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Abstract. Online Knowledge Distillation (OKD) improves the involved
models by reciprocally exploiting the difference between teacher and stu-
dent. Several crucial bottlenecks over the gap between them — e.g., Why
and when does a large gap harm the performance, especially for stu-
dent? How to quantify the gap between teacher and student? — have
received limited formal study. In this paper, we proposeSwitchableOnline
Knowledge Distillation (SwitOKD), to answer these questions. Instead of
focusing on the accuracy gap at test phase by the existing arts, the core idea
of SwitOKD is to adaptively calibrate the gap at training phase, namely
distillation gap, via a switching strategy between two modes — expert
mode (pause the teacher while keep the student learning) and learning
mode (restart the teacher). To possess an appropriate distillation gap, we
further devise an adaptive switching threshold, which provides a formal
criterion as to when to switch to learning mode or expert mode, and thus
improves the student’s performance. Meanwhile, the teacher benefits from
our adaptive switching threshold and keeps basically on a par with other
online arts. We further extend SwitOKD to multiple networks with two
basis topologies. Finally, extensive experiments and analysis validate the
merits of SwitOKD for classification over the state-of-the-arts. Our code
is available at https://github.com/hfutqian/SwitOKD.

1 Introduction

The essential purpose of Knowledge Distillation (KD) [7,13,14,16,24–26,28,33]
is to improve the performance of a low-capacity student network (small size, com-
pact) for model compression by distilling the knowledge from a high-capacity
teacher network (large size, over parameterized)1. The conventional knowledge
distillation [2,3,7,9,10,15,27,32] requires a pre-trained teacher to serve as the
expert network in advance, to be able to provide better supervision for the stu-
dent in place of one-hot labels. However, it is usually a two-stage offline process,
which is inflexible and requires extra computational cost.

Unlike offline fashion, the goal of recently popular online knowledge dis-
tillation is to reciprocally train teacher and student from scratch, where they
1 Throughout the rest of the paper, we regard high-capacity network as teacher and

low-capacity network as student for simplicity.
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Fig. 1. Left: Illustration of how the large accuracy gap between teacher (WRN-16-2
to WRN-16-8) and student (ResNet-20) affects online distillation process on CIFAR-
100 [11]. Right: DML [31] bears the emergency of escaping online KD under (a) large
accuracy gap and (b) large distillation gap, whereas SwitOKD extends online KD’s
lifetime to avoid the degeneration.

learn extra knowledge from each other, and thus improve themselves simultane-
ously [1,4,22,31]. Typically, Deep Mutual Learning (DML) [31] encourages each
network to mutually learn from each other by mimicking their predictions via
Kullback Leibler (KL) divergence. Chen et al. [1] presents to improve the effec-
tiveness of online distillation by assigning weights to each network with the same
architecture. Further, Chung et al. [4] proposes to exchange the knowledge of
feature map distribution among the networks via an adversarial means. Most of
these approaches tend to equally train the same or different networks with small
accuracy gap, where they usually lack richer knowledge from a powerful teacher.
In other words, online fashion still fails to resolve the problem of student’s per-
formance impairment caused by a large accuracy gap [3,10,15] (see Fig. 1 Left),
thus somehow violating the principle of KD. As inspired, we revisit such long-
standing issue, and find the fundamental bottlenecks below: 1) when and how
the gap has negative effect on online distillation process. For example, as the
teacher turns from WRN-16-4 to WRN-16-8 (larger gap), the student accuracy
rapidly declines (see Fig. 1 Left), while KL loss for the student degenerates into
Cross-Entropy (CE) loss (see Fig. 1 Right(a)) as per loss functions in Table 1.
To mitigate that, we raise 2) how to quantify the gap and automatically adapt
to various accuracy gap, particularly large accuracy gap.

One attempt derives from Guo et al. [5], who studied the effect of large accu-
racy gap on distillation process and found that a large accuracy gap constitutes
a certain harm to the performance of teacher. To this end, they propose KDCL,
to admit the accuracy improvement of teacher by generating a high-quality soft
target, so as to benefit the student. Unfortunately, KDCL pays more attention
to teacher, which deviates from the essential purpose of KD; see Table 1.

To sum up, the above online fashions overlook the principle of KD. Mean-
while, they focus on the accuracy gap that is merely obtained at test phase,
which is not competent for quantifying the gap since it offers no guidance for
the distribution alignment of distillation process performed at training phase.
For instance, the accuracy just depends on the class with maximum probability
given a 10-class output, while distillation usually takes into account all of the 10
classes. As opposed to them, we study the gap (the difference in class distribution
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Table 1. The varied loss functions for typical distillation methods and the common
form of their gradients. τ is set to 1 for theoretical and experimental analysis. ensemble
is used to generate a soft target by combining the outputs of teacher and student. The
gradient for KL divergence loss exactly reflects the difference between the predictions
of student and teacher.

