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Abstract. Corner-based object detectors enjoy the potential of detect-
ing arbitrarily-sized instances, yet the performance is mainly harmed by
the accuracy of instance construction. Specifically, there are three factors,
namely, 1) the corner keypoints are prone to false-positives; 2) incorrect
matches emerge upon corner keypoint pull-push embeddings; and 3) the
heuristic NMS cannot adjust the corners pull-push mechanism. Accord-
ingly, this paper presents an elegant framework named Cornerformer that
is composed of two factors. First, we build a Corner Transformer Encoder
(CTE, a self-attention module) in a 2D-form to enhance the information
aggregated by corner keypoints, offering stronger features for the pull-
push loss to distinguish instances from each other. Second, we design an
Attenuation-Auto-Adjusted NMS (A3-NMS) to maximally leverage the
semantic outputs and avoid true objects from being removed. Experi-
ments on object detection and human pose estimation show the superior
performance of Cornerformer in terms of accuracy and inference speed.

Keywords: Object detection · Corner-based · Corner Transformer
Encoder · Attenuation-Auto-Adjusted NMS

1 Introduction

Object detection, which aims to localize and classify objects of interest in an
image, is an active and fundamental research direction in computer vision. Cur-
rent state-of-the-art detectors can be roughly classified into two categories, i.e.,
anchor-based [3,13,14,23,26,31] and anchor-free. Recently, anchor-free detec-
tors [9,11,20,37,42,43] have become a research hotspot due to its flexibility and
efficiency, among which, corner-based detector (e.g., CornerNet [20] and its vari-
ants [9,11]) is one of the most popular flowchats.

One key factor of corner-based detectors is how to construct instances from
corner points. CornerNet [20] proposed a corner pooling module using a serial
operation of maximize-and-merge operations to enhance corner features, and
applied a grouping method upon pull-push loss [20,28] to formulate corner points
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Fig. 1. Three problems of instance construction in corner-based detectors. (a) Bound-
ries of nearby objects may coincide with each other, resulting in high-score false pos-
itives that belong to no object (red “×” upon the top-left corner). (b) The pull-push
mechanism is prone to confusing highly similar keypoints that belongs to different
objects, so as to produce predictions across objects (red and yellow bounding boxes).
Here we show an extreme case that objects are identical. (c) The commonly used Soft-
NMS improperly decays lower-scored bounding box of two overlapped objects to be
removed in visualization (lower than 0.5-score). (Color figure online)

into instances (bounding boxes), which minimize embedding distances of corner
keypoints that belong to the same object and maximize those of different ones. To
further enhance the correctness of corner grouping, CenterNet [11] introduced
center points to filter false matched bounding boxes, while CentripetalNet [9]
abandoned the 1D pull-push embeddings and presented a centripetal grouping
method with a 2D-embedding form to better group paired corners.

As mentioned above, the correctness of corner grouping is one of the key
factors in corner-based detectors. Although great progress has been made by
previous methods [9,11,20] in corner matching, it is still an urgent demand to
further improve the correctness and accuracy of instance construction of corner-
based detectors. We believe the key factors that obstruct better instance con-
struction lie in the following three aspects: 1) Corner keypoints are prone to
false-positives due to boundary confusion that may largely disturb subsequent
steps in the pipeline and produce inferior results (Fig. 1(a)). 2) Incorrect matches
emerge upon corner keypoint pull-push embeddings, resulting in irregular detec-
tion boxes, e.g., boxes containing multiple objects (Fig. 1(b)). 3) The heuristic
NMS cannot adjust the corners pull-push mechanism due to its fixed decay factor
setting and thus falsely discarding overlapped instances (Fig. 1(c)).

Accordingly, we propose a Cornerformer framework that composed of two
main modules, i.e., a Corner Transformer Encoder (CTE, a self-attention mod-
ule) and an Attenuation-Auto-Adjusted NMS (A3-NMS), to efficiently address
above stated drawbacks of corner-based detectors. Specifically, the CTE module
is designed to be a 2D-Transformer, which can better capture nearby boundary
information of a corner location with the help of self-attention mechanism, so
as to effectively alleviate the boundary confusion problem and decrease false-
positive keypoints. Additionally, we implant multiple positional encodings into
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CTE, which makes CTE position-sensitive and dramatically enhance the dis-
tinguishing ability on similar keypoints from different objects. An A3-NMS is a
hyper-parameter-free Soft-NMS that can dynamically adjust attenuation weights
of boxes to maximally leverage the semantic outputs and avoid true objects from
being removed. Thus, the A3-NMS is more suitable for the scenario of the corner
pull-push mechanism than a vanilla Soft-NMS [2] that has a fixed decay weight.

