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Abstract. Monocular Depth Estimation (MDE) is a task to predict a
dense depth map from a single image. Despite the recent progress brought
by deep learning, existing methods are still prone to errors due to the
ill-posed nature of MDE. Hence depth estimation systems must be self-
aware of possible mistakes to avoid disastrous consequences. This paper
provides an uncertainty quantification method for supervised MDE mod-
els. From a frequentist view, we capture the uncertainty by predictive
variance that consists of two terms: error variance and estimation vari-
ance. The former represents the noise of a depth value, and the latter
measures the randomness in the depth regression model due to training
on finite data. To estimate error variance, we perform constrained ordi-
nal regression (ConOR) on discretized depth to estimate the conditional
distribution of depth given image, and then compute the corresponding
conditional mean and variance as the predicted depth and error variance
estimator, respectively. Our work also leverages bootstrapping methods
to infer estimation variance from re-sampled data. We perform experi-
ments on both simulated and real data to validate the effectiveness of the
proposed method. The results show that our approach produces accurate
uncertainty estimates while maintaining high depth prediction accuracy.
The code is available at https://github.com/timmy11hu/ConOR

Keywords: Monocular depth estimation · Frequentist uncertainty
quantification · Constrained ordinal regression · Bootstrapping

1 Introduction

Estimating depth from 2D images has received much attention due to its
vital role in various vision applications, such as autonomous driving [15] and
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(a) Input image (b) Depth map

(c) Prediction error (d) Uncertainty map

Fig. 1. From a single input image (1a) we estimate depth (1b) and uncertainty (1d)
maps. (1c) is the actual error as the difference between (1b) and ground truth. The
black parts do not have ground truth depth value

augmented reality [41]. In the past decade, a variety of works have suc-
cessfully addressed MDE by using supervised and self-supervised approaches
[6,18,19,24,50,54,57,78]. Yet, the ill-posed nature of the task leads to more
uncertainty in the depth distribution, resulting in error-prone models. In prac-
tice, overconfident incorrect predictions can be harmful or offensive; hence it is
crucial for depth estimation algorithms to be self-aware of possible errors and
provide trustworthy uncertainty information to assist decision making.

This work aims to estimate the uncertainty of a supervised single-image depth
prediction model. From a frequentist perspective, we quantify the uncertainty
of depth prediction by using the predictive variance, which can be decomposed
into two terms: (i) error variance and (ii) estimation variance. Error variance
describes the inherent uncertainty of the data, i.e. depth variations that the
input image cannot explain, also known as aleatoric uncertainty [37]. Estima-
tion variance arises from the randomness of the network parameters caused by
training on finite data, which is conventionally called epistemic uncertainty [37].

One straightforward method to estimate the error variance is to predict the
conditional variance as well as the expected depth value by optimizing the het-
eroskedastic Gaussian Likelihood (GL) with input-dependent variance parame-
ters [65]. However, this approach often leads to unstable and slow training due
to the potentially small variances for specific inputs. Moreover, directly regress-
ing depth value on the input images has been shown sub-optimal prediction
performance [6,24,25]. Alternatively, Yang et al. formulate MDE as a classifica-
tion problem and measure the uncertainty by Shannon entropy [86]. However,
the classification model also leads to sub-optimal prediction performance due
to ignorance of the ordinal relation in depth. Moreover, there is a gap between
Shannon entropy and the uncertainty of the regression model.

To estimate the error variance without sacrificing the prediction accuracy, we
base our work on the deep ordinal regression (OR) model [24]. The original OR
model was trained on discretized depth values with ordinal regression loss, which
showed a significant boost in prediction accuracy compared to vanilla regression
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approaches. However, due to the discretization of depth, an optimal method
to estimate the error variance for this model remains elusive. To tackle this
problem, we take the advantage of the recent progress on distributional regression
[54] to learn a likelihood-free conditional distribution by performing constrained
ordinal regression (ConOR) on the discretized depth values. Compared to OR
[24], ConOR guarantees the learning of conditional distributions of the original
continuous depth given input images. Thus, we can take the expectation from
the conditional distribution estimator as predicted depth, and the variance as
the estimate of error variance.

Estimation variance is a long-standing problem in statistics and machine
learning. If the model is simple, e.g. a linear model, one could easily construct
confidence intervals of the parameters via asymptotic analysis. In our case, as
the asymptotic theory for deep neural networks is still elusive, we leverage the
idea of bootstrap to approximate the estimation variance by the sample vari-
ance of depth estimation calculated from re-sampled datasets. More specifically,
we utilize two types of re-sampling schemes: Wild Bootstrap [84] (WBS) and
Multiplier Bootstrap [10] (MBS). While the WBS performs re-weighting on the
residuals to generate resamples, the MBS samples the weights that act as a mul-
tiplier of the training loss. To speed up training, we first train a single model on
the entire training set and use the model parameters as initialization for training
the bootstrap models. We evaluate our proposed method on both simulated and
real datasets, using various metrics to demonstrate the effectiveness of our app-
roach. Figure 1 shows the masked output of our uncertainty estimator, against
the mistake made by our predicted depth.