Method Loss function of the networks
The common form

of the gradient

Focus on

student or not

KD [7]

(NeurIPS 2015)
L = αLCE(y, p1

s) + (1 − α)τ2LKL(pτ
t , pτ

s ) (p1
s − y) + (pτ

s − pτ
t ) ✓

KDCL [5]

(CVPR 2020)

L =
∑

i

Li
CE(y, p1

i ) + τ2Li
KL(pm, pτ

i ),

pm = ensemble(pτ
s , pτ

t )

(p1
i − y) + (pτ

i − pm),

i = s, t
✗

DML [31]

(CVPR 2018)

Ls = LCE(y, p1
s) + LKL(pτ

t , pτ
s ),

Lt = LCE(y, p1
t ) + LKL(pτ

s , pτ
t )

(p1
s − y) + (pτ

s − pτ
t ),

(p1
t − y) + (pτ

t − pτ
s )

✗

SwitOKD
(Ours)

Ls = LCE(y, p1
s) + ατ2LKL(pτ

t , pτ
s ),

pτ
t = pτ,l

t ⇔pτ
t = pτ,e

t

(p1
s − y) + (pτ

s − pτ,l
t )

�
(p1

s − y) + (pτ
s − pτ,e

t )

✓

between teacher and student) at training phase, namely distillation gap, which
is quantified by �1 norm of the gradient (see Sect. 2.1), and how it affects online
distillation process from student’s perspective. Taking DML [31] as an example,
we observe that the gradient for KL loss ||pτ

s − pτ
t ||1 increasingly degenerates

into that for CE loss ||pτ
s − y||1 given a large gap; see Fig. 1 Right(b). In such

case, the student suffers from the emergency of escaping online KD process.
In this paper, we study online knowledge distillation and come up with a novel

framework, namely Switchable Online Knowledge Distillation(SwitOKD), as
illustrated in Fig. 2, which stands out new ways to mitigate the adversarial
impact of large distillation gap on student. The basic idea of SwitOKD is to
calibrate the distillation gap by adaptively pausing the teacher to wait for the
learning of student during the training phase. Technically, we specify it via an
adaptive switching strategy between two types of training modes: namely learn-
ing mode that is equivalent to reciprocal training from scratch and expert mode
that freezes teacher’s weights while keeps the student learning. Notably, we devise
an adaptive switching threshold to endow SwitOKD with the capacity to yield
an appropriate distillation gap that is conducive for knowledge transfer from
teacher to student. Concurrently, it is nontrivial to devise an “ideal” switching
threshold (see Sect. 2.5) due to: 1) not too large — a large threshold aggressively
pushes learning mode and enlarges the distillation gap, resulting the student
into the emergency of escaping online KD process; such fact, as expanded in
Sect. 2.5, will further trap teacher to be paused constantly; as opposed to 2) not
too small — the teacher constantly performs expert mode and receives poor accu-
racy improvement, suffering from no effective knowledge distilled from teacher
to student. The above two conditions lead to 3) adaptiveness — the threshold is
adaptively calibrated to balance learning mode and expert mode for extending
online KD’s lifetime. Following SwitOKD, we further establish two fundamental
basis topologies to admit the extension of multi-network setting. The extensive
experiments on typical datasets demonstrate the superiority of SwitOKD.
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Fig. 2. Illustration of the proposed SwitOKD framework. Our basic idea is to adap-
tively pause the training of teacher while make the student continuously learn from
teacher, to mitigate the adversarial impact of large distillation gap on student. Our
framework is achieved by an adaptive switching strategy between two training modes:
learning mode that is equivalent to training two networks reciprocally and expert mode
that freezes teacher’s parameters while keeps the student learning. Notably, we devise
an adaptive switching threshold (b) to admit automatic switching between learning
mode and expert mode for an appropriate distillation gap (quantified by G). See
Sect. 2.6 for the detailed switching process.

2 Switchable Online Knowledge Distillation

Central to our method are three aspects: (i) quantifying the distillation gap
between teacher and student, and analyzing it for online distillation (Sect. 2.1
and 2.2); (ii) an adaptive switching threshold to mitigate the adversarial impact
of large distillation gap from student’s perspective (Sect. 2.5); and, (iii) extending
SwitOKD to multiple networks (Sect. 2.7).

2.1 How to Quantify the Distillation Gap Between Teacher
and Student?

Thanks to varied random starts and differences in network structure (e.g., layer,
channel, etc.), the prediction difference between teacher and student always
exists, which is actually exploited to benefit online distillation. Since the accu-
racy obtained at test phase is not competent to quantify the gap, we propose
to quantify the gap at training phase, namely distillation gap, by computing �1
norm of the gradient for KL divergence loss (see Table 1), denoted as G, which is
more suitable for capturing the same elements (0 entries) and the element-wise
difference between the predictions of student and teacher, owing to the sparsity
property of �1 norm. Concretely, given a sample x, let pτ

t and pτ
s represent the

softened outputs of a teacher network T (x, θt) and a student network S(x, θs),
respectively, then G is formulated as
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G = ||pτ
s − pτ

t ||1 =
1
K

K∑

k=1

|pτ
s (k) − pτ

t (k)|, G ∈ [0, 2], (1)

where |.| denotes the absolute value and τ is the temperature parameter. The k-th
element of the softened output pτ

f is denoted as pτ
f (k) = exp(zf (k)/τ)

∑K
j exp(zf (j)/τ)

, f = s, t;

zf (k) is the k-th value of the logit vector zf . K is the number of classes. Prior
work observes that a great prediction difference between teacher and student
has a negative effect on distillation process [3,5,10]. Next, we discuss how the
distillation gap affects online distillation process from student’s perspective.

