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Abstract. Despite great progress in object detection, most existing
methods work only on a limited set of object categories, due to the
tremendous human effort needed for bounding-box annotations of train-
ing data. To alleviate the problem, recent open vocabulary and zero-
shot detection methods attempt to detect novel object categories beyond
those seen during training. They achieve this goal by training on a pre-
defined base categories to induce generalization to novel objects. How-
ever, their potential is still constrained by the small set of base categories
available for training. To enlarge the set of base classes, we propose a
method to automatically generate pseudo bounding-box annotations of
diverse objects from large-scale image-caption pairs. Our method lever-
ages the localization ability of pre-trained vision-language models to
generate pseudo bounding-box labels and then directly uses them for
training object detectors. Experimental results show that our method
outperforms the state-of-the-art open vocabulary detector by 8% AP on
COCO novel categories, by 6.3% AP on PASCAL VOC, by 2.3% AP on
Objects365 and by 2.8% AP on LVIS. Code is available here.
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1 Introduction

Object detection [11,19,20,27] is a core task in computer vision that has consid-
erably advanced with the adoption of deep learning and continues to attract
significant research effort [26,31,33]. Current deep object detection methods
achieve astonishing performance when learning a pre-defined set of object cate-
gories that have been annotated in a large number of training images (PASCAL
VOC [6], COCO [17]). Unfortunately, their success is still limited to detecting
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Fig. 1. Previous methods (left) rely on human-provided box-level annotations of pre-
defined base classes during training and attempt to generalize to objects of novel
classes during inference. Our method (right) generates pseudo bounding-box anno-
tations from large-scale image-caption pairs by leveraging the localization ability of
pre-trained vision-language (VL) models. Then, we utilize them to improve our open
vocabulary object detector. Compared to the human annotations of a fixed/small set
of base classes, our pseudo bounding-box label generator easily scales to a large set
of diverse objects from the large-scale image-caption dataset, thus is able to achieve
better detection performance on novel objects compared to previous methods

a small number of object categories (e.g., 80 categories in COCO). One reason
is that most detection methods rely on supervision in the form of instance-level
bounding-box annotations, hence requiring very expensive human labeling efforts
to build training datasets. Furthermore, when we need to detect objects from a
new category, one has to further annotate a large number of bounding-boxes in
images for this new object category.

Two families of recent work have attempted to reduce the need of anno-
tating new object categories: zero-shot object detection and open vocabulary
object detection. In zero-shot detection methods [1,22], object detection mod-
els are trained on base object categories with human-provided bounding box
annotations to promote their generalization ability on novel object categories,
by exploiting correlations between base and novel categories. These methods
can alleviate the need for large amounts of human labeled data to some extent.
Building on top of such methods, open vocabulary object detection [34] aims to
improve the detection performance of novel objects with the help of image cap-
tions. However, the potential of existing zero-shot and open vocabulary methods
is constrained by the small size of the base category set at training, due to the
high cost of acquiring large-scale bounding-box annotations of diverse objects.
As a result, it is still challenging for them to generalize well to diverse objects
of novel categories in practice.

A potential avenue for improvement is to enable open vocabulary detection
models to utilize a larger set of base classes of diverse objects by reducing the
requirement of manual annotations. In this paper we ask: can we automatically
generate bounding-box annotations for objects at scale using existing resources?
Can we use these generated annotations to improve open vocabulary detection?
The most recent progress on vision-language pre-training gives us some hope.
Vision-language models [12,15,16,21,28] are pre-trained with large scale image-
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caption pairs from the web. They show amazing zero-shot performance on image
classification, as well as promising results on tasks related to text-visual region
alignment, such as referring expressions, which implies strong localization ability.

Motivated by these observations, we improve open vocabulary object detec-
tion using pseudo bounding-box annotations generated from large-scale image-
caption pairs, by taking advantage of the localization ability of pre-trained
vision-language models. As shown in Fig. 1, we design a pseudo bounding-box
label generation strategy to automatically obtain pseudo box annotations of a
diverse set of objects from existing image-caption datasets. Specifically, given a
pre-trained vision-language model and an image-caption pair, we compute an
activation map (Grad-CAM [24]) in the image that corresponds to an object
of interest mentioned in the caption. We then convert the activation map into
a pseudo bounding-box label for the corresponding object category. Our open
vocabulary detector is then directly trained with supervision of these pseudo
labels. Our detector can also be fine-tuned with human-provided bounding boxes
if they are available. Since our method for generating pseudo bounding-box
labels is fully automated with no manual intervention, the size and diversity
of the training data, including the number of training object categories, can
be largely increased. This enables our approach to outperform existing zero-
shot/open vocabulary detection methods that are trained with a limited set of
base categories.

