in Table 1). Interestingly, it is observed that the proposed model can general-
ize well to out-of-distribution shapes and topologies indicating that it can be
applied directly to any point cloud without fine-tuning, especially when trained
with TOSCA or ModelNet dataset. We argue that this is due to the diversity
of shapes and topologies as well as the presence of many rough regions at the
training sets of these datasets that enforce the model to favour salient features.
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Fig. 4. Curvature preservation error
comparison for the TOSCA dataset at
different simplification ratios. Curva-
ture error scales linearly for the pro-
posed method.

Fig. 5. Colorcoded curvature error
comparison between QEM and the pro-
posed method. Blue color corresponds
to larger error. (Color figure online)

5.2 Computational Time

Inevitably, in addition to salient point preservation, a proper point cloud simpli-
fication method should confront real-time executions. Although time complexity
is beyond the scope of this study, we assessed the time required for simplifying
80 high-resolution meshes from the TOSCA dataset. Since FPS, Uniform and
TCP baseline methods do not require any significant computations, we compare
the proposed method with the popular QEM approach using a highly optimized
version from the MeshLab framework [7] and the official implementations of [49]
and [37]. It is important to note that the code of the proposed method could be
further optimized, using parallel programming. In particular, 80% of the com-
putational time of the proposed method is acquired by k-NN search that could
be further optimized whereas FPS takes 17 % and the rest 3% of the runtime is
spent on the learnable modules. Figure 7 demonstrates that the required mean
runtime of the proposed method decreases drastically across all experiments, as
the desired simplification increases, requiring just a few seconds to simplify the
input to 1% of its original size. In contrast, the methods of [49] and [37] require
approximately a minute to simplify a single mesh which makes them impractical.

5.3 Mesh Simplification

As described in Sect. 2, mesh simplification is a long studied problem that has
been tackled only by greedy algorithms. In this section, we will attempt to pro-
pose an alternative method that circumvents the greedy nature of simplification
using the simplification technique proposed in Sect. 3. The proposed method,
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without the need of any particular modification, can be easily extended for the
task of mesh simplification when combined with a triangulation algorithm to
transform the simplified vertices into a mesh structure. The process unfolds in
two steps. Initially, mesh vertices are simplified by treating them as a point cloud
but, instead of using a k-nn, the mesh adjacency matrix is utilized in order to
determine point connectivity. In a second step, the remaining vertices are re-
triangulated using an off-the-self triangulation algorithm such as Ball Pivoting
[4]. Other triangulation algorithms, such as Delaunay, alpha shapes or Voronoi
diagrams, could be also used but we observed that Ball Pivoting algorithm pro-
duces better results for small point clouds. Figure 6 shows visual results for the
extension of the proposed simplification method to triangular meshes (for various
simplification ratios).

Fig. 6. Simplified meshes using the
proposed method followed by Ball Piv-
oting Algorithm.

Fig. 7. Average time of simplification
for the proposed and the baseline meth-
ods.

5.4 User-Study

Table 2. User studies results of
different methods. We average user
preference scores (higher is better,
results in %). Best results in bold.

Method User choice

Ours vs QEM 73/27

Ours vs Liu et al. [37] 78/22

Our vs FPS 71/29

Average 74/26

To quantify the ability of the proposed
method to select points that correlate with
human perception we performed a user
study, using the paired comparison protocol
contrasting the proposed and one baseline
method. In total, 50 participants were specif-
ically asked to evaluate 18 point clouds and
select one of the two simplified point clouds
that mostly preserves the perceptual details
of the reference one in terms of the overall
shape and identity similarity. In average, as
shown in Table 2, users selected 14 out of the 18 point clouds produced by the
proposed method, as the ones preserving most of the visual features.
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5.5 Simplification Under Noise Conditions

To both quantitatively and qualitatively evaluate the performance of the pro-
posed method in the presence of noise we fed the pretrained model with point
clouds distorted with Gaussian noise (σ = 1). Quantitative experimental result
are summarized in Table 3, with the proposed method to exhibit the best perfor-
mance for almost all metrics (NC, RE, SDM) across all simplification ratios, and
even the best second for structure preservation (CD). Such findings reveal the
anti-noising capabilities of latent space sampling that, compared to xyz-space
sampling, is less affected by the outlier noisy points. For qualitative comparisons
along with results on LiDAR scans we refer the reader to the Supplementary
material.

Table 3. Simplification performance tested on TOSCA dataset with addition of Gaus-
sian noise. Best approaches are highlighted in bold and second best in red.

Method Ns/Norg = 0.2 Ns/Norg = 0.1 Ns/Norg = 0.05

CD NC RE(×10−4) SDM(×10−4) CD NC RE(×10−4) SDM(×10−4) CD NC RE(×10−4) SDM(×10−4)

Random 2.71 0.37 6.56 9.20 4.43 0.38 6.74 14.39 7.78 0.39 6.85 23.63

TCP 24.7 0.48 6.30 9.27 37.2 0.49 6.58 14.83 53.5 0.51 6.77 23.45

FPS 2.74 0.34 6.25 9.89 4.28 0.36 6.34 15.86 6.83 0.39 6.81 25.03

QEM 1.92 0.31 6.61 9.14 2.57 0.36 6.81 14.53 3.85 0.37 6.93 23.12

Liu et al. [37] 3.04 0.35 7.14 9.48 3.99 0.39 7.36 16.21 6.74 0.412 7.61 26.35

Qi et al. [49] 3.21 0.33 7.22 11.14 4.31 0.35 7.54 18.34 7.13 0.39 7.81 27.52

Yan et al. [61] 2.95 0.35 6.54 10.04 4.30 0.39 7.30 16.01 7.11 0.41 7.12 25.14

Proposed 2.50 0.33 6.13 8.81 3.96 0.35 6.24 14.42 6.46 0.37 6.34 22.31

6 Conclusion

Our work emphasises on the proposal of a learnable, neural-based simplifica-
tion approach to overcome the inefficiencies of traditional greedy simplification
methods. In this study we presented the first, to the best of our knowledge,
learnable point cloud simplification method that aims at preserving salient fea-
tures while at the same time retaining the global structural appearance of the
input 3D object. Using three learnable modules we attain to simplify large-scale
point clouds in real-time, addressing the literature limitations regarding com-
putational complexity. As shown in an extensive series of both quantitative and
qualitative experiments the proposed method not only outperforms its coun-
terparts under most perceptual criteria but also exhibits zero-shot capabilities.
Regarding future work, we plan to adapt the proposed method to mesh struc-
tures using a more sophisticated triangulation process. In particular, instead of
using off-the-shelf triangulation algorithms on top of the point cloud simplifica-
tion model, we aim to extend the proposed method to predict the triangulation
of the simplified model utilizing the priors of the input mesh.

Acknowledgements.. Dr. Stefanos Zafeiriou acknowledges support from EPSRC fel-
lowship Deform (EP/S010203/1).
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