2.2 Why is an Appropriate Distillation Gap Crucial?

It is well-accepted that knowledge distillation loss for student is the KL diver-
gence of the soften outputs of teacher pτ

t and student pτ
s [7], defined as

LKL(pτ
t , pτ

s ) =
1

K

K∑

k=1

pτ
t (k)log

pτ
t (k)

pτ
s (k)

= LCE(pτ
t , pτ

s ) − H(pτ
t ), (2)

where pτ
t (k) and pτ

s (k) are the k-th element of the output vector pτ
t and pτ

s ,
respectively. LCE(., .) represents the Cross-Entropy loss and H(·) means the
entropy value. Notably, when pτ

t stays away from pτ
s (large distillation gap

appears), pτ
t goes to y, then LKL(pτ

t , pτ
s ) will degenerate into LCE(y, pτ

s ) below:

lim
pτ

t →y
LKL(pτ

t , pτ
s ) = lim

pτ
t →y

(LCE(pτ
t , pτ

s ) − H(pτ
t )) = LCE(y, pτ

s ), (3)

where H(y) is a constant (i.e., 0) since y is the one-hot label. The gradient of
LKL w.r.t. zs also has

lim
pτ

t →y

∂LKL

∂zs
= lim

pτ
t →y

1

τ
(pτ

s − pτ
t ) =

1

τ
(pτ

s − y), (4)

where the gradient for KL loss increasingly degenerates into that for CE loss,
resulting student into the emergency of escaping online KD process. The results
in Fig. 1 Right also confirm the above analysis. As opposed to that, when pτ

t goes
to pτ

s (the distillation gap becomes small), lim
pτ

t →pτ
s

LKL(pτ
t , pτ

s ) = 0, therefore no

effective knowledge will be distilled from teacher to student.

How to Yield an Appropriate Gap? Inspired by the above, we need to yield
an appropriate distillation gap G to ensure that student can always learn effective
knowledge from the teacher throughout the training. In other words, the learn-
ing pace of student should continuously keep consistent with that of teacher.
Otherwise, the online KD process will terminate. To this end, we propose to
maintain an appropriate G. When G is larger than a threshold δ, namely switch-
ing threshold, we terminate teacher and keep only student learn from teacher,
such training status is called expert mode. When expert mode progresses, G will
decrease until less than δ, it will switch to the other training status of mutu-
ally learning between teacher and student, namely learning mode. The above
two modes alternatively switch under an appropriate δ to keep improving the
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student’s performance. Next, we will offer the details for learning mode (see
Sect. 2.3) and expert mode (see Sect. 2.4), which pave the way to our proposed
adaptive switching threshold δ (see Sect. 2.5).

2.3 Learning Mode: Independent vs Reciprocal

Unlike [3,7,10] that pre-train a teacher network in advance, the goal of learning
mode is to reduce the distillation gap by training teacher and student network
from scratch. Naturally, one naive strategy is to train the teacher independently
with the supervision of one-hot label. Then the loss function of teacher and
student is given as

Ll
s = LCE(y, p1

s) + ατ2LKL(pτ,l
t , pτ

s ), Ll
t = LCE(y, p1,l

t ), (5)

where pτ,l
t and pτ

s are the predictions of teacher and student, respectively. α is
a balancing hyperparameter. Unfortunately, the independently trained teacher
provides poor improvement for student (see Sect. 3.3). Inspired by the fact that
the teacher can benefit from reciprocal training [5,31] and, in turn, admit bet-
ter guidance for student, we propose to reciprocally train student and teacher,
therefore Ll

t in Eq. (5) can be upgraded to

Ll
t = LCE(y, p1,l

t ) + βτ2LKL(pτ
s , pτ,l

t ), (6)

where β is a balancing hyperparameter. Thus we can compute the gradient of
Ll

s and Ll
t w.r.t. zs and zt, i.e.,

∂Ll
s/∂zs = (p1

s − y) + ατ(pτ
s − pτ,l

t ), ∂Ll
t/∂zt = (p1,l

t − y) + βτ(pτ,l
t − pτ

s ). (7)

In learning mode, the teacher usually converges faster (yield higher accuracy),
owing to its superior learning ability, therefore the distillation gap will increas-
ingly grow as the training progresses. Meanwhile, for the student, KL loss exhibits
a trend to be functionally equivalent to CE loss, causing the effect of knowledge
distillation to be weakened. In this case, SwitOKD will switch to expert mode.