Experimental results on MS-COCO [24] object detection, and both MS-
COCO and CrowdPose [22] human pose estimation show that after equipping
with the proposed Cornerformer, state-of-the-art corner-based detectors enjoy a
consistent performance improvement in terms of accuracy and inference speed.
Taking the classic CornerNet baseline as an example, after replacing corner pool-
ing and Soft-NMS with CTE and A3-NMS in Cornerformer, we obtain a satis-
factory accuracy boosting of 3.0% in terms of AP and an inference speed lifting
of 2.5 FPS.

2 Related Work

The success of deep neural networks (DNNs) [19,21] has largely promoted the
development of object detection. Modern DNNs-based detectors can be simple
divided into two categories: anchor-based [3,13,14,23,26,31] and anchor-free [9,
11,20,37,42,43].

2.1 Anchor-Based Detector

The anchor box is used to match a ground truth box and acts as a guid-
ance for detectors to regress object bounding box. In Faster R-CNN [33], the
design of anchor-based RPN made detectors end-to-end trainable. Later, anchor
boxes were widely used in RPN-based two-stage detectors [3,13,14,27,33,41].
To further explore the efficiency of models, some anchor-based one-stage detec-
tors [23,26,31,32,34,36] also appeared. They remove the RPN-stage and directly
regress and classify anchor boxes. Despite the great success of the anchor mech-
anism, it also brings some drawbacks, e.g., excessively many hyper-parameters,
unstable IoU-based (>0.7) positives selection strategy, and complex network
structure. These drawbacks drive the community to study anchor-free detection
methods.

2.2 Anchor-Free Detector

Anchor-free object detection is a very active research field in recent years. Cor-
nerNet [20] was the first keypoint-based approach, which predicted keypoints
via generating and parsing heatmaps, and detected objects by predicting and
grouping pairs of corner points. CenterNet [11] added a prediction branch of
center points based on CornerNet settings, transforming corner matching into
triplet matching. Upon CornerNet, CentripetalNet [9] proposed a new cen-
tripetal grouping algorithm and achieved state-of-the-art performance. Besides,
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FCOS [37] proposed a dense regression anchor-free detector. It treats lots of pix-
els in bounding boxes as positive samples and directly regresses bounding boxes.
Compared with anchor-based approaches, anchor-free methods enjoy flexibility
and efficiency. However, the limitations of local modeling in CNN hinder its
development.

Transformer is first proposed in natural language processing [38]. Compared
with CNN, Transformer inplants self-attention mechanism into its basic oper-
ator, which is more suitable for capturing long-range contexts than convolu-
tion. Due to its superb ability, Transformers were introduced into computer
vision [5,10,25,44] and soon leveraged in object detection. DETR [5] intro-
duced Transformer [38] into object detection task for the first time, which elim-
inated many hand-craft modules (e.g., anchor, NMS, and proposals) in previous
detectors, and achieved on-par performance compared to classical CNN-based
Faster R-CNN. Based on DETR, WB-DETR [25] replaced the ResNet [15] back-
bone with ViT [10] (a Transformer-based recognition system) to obtain a pure-
Transformer detection system, making the detection pipeline neater.

Inspired by DETR, we explore how to integrate Transformer into keypoint-
based detectors to improve the quality of instance construction.

3 Preliminary: The CornerNet Baseline

CornerNet utilizes heatmaps generated by the backbone to estimate corner key-
points and uses the pull-push loss to group embedding pairs. To refine cor-
ner coordinates extracted from heatmaps, CornerNet predict extra offsets. The
pipeline of CornerNet is similar to the pipeline shown in Fig. 2, with a corner
pooling module replacing the CTE module, and a Soft-NMS module replacing
the A3-NMS module.

CornerNet applies a modified pixel-level focal loss [23] as the training objec-
tive for heatmaps of paired corners. The backbone with output stride brings
about discretization error in the process of remapping corner locations. To
address this problem, CornerNet additionally regress offsets to refine corner coor-
dinates.