2 Related Work

Monocular Depth Estimation. Early MDE approaches tackle the problem
by applying hand-handcrafted filters to extract features [3,11,26,34,47,49,55,
69,73,74,76,88]. Since those features alone can only capture the local informa-
tion, a Markov Random Field model is often trained in a supervised manner
to estimate the depth value. Thanks to representation learning power of CNNs,
recent approaches design various neural network architectures to estimate depth
in an end-to-end manner [2,4,18,19,38,50,52,53,57,63,72,75,82,87]. Eigen et
al. [19] formulate the problem as a supervised regression problem and propose a
multi-scale network architecture. By applying recent progress in CNN technol-
ogy, Laina et al. [50] solve the problem by using a reverse Huber loss and train a
fully convolutional residual network with up-convolutional blocks to increase the
output resolution. Cao et al. [6] address the problem as a classification problem
and use a fully connected Conditional Random Fields to smooth the depth esti-
mation. To utilize the ordinal nature of the discretized depth class, Fu et al. [24]
formulate the problem as ordinal regression [23], and use a standard encoder-
decoder architecture to get rid of previous costly up-sampling techniques. Their
network consists of multiple heads, and each head solves a independent binary
classification problem whether a pixel is either closer or further away from a
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certain depth threshold. However, the network does not output a valid distri-
bution since the probabilities across the thresholds are not guaranteed to be
monotonic.

Aside from supervised learning, many works try to eliminate the need for
labeled data, as depth sensors are usually needed to obtain groundtruth depth.
One direction is to use self-supervised learning, which takes a pair of images
and estimate a disparity map for one of the images as an intermediate step
to minimize the reconstruction loss [29,32,70,71,81,89]. Another direction is to
consider depth estimation problem in a weakly-supervised manner by estimating
the relative depth instead of the absolute metric value [7,9,25,56,61,85,90].

Uncertainty Quantification via Bayesian Inference. Uncertainty quantifi-
cation is a fundamental problem in machine learning. There is a growing interest
in quantifying the uncertainty of deep neural networks via Bayesian neural net-
works [8,43,58,83], as the Bayesian posterior naturally captures uncertainty.
Despite the effectiveness in representing uncertainty, computation of the exact
posterior is intractable in Bayesian deep neural networks. As a result, one must
resort to approximate inference techniques, such as Markov Chain Monte Carlo
[8,16,48,59,62,64] and Variational Inference [5,13,14,22,31,40,45,79]. To reduce
computational complexity, Deep Ensemble [36,51] (DE) is proposed to sample
multiple models as from the posterior distribution of network weights to estimate
model uncertainty. In addition, the connection between Dropout and Bayesian
inference is explored and results in the Monte Carlo Dropout [27,28] (MCD).
Despite its efficiency, [21] points out that MCD changes the original Bayesian
model; thus cannot be considered as approximate Bayesian inference.

Distributional Regression. Over the past few years, there has been increasing
interest in distributional regression, which captures aspects of the response dis-
tribution beyond the mean [17,35,46,60,66,68]. Recently, Li et al. [54] propose a
two-stage framework that estimates the conditional cumulative density function
(CDF) of the response in neural networks. Their approach randomly discretizes
the response space and obtains a finely discretized conditional distribution by
combining an ensemble of random partition estimators. However, this method is
not scalable to the deep CNNs used in MDE. Therefore, we modify their method
to obtain a well-grounded conditional distribution estimator by using one single
network with the Spacing-Increasing Discretization [24].

3 Method

To illustrate our method, we first show our formulation of the uncertainty as
predictive variance and decompose it into error variance and estimation vari-
ance. We then introduce how to make prediction and estimate error variance
via learning a conditional probability mass function (PMF) from a constrained
ordinal regression (ConOR). Finally, we discuss how we infer estimation variance
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using re-sampling methods. Figure 2 demonstrate a brief idea of the training and
testing phase of our method.

3.1 Uncertainty as Predictive Variance

Variance is commonly used in machine learning to measure uncertainty, which
describes how far a set of real observations is dispersed from the expected value.
To quantify how much uncertainty is in the depth prediction, for simplicity let
us consider the depth prediction network as a general location-scale model [20].
We then formulate the model as:

yi = g(xi) +
√

V (xi)εi, for i = 1, . . . , n, (1)

where xi, yi denote the feature and the response variable respectively, g(x) stands
for the mean function, εi represents the random errors with zero mean and unit
variance, and V (x) denotes the variance function. Suppose ĝ is an estimator of
g based on the training observations {(xi, yi)}n

i=1. With x∗ as a new input, the
corresponding unknown response value is

y∗ = g(x∗) +
√

V (x∗)ε∗, (2)

where ε∗ is a random variable with zero mean and unit variance. Given the
estimator ĝ, the value of y∗ is predicted by ŷ∗ = ĝ(x∗), thus the predictive
variance can be written as:

Var [y∗ − ŷ∗] = Var
[
g(x∗) +

√
V (x∗)ε∗ − ĝ(x∗)

]
. (3)

Since y∗ is a new observation and ĝ only depends on the training observations
{(xi, yi)}n

i=1, the random noise ε∗ and ĝ can be seen as independent. This gives

Var [y∗ − ŷ∗] = V (x∗)︸ ︷︷ ︸
error variance

+ Var [ĝ(x∗)]︸ ︷︷ ︸
estimation variance

. (4)

The first component is known as error variance [12], and we refer to the second
component as the estimation variance. Therefore, one can estimate two terms
separately and quantify the total uncertainty by the summation of two terms.
In the following sections, we present how to obtain their empirical estimators
V̂ (x∗) and V̂ar [ĝ(x∗)].