2.4 Expert Mode: Turn to Wait for Student

To mitigate the adversarial impact of large distillation gap on student, SwitOKD
attempts to pause the training of teacher while make student continuously learn
from teacher, to keep the learning pace consistent, that sets it apart from pre-
vious online distillation methods [5,31]. Indeed, a teacher that is suitable for
student rather than one who perfectly imitates one-hot label, can often improve
student’s performance, in line with our view of an appropriate distillation gap.
Accordingly, the loss function for student is similar in spirit to that of Eq. (5):

Le
s = LCE(y, p1

s) + ατ2LKL(pτ,e
t , pτ

s ), (8)

where pτ,e
t is the prediction of teacher network under expert mode. Thus the

gradient of Le
s w.r.t. zs is computed as

∂Le
s/∂zs = (p1

s − y) + ατ(pτ
s − pτ,e

t ). (9)



Switchable Online Knowledge Distillation 455

In such mode, the student will catch up or even surpass teacher as the training
progresses, resulting into no effective knowledge distilled from teacher to stu-
dent. Then SwitOKD will switch back to learning mode based on our adaptive
switching threshold. We discuss that in the next section.

2.5 Adaptive Switching Threshold: Extending Online Knowledge
Distillation’s Lifetime

Intuitively, a naive strategy is to manually select a fixed value of δ, which, how-
ever, is inflexible and difficult to yield an appropriate distillation gap for improv-
ing the student (see Sect. 3.3). We propose an adaptive switching threshold for
δ, which offer insights into how to automatically switch between learning mode
and expert mode. First, observing that the distillation gap G = ||pτ

s − pτ
t ||1 <

||pτ
s − y||1 on average because the teacher is superior to student, and

||pτ
s − pτ

t ||1 = ||(pτ
s − y) − (pτ

t − y)||1 ≥ ||pτ
s − y||1 − ||pτ

t − y||1, (10)
which further yields ||pτ

s − y||1 − ||pτ
t − y||1 ≤ G < ||pτ

s − y||1, leading to

||pτ
s − y||1 − ||pτ

t − y||1
︸ ︷︷ ︸

lower bound

≤ δ < ||pτ
s − y||1

︸ ︷︷ ︸
upper bound

,
(11)

which, as aforementioned in Sect. 1, ought to be neither too large nor too small.
To this end, we propose to adaptively adjust δ. Based on Eq. (11), we can further
reformulate δ to be:

δ = ||pτ
s − y||1 − ε||pτ

t − y||1, 0 < ε ≤ 1. (12)
It is apparent that ε approaching either 1 or 0 is equivalent to lower or upper
bound of Eq. (11). Unpacking Eq. (12), the effect of ε is expected to be: when
G becomes large, δ will be decreased towards ||pτ

s − y||1 − ||pτ
t − y||1 provided ε

approaching 1, then G > δ holds, which naturally enters into expert mode, and
switches back into learning mode vice versa; see Fig. 2(b).

Discussion on ε. As per Eq. (12), the value of δ closely relies on ε, which actu-
ally plays the role of tracking the changing trend of G. Intuitively, once the
teacher learns faster than student, G will be larger, while ||pt − y||1 < ||ps − y||1
holds from Eq. (12). Under such case, small value of δ is expected, leading
to a larger value of ε, and vice versa. Hence, ε is inversely proportional to
r = ||pτ

t −y||1
||pτ

s −y||1 . However, if G is very large, the student cannot catch up with the
teacher; worse still, the teacher is constantly paused (trapped in expert mode)
and cannot improve itself to distill knowledge to student, making the online
KD process terminated. Hence, we decrease δ, so that, observing that pt and ps

are very close during the early training time, the teacher can pause more times
initially to make student to be in line with teacher, to avoid being largely fall
behind at the later training stage (see Sect. 3.2 for detailed validations). Follow-
ing this, we further decrease the value of r, such that r = ||pτ

t −y||1
||pτ

s −y||1+||pτ
t −y||1 , to

balance learning mode and expert mode. For normalization issue, we reformulate
ε = e−r, leading to the final adaptive switching threshold δ to be:

δ = ||pτ
s − y||1 − e

− ||pτ
t −y||1

||pτ
s −y||1+||pτ

t −y||1 ||pτ
t − y||1. (13)
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Algorithm 1. SwitOKD: Switchable Online Knowledge Distillation

Input: learning rate η1, η2, student net-
work S parameterized by θs, teacher net-
work T parameterized by θt

Output: Trained S, T
1: Randomly initialize S and T .
2: for number of training iterations do
3: Compute G = ||pτ

s − pτ
t ||1.

4: Compute δ by Eqn. (13).
5: if G ≤ δ then
6: # Learning Mode
7: Estimate Ll

s, Ll
t with Eqn. (6).

8: Update θs, θt:

9: θs ← θs − η1
∂Ll

s
∂zs

∂zs
∂θs

10: θt ← θt − η2
∂Ll

t
∂zt

∂zt
∂θt

11: else
12: # Expert Mode
13: Estimate Le

s with Eqn. (8).
14: Freeze θt, update θs:

15: θs ← θs − η1
∂Le

s
∂zs

∂zs
∂θs

16: end if
17: end for

Unlike the existing arts [5,31], where they fail to focus on student to follow
the principle of KD, SwitOKD can extend online knowledge distillation’s life-
time, and thus largely improve student’s performance, while keep our teacher be
basically on par with theirs, thanks to Eq. (13); see Sect. 3.4 for validations.