The Associative Embedding [28] method is applied for paired corner match-
ing. More specifically, the “pull” loss is leveraged to group paired corners and
the “push” loss to separate irrelevant corners:

Lpull =
1
N

N∑

k=1

[
(etk−ek)

2 + (ebk−ek)
2
]
, (1)

Lpush=
1

N(N−1)

N∑

k=1

N∑

j=1
j �=k

max (0,Δ−|ek−ej |) , (2)

where ek is the average of etk and ebk and Δ is set to be 1. Pull-push loss is only
applied at ground-truth corner locations [20].
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Fig. 2. The architecture of Cornerformer. A Cornerformer, composed of a CTE (Cor-
ner Transformer Encoder) module, keypoint grouping components, and an A3-NMS
module, takes image features extracted by the backbone as input, and generates pre-
dicted bounding boxes (paired corner keypoints) as output. The CTE, as a replacement
of corner pooling module in CornerNet, captures contextual information and predicts
corner keypoints (embeddings) more precisely from input feature maps. A3-NMS is an
improved NMS, which can maximally avoid true objects from being removed and is no
longer restricted by manually set hyper-parameters.

Our Cornerformer is built upon the CornerNet baseline (or its variants, i.e.,
CenterNet and CentripetalNet). In the rest of this paper, we apply the same
settings used in corresponding baselines unless otherwise specified. For more
details, please refer to the original papers [9,11,20].

4 Cornerformer

4.1 Towards Better Instance Construction

As stated in Sect. 1, there are three critical factors that hinder a better instance
construction in corner-based object detection. Here we carry out a case analysis
incorporating with Fig. 1 to further dissect them. 1) Corner keypoints are
prone to false-positives due to boundary confusion. As shown in Fig. 1
(a). The top-most boundary of “teddy bear 2” and the left-most boundary of
“teddy bear 1” coincides with each other, which will result in a high-score false
estimation that neither belongs to “teddy bear 1” nor “teddy bear 2”. Such
needless keypoints will largely affect subsequent procedures and produce dete-
riorative predictions. 2) Incorrect matches emerge upon corner keypoint
pull-push embeddings. The pull-push mechanism naturally lacks ability of
distinguishing highly similar keypoints that belong to different objects, so that
corner keypoints of different objects with similar appearances may be mistak-
enly grouped together. We show an extreme example that the input is generated
by copy-and-paste the same image in Fig. 1 (b). The predicted bounding boxes
(red and yellow) are unnaturally composed of two different instances. 3) The



Cornerformer: Purifying Instances for Corner-Based Detectors 23

heuristic NMS cannot adjust the corners pull-push mechanism. The
commonly used Soft-NMS decays scores of overlapped bounding boxes with a
fixed value, which may cause true detection boxes of overlapped objects being
removed in visualization, as shown in Fig. 1 (c).

Accordingly, we propose Cornerformer to address above stated problems of
corner-based detectors in instance construction. As shown in Fig. 2, Corner-
former is built upon a corner-based detector as baseline, e.g., CornerNet [20] or
CenterNet [11]. A Cornerformer consists of two main components, i.e., a Corner
Transformer Encoder (CTE) used to provide better corner features and lift the
quality of pull-push embeddings, and an Attenuation-Auto-Adjusted NMS (A3-
NMS) used to maximally leverage the semantic outputs and avoid true objects
from being removed. In the following, we delve into each part of Cornerformer
and show how it helps a better instance construction.

4.2 Corner Transformer Encoder

Overview of the CTE. Corner Transformer Encoder (CTE) runs as a cor-
ner features enhancing module in Cornerformer. Corners often lay outside an
object without explicit existent evidence, which needs feature enhancement via
boundary contexts (the top-most, bottom-most, left-most, and right-most of an
object). The CornerNet baseline applies a corner pooling module to enhance the
visual reasoning of corners. However, corner pooling uses a serial operation of
maximize-and-merge to extend corner information, suffering inefficient context
around corner keypoints. As a special case, when a spatial location has similar
boundary conditions, it is likely to be a high-score false corner estimation due to
boundary confusion, as shown in Fig. 1 (a). In addition, there is no optimization
for pull-push embeddings in corner pooling, so that the pull-push mechanism
may gather wrong corner pairs that have highly similar corner embeddings, as
shown in Fig. 1 (b). To this end, we propose CTE to better estimate and group
target corners.