3.2 Constrained Ordinal Regression

Discretization. To learn a likelihood-free distribution, we first discretize con-
tinuous depth into discrete categories with ordinal nature. Considering that com-
puter vision systems as well as humans are less capable of making precise pre-
diction for large depths, we apply the Spacing-Increasing Discretization (SID)
[24,25], which partitions the range of depth [α, β] uniformly on the log space by
K + 1 thresholds t0 < t1 < t2 < · · · < tK into K bins, where

tk = exp [log (α) + k log (β/α)/K] , for k ∈ {0, 1, . . . ,K}. (5)
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Fig. 2. Our approach first uses an encoder-decoder network Φ to extract pixel-wise
features η

(w,h)
i from input image xi, and output the conditional PMF. During training,

we obtain conditional CDF and construct an ordinal regression loss with the ground
truth depth. In the test phase, we compute the expectation and variance from the
conditional PMF estimator as depth prediction and error variance

Let Bk = (tk−1, tk] denote the kth bin, for k ∈ {1, 2, . . . ,K}, we recast the
problem to a discrete classification task that predicts the probability of pixel’s
depth falling into each bin. Let xi denote an image of size W × H × C and Φ
indicate a feature extractor. The W × H × K feature map obtained from the
network can be written as ηi = Φ(xi), and η

(w,h)
i points to the features of (w, h)

pixel. The conditional PMF, probabilities that Y
(w,h)
i belongs to the kth bin,

can be predicted by feeding K-dimensional feature η
(w,h)
i into a softmax layer:

P
(
Y

(w,h)
i ∈ Bk|Φ(xi)

)
=

eη
(w,h)
i,k

ΣK
j=1e

η
(w,h)
i,j

, for k ∈ {1, 2, . . . ,K}, (6)

where η
(w,h)
i,k represents the kth element of η

(w,h)
i (also known as logits). The

softmax normalization ensures the validity of output conditional distributions.

Learning. During the training, to incorporate the essential ordinal relationships
among the discretized classes into the supervision, we obtain the conditional
CDF in a staircase form by cumulatively summing the value of conditional PMF:

P
(
Y

(w,h)
i ≤ tk|Φ(xi)

)
=

k∑

j=1

P
(
Y

(w,h)
i ∈ Bj |Φ(xi)

)
, for k ∈ {1, 2, . . . ,K}.

(7)
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This can be regarded as the probabilities of Y
(w,h)
i less than or equal to the kth

threshold. Given the ground truth depth value y
(w,h)
i , we construct an ordinal

regression loss by solving a pixel-wise binary classification across K thresholds:

�
(
xi, y

(w,h)
i , Φ

)
= −

K∑

k=1

{
1

(
y
(w,h)
i ≤ tk

)
log

(
P(Y (w,h)

i ≤ tk|Φ(xi))
)

+
[
1 − 1

(
y
(w,h)
i ≤ tk

)] [
1 − log

(
P(Y (w,h)

i ≤ tk|Φ(xi))
)]}

, (8)

where 1 is the indicator function. We optimize the network to minimize the
ordinal regression loss over all the training examples with respective to Φ:

L (Φ) =
n∑

i=1

W∑

w=1

H∑

h=1

�
(
xi, y

(w,h)
i , Φ

)
. (9)

Prediction. After training, we obtain an estimator Φ̂ = argminΦ L (Φ) . In
the test phase, considering the multi-modal nature of the predicted distribution,
given a new image x∗, for each pixel, we take the expectation of the conditional
PMF as our prediction:

ĝ(w,h)(x∗) = E
[
Y

(w,h)
∗ |x∗; Φ̂

]
=

K∑

k=1

μkP
(
Y

(w,h)
∗ ∈ Bk|Φ̂(x∗)

)
, (10)

where μk = (tk−1 + tk)/2 is the expected value of kth bin. This gives a smoother
depth prediction, compared to the hard bin assignment used by [24]. More impor-
tantly, the expected value suits well the following uncertainty inference using
variance.

3.3 Error Variance Inference

The inherent variability of response value Y
(w,h)
∗ comes from the noisy nature

of the data, which is irreducible due to the randomness in the real world. While
the expected value describes the central tendency of the depth distribution, the
variance can provide information about the spread of predicted probability mass.
Thus we use the variance from estimated conditional PMF to infer the variance
of the response error:

V̂ (w,h)(x∗) = Var
[
Y

(w,h)
∗ |x∗; Φ̂

]
(11)

=
K∑

k=1

(
μk − E

[
Y

(w,h)
∗ |x∗; Φ̂

])2

P
(
Y

(w,h)
∗ ∈ Bk|Φ̂(x∗)

)
. (12)

Hence our ConOR can predict the depth value together with error variance in
the test phase.
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3.4 Estimation Variance Inference

The second component, estimation variance, represents the discrepancy of our
model prediction E

[
Y

(w,h)
∗ | x∗; Φ̂

]
, which is usually caused by finite knowledge

of training observations D. Ideally, if we have the access to the entire popula-
tion, given a model class Φ and M i.i.d. datasets {Dm}M

m=1, we can have M
independent empirical estimators:

Φ̂m = argmin
Φ

n∑

i=1

W∑

w=1

H∑

h=1

�
(
xm,i, y

(w,h)
m,i , Φ

)
, for m = 1, 2, . . . , M, (13)

where (xm,i, ym,i) represents ith training pair in Dm. Then the estimation vari-
ance Var

[
E[Y (w,h)

∗ |x∗; Φ̂]
]

could be approximated by the sample variance of pre-
diction from different estimators:

1
M − 1

M∑

m=1

⎛

⎝E
[
Y

(w,h)
∗ |x∗; Φ̂m

]
− 1

M

M∑

j=1

E
[
Y

(w,h)
∗ |x∗; Φ̂j

]
⎞

⎠

2

. (14)

However in practice, we cannot compute the estimation variance as we do not
have a large number of datasets from the population. To address this problem, we
adapt re-sampling methods. As a frequentist inference technique, bootstrapping
a regression model gives insight into the empirical distribution of a function
of the model parameters [84]. In our case, the predicted depth can be seen as
a function of the network parameters. Thus we use the idea of bootstrap to
achieve M empirical estimators {Φ̂m}M

m=1 and then use them to approximate
Var

[
E[Y (w,h)

∗ |x∗; Φ̂]
]
. To speed up training, we initialize the M models with the

parameters of the single pre-trained model for prediction and error variance
estimation. We discuss the details of the re-sampling approaches below.

