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Abstract. Camera re-localization or absolute pose regression is the
centerpiece in numerous computer vision tasks such as visual odome-
try, structure from motion (SfM) and SLAM. In this paper we pro-
pose a neural network approach with a graph Transformer backbone,
namely GTCaR (Graph Transformer for Camera Re-localization), to
address the multi-view camera re-localization problem. In contrast with
prior work where the pose regression is mainly guided by photometric
consistency, GTCaR effectively fuses the image features, camera pose
information and inter-frame relative camera motions into encoded graph
attributes. Moreover, GTCaR is trained towards the graph consistency
and pose accuracy combined instead, yielding significantly higher com-
putational efficiency. By leveraging graph Transformer layers with edge
features and enabling the adjacency tensor, GTCaR dynamically cap-
tures the global attention and thus endows the pose graph with evolving
structures to achieve improved robustness and accuracy. In addition,
optional temporal Transformer layers actively enhance the spatiotempo-
ral inter-frame relation for sequential inputs. Evaluation of the proposed
network on various public benchmarks demonstrates that GTCaR out-
performs state-of-the-art approaches.

1 Introduction

The past decade has witnessed surging research interest in developing camera
pose regression methods, benefiting various computer vision applications includ-
ing robot navigation, autonomous driving and AR/VR technologies. Camera re-
localization is an absolute pose regression (APR) process to localize query images
against a known 3D environment. Conventional approaches solving the camera
pose estimation problem involve extensive implementations of Perspective-n-
Point (PnP) [19] followed by optimization steps of bundle adjustment (BA) [37],
which is the iterative process of joint optimization of the 3D scene points and
the 6-DoF camera pose parameters, aided by numerical solvers. The formula-
tion yields a non-linear high-dimensional system and is thus computationally
challenging to solve [36,44].
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With the prevalence of deep neural networks, many recent studies have
steered research attentions towards leveraging deep learning techniques to re-
formulate the camera pose estimation problem as a pose regression network,
i.e., the network is trained with training images and the ground-truth cam-
era poses such that it can learn to regress the camera pose(s) given single or
multiple images. Among these studies, PoseNet [22] pioneers in incorporating
neural networks into camera pose regression frameworks, where the CNN-based
network is trained to directly estimate the camera pose from individual images
without explicit feature processing. As multi-view APR methods can preserve
more inter-frame information (e.g ., temporal/global pose consistency) beyond
those achieved solely from single image retrieval, they yield higher accuracy
and robustness [26,28,29,31,48]. Later work adopts sophisticated networks to
address the task, e.g ., in VidLoc [6] a CNN-RNN joint model is presented to
leverage the temporal consistency of the sequential images. Recently, GNNs have
been exploited in camera pose regression [48], where the message passing scheme
embraces the inter-frame dependency.

Lately, the development of Transformers [39] has empowered massively suc-
cessful applications in natural language processing (NLP), computer vision [3,12]
and many other fields. Specifically, the adoption of the self-attention mecha-
nisms enables Transformers to effectively capture the global spatiotemporal con-
sistency of sequential information. Additionally, while graph-based networks such
as GNNs have been widely proven to be efficient in modeling arbitrarily structured
inputs, it is generally computationally challenging to have the networks update
the graph structure dynamically [40,46,50,51], limiting its performance on down-
stream tasks where high amounts of noise or missing information are present.

Inspired by the aforementioned observations, in this work we propose a neu-
ral network fused with a graph Transformer backbone, namely GTCaR, to tackle
the camera re-localization problem. In GTCaR, the view graph is constructed by a
novel graph embedding mechanism, where the nodes are encoded with image fea-
tures and 6-DoFabsolute camera pose of the image frame,while the edge attributes
consist of the relative inter-frame camera motions. Moreover, our proposed net-
work introduces an adjacency tensor that stores the correlation on both the fea-
ture level and the frame level. In particular, the feature correspondences between
the frames are encoded into the elements in the adjacency matrix, where the ele-
ment value is based on the normalized feature correspondence score and thus falls
into the range of [0, 1]. The adjacency matrix is updated through the graph Trans-
former layers to reflect the evolving graph structure, e.g ., redundant/noisy edge
pruning, newly-added edges according to high correlations between a new image
and some previous image, etc. GTCaR is trained end-to-end, guided by the loss
function that integrates the graph consistency [1] such that to localize multiple
query images simultaneously. Additionally, the temporal Transformer layers are
utilized to obtain the temporal graph attention for consecutive images.