We evaluate the effectiveness of our method by comparing with the state-of-
the-art (SOTA) zero-shot and open vocabulary object detectors on four widely
used datasets: COCO, PASCAL VOC, Objects365 and LVIS. Experimental
results show that our method outperforms the best open vocabulary detection
method by 8% mAP on novel objects on COCO, when both of the methods are
fine-tuned with COCO base categories. Moreover, we surprisingly find that even
when not fine-tuned with COCO base categories, our method can still outper-
form fine-tuned SOTA baseline by 3% mAP. We also evaluate the generalization
performance of our method to other datasets. Experimental results show that
under this setting, our method outperforms existing approaches by 6.3%, 2.3%
and 2.8% on PASCAL VOC, Objects365 and LVIS, respectively.

Our contributions are summarized as follows: (1) We propose an open vocabu-
lary object detection method that can train detectors with pseudo bounding-box
annotations generated from large-scale image-caption pairs. To the best of our
knowledge, this is the first work which enables open vocabulary object detection
using pseudo labels during training. (2) We introduce a pseudo label generation
strategy using the existing pre-trained vision-language models. (3) With the help
of pseudo labels, our method largely outperforms the SOTA methods. Moreover,
when trained with only pseudo labels, our method achieves higher performance
than the SOTA that rely on training with manual bounding-box annotations.

2 Related Work

Object detection aims at localizing objects in images. Traditional detection
methods are supervised using human-provided bounding box annotations. Two-
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stage detection methods [8,11,23] are one of the most popular frameworks. These
methods generate object proposals in the first stage and classify these proposals
to different categories in the second stage. Weakly supervised object detectors
seek to relieve such heavy human annotation burden by using image-level labels
such as image-level object categories [2,29], captions [32] and object counts [7]
for training. Although these approaches show promising performance, they only
support objects in a fixed set of categories. Whenever one needs to detect objects
from a new category, they have to collect and manually annotate instances from
the new category and retrain the detector.
Open vocabulary and zero-shot object detection target at training an
object detector with annotations on base object classes to generalize to novel
object classes during inference. Most zero-shot detection methods achieve this
level of generalization by aligning the visual and the text representation spaces
for objects from base classes during training [1,22,36], and inferring novel objects
during inference by exploiting correlation between base and novel objects. Recent
methods encourage the visual-semantic alignment for novel objects by different
strategies such as synthesizing visual representations of novel classes [35,36] or
utilizing existing object names semantically similar to their names [22]. Joseph et
al. introduce OREO [13] to incrementally learn unknown objects based on con-
trastive clustering and energy based unknown identification. To further improve
the zero-shot performance on novel object categories, Zareian et al. [34] propose
open vocabulary object detection that transfers knowledge from a pre-trained
vision-language model by initializing their detector with parameters of the image
encoder of the vision-language model. This strategy improves the state-of-the-
art by a large margin. Gu et al. [9] propose ViLD which achieves good zero-shot
performance by distilling knowledge from a large-scale vision-language model
(CLIP [21]). However, all these methods are trained with a small set of base cat-
egories that have bounding-box labels since acquiring bounding-box annotations
of diverse objects in large-scale training data is expensive. In practice, if a novel
category at inference is very different from base categories, it is still challeng-
ing for these methods to generalize well to such novel objects. In contrast, our
method generates pseudo box labels for diverse objects from large-scale image-
caption pairs and use them to train the detector. When human-provided box
annotations are available, our framework has the flexibility to utilize them.
Vision-language pre-training models are trained with large-scale image-
caption pairs. They have been successful not only in image-language tasks such
as image retrieval, VQA and referring expression [12,15,16,28], but also in pure
image tasks such as zero-shot image classification [21]. Recent methods typically
utilize a multi-modal module to encourage the interaction between the vision
and language modalities [15,16,28], which may implicitly encode the word-to-
region localization information inside the model. We take advantage of their
localization ability and design a strategy to obtain pseudo bounding-box labels
of a large and diverse set of objects from the large-scale image-caption datasets.
With this strategy, we largely improve open vocabulary object detection.
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3 Our Approach