2.6 Optimization

The above specifies the adaptive switching strategy between two training modes.
Specifically, we kick off SwitOKD with learning mode to minimize Ll

s and Ll
t,

then the training mode is switched into expert mode to minimize Le
s when G > δ.

Following that, SwitOKD switches back to learning mode when G ≤ δ. The whole
training process is summarized in Algorithm 1.

2.7 Multi-network Learning Framework

To endow SwitOKD with the extendibility to multi-network setting with large
distillation gap, we divide these networks into multiple teachers and students,
involving switchable online distillation between teachers and students, which is
built by two types of fundamental basis topologies below: multiple teachers vs
one student and one teacher vs multiple students. For ease of understanding,
we take 3 networks as an example and denote the basis topologies as 2T1S
and 1T2S, respectively; see Fig. 3. Notably, the training between each teacher-
student pair directly follows SwitOKD, while two teachers for 2T1S (or two
students for 1T2S) mutually transfer knowledge in a conventional two-way man-
ner. Note that, for 1T2S, only when the switching conditions between teacher
and both students are triggered, will the teacher be completely suspended. The
detailed validation results are reported in Sect. 3.8.
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Fig. 3. The multi-network framework for training 3 networks simultaneously, including
two fundamental basis topologies: 2T1S (Left) and 1T2S (Right).

3 Experiment

To validate the effectiveness of SwitOKD, we experimentally evaluate various
state-of-the-art backbone networks via student-teacher pair below: MobileNet
[8], MobileNetV2 [20] (sMobileNetV2 means the width multiplier is s), ResNet
[6] and Wide ResNet (WRN) [30] over the typical image classification datasets:
CIFAR-10 and CIFAR-100 [11] are natural image datasets, including 32 ×
32 RGB images containing 10 and 100 classes. Both of them are split into a
training set with 50 k images and a test set with 10k images. Tiny-ImageNet
[12] consists of 64 × 64 color images from 200 classes. Each class has 500 training
images, 50 validation images, and 50 test images. ImageNet [19] contains 1 k
object classes with about 1.2 million images for training and 50 k images for
validation.

3.1 Experimental Setup

We implement all networks and training procedures with pytorch [17] on an
NVIDIA GeForce GTX 1080 Ti GPU and an Intel(R) Core(TM) i7-6950X CPU
@ 3.00 GHz. For CIFAR-10/100, we use Adam optimizer with the momentum
of 0.9, weight decay of 1e−4 and set batch size to 128. The initial learning rate
is 0.01 and then divided by 10 at 140, 200 and 250 of the total 300 epochs.
For Tiny-ImageNet and ImageNet, we adopt SGD as the optimizer, and set
momentum to 0.9 and weight decay to 5e−4. Specifically, for Tiny-ImageNet,
we set batch size to 128, the initial learning rate to 0.01, and the learning rate
is dropped by 0.1 at 100, 140 and 180 of the total 200 epochs. For ImageNet,
batch size is 512, while the initial learning rate is 0.1 (dropped by 0.1 every 30
epochs and trained for 120 epochs). As for the hyperparameter, we set α, β and
τ to 1, and τ = {2, 3} for the classic distillation [5,7].

Previous sections (Sects. 2.3, 2.4, 2.5 and 2.7) explicate how adaptive switch-
ing strategy benefits a student. We offer practical insights into why SwitOKD
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Fig. 4. Left: Illustration of test accuracy (a) and loss (b) for SwitOKD and KDCL [5].
From the perspective of student, (c) shows the comparison of CE loss and KL loss, while
(d) is 
1 norm value of the gradient for CE loss and KL loss. Right: Illustration of why

the parameter r should be decreased from r =
||pτ

t −y||1
||pτ

s −y||1 (e) to r =
||pτ

t −y||1
||pτ

s −y||1+||pτ
t −y||1

(f). The color bar shows the switching process of SwitOKD, where the cyan and the
magenta denote learning mode and expert mode, respectively. (Color figure online)

works well, including ablation study and comparison with the state-of-the-arts,
as well as extendibility to multiple networks.

3.2 Why Does SwitOKD Work Well?

One of our aims is to confirm that the core idea of our SwitOKD — using
an adaptive switching threshold to achieve adaptive switching strategy — can
possess an appropriate distillation gap for the improvement of student. The other
is to verify why the parameter r (Sect. 2.5) should be decreased. We perform
online distillation with a compact student network (ResNet-32) and a powerful
teacher network (WRN-16-8 and WRN-16-2) on CIFAR-100.

Figure 4(a) (b) illustrate that the performance of student is continuously
improved with smaller accuracy gap (gray area) compared to KDCL, confirming
that our switching strategy can effectively calibrate the distillation gap to extend
online KD’s lifetime, in keeping with the core idea of SwitOKD. As an extension
of Fig. 1, Fig. 4(c) reveals that KL loss for SwitOKD keeps far away from CE loss
throughout the training unlike KDCL. Akin to that, the gradient for KL loss
||pτ

s −pτ
t ||1 (refer to Eq. (1)) keeps divergent from that for CE loss ||pτ

s −y||1; see
Fig. 4(d). Especially, the color bar illustrates the process of switching two modes
on top of each other: when to pause the teacher — expert mode (magenta),
or restart training — learning mode (cyan), reflecting that an appropriate gap
holds with adaptive switching operation.