Wild Bootstrap (WBS). The idea of Wild Bootstrap proposed by Wu et al.
[84] is to keep the inputs xi at their original value but re-sample the response
variable y

(w,h)
i based on the residuals values. Given ŷ

(w,h)
i = E[Y (w,h)

i |xi; Φ̂] as
the fitted value, and ε̂

(w,h)
i = y

(w,h)
i − ŷ

(w,h)
i as the residual, we re-sample a new

response value for mth replicate based on

υ
(w,h)
m,i = ŷ

(w,h)
i + ε̂

(w,h)
i · τ

(w,h)
m,i , (15)

where τ
(w,h)
m,i is sampled from standard Gaussian distribution. For each replicate,

we train the model on the new sampled training set:

Φ̂m = argmin
Φ

n∑

i=1

W∑

w=1

H∑

h=1

�
(
xi, υ

(w,h)
m,i , Φ

)
, for m = 1, 2, . . . ,M, (16)

The overall procedure is outlined in Supplementary Material (SM) Sect. 1.
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Multiplier Bootstrap (MBS). The idea the Multiplier Bootstrap [80] is to
sample different weights used to multiply the individual loss of each observation.
Here, we maintain the value of training data but re-construct the loss function
for the mth replicate by putting different sampled weights across observations:

Φ̂m = argmin
Φ

n∑

i=1

W∑

w=1

H∑

h=1

ω
(w,h)
i �(xi, y

(w,h)
i , Φ), for m = 1, 2, . . . ,M, (17)

where ω
(w,h)
i is the weight sampled from Gaussian distribution with unit mean

and unit variance. Details are given in SM Sect. 1.

4 Experiment

To verify the validity of our method, we first conduct intuitive simulation exper-
iments on toy datasets, by which we straightly compare our estimated uncer-
tainty with the ground truth value. The qualitative and quantitative results can
be found in SM Sect. 2. In this section, we evaluate on two real datasets, i.e.,
KITTI [30] and NYUv2 [77]. Some ablation studies are performed to give more
detailed insights into our method.

4.1 Datasets

KITTI. The KITTI dataset [30] contains outdoor scenes (1–80 m) captured
by the cameras and depth sensors in a driving vehicle. We follow Eigen’s split
[19] for training and testing, where the train set contains 23,488 images from 32
scenes and the test set has 697 images. The ground-truth depth maps improved
from raw LIDAR are used for learning and evaluating. We train our model on a
random crop of size 370 × 1224 and evaluate the result on a center crop of the
same size with the depth range of 1 m to 80 m.

NYUv2. The NYU Depth v2 [77] dataset consists of video sequences from a
variety of indoor scenes (0.5–10 m) and depth maps taken from the Microsoft
Kinect. Following previous works [1,4], we train the models using a 50K subset,
and test on the official 694 test images. The models are trained on a random
crop size of 440 × 590 and tested based on the pre-defined center crop by [19]
with the depth range of 0 m to 10 m.

4.2 Evaluation Metrics

The evaluation metrics of the depth prediction follow the previous works [19,57].
For the comparison of uncertainty estimation, as there is no ground truth label,
we follow the idea of sparsification error [39]. That is, when pixels with the
highest uncertainty are removed progressively, the error should decrease mono-
tonically. Therefore, given an error metric ξ, we iteratively remove a subset (1%)
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of pixels according to the descending order of estimated uncertainty and com-
pute ξ on the remaining pixels to plot a curve. An ideal sparsification (oracle) is
obtained by sorting pixels in descending order of true errors; hence we measure
the difference between estimated and oracle sparsification by the Area Under the
Sparsification Error (AUSE) [39]. We also calculate the Area Under the Random
Gain (AURG) [67], which measures the difference between the estimated spar-
sification and a random sparsification without uncertainty modelling. We adopt
root mean square error (rmse), absolute relative error (rel), and 1−δ1 as ξ. Both
AUSE and AURG are normalized over the considered metrics to eliminate the
factor of prediction accuracy, for the sake of fair comparison [39].

4.3 Implementation Details

We use ResNet-101 [33] and the encoder-decoder architecture proposed in [24]
as our network backbone. We add a shift γ to both α and β so that α+ γ = 1.0,
then apply SID on [α + γ, β + γ]. We set α, β, γ to 1, 80, 0 for KITTI [30] and
0, 10, 1 for NYUv2 [77]. The batch size is set to 4 for KITTI [30] and 8 for NYUv2
[77]. The networks are optimized using Adam [44] with a learning rate of 0.0001
and trained for 10 epochs. We set our bootstrapping number to 20. To save
computational time, we finetune the bootstrapping model for two epochs from
the pre-trained model. This speedup yields only a subtle effect on the result.