Our framework contains two components: a pseudo bounding-box label generator
and an open vocabulary object detector. Our pseudo label generator automat-
ically generates bounding-box labels for a diverse set of objects by leveraging
a pre-trained vision-language model. We then train our detector directly with
the generated pseudo labels. For fair comparison with existing open vocabu-
lary detection methods, when base object categories with human annotated
bounding-boxes are available, we can also fine-tune our trained detector with
such data.

Fig. 2. Illustration of our pseudo box label generation process. The input to the system
is an image-caption pair. We use image and text encoders to extract the visual and
text embeddings of the image and its corresponding caption. We then obtain multi-
modal features by image-text interaction via cross-attention. We maintain objects of
interest in our pre-defined object vocabulary. For each object of interest embedded
in the caption (for example, racket in this figure), we use Grad-CAM to visualize
its activation map in the image. This map indicates the contribution of the image
regions to the final representation of the object word. Finally, we determine the pseudo
bounding-box label of the object by selecting the object proposal that has the largest
overlap with the activation

3.1 Generating Pseudo Box Labels

Figure 2 illustrates the overall procedure of our pseudo label generation. Our
goal is to generate pseudo bounding-box annotations for objects of interest in
an image, by leveraging the implicit alignment between regions in the image
and words in its corresponding caption in a pre-trained vision-language model.
Before diving into our method, we first briefly introduce the general structure
of the recent vision-language models.

An image I and its corresponding caption, X = {x1, x2, . . . , xNT
}, are the

inputs to the model, where NT is the number of words in the caption (including
[CLS] and [SEP]). An image encoder is used to extract image features V∈RNV ×d

and a text encoder is utilized to get text representations T ∈ RNT×d. NV is the
number of region representations of the image. Moreover, a multi-modal encoder
with L consecutive cross-attention layers is often employed to fuse the informa-
tion from both image and text encoders. In the l-th cross-attention layer, the
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interaction of an object of interest xt in the caption with the image regions
is shown in Eqs. 1 and 2, where Al

t denotes the corresponding visual attention
scores at the l-th cross-attention layer. hl−1

t indicates the hidden representa-
tions obtained from the previous (l − 1)-th cross-attention layer and h0

t is the
representation of xt from the text encoder.

Al
t = Softmax(

hl−1
t VT

√
d

), (1)

hl
t =Al

t · V. (2)

From these equations, a cross-attention layer measures the relevance of the
visual region representations with respect to a token in the input caption, and
calculates the weighted average of all visual region representations accordingly.
As a result, the visual attention scores Al

t can directly reflect how important
different visual regions are to token xt. Therefore, we visualize the activation
maps based on the attention scores to locate an object in an image given its
name in the caption.

We use Grad-CAM [24] as the visualization method and follow its original
setting to take the final output s from the multi-modal encoder, and calculate
its gradient with respect to the attention scores. s is a scalar that represents the
similarity between the image and its caption. Specifically, the final activation
map Φt of the image given an object name xt is calculated as

Φt =Al
t · max(

∂s

∂Al
t

, 0). (3)

If there are multiple attention heads in a cross-attention layer, we average the
activation map Φt from all heads as the final activation map.

After we get an activation map of an object of interest in the caption using
this strategy, we draw a bounding box covering the activated region as the pseudo
label of the category. We adopt existing proposal generators, e.g., [11,30] to
generate proposal candidates B = {b1, b2, . . . , bK} and select the one overlapping
the most with Φt:

b̂ = arg max
i

∑
bi

Φt(bi)
√|bi|

, (4)

where
∑

bi
Φt(bi) indicates summation of the activation map within a box pro-

posal and |bi| indicates the proposal area. In practice, we maintain a list of
objects of interest (referred as object vocabulary) during training and get pseudo
bounding-box annotations for all objects in the training vocabulary (see Sect. 4.1
for details). Figure 4 shows some examples of the activation maps. As we can see,
the activated regions correspond well with the relevant regions. The generated
bounding boxes are of good quality. When they are directly used to train an
open vocabulary object detector, the object detector significantly outperforms
the current SOTA open-vocabulary/zero-shot object detectors.
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Fig. 3. Illustration of our detector. An image is processed by a feature extractor fol-
lowed by a region proposal network. Region-based features are then calculated by
applying RoI pooling/RoI align over region proposals and the corresponding visual
embeddings are obtained. Similarity of the visual and text embeddings of the same
object are encouraged during training