Position-Aware Criss-Cross Attention. To capture rich boundary contexts,
the corner estimation module needs to look over information around potential
corner keypoints, i.e., horizontal and vertical possible spatial locations related to
boundaries. Thus, we naturally adopt the self-attention mechanism to capture rich
information around potential corners. More specifically, for one query element q in
image features, the corresponding keys (k) are sampled in the same row and col-
umn. It is notable that convolution can also capture information from a nearby
area, but handling a larger area corresponding to a large object requires to stack
more convolutional layers, which brings potential computational burdens.

As shown in Fig. 2, we adopt the Position-aware Criss-Cross Attention
(PCCA) as the self-attention module, which is designed upon CCA [16] and
enhanced with positional encoding. Vanilla CCA is used only to capture con-
textual information in horizontal and vertical directions for using light-weight
computation and memory, which we find suitable for capturing boundary con-
textual information for corner keypoints. To further alleviate the false-positive
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Fig. 3. Comparison of NMS, Soft-NMS, and A3-NMS. Soft-NMS uses a fixed decay
weight value (σ) in both the scenario of decaying redundant boxes, where σ should be
as large as possible to remove redundant boxes, and the scenario of overlapped objects,
where σ should be as small as possible to retain bounding boxes of different objects.
In contrast, our A3-NMS accomplishes an adaptive decay ratio upon embeddings to
effectively address such scenarios.

problem of similar features, we equip a positional encoding [5] in “Q” and “K” of
the original CCA to create a new Position-aware CCA. The positional encoding
is as follows: {

PE(pos, 2i) = sin(pos/100002i/d)
PE(pos, 2i + 1) = cos(pos/100002i/d),

(3)

where pos means the position, i indicates the channel ID, and d is 128 repre-
senting the total number of dimensions.

Settings of Transformer Blocks. One Transformer block in CTE is composed
of a PCCA (as the self-attention module) and a 1×1 convolutional layer (as the
feed forward network, FFN). Different from the vanilla 1D-Transformer block [5]
that expects a sequence as input, the CTE is a 2D-form Transformer which can
take 2D image features as input directly. We also find that multiple Transformer
blocks in series can generate more robust features for corner estimation.

Optimizing Pull-Push Embeddings. We use the pull-push loss to group cor-
ner pairs, as mentioned in Sect. 3. The pull-push loss utilizes a self-supervised
way to “pull” embeddings of corresponding corners and “push” irrelevant ones
upon object features. When there are more than one objects with similar appear-
ance in an image, as shown in Fig. 1 (b), the pull-push loss fails to distinguish
different instances effectively. Thus, except for richer contexts embedded in cor-
ner keypoints, we further insert a global positional encoding after Transformer
blocks to make CTE position-sensitive, so that the pull-push loss can better
distinguish if a pair of corners that have similar feature responses belong to the
same instance.
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4.3 Attenuation-Auto-Adjusted NMS

Overview of the A3-NMS. The heuristic Non-Maximum Suppression (NMS)
has become the de-facto standard applied to suppress and filter out false-
positives for detectors. The original NMS cannot solve the problem of largely
overlapped objects. Soft-NMS addresses such problem by softening the suppres-
sion process with a score decay mechanism. The most commonly used decay
function is as follows:

Wiou(M,bi) = exp(− iou(M, bi)2

σ
) (4)

where M is the highest score of box, bi indicates the current box. σ is a hyper-
parameter often set to be 0.5.

However, Soft-NMS still lacks flexibility because of its fixed σ value. As long
as the IoU of two bounding boxes is the same, Soft-NMS decays the lower-
scored one to the same score, whatever the scenario is overlapped instances or
duplicated bounding boxes. To address such a limitation, we design the A3-NMS
that introduces adjustable attenuation and relies on no manually set hyper-
parameters to flexibly handle both cases of duplicated boxes and overlapped
instances.

Adjust Attenuation Upon Embeddings. To address the above problem,
A3-NMS applies a dynamic adjusted decay function as following:

Wiou(M,bi) = exp(− iou(M, bi)2

f(|eM − ei|) ) (5)

where eM and ei are embeddings of corresponding boxes. M represents the max-
score box. f is a function to smooth embedding distance between eM and ei,
and in this case we use the tanh function. We take mean value of paired corner
embeddings as box embedding, i.e., eM or ei. Thus, we can easily obtain distance
of bounding boxes by calculating vector distance of their box embeddings. Since
paired corners or boxes are grouped via the pull-push mechanism in corner-based
detectors, the distance of box embeddings should be small if two boxes belong
to the same instance, while it should be large if two boxes belong to different
objects. The fixed σ in Eq. (4) becomes a dynamic value learned by the network
in Eq. (5) so that the adjusted attenuation factor can well fit each situation.
We plot curves of the decay function of different versions of NMS in Fig. 3, from
which we can easily find that A3-NMS can efficiently handle such scenarios.