For comparison, we implement Gaussian Likelihood (GL) and Log Gaus-
sian Likelihood (LGL) for estimating the error variance and apply Monte Carlo
Dropout (MCD) [28] and Deep Ensemble (DE) [51] for approximating estimation
variance. Following previous works [42,51], we adapt MCD [28] and DE [51] on
GL and LGL, which is designed under Bayesian framework. We also implement
Gaussian and Log Gaussian in our framework with WBS and MBS. We incor-
porate a further comparison to the other methods that model the uncertainty
on supervised monocular depth prediction, including Multiclass Classification
[6,25] (MCC) and Binary Classification [86] (BC), applying the same depth dis-
cretization strategy as ours. Using softmax confidence (MCC) and entropy (BC)
is generally seen as a total uncertainty [37], thus they are not adapted in any
framework. We make sure the re-implemented models for comparison have an
identical architecture to ours but only with a different prediction head.

4.4 Results

Table 1 and Table 2 give the results on KITTI [30] and NYUv2 [77], respectively.
Here we only show three standard metrics of depth evaluation, more details can
be found in SM Sect. 3.1. We put the plots of the parsification curve in SM
Sect. 3.2. Firstly, our methods achieve the best result on the depth prediction in
terms of all the metrics. Secondly, our methods outperform others in both AUSE
and AURG. This strongly suggests that our predicted uncertainty has a better
understanding of the error our model would make. The results show our method
applies to both indoor and outdoor scenarios. Qualitative results are illustrated
in Fig. 3 and Fig. 4, more results can be found in SM Sect. 3.3.
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Table 1. Performance on KITTI

Method Prediction Uncertainty: AUSE(ξ) ↓ Uncertainty: AURG(ξ) ↑
rmse↓ rel↓ δ1 ↑ rmse rel 1 − δ1 rmse rel 1 − δ1

MCC [6,25] 3.011 0.081 0.915 0.180 0.421 0.566 0.673 0.248 0.460

BC [86] 2.878 0.078 0.919 0.179 0.292 0.304 0.674 0.398 0.658

GL+MCD [28] 3.337 0.102 0.875 0.111 0.216 0.137 0.726 0.456 0.787

GL+DE [51] 2.900 0.089 0.908 0.100 0.233 0.131 0.751 0.447 0.829

GL+WBS 3.064 0.083 0.906 0.095 0.243 0.132 0.739 0.433 0.818

GL+MBS 3.064 0.083 0.906 0.096 0.242 0.131 0.739 0.435 0.817

LGL+MCD [28] 3.219 0.158 0.836 0.160 0.531 0.452 0.558 0.146 0.558

LGL+DE [51] 2.852 0.132 0.873 0.159 0.548 0.397 0.538 0.132 0.601

LGL+WBS 2.965 0.132 0.870 0.212 0.528 0.396 0.559 0.130 0.602

LGL+MBS 2.965 0.132 0.870 0.158 0.524 0.384 0.557 0.131 0.597

ConOR+WBS 2.709 0.075 0.928 0.095 0.181 0.107 0.754 0.500 0.849

ConOR+MBS 2.709 0.075 0.928 0.094 0.180 0.106 0.754 0.501 0.851

(a) Image (b) Depth prediction (c) Ground truth depth (d) Prediction error

(e) Error variance (f) Estimation variance (g) Predictive variance (h) Masked variance

Fig. 3. Depth prediction and uncertainty estimation on KITTI using ConOR and MBS.
The masked variance is obtained from predictive variance. The black parts do not have
ground truth depth in KITTI. Navy blue and crimson indicate lower and higher values
respectively (Color figure online)

4.5 Ablation Studies

In this section, we study the effectiveness of modelling the error variance and the
estimation variance. We first inspect the dominant uncertainty in our predictive
variance, then illustrate the advantage of ConOR and analyze the performance
between bootstrapping and previous Bayesian approaches. Lastly, we perform a
sensitivity study of ConOR on KITTI [30].

Dominant Uncertainty. The uncertainty evaluation of our proposed method
is based on the estimated predictive variance, which is composed of error variance
and estimation variance. Table 3 reports the performance of uncertainty evalua-
tion by applying different variances. We can notice that using predictive variance
can achieve the best performance on AUSE and AURG for both datasets. In the
predictive variance, the error variance is more influential than the estimation
variance since its individual score is significantly close to the final scores of pre-



248 D. Hu et al.

Table 2. Performance on NYUv2

Method Prediction Uncertainty: AUSE(ξ) ↓ Uncertainty: AURG(ξ) ↑
rmse↓ rel↓ δ1 ↑ rmse rel 1 − δ1 rmse rel 1 − δ1