3.2 Open Vocabulary Object Detection with Pseudo Labels

After we get pseudo bounding-box labels, we can use them to train an object
detector. Since our pseudo-label generation is disentangled from detector training
process, our framework can accommodate detectors with any architecture. In
this work, we focus on the open vocabulary scenario where a detector aims at
detecting arbitrary objects during inference.

A general open vocabulary detection system [34] is shown in Fig. 3. A fea-
ture map is extracted from an input image using a feature extractor based on
which object proposals are generated. Then, region-based visual embeddings,
R = {r1, r2, . . . , rNr

}, are obtained by RoI pooling/RoI align [11] followed by a
fully connected layer, where Nr denotes the number of regions. In the meanwhile,
text embeddings, C = {bg, c1, c2, . . . , cNc

}, of object candidates from the object
vocabulary are acquired by a pre-trained text encoder, where Nc is the training
object vocabulary size and bg indicates “background” that matches irrelevant
visual regions. The goal of the open vocabulary object detector is to pull close
the visual and text embeddings of the same objects and push away those of
different objects. The probability of ri matches cj is calculated as

p(ri matches cj) =
exp (ri · cj)

exp(ri · bg) +
∑

k exp (ri · ck) , (5)

where text embeddings C is fixed during training. The cross entropy loss is used
to encourage the matching of positive pairs and discourage the negative ones.

During inference, given a group of object classes of interest, a region proposal
will be matched to the object class if its text embedding has the smallest distance
to the visual embedding of the region compared to all object names in the
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vocabulary. This strategy is similar to other zero-shot/open vocabulary detection
methods. To perform a fair comparison to prior work, we also adopt Mask-RCNN
as the base of our open vocabulary detector. We set bg=0 and include objectness
classification, objectness box regression and class-agnostic box regression losses
following [34].

4 Experiments

4.1 Datasets and Object Vocabulary for Training

Training Datasets. In our method, we generate pseudo bounding-box anno-
tations of diverse objects from a combination of existing image-caption datasets
including COCO Caption [3], Visual-Genome [14], and SBU Caption [18]. Our
final dataset for pseudo label generation and detector training contains about
one million images.

Object Vocabulary. When we generate pseudo labels for object categories from
the aforementioned dataset, our default object vocabulary is constructed by the
union of all the object names in COCO, PASCAL VOC, Objects365 and LVIS,
resulting in 1,582 categories. We would also like to note that since our method
doesn’t require extra human annotation efforts, our training object vocabulary
can be easily augmented.

4.2 Evaluation Benchmarks

Baselines. We compare with recent zero-shot and open vocabulary methods
[1,22,34,36]. Among the baselines, Zareian et al. [34] is the SOTA method,
thus, is treated as our major baseline.

Generalized Setting in COCO. Most existing methods are evaluated under
this setting proposed in [1]. COCO detection training set is split to base set
containing 48 base/seen classes and target set including 17 novel/unseen classes.
Base classes are used for training. During inference, models predict object cat-
egories from the union of base and novel classes. The performance of models is
evaluated using the mean average precision over the novel classes.

Our method can be trained using the large-scale dataset with the generated
pseudo labels. To perform a fair comparison with baselines, we fine-tune our
detector using COCO base categories following their setup. Moreover, we also
report our method’s performance without fine-tuning on COCO base categories.