More specifically, A3-NMS runs in post-processing, and (eM , ei) are a pair
of self-adjusted embeddings for the corresponding boxes, which belong to the
side outputs of corner-based detectors. They contain useful information that
measures the closeness of two detection boxes. That said, the smaller f(|eM −
ei|) is, the more similar bi and bM are, and thus the heavier bi is suppressed.
Compared to Soft-NMS that relies on a fixed factor σ, such a mechanism is more
flexible and accurate.
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Table 1. Performance comparison (%) with state-of-the-art detectors on MS COCO
test-dev. DR and KB are abbreviations of dense regression and keypoint-based, respec-
tively. ×2 means that two Corner Transformer Encoders without parameters sharing
are used for the top-left and bottom-right corners, respectively. Blue up-arrows indi-
cate the improved values compared with baselines. ∗ indicates multi-scale testing. Input
resolution represents training input size.

Method Backbone Input size AP50 AP75 APS APM APL AP FPS

Two-stage:

Cascade R-CNN [3] ResNet-101 1333 × 800 62.1 46.3 23.7 45.5 55.2 42.8 –

Sparse R-CNN [35] ResNeXt-101 1333 × 800 66.3 51.2 28.6 49.2 58.7 46.9 –

CPN [12] Hourglass-104 1333 × 800 65.0 51.0 26.5 50.2 60.7 47.0 5.2

One-stage, anchor-based:

RetinaNet [23] ResNeXt-101 1333 × 800 61.1 44.1 24.1 44.2 51.2 40.8 5.4

YOLOv4 [1] CSPDarkNet-53 608 × 608 65.7 47.3 26.7 46.7 53.3 43.5 –

ATSS [40] w/DCN [8] ResNet-101 1333 × 800 64.7 50.4 27.7 49.8 58.4 46.3 8.4

One-stage, anchor-free (DR)

FoveaBox [18] ResNeXt-101 1333 × 800 61.9 45.2 24.9 46.8 55.6 42.1 5.1

FCOS [37] ResNeXt-101 1333 × 800 62.1 45.2 25.6 44.9 52.0 42.1 7.3

Reppoints [39] w/DCN ResNet-101 1333 × 800 66.1 49.0 26.6 48.6 57.5 45.0 8.7

One-stage, anchor-free (KB)

ExtremeNet [43] Hourglass-104 511 × 511 55.5 43.2 20.4 43.2 53.1 40.2 3.1

CenterNet [42] Hourglass-104 512 × 512 61.1 45.9 24.1 45.5 52.8 42.1 7.8

CornerNet [20] Hourglass-104 511 × 511 56.5 43.1 19.4 42.7 53.9 40.5 4.1

CornerNet w/Cornerformer Hourglass-104 511 × 511 61.2 46.2 21.5 44.8 56.5 42.6 ↑ 2.1 7.4

CornerNet w/Cornerformer×2 Hourglass-104 511 × 511 61.7 46.8 22.3 45.6 57.1 43.5 ↑ 3.0 5.6

CenterNet [11] Hourglass-104 511 × 511 62.4 48.1 25.6 47.4 57.4 44.9 3.3

CenterNet w/Cornerformer Hourglass-104 511 × 511 63.0 49.7 26.0 48.6 59.3 46.1 ↑ 1.2 5.9

CenterNet w/Cornerformer×2 Hourglass-104 511 × 511 64.3 50.2 27.1 49.5 59.2 46.8 ↑ 1.9 4.8

CenterNet w/Cornerformer×2∗ Hourglass-104 511 × 511 64.9 51.4 28.8 50.1 59.5 47.7 –

CentripetalNet [9] Hourglass-104 511 × 511 63.1 49.7 25.3 48.7 59.2 46.1 3.4

CentripetalNet w/Cornerformer Hourglass-104 511 × 511 64.5 50.3 26.2 49.4 59.6 47.1 ↑ 1.0 6.5

CentripetalNet w/Cornerformer×2 Hourglass-104 511 × 511 64.6 50.6 26.7 49.5 59.9 47.4 ↑ 1.3 5.0