MCC [6,25] 3.658 1.518 0.017 0.341 0.817 0.437 −0.001 −0.422 −0.004

BC [86] 0.519 0.141 0.815 0.369 0.368 0.362 0.273 0.221 0.524

GL+MCD [28] 0.533 0.168 0.770 0.353 0.405 0.513 0.247 0.175 0.343

GL+DE [51] 0.503 0.158 0.790 0.333 0.367 0.418 0.258 0.205 0.450

GL+WBS 0.534 0.171 0.770 0.335 0.399 0.502 0.267 0.180 0.357

GL+MBS 0.534 0.171 0.770 0.333 0.393 0.487 0.269 0.186 0.372

LGL+MCD [28] 0.773 0.222 0.618 0.349 0.668 0.855 0.240 −0.140 −0.112

LGL+DE [51] 0.746 0.216 0.621 0.365 0.691 0.889 0.204 −0.164 −0.136

LGL+WBS 0.756 0.221 0.618 0.370 0.675 0.858 0.199 −0.149 −0.115

LGL+MBS 0.756 0.221 0.618 0.370 0.674 0.857 0.199 −0.149 −0.114

ConOR+WBS 0.490 0.132 0.832 0.297 0.340 0.333 0.343 0.245 0.559

ConOR+MBS 0.490 0.132 0.832 0.297 0.343 0.336 0.340 0.243 0.557

(a) Image (b) Depth prediction (c) Ground truth depth (d) Prediction error

(e) Error variance (f) Estimation variance (g) Predictive variance

Fig. 4. Depth prediction and uncertainty estimation on NYUv2 using ConOR and
WBS. Navy blue and crimson indicate lower and higher values respectively (Color
figure online)

dictive variance. This indicates that the error variance estimated by ConOR
(aleatoric uncertainty) can already explain most of the predictive uncertainty,
and our approach can further enhance the uncertainty understanding using re-
sampling methods. This result is reasonable because the large sample size of
KITTI [30] and NYUv2 [77] training set leads to low estimation variance.

ConOR. We then conduct a comparison between ConOR and other methods
that capture the error variance. We also re-implement OR [25] for contrast by
taking the variance from the estimated distribution. Although we observe the
invalid CDFs from the OR model, our purpose is to investigate how the per-
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Table 3. Comparison of uncertainty evaluation on ConOR applying different variance

Dataset Variance AUSE(ξ) ↓ AURG(ξ) ↑
rmse rel 1 − δ1 rmse rel 1 − δ1

KITTI Error 0.097 0.184 0.109 0.751 0.496 0.846

Estimation (WBS) 0.103 0.188 0.132 0.745 0.493 0.823

Estimation (MBS) 0.101 0.183 0.120 0.745 0.498 0.835

Predictive (w/ WBS) 0.095 0.181 0.107 0.754 0.500 0.849

Predictive (w/ MBS) 0.094 0.180 0.106 0.754 0.501 0.851

NYUv2 Error 0.305 0.350 0.349 0.333 0.235 0.544

Estimation (WBS) 0.340 0.370 0.415 0.297 0.215 0.478

Estimation (MBS) 0.326 0.365 0.396 0.311 0.220 0.497

Predictive (w/ WBS) 0.297 0.340 0.333 0.343 0.245 0.559

Predictive (w/ MBS) 0.297 0.343 0.336 0.340 0.243 0.557

Table 4. Performance of different models for depth and error variance estimation

Dataset Method Prediction AUSE(ξ) ↓ AURG(ξ) ↑
rmse ↓ rel ↓ δ1 ↑ rmse rel 1 − δ1 rmse rel 1 − δ1

KITTI GL 3.064 0.083 0.906 0.103 0.259 0.143 0.734 0.423 0.802

LGL 2.965 0.132 0.870 0.157 0.540 0.427 0.557 0.135 0.602

OR [24] 2.766 0.095 0.919 0.108 0.261 0.117 0.694 0.335 0.834

ConOR 2.709 0.075 0.928 0.097 0.184 0.109 0.751 0.496 0.846

NYUv2 GL 0.534 0.171 0.770 0.344 0.413 0.528 0.258 0.167 0.330

LGL 0.756 0.221 0.618 0.370 0.675 0.859 0.198 -0.150 -0.116

OR [24] 0.509 0.146 0.814 0.314 0.392 0.411 0.289 0.172 0.468

ConOR 0.490 0.132 0.832 0.305 0.350 0.349 0.333 0.235 0.544

formance is affected by the ill-grounded distribution estimator. Table 4 shows
that ConOR yields the best performance in terms of both depth prediction and
uncertainty estimation. Moreover, ConOR surpasses OR by a large margin on
the uncertainty evaluation, which indicates the significance to make statistical
inference based on a valid conditional distribution.

Bootstrapping. To analyze the strength of bootstrapping methods, we also
apply ConOR under other frameworks i.e. MCD [28] and DE [51]. From Table 5
we can conclude that, compared to the baseline ConOR, MCD [28] does not
provide correct estimation variance as the performance of uncertainty evaluation
slightly decreases. DE [51] can improve some of the metrics for the uncertainty
estimation. By using bootstrapping methods our predictive variance learns a
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Table 5. Comparison of different methods to capture the estimation variance of ConOR

Dataset Method AUSE(ξ) ↓ AURG(ξ) ↑
rmse rel 1 − δ1 rmse rel 1 − δ1

KITTI ConOR 0.097 0.184 0.109 0.751 0.496 0.846

ConOR+MCD 0.104 0.185 0.128 0.740 0.499 0.814

ConOR+DE 0.096 0.181 0.112 0.749 0.500 0.848

ConOR+WBS 0.095 0.181 0.107 0.754 0.500 0.849

ConOR+MBS 0.094 0.180 0.106 0.754 0.501 0.851

NYUv2 ConOR 0.305 0.350 0.349 0.333 0.235 0.544

ConOR+MCD 0.305 0.351 0.350 0.331 0.233 0.542

ConOR+DE 0.303 0.351 0.343 0.327 0.229 0.557

ConOR+WBS 0.297 0.340 0.333 0.343 0.245 0.559

ConOR+MBS 0.297 0.343 0.336 0.340 0.243 0.557

Fig. 5. Performance of UD and SID with a range of different bin numbers on KITTI
(Color figure online)

better estimation variance approximation since all the metrics of uncertainty
estimation have been boosted.