Generalization Ability to Other Datasets. We are interested in measur-
ing the generalization ability of a model to other datasets that the model is
not trained on. Therefore, we evaluate our method and the strongest baseline
(both are fine-tuned using COCO base classes) on PASCAL VOC [5] test set,
Objects365 v2 [25] validation set and LVIS [10] validation set1. PASCAL VOC
1 We use LVIS v0.5, since the validation set of LVIS v1.0 contains images from COCO
train 2017 which our method may finetune on in some experiments.
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Table 1. Performance on COCO dataset. Our method outperforms all the previous
approaches when all models are fine-tuned on COCO base categories. When our method
is not fine-tuned, it still outperforms other fine-tuned baselines

Method Fine-tuned with Box Anno.
on COCO Base categories

Generalized setting

Novel AP Base AP Overall AP

Bansal et al. [1] Yes 0.3 29.2 24.9

Zhu et al. [36] Yes 3.4 13.8 13.0

Rahman et al. [22] Yes 4.1 35.9 27.9

Zareian et al. [34] Yes 22.8 46.0 39.9

Our method Yes 30.8 46.1 42.1

Our method No 25.8 – –

Table 2. Generalization performances to other datasets. Our method has better gen-
eralization performance to other datasets compared to Zareian et al.

Method Fine-tuned on COCO Base
categories

PASCAL VOC Objects365 LVIS

Zareian [34] Yes 52.9 4.6 5.2

Our method Yes 59.2 6.9 8.0

Our method No 44.4 5.1 6.5

is a widely used dataset by traditional object detection methods which contains
20 object categories. Objects365 and LVIS are datasets include 365 and 1,203
object categories, respectively, which makes them very challenging. When eval-
uating on each of these datasets (PASCAL VOC, Objects365 and LVIS), visual
regions will be matched to one of the object categories (including background)
of each dataset during inference.

Evaluation Metric. Following prior work [34], we use the standard metric in
object detection tasks, i.e., mean average precision over classes, and set the IoU
threshold to 0.5.

4.3 Implementation Details

In our main experiment, we use the ALBEF model pre-trained with 14M data2

as our vision-language model for pseudo label generation. We follow the default
setting of ALBEF, unless otherwise noted. The cross-attention layer used for
Grad-CAM visualization is set to l = 8 in Eq. 3. We conduct our main experi-
ments using ALBEF because of its good performance in object grounding when
image captions are present. Note that other pre-trained vision-language models

2 https://github.com/salesforce/ALBEF (BSD-3-Clause License).

https://github.com/salesforce/ALBEF
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Table 3. Effect of proposal quality. All models are fine-tuned on COCO base classes.
Better proposals lead to better detection performance

Method Proposal generator Generalized
COCO novel

PASCAL
VOC

Objects365 LVIS

Zareian et al. [34] – 22.8 52.9 4.6 5.2

Our method Selective Search 28.5 53.0 5.5 5.9

Mask-RCNN 30.8 59.2 6.9 8.0

Table 4. Effect of different vision-language models. All models are fine-tuned on COCO
base classes. Better VL model leads to better detection performance

Method VL model Generalized
COCO novel

PASCAL
VOC

Objects365 LVIS

Zareian et al. [34] – 22.8 52.9 4.6 5.2

Our method LXMERT [28] 27.0 56.5 5.5 6.4

ALBEF [15] 30.8 59.2 6.9 8.0

can also fit our framework without major modifications or adding additional con-
straints on detector training. We conduct an ablation study to show our method’s
performance when another pre-trained vision-language model (LXMERT [28])
is employed in Sect. 4.5. As a default option, we use a off-the-shelf Mask-RCNN
with ResNet-50 trained on COCO 2017 train set as our proposal generator.
To ensure there is no labels of novel categories leaking to our model, we have
excluded the novel categories when training the proposal generator. We also
show our results with an unsupervised proposal generator, selective search [30],
in Sect. 4.5.

We use Mask-RCNN with ResNet-50 as the base of our open vocabulary
detector and keep following the default settings here3. We utilize the pre-trained
CLIP (ViT-B/32) text encoder to extract text embeddings of objects in our
vocabulary and use the text prompts provided in [9] to ensemble the text repre-
sentation. We use a batch size of 64 with learning rate of 0.02 when training the
open vocabulary detector using our large-scale dataset with pseudo bounding-
box labels, and a batch size of 8 with base learning rate of 0.0005 when optionally
fine-tuning on COCO base classes. Models are optimized using SGD. The weight
decay is set to 0.0001. The maximum iteration number is 150,000 and the learn-
ing rate is updated by a decreasing factor of 0.1 at 60,000 and 120,000 iterations.