Figure 4(e)(f) validate the findings below: when r = ||pτ
t −y||1

||pτ
s −y||1 (e), the teacher

is rarely paused at the early stage of training, then the student largely falls
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behind at the later stage, leading to poor teacher (73.10% vs 74.14%) and student
(71.89% vs 73.47%), confirming our analysis in Sect. 2.5 — r = ||pτ

t −y||1
||pτ

s −y||1+||pτ
t −y||1

(f) is desirable to balance learning mode and expert mode.

3.3 Ablation Studies

Table 2. Ablation study about the effec-
tiveness of each component, of which con-
stitutes SwitOKD. The best results are
reported with boldface.

Case
Threshold

δ
Switching
or not

Teacher’s

loss Ll
t

CIFAR-100

A - ✗ Eqn.(6) 72.91

B
δ = 0.2 72.92
δ = 0.6 ✓ Eqn.(6) 72.83
δ = 0.8 73.00

C Eqn.(13) ✓ Eqn.(5) 72.72
D Eqn.(13) ✓ Eqn.(6) 73.47

Is Each Component of SwitOKD
Essential? To verify the effectiveness
of several components constituting
SwitOKD — switching strategy, adap-
tive switching threshold and teacher’s
training strategy, we construct abla-
tion experiments with ResNet-32
(student) and WRN-16-2 (teacher)
from the following cases: A: SwitOKD
without switching; B: SwitOKD with
fixed δ (i.e., δ ∈ {0.2, 0.6, 0.8}); C:
teacher’s loss Ll

t (Eq. (6) vs Eq. (5));
D: the proposed SwitOKD. Table 2
summarizes our findings, which suggests that SwitOKD shows great superior-
ity (73.47%) to other cases. Especially for case B, the manual δ fails to yield
an appropriate distillation gap for improving the performance of student, con-
firming the importance of adaptive switching threshold, subject to our analysis
(Sect. 2.5). Notably, the student for case C suffers from a large accuracy loss,
verifying the benefits of reciprocal training on improving the performance of
student (Sect. 2.3).

Table 3. Ablation study about the effec-
tiveness of varied temperature τ on CIFAR-
100. The best results are reported with
boldface.

τ 0.5 1 2 5 8 10

SwitOKD 64.95 67.24 67.80 66.30 66.00 65.64

Why does the Temperature τ
Benefit SwitOKD? The tempera-
ture τ [7] usually serves as a factor
to smooth the predictions of student
and teacher. Empirically, temperature
parameter enables the output of stu-
dent to be closer to that of teacher
(and thus reduce the distillation gap),
improving the performance, in line
with our perspective in Sect. 2.4. To highlight the effectiveness of SwitOKD, we
simply set τ = 1 for our experiments. To further verify the effectiveness of varied
τ ∈ {0.5, 1, 2, 5, 8, 10}, we perform the ablation experiments with MobileNetV2
(student) and WRN-16-2 (teacher). Table 3 summarizes the findings. The opti-
mal student (67.80%) is achieved with a slightly higher τ∗ = 2, implying that
τ contributes to the calibration of the distillation gap. Note that when τ = 10,
the accuracy of student rapidly declines, implying that excessive smoothness can
make the gap beyond an optimal range and, in turn, harm the performance of
student, consistent with our view of an appropriate gap in Sect. 2.2.
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Table 4. Accuracy (%) comparison on Tiny-ImageNet and CIFAR-10/100. (.M)
denotes the number of parameters. All the values are measured by computing mean
and standard deviation across 3 trials with random seeds. The best results are reported
with boldface.

Backbone Vanilla DML [31] KDCL [5] SwitOKD

Tiny-ImageNet

Student 1.4MobileNetV2(4.7 M) 50.98 ± 0.32 55.70 ± 0.61 57.79 ± 0.30 58.71 ± 0.11

Teacher ResNet-34(21.3 M) 63.18 ± 0.37 64.49 ± 0.43 65.47 ± 0.32 63.31 ± 0.04

Student ResNet-20(0.28M) 52.35 ± 0.15 53.98 ± 0.26 53.74 ± 0.39 55.03 ± 0.19

Teacher WRN-16-2(0.72 M) 56.59 ± 0.22 57.45 ± 0.19 57.71 ± 0.30 57.41 ± 0.06

CIFAR-10

Student WRN-16-1(0.18 M) 91.45 ± 0.06 91.96 ± 0.08 91.86 ± 0.11 92.50 ± 0.17

Teacher WRN-16-8(11.0 M) 95.21 ± 0.12 95.06 ± 0.05 95.33 ± 0.17 94.76 ± 0.12

CIFAR-100

Student 0.5MobileNetV2(0.81 M) 60.07 ± 0.40 66.23 ± 0.36 66.83 ± 0.05 67.24 ± 0.04

Teacher WRN-16-2(0.70 M) 72.90 ± 0.09 73.85 ± 0.21 73.75 ± 0.26 73.90 ± 0.40

Fig. 5. Illustration of how an appropriate distillation gap yields better student. For KD,
DML and KDCL, the accuracy of student (ResNet-20) rapidly declines as the teacher
turns to higher capacity (WRN-16-2 to WRN-16-8). As opposed to that, SwitOKD
grows steadily, owing to an appropriate distillation gap.