CentripetalNet w/Cornerformer×2∗ Hourglass-104 511 × 511 65.4 51.8 28.9 50.8 60.2 48.5 –

5 Experiments

5.1 Datasets, Metrics, and Implementation Details

Object Detection. We evaluate the effectiveness of the proposed Cornerformer
on COCO [24] dataset. COCO is a large-scale and challenging benchmark in
object detection, which contains 80 categories and more than 1.5 million object
instances. We train all models on the train2017 and carry out all ablations with
val2017. We compare with other state-of-the-art methods using the test-dev.
Besides, there are few heavily occluded objects in MS-COCO.

Besides, to better support our claim, we conduct additional ablation experi-
ments on Citypersons [7] (a pedestrian detection dataset). Citypersons contains
six different labels, i.e., ignore regions, pedestrians, riders, sitting persons, other
persons with unusual postures, and group of people. We keep and merge the
labels of pedestrians and riders that accounts a large proportion in vanilla data.
There are 18204 persons in 2471 images on our processed training set. We show
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the performance of the proposed Cornerformer on the validation set that con-
tains 439 images and 3666 persons.

Human Pose Estimation. To further test the generalization ability of the
proposed CTE, we integrate it into the bottom-to-up human pose estimation
model, HigherHRNet [6]. We evaluate the effectiveness of the CTE module on
both COCO dataset, which contains 250k person instances labeled with 17 key-
points, and Crowdpose dataset [22], which contains more crowded scenes.

Metrics. We use the AP (average precision) metric to measure performance
of both object detection and human pose estimation. AP in object detection
(COCO) is computed over ten different IoU thresholds (i.e., 0.5:0.05:0.95) and all
categories, which is considered as the most important metric on the object detec-
tion task. For Citypersons, since the annotation (bounding box) is not as precise
as COCO, the AP under a high IoU is meaningless, so we only test the AP with
0.5 IoU. Instead of IoU, the AP used in human pose estimation task is computed

upon Object Keypoint Similarity (OKS): OKS =

∑
i exp(−di

2/2s2k2
i )δ(vi > 0)

∑
i δ(vi > 0)

Here, di represents the Euclidean distance between a detected keypoint and its
corresponding ground truth, vi is the visibility flag of the ground truth, s is the
object scale, and ki is a per-keypoint constant that controls falloff [6].

Training Details. We follow settings of corner-based models to train new detec-
tor equipped with the proposed Cornerformer on 16 NVIDIA RTX 3090 GPUs.
Standard cropping, horizontal flipping, and color jittering are employed as data
augmentation. All models are fine-tuned from the pre-trained Hourglass [20]
backbone with randomly initialized Cornerformer layers for 250k iterations with
a batch size of 64. The learning rate is set to 2.5e−4 and dropped 10× at 200k
iteration. An Adam [17] optimizer is applied to optimize model parameters. For
human pose estimation task, we choose the HigherHRNet [6] as baseline and
follow its training settings.

Inference Details. We test inference speed of baseline models and their Corner-
former variants on a workstation with an NVIDIA Titan XP GPU. To guarantee
a fair comparison with baselines, We strictly follow test settings of corresponding
baselines.

5.2 Object Detection Results

We implant the proposed Cornerformer into several classical corner-based detec-
tors, e.g., CornerNet [20], CenterNet [11], and CentripetalNet [9], and evaluate
the effectiveness of our design via performance comparisons, in terms of accuracy
and inference speed.

Comparison on Accuracy. As shown in Table 1, CornerNet [20] with Cor-
nerformer improved by 2.1% on AP (from 40.5% to 42.6%), which shows the
advantage of the proposed Cornerformer on better construct instances. For large
objects, APL increases from 53.9% to 56.5%, which is arguably owing to the feasi-
bility of CTE to well capture long-range contexts. As shown in Fig. 4, the corners
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CornerNet w/ corner pooling CornerNet w/ CTE

Fig. 4. Corner estimation visualized comparison of corner pooling and the proposed
Corner Transformer Encoder. Compared with corner pooling, CTE can reduce false-
positive points which have confused boundary visual appearances.

estimated by Cornerformer are more precise. For CenterNet [11] baseline, Cor-
nerformer also brings it a decent promotion of 1.2% on AP. For CentripetalNet [9]
which does not use pull-push embeddings, we add a branch to obtain pull-push
embeddings to apply the whole Cornerformer and harvest an improvement of
1.0%, proving our Cornerformer is very solid.