4.4 Experimental Results

As shown in Table 1, when fine-tuned using COCO base categories same as our
baselines, our method outperforms our strongest baseline (Zareian et al.) largely

3 https://github.com/alirezazareian/ovr-cnn (MIT License).

https://github.com/alirezazareian/ovr-cnn
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Table 5. Performance of our method when using vocabularies of different sizes for
pseudo label generation. V− and V contain 65 and 1.5k+ categories, respectively

Methods Vocabulary Generalized setting

Novel AP (17) Base AP (48) Overall AP (65)

Zareian et al. [34] – 22.8 46.0 39.9

Our method V
−(65) 29.7 44.3 40.4

V (1.5k+) 30.8 46.1 42.1

Table 6. Performance of our method when trained with pseudo labels generated from
different amounts of data. All models are fine-tuned using COCO base categories. Our
performance improves when trained with pseudo labels of more data

Methods Data of pseudo label
generation

Generalized setting

Novel AP (17) Base AP (48) Overall AP (65)

Zareian et al. [34] – 22.8 46.0 39.9

Our method COCO Cap 29.1 44.4 40.4

COCO Cap, VG, SBU 30.8 46.1 42.1

by 8%. When not fine-tuned using COCO base categories and only trained with
generated pseudo labels, our method achieves 25.8% AP on the novel categories,
which still significantly outperforms the SOTA method (Zareian et al.) by 3%.

Generalization ability to a wide range of datasets is also important for an
open vocabulary object detector, since it makes a detector directly usable as
an out-of-the-box method in the wild. Table 2 shows the generalization per-
formance of detectors to different datasets, where both our method and our
baseline are not trained using these datasets. Since objects365 and LVIS have a
large set of diverse object categories, evaluation results on these datasets would
be more representative to demonstrate the generalization ability. Results show
that our method achieves better performance than Zareian et al. on all three
datasets when both of the methods are fine-tuned with COCO base categories.
Our method improves the results of our baseline by 2.3% in Objects365 and
2.8% on LVIS. Besides, our fine-tuned method beats the SOTA largely by 6.3%
on PASCAL VOC. When not fine-tuned with COCO base categories, the per-
formance of our method still outperforms Zareian et al. (fine-tuned with COCO
base categories) on Objects365 and LVIS. When not fine-tuned, our method’s
underperforms our fine-tuned baseline on PASCAL VOC. It is very likely because
of that there is a large semantic overlap between the COCO base categories and
PASCAL VOC object categories. Therefore, fine-tuning on COCO base set helps
the model’s transfer ability to PASCAL VOC.

4.5 Ablation Study

How Does the Quality of Bounding-Box Proposals Affect Perfor-
mance? Our pseudo label generator combines object proposals and the acti-
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Table 7. Performance of our method with different text encoders

Method Text encoder Generalized setting

Novel AP Base AP Overall AP

Zareian et al. [34] Bert 22.8 46.0 39.9

Our method Bert 28.8 45.1 40.9

CLIP 30.8 46.1 42.1

Fig. 4. Visualization of some activation maps. Colorful blocks indicate values of Grad-
CAM activation map in the corresponding regions. We zero out blocks with values
smaller than half of the max value in the map so the main focus is highlighted.
Black boxes indicate object proposals and read boxes indicate the final selected pseudo
bounding-box labels (Color figure online)

vation map to select boxes. Generally, the better the proposals are, the more
accurate our pseudo bounding-box annotations would be. The default proposal
generator in our main experiments is a Mask-RCNN trained with COCO detec-
tion category excluding the novel categories. To analyze the effect of proposal
quality, we also run experiments with an unsupervised proposal generator, Selec-
tive Search [30] and summarize results in Table 3. The results show that our
method with Selective Search outperforms Zareian et al. with a clear margin.
This demonstrates the effectiveness of our method even with an unsupervised
proposal generator.

What Is the Effect of Different Pre-trained Vision-Language Models?
Besides the utilization of ALBEF in our main experiment, we also experiment
with LXMERT [28], which is an earlier vision-language model that also fuses
information from both the vision and language modalities. Specifically, we gen-
erate pseudo labels based on the activation map in the last layer of the (text-
to-vision) cross-attention module. Results are shown in Table 4. It shows that
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Fig. 5. Visualization of our generated pseudo bounding-box annotations on COCO.
The red boxes indicate successful cases and the yellow one denote failure case. Our
pseudo label generator can generate objects (slippers, pot and pie) that are not covered
by COCO’s category list. The generator cannot capture an object if it is not shown in
the caption (e.g. the car in the last column) (Color figure online)

with LXMERT, our method’s performance is slightly worse compared with our
method using ALBEF. This may due to the fact that LXMERT employs less
image-caption data for training. While compared with Zareian et al., our method
with LXMERT still performs significantly better.