3.4 Comparison with Other Approaches

To verify the superiority of SwitOKD, we first compare with typical online KD
methods, including: 1) DML [31] is equivalent to learning mode for SwitOKD;
2) KDCL [5] studies the effect of large accuracy gap at the test phase on online
distillation process, but they pay more attention to teacher instead of student.
For brevity, “vanilla” refers to the backbone network trained from scratch with
classification loss alone. A compact student and a powerful teacher constitute the
student-teacher network pair with large distillation gap at the training phase.

Table 4 and Fig. 5 summarize our findings below: First, switchable online
distillation offers a significant and consistent performance improvement over the
baseline (vanilla) and the state-of-the-arts for student, in line with the princi-
ple of KD process. Impressively, SwitOKD achieves 1.05% accuracy improve-
ment to vanilla on CIFAR-10 (7.17% on CIFAR-100). Besides, SwitOKD also
shows 0.54% and 0.54% (WRN-16-1/WRN-16-8) accuracy gain over DML and
KDCL on CIFAR-100, respectively. Especially with 1.4MobileNetV2/ResNet-34,
SwitOKD still obtains significant performance gains of 7.73%, 3.01% and 0.92%
(the gains are substantial for Tiny-ImageNet) over vanilla, DML and KDCL.
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Table 5. Accuracy (%) comparison of student network with offline KD methods (seen
as expert mode of SwitOKD) on CIFAR-100. (.M) denotes the number of parameters.
The best results are reported with boldface.

Backbone Vanilla KD [7] FitNet [18] AT [29] CRD [23] RCO [10] SwitOKD

Student WRN-16-2(0.70 M) 72.79 74.49 73.44 73.35 75.01 75.36 75.95

Teacher WRN-40-2(2.26 M) 76.17 − − − − − 76.54

Table 6. Top-1 accuracy (%) on ImageNet dataset. (.M) denotes the number of param-
eters. The best results are reported with boldface.

Backbone Vanilla DML [31] KDCL [5] SwitOKD

Student ResNet-18(11.7 M) 69.76 70.81 70.91 71.75

Teacher ResNet-34(21.8 M) 73.27 73.47 73.70 73.65

Student 0.5MobileNetV2(1.97 M) 63.54 64.22 63.92 65.11

Teacher ResNet-18(11.7 M) 69.76 68.30 70.60 68.08

Second, our teachers still benefit from SwitOKD and obtain accuracy
improvement basically on a par with DML and KDCL, confirming our analysis
about the adaptive switching threshold δ (see Eq. (13)) — balance of learning
mode and expert mode. Note that, with 0.5MobileNetV2 and WRN-16-2 on
CIFAR-100, our teacher (73.90%) upgrades beyond the vanilla (72.90%), even
yields comparable accuracy gain (0.05% and 0.15%) over DML and KDCL. By
contrast, KDCL has most of the best teachers, but with poor students, owing to
its concentration on teacher only.

Finally, we also validate the effectiveness of SwitOKD for student even under
a small distillation gap on CIFAR-10 (see Fig. 5), where the students (ResNet-
20) still possess significant performance advantages, confirming the necessity of
adaptively calibrating an appropriate gap with adaptive switching threshold δ
in Sect. 2.5. Especially for Fig. 5 (b)(c), as the teacher turns to higher capacity
(WRN-16-2 to WRN-16-8), students’ accuracy from DML and KDCL rises at the
beginning, then rapidly declines, and reaches the best results when the teacher
is WRN-16-4. This, in turn, keeps consistent with our analysis (Sect. 2.2) — an
appropriate distillation gap admits student’s improvement.

To further validate the switching strategy between two modes, we also com-
pare SwitOKD with offline knowledge distillation approaches (seen as expert
mode of SwitOKD) including KD [7], FitNet [18], AT [29] and CRD [23] that
require a fixed and pre-trained teacher. Especially, RCO [10] is similar to our
approach, which maintains a reasonable performance gap by manually select-
ing a series of pre-trained intermediate teachers. Table 5 reveals that SwitOKD
achieves superior performance over offline fashions, while exceeds the second
best results from RCO by 0.59%, implying that SwitOKD strictly follows the
essential principle of KD with the adaptive switching strategy.
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Table 7. Accuracy (%) comparison with 3 networks on CIFAR-100. WRN-16-2 serves
as either teacher (T) or student (S) for DML and KDCL, while is treated as S for
1T2S and T for 2T1S. The best results are reported with boldface.