A single CTE in Cornerformer can capture both horizontal and vertical
boundary information to enhance both top-left and bottom-right corners fea-
tures. Under this setting, top-left and bottom-right corners share the same set of
learned parameters, which may limit the representative power. To better distin-
guish different type of corners (top-left and bottom-right), we use two individual
CTEs (represented as Cornerformer (×2)) to further test its ability. As we can
see in Table 1, Cornerformer (×2), obtains improvements of 3.0%, 1.9%, and
1.3% upon CornerNet, CenterNet, and CentripetalNet baselines, respectively,
further demonstrating the effectiveness of the proposed Cornerformer.

Comparison on Inference Speed. We also compare the inference speed of
our method with baselines. As illustrated in Table 1, the inference speed of Cor-
nerNet with Cornerformer is 7.4 FPS, which is 3.3 FPS faster than the vanilla
CornerNet using corner pooling. Besides, CenterNet with Cornerformer as well
as CentripetalNet with Cornerformer is also more efficient than its baseline. It’s
worth noting that even if equipped with two CTEs, the inference speed is still
faster than those corner pooling counterparts. The major speedup is brought by
replacing corner pooling (a serial operation that requires a for loop) with CTE
that is computed in parallel.

5.3 Pose Estimation Results

A Cornerformer is consisted of CTE and A3-NMS, where CTE is used to enhance
the corner features and improve the pull-push grouping as mentioned in Sect. 4.2.
CTE is made up of multiple Transformer blocks and when stacking multiple
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HigherHRNet HigherHRNet w/ CTE

Fig. 5. Effectiveness of CTE in human pose estimation. Here we apply an extreme case
– copy-and-paste the same object. HigherHRNet with CTE (right column) can distin-
guish local responses with similar visual appearances in different locations, making the
pull-push grouping more reasonable, while the original HigherHRNet failed.

Table 2. Performance comparison of bottom-to-up human keypoint estimators on
COCO test-dev. The CTE brings an improvement of 0.8% in terms of AP upon the
HigherHRNet baseline.

Method AP AP50 AP75 APM APL

OpenPose [4] 61.8 84.9 67.5 57.1 68.2

Hourglass [28] 65.5 86.8 72.3 60.6 72.6

SPM [29] 66.9 88.5 72.9 62.6 73.1

PersonLab [30] 68.7 89.0 75.4 64.1 75.5

HigherHRNet [6] 70.5 89.3 77.2 66.6 75.8

HigherHRNet w/CTE 71.3 90.1 78.0 67.2 76.9

blocks, a CTE is able to capture global contexts. Besides, CTE is designed to
be position-sensitive and pull-push-enhanced, so that it can better distinguish
between similar appearances from different locations. Accordingly, we apply CTE
to bottom-to-up human keypoints estimator. To test this conjecture, we take
HigherHRNet [6] as the baseline. As shown in Table 2 and 3, HigherHRNet with
Cornerformer gains an improvement of 0.8% and 1.3% on COCO and Crowd-
pose, respectively. Such improvements show that Cornerformer is effective not
only for the corner-based detectors, but also for human pose estimation tasks.
As shown in Fig. 5, we copy-and-paste an image to visualize the effectiveness of
Cornerformer on improving pull-push grouping. We can see that HigherHRNet
cannot distinguish objects that have the same characteristics in different loca-
tions. CTE can overcome such problems, making the pull-push grouping more
reasonable, further proving the position-sensitive CTE can make more accurate
keypoint estimation.

5.4 Ablation Study

In this section, we conduct ablation analyses on COCO val2017 mainly for object
detection and partially for human pose estimation. We mainly utilize Corner-
Net [20] as the baseline and use a single CTE for Cornerformer.
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Table 3. Comparison on Crowdpose test dataset. Superscripts E, M, and H of AP
stand for easy, medium and hard. The CTE brings an improvement of 1.3% in terms
of AP upon the HigherHRNet.

Method AP AP50 AP75 APE APM APH

HigherHRNet [6] 67.6 87.4 72.6 75.8 68.1 58.9

HigherHRNet [6] w/CTE 68.9 88.9 73.5 77.2 69.6 60.3

Table 4. Effectiveness of Cornerformer. We compare the performance of CTE and A3-
NMS with the original corner pooling and Soft-NMS on COCO val split and Cityper-
sons to validate the effectiveness of the proposed Cornerformer. CP represents corner
pooling. APc means the AP gained on Citypersons.