What Is the Effect of Our Object Vocabulary Size? We utilize an object
vocabulary containing over 1.5k object categories (V) by default when generating
our pseudo labels. The vocabulary size is much larger than the object vocabulary
of any dataset we evaluated on, such as base and novel object categories in
COCO (V−). A natural question is, for performance of COCO novel categories,
for example, would it be better if we just use V

− for pseudo-box generation
and detector training? To answer the question, we conduct experiments using
these two scales of vocabularies. Experimental results in Table 5 show that V

leads to better performance than V
− on COCO novel categories. The results

suggest that adding additional object categories outside the COCO categories
during pre-training will benefit our model performance. Besides, using the larger
vocabulary improves model’s generalization ability to datasets that include a
large set of object categories, i.e., Objects365 and LVIS. We observe that using
V improves results of V− by 2.3% in Objects365 and by 2.7% in LVIS.

Does More Data for Pseudo Label Generation Help? Our pseudo labels
are generated from image-caption pairs. Intuitively, the more data is used for
pseudo label generation, the larger amount of diverse objects will be utilized
for training our open vocabulary detector. As a result, our model performance
should be improved. We show the performance of our method using pseudo labels
with different amounts of image-caption pairs in Table 6. Results show that our
method can benefit from a larger dataset. Our performance is improved by ∼2%
on the target set when using more data. Moreover, our method still outperforms
the baseline significantly even when pre-trained with COCO Cap only.

What Is the Effect of Different Text Encoders? Besides our default choice
of text encoder (CLIP), we implement our method with another encoder, i.e.,



PB-OVD 279

Fig. 6. Some example results of our open vocabulary detector. The shown categories
are from novel categories in COCO (Color figure online)

Bert (base) [4] which is a widely used language model that is trained using text
data only. Our main baseline Zareian et al. uses Bert as their text encoder as
well. The comparison results are shown in Table 7. The results suggest that with
Bert encoder, our method’s performance is slightly worse on COCO target set
compared with our method using CLIP text encoder. This may due to the fact
that CLIP text encoder is trained using image-caption pairs which results in
better generalization performance for image-related tasks. While our method
with Bert encoder still outperforms Zareian et al. by 6% AP on novel categories.
It indicates that the performance improvement of our method doesn’t mainly
come from a better text encoder, but from training with large-scale pseudo
bounding-box labels.

Qualitative Visualization. We visualize examples of our generated pseudo
bounding boxes in Fig. 4 and Fig. 5. As we can see, the generated pseudo labels
show promising performance (see red boxes) in grounding objects and are able to
cover categories, e.g., pot, slippers and pie (Fig. 5), that are not in the original
object list of COCO’s ground-truth annotations. We also observe that some
background objects will be missed when it is not mentioned in the caption
(see the yellow box in the last column of Fig. 5). Nevertheless, instances of the
same object category may show up in other image-caption pairs in the large-
scale dataset and our method could generate pseudo box labels for those cases.
Therefore, our detector can still recognize this object after training. We also
show some examples of our detection results in Fig. 6. They are all from COCO
novel categories which are not covered by COCO base annotations. The results
demonstrate promising generalization ability of our method to novel objects.
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5 Closing Remarks

We propose a novel framework that trains an open vocabulary object detector
with pseudo bounding-box labels generated from large-scale image-caption pairs.
We introduce a pseudo label generator that leverages the localization ability of
pre-trained vision-language models to generate pseudo bounding-box annota-
tions for diverse objects embedded in image captions. The generated pseudo
labels can be used to improve open vocabulary object detection. Experimen-
tal results show that our method outperforms the state-of-the-art zero-shot and
open vocabulary object detection methods by a large margin.

Potential Negative Societal Impact. Our method generates pseudo bound-
ing box labels to alleviate human labeling efforts. Since our pseudo label gen-
erator mines annotations of objects from the input captions without human
intervention, our pseudo labels might be biased because of the bias embedded
in the language descriptions. Manually filtering out the biased object names in
the vocabulary could be an effective solution.
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