Backbone Vanilla DML [31] KDCL [5]
SwitOKD

(1T2S)

SwitOKD

(2T1S)

MobileNet 58.65(S) 63.75(S) 62.13(S) 64.62(S) 65.03(S)

WRN-16-2 73.37(S/T) 74.30(S/T) 73.94(S/T) 75.02(S) 71.73(T)

WRN-16-10 79.45(T) 77.82(T) 80.71(T) 77.33(T) 77.07(T)

Fig. 6. Visual analysis of why SwitOKD works on CIFAR-100. Left:(a) The visual
results by superimposing the heat map onto corresponding original image. Right:(b)
3D surface of heat maps for teacher and student (the more the peak overlaps, the better
the student mimics teacher), where x and y axis denote the width and height of an
image, while z axis represents the gray value of the heat map. T: ResNet-34 (teacher);
S: ResNet-18 (student).

3.5 Extension to Large-Scale Dataset

Akin to [5,31], as a by-product, SwitOKD can effectively be extended to the
large-scale dataset (i.e., ImageNet), benefiting from its good generalization abil-
ity; see Table 6. It is observed that the students’ accuracy is improved by 1.99%
and 1.57% upon the vanilla, which are substantial for ImageNet, validating the
scalability of SwitOKD. Particularly, for ResNet-34, our teacher (73.65%) out-
performs the vanilla (73.27%) and DML (73.47%), highlighting the importance
of our adaptive switching strategy upon δ to balance the teacher and student.
Another evidence is shown for 0.5MobileNetV2 and ResNet-18 with larger distil-
lation gap, our student outperforms DML and KDCL by 0.89% and 1.19%, while
the teacher also yields comparable performance with DML, keeping consistent
with our analysis in Sect. 2.5.

3.6 How About SwitOKD from Visualization Perspective?

To shed more light on why SwitOKD works in Sect. 3.2, we further perform a
visual analysis with Grad-cam [21] visualization of image classification via a heat
map (red/blue region corresponds to high/low value) that localizes the class-
discriminative regions, to confirm that our adaptive switching strategy enables
student to mimic teacher well, and thus improves the classification accuracy.
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Figure 6(a) illustrates the visual results by superimposing the heat map onto
corresponding original image, to indicate whether the object regions of the image
is focused (the red area denotes more focus); Fig. 6(b) shows 3D surface of the
heat map to reflect the overlap range of heat maps for teacher and student
(the more the peak overlaps, the better the student mimics teacher). Combining
Fig. 6(a) and (b), it suggests that SwitOKD focuses on the regions of student,
which not only keep consistent with that of the teacher — mimic the teacher
well (KL loss), but correctly cover the object regions — yield high precision (CE
loss), in line with our analysis (Sect. 1): keep the gradient for KL loss divergent
from that for CE loss. The above further confirms the adversarial impact of large
distillation gap — the emergency of escaping online KD process (Sects. 2.2 and
2.3).

3.7 What Improves the Training Efficiency of SwitOKD?

Fig. 7. Efficiency analysis with Mobile
NetV2 (student) and ResNet-18
(teacher) on Tiny-ImageNet. (Color
figure online)

Interestingly, SwitOKD has considerably
raised the training efficiency of online
distillation process beyond [5,31] since
the training of teacher is paused (merely
involve inference process) under expert
mode (Sect. 2.4). We perform efficiency
analysis on a single GPU (GTX 1080 Ti),
where SwitOKD is compared with other
online distillation methods, e.g., DML [31]
and KDCL [5]. Figure 7 shows that the
time per iteration for SwitOKD (green
line) varies greatly, owing to adaptive
switching operation. Notably, the total
training time is significantly reduced by 27.3% (9.77h vs 13.43h) compared to
DML (blue line), while 34.8% (9.77h vs 14.99h) compared to KDCL (orange
line).

3.8 Extension to Multiple Networks

To show our approach’s extendibility for training multiple networks, we conduct
the experiments based on three networks with large distillation gap, see Table 7.
As can be seen, the students for 1T2S and 2T1S achieve significant accuracy
gains (5.97%, 1.65%, and 6.38%) over vanilla and outperform other online distil-
lation approaches (i.e., DML [31] and KDCL [5]) with significant margins, while
our teachers (WRN-16-10) are basically on a par with DML, consistent with
the tendency of performance gain for SwitOKD in Table 4. By contrast, KDCL
receives the best teacher (WRN-16-10), but a poor student (MobileNet), in that
it pays more attention to teacher instead of student. Notably, 1T2S achieves
a better teacher (77.33% vs 77.07% for WRN-16-10) than 2T1S; the reason is
that the teacher for 1T2S will be completely suspended when the switching
conditions between teacher and both students are triggered (Sect. 2.7).
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4 Conclusion

In this paper, we propose Switchable Online Knowledge Distillation (SwitOKD),
to mitigate the adversarial impact of large distillation gap between teacher and
student, where our basic idea is to calibrate the distillation gap by adaptively
pausing the teacher to wait for the learning of student. We foster it throughout an
adaptive switching strategy between learning mode and expert mode. Notably,
an adaptive switching threshold is devised to endow SwitOKD with the capacity
to automatically yield an appropriate distillation gap, so that the performance of
student and teacher can be improved. Further, we verify SwitOKD’s extendibility
to multiple networks. The extensive experiments on typical classification datasets
validate the effectiveness of SwitOKD.
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