Discretization. To examine the sensitivity of ConOR to the discretization
strategy, we compare SID with another common scheme, uniform discretization
(UD), and apply the partition with a various number of bins. In Fig. 5, we can
see that SID can improve the performance of both prediction and uncertainty
estimation on ConOR. In addition, ConOR is robust to a large span of bin num-
bers regarding the prediction accuracy since the rmse ranges between 2.7 and
2.8 (orange line in Fig. 5a). We also find that increasing the number of bins
tends to boost the performance of uncertainty estimation (Fig. 5b and 5c) due
to a more finely-discretized distribution estimator. However, excessively increas-
ing the bin number leads to diminishing returns but adds more computational
burden. Hence, it is better to fit more bins within the computational budget.
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5 Conclusions

In this paper, we have explored uncertainty modelling in supervised monocular
depth estimation from a frequentist perspective. We have proposed a framework
to quantify the uncertainty of depth prediction models by predictive variance
which can be estimated by the aggregation of error variance and estimation
variance. Moreover, we have developed a method to predict the depth value and
error variance using a conditional distribution estimator learned from the con-
strained ordinal regression (ConOR) and approximated the estimation variance
by performing bootstrapping on our model. Our approach has shown promising
performance regarding both uncertainty and prediction accuracy.
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depth estimation using depth-attention volume. In: Vedaldi, A., Bischof, H., Brox,
T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 581–597. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58574-7 35

39. Ilg, E., et al.: Uncertainty estimates and multi-hypotheses networks for optical
flow. In: Proceedings of the European Conference on Computer Vision (ECCV),
pp. 652–667 (2018)

40. Jin, L., Lu, H., Wen, G.: Fast uncertainty quantification of reservoir simulation
with variational U-Net. arXiv preprint arXiv:1907.00718 (2019)

41. Kalia, M., Navab, N., Salcudean, T.: A real-time interactive augmented reality
depth estimation technique for surgical robotics. In: 2019 International Conference
on Robotics and Automation (ICRA), pp. 8291–8297. IEEE (2019)

42. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segNet: model uncertainty
in deep convolutional encoder-decoder architectures for scene understanding. arXiv
preprint arXiv:1511.02680 (2015)

43. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for
computer vision? arXiv preprint arXiv:1703.04977 (2017)

44. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

45. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114 (2013)

46. Klein, N., Nott, D.J., Smith, M.S.: Marginally calibrated deep distributional regres-
sion. J. Comput. Graph. Stat. 30(2), 467–483 (2021)

47. Konrad, J., Wang, M., Ishwar, P., Wu, C., Mukherjee, D.: Learning-based, auto-
matic 2D-to-3D image and video conversion. IEEE Trans. Image Process. 22(9),
3485–3496 (2013)

48. Kupinski, M.A., Hoppin, J.W., Clarkson, E., Barrett, H.H.: Ideal-observer com-
putation in medical imaging with use of Markov-chain monte Carlo techniques.
JOSA A 20(3), 430–438 (2003)

49. Ladicky, L., Shi, J., Pollefeys, M.: Pulling things out of perspective. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 89–96
(2014)

http://arxiv.org/abs/1903.12436
https://doi.org/10.1007/s11263-006-0031-y
https://doi.org/10.1007/s11263-006-0031-y
http://arxiv.org/abs/1701.02110
http://arxiv.org/abs/1704.00109
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/978-3-030-58574-7_35
http://arxiv.org/abs/1907.00718
http://arxiv.org/abs/1511.02680
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114


254 D. Hu et al.

50. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth
prediction with fully convolutional residual networks. In: 2016 Fourth International
Conference on 3D Vision (3DV), pp. 239–248. IEEE (2016)

51. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. arXiv preprint arXiv:1612.01474
(2016)

52. Lee, J.H., Han, M.K., Ko, D.W., Suh, I.H.: From big to small: multi-scale local
planar guidance for monocular depth estimation. arXiv preprint arXiv:1907.10326
(2019)

53. Li, J., Klein, R., Yao, A.: A two-streamed network for estimating fine-scaled depth
maps from single RGB images. In: Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 3372–3380 (2017)

54. Li, R., Reich, B.J., Bondell, H.D.: Deep distribution regression. Comput. Stat.
Data Anal. 159, 107203 (2021)

55. Li, X., Qin, H., Wang, Y., Zhang, Y., Dai, Q.: DEPT: depth estimation by param-
eter transfer for single still images. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H.
(eds.) ACCV 2014. LNCS, vol. 9004, pp. 45–58. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16808-1 4

56. Lienen, J., Hullermeier, E., Ewerth, R., Nommensen, N.: Monocular depth esti-
mation via listwise ranking using the plackett-luce model. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14595–
14604 (2021)

57. Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images
using deep convolutional neural fields. IEEE Trans. Pattern Anal. Mach. Intell.
38(10), 2024–2039 (2015)

58. MacKay, D.J.: A practical Bayesian framework for backpropagation networks. Neu-
ral Comput. 4(3), 448–472 (1992)

59. McClure, P., Kriegeskorte, N.: Representing inferential uncertainty in deep neural
networks through sampling (2016)

60. Meinshausen, N., Ridgeway, G.: Quantile regression forests. J. Mach. Learn. Res.
7(6) (2006)

61. Mertan, A., Sahin, Y.H., Duff, D.J., Unal, G.: A new distributional ranking loss
with uncertainty: illustrated in relative depth estimation. In: 2020 International
Conference on 3D Vision (3DV), pp. 1079–1088. IEEE (2020)