CTE CP A3-NMS Soft-NMS AP AP50 AP75 APc

× × × � 36.9 52.2 38.9 –

× � × � 39.1 54.4 40.1 29.1

� × × � 40.8 56.5 43.6 40.3

� × � × 41.3 57.2 44.1 45.4

Effectiveness of the Cornerformer. In this part, we compare CTE and A3-
NMS with corner pooling (presented as CP in Table 4) and Soft-NMS, respec-
tively, to validate the effectiveness of components in Cornerformer. As shown in
Table 4, CTE achieves a 1.7% improvement compared to corner pooling. Com-
pared with corner pooling, CTE can distinguish different corner positions with
similar boundary visual appearances, while corner pooling fails. When we uti-
lize A3-NMS to replace Soft-NMS, a consistent improvement of 0.5% on AP is
obtained on COCO and 5.1% AP gains on Citypersons, which validates the effec-
tiveness of A3-NMS on preventing overlapped object boxes from being falsely
decayed. Compared with the baseline (36.9% on COCO and 29.1% on Cityper-
sons), the Cornerformer (CTE + A3-NMS) counterpart improves detection per-
formance by 4.4% and 16.3% respectively. Besides, for Citypersons, compared
with commonly used benchmarks, e.g., Faster-RCNN (25.0% on AP) and Reti-
naNet (27.9% on AP), CornerNet equipped with Cornerformer can obtain a
large improvement (45.4% on AP), further demonstrating the effectiveness of
the proposed Cornerformer firmly.

Positional Encoding in CTE. We embed positional encoding in self-attention
module of CTE to help a model better distinguish corners with similar boundary
features in the same row or column. Besides, to help the model “pull” or “push”
corners better, we embed an additional positional encoding of full image in the
output of CTE , as shown in Fig. 2. We conduct experiments to test if these
designs are resultful. As shown in Table 5, PCCA (with a positional encoding
upon CCA) is 0.8% higher than CCA. Further embedding an additional posi-
tional encoding (represented as PE) in the output of CTE brings another 0.7%
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Table 5. Effectiveness of positional encoding. CCA is the original Criss-Cross atten-
tion [16]. PCCA is the proposed position-aware CCA. PE represents the positional
encoding embedded in the output of Corner Transformer Encoder. All results are
obtained with COCO val split.

CCA PCCA PE AP AP50 AP75 APS APM APL

� × × 39.3 54.9 40.0 19.1 40.9 52.7

× � × 40.1 55.6 42.9 19.4 41.5 53.0

× � � 40.8 56.5 43.6 19.6 42.1 53.4

Table 6. Effects on number of CTE blocks. We verify that how many blocks of CTE
are reasonable for different tasks on COCO val split.

Number of CTE Blocks 0 1 2 3 4

CornerNet [20] w/CTE (AP) 36.9 38.7 39.9 40.8 40.4

HigherHRNet [6] w/CTE (AP) 67.1 67.5 68.2 67.7 –

performance gain. The above results prove the significance of positional encoding
for corner predicting and grouping.

Number of CTE Blocks. To validate the influence of the number of CTE
blocks, we conduct experiments to test performance with different number of
CTE blocks. As shown in Table 6, three CTE blocks is the best for object detec-
tion [20]. The reason that 4 CTE blocks brings slight performance drop compared
to 3 may lie in insufficient training duration or data samples.

Besides, we further observe the performance on human pose estimation with
respect to the number of CTE blocks. As shown in Table 6, two is the best choice
for this task [6]. Three blocks CTE causes an AP drop, mainliy because an odd
number of blocks leads to a focus on boundaries, which is ineffective for tasks
with keypoints inside objects.

6 Conclusion

In this paper, we propose Cornerformer to address potential problems of corner-
based detectors in instance construction. In Cornerformer, we design a 2D Cor-
ner Transformer Encoder to optimize corner estimation and pull-push group-
ing. Besides, upon the pull-push embeddings, we present an Attenuation-Auto-
Adjusted NMS to further break limits of the heuristic NMS. Our research reveals
that much room is left in constructing objects from mid-level visual cues. We
hope that the simple and efficient design of Cornerformer will attract more atten-
tion to instance construction in corner-based detectors.
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