62. Nair, T., Precup, D., Arnold, D.L., Arbel, T.: Exploring uncertainty measures in
deep networks for multiple sclerosis lesion detection and segmentation. Med. Image
Anal. 59, 101557 (2020)

63. Narihira, T., Maire, M., Yu, S.X.: Learning lightness from human judgement on
relative reflectance. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2965–2973 (2015)

64. Neal, R.M.: Bayesian Learning for Neural Networks, vol. 118. Springer, Cham
(2012)

65. Nix, D.A., Weigend, A.S.: Estimating the mean and variance of the target probabil-
ity distribution. In: Proceedings of 1994 IEEE International Conference on Neural
Networks (ICNN 1994), vol. 1, pp. 55–60. IEEE (1994)

66. O’Malley, M., Sykulski, A.M., Lumpkin, R., Schuler, A.: Multivariate probabilistic
regression with natural gradient boosting. arXiv preprint arXiv:2106.03823 (2021)

67. Poggi, M., Aleotti, F., Tosi, F., Mattoccia, S.: On the uncertainty of self-supervised
monocular depth estimation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3227–3237 (2020)

http://arxiv.org/abs/1612.01474
http://arxiv.org/abs/1907.10326
https://doi.org/10.1007/978-3-319-16808-1_4
https://doi.org/10.1007/978-3-319-16808-1_4
http://arxiv.org/abs/2106.03823


Uncertainty Quantification in Depth Estimation via ConOR 255

68. Pospisil, T., Lee, A.B.: Rfcde: random forests for conditional density estimation.
arXiv preprint arXiv:1804.05753 (2018)

69. Ranftl, R., Vineet, V., Chen, Q., Koltun, V.: Dense monocular depth estimation
in complex dynamic scenes. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4058–4066 (2016)

70. Ranjan, A., et al.: Competitive collaboration: joint unsupervised learning of depth,
camera motion, optical flow and motion segmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12240–
12249 (2019)

71. Ren, Z., Lee, Y.J.: Cross-domain self-supervised multi-task feature learning using
synthetic imagery. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 762–771 (2018)

72. Roy, A., Todorovic, S.: Monocular depth estimation using neural regression forest.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 5506–5514 (2016)

73. Saxena, A., Sun, M., Ng, A.Y.: Make3D: Learning 3D scene structure from a single
still image. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 824–840 (2008)

74. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Int. J. Comput. Vision 47(1), 7–42 (2002)

75. Shashua, A., Levin, A.: Ranking with large margin principle: two approaches. In:
Advances in Neural Information Processing Systems, vol. 15 (2002)

76. Shi, J., Tao, X., Xu, L., Jia, J.: Break ames room illusion: depth from general single
images. ACM Trans. Graph. (TOG) 34(6), 1–11 (2015)

77. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support
inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33715-4 54

78. Song, M., Lim, S., Kim, W.: Monocular depth estimation using Laplacian pyramid-
based depth residuals. IEEE Trans. Circ. Syst. Video Technol. (2021)

79. Swiatkowski, J., et al.: The k-tied normal distribution: a compact parameterization
of gaussian mean field posteriors in Bayesian neural networks. In: International
Conference on Machine Learning, pp. 9289–9299. PMLR (2020)

80. Wellner, J.: Weak Convergence and Empirical Processes: With Applications to
Statistics. Springer, Heidelbrg (1996)

81. Wang, C., Buenaposada, J.M., Zhu, R., Lucey, S.: Learning depth from monocular
videos using direct methods. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2022–2030 (2018)

82. Wang, X., Fouhey, D., Gupta, A.: Designing deep networks for surface normal esti-
mation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 539–547 (2015)

83. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynam-
ics. In: Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pp. 681–688. Citeseer (2011)

84. Wu, C.F.J.: Jackknife, bootstrap and other resampling methods in regression anal-
ysis. Ann. Stat. 14(4), 1261–1295 (1986)

85. Xian, K., Zhang, J., Wang, O., Mai, L., Lin, Z., Cao, Z.: Structure-guided ranking
loss for single image depth prediction. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 611–620 (2020)

86. Yang, G., Hu, P., Ramanan, D.: Inferring distributions over depth from a single
image. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 6090–6096. IEEE (2019)

http://arxiv.org/abs/1804.05753
https://doi.org/10.1007/978-3-642-33715-4_54


256 D. Hu et al.

87. Zhang, Z., Schwing, A.G., Fidler, S., Urtasun, R.: Monocular object instance seg-
mentation and depth ordering with CNNs. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 2614–2622 (2015)

88. Zhou, H., Ummenhofer, B., Brox, T.: Deeptam: Deep tracking and mapping. In:
Proceedings of the European conference on computer vision (ECCV), pp. 822–838
(2018)

89. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth
and ego-motion from video. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1851–1858 (2017)

90. Zoran, D., Isola, P., Krishnan, D., Freeman, W.T.: Learning ordinal relationships
for mid-level vision. In: Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 388–396 (2015)


	Uncertainty Quantification in Depth Estimation via Constrained Ordinal Regression
	1 Introduction
	2 Related Work
	3 Method
	3.1 Uncertainty as Predictive Variance
	3.2 Constrained Ordinal Regression
	3.3 Error Variance Inference
	3.4 Estimation Variance Inference

	4 Experiment
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Implementation Details
	4.4 Results
	4.5 Ablation Studies

	5 Conclusions
	References