The architecture overview of GTCaR is given in Fig. 1. The design of the
proposed network is favorable for camera re-localization tasks in three aspects.
First, it is efficient to exploit the intra- and inter-frame structure information and
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Fig. 1. Overview of the proposed GTCaR architecture for camera re-localization. The
network takes query images as input and then models the corresponding camera poses,
image features and the pair-wise relative camera motions into a graph G(V, E). Then,
the adjacency tensor A and nodes are fed into the message passing layers, before
passing through the graph Transformer encoder layers (“l” indicates the l-th layer).
For consecutive image sequences, the graph will be passed through additional temporal
Transformer encoder layers. The global camera poses are embedded into the node
information in the final output.

correlation with the utilization of graphs; Second, the self-attention mechanism
can effectively capture the spatiotemporal consistency in arbitrarily long-term
periods, achieving high global pose accuracy; Third, with the adjacency matrix
being dynamically updated, the network can quickly adjust according to the
changing graph structure, further reducing the negative effects caused by erro-
neous feature matching.

To the best of our knowledge, our proposed network is the first to exploit
graph Transformer for camera re-localization. Our contributions can be summa-
rized as:

– We propose a novel framework with the Transformer backbone for the mul-
tiple camera re-localization task. By encoding the image features, intra- and
inter-frame relative camera poses into a graph, the proposed network is
trained efficiently towards both the pose accuracy and the graph consistency.

– We design an adjacency tensor to dynamically capture the global attention,
so as to endow the pose-graph with an evolving structure to achieve boosted
robustness and accuracy.

– We exploit optional temporal Transformer layers to obtain the temporal graph
attention for consecutive images, such that the proposed model can work with
both unordered and sequential data.

2 Related Work

Graph Transformers. By virtue of its powerful yet agile data representation,
GNNs [23,32,40] have achieved exceptional performances on numerous computer



232 X. Li and H. Ling

vision tasks. In [10], Graph-BERT enables pre-training on the original graphs and
adopts a subgraph batching scheme for parallelized learning. However, Graph-
BERT assumes that the subgraphs are linkless, thus not suitable for tasks where
global connectivity is important. Recently with the success of Transformers [39],
several studies [5,13,43,50] have attempted to develop graph Transformers which
can leverage the powerful message passing scheme on graphs while utilizing the
multi-head self attention mechanism in Transformers. Among which the app-
roach proposed in [43] is capable of transforming the heterogeneous graphs into
homogeneous graphs such that the Transformer can be exploited. GTNs pro-
posed in [50] also addresses the heterogeneous graphs, where the proposed net-
work is capable of generating new graph structures by defining meta-paths with
arbitrary edge types. In [13], a generalized graph form of Transformers is pro-
posed with the edge features addressed. Despite their successes, straightforward
adoptions of GNNs in modeling camera re-localization task is not applicable due
to GNN’s vulnerability against noisy graphs [15,30,38,46,52].

Camera Pose Regression Networks. It was not until recently that research
interests began to focus on incorporating deep neural networks into SfM pipelines
and camera pose regression tasks [2,11,14,22,24,36,41,47]. As one of the earliest
work adopting neural networks for camera pose regression, the deep convolu-
tional neural network pose regressor proposed in [22] is trained according to a
loss function embedding the absolute camera pose prediction error. While [22]
pioneers in fusing the power of neural networks into pose regression frameworks,
it does not take the intra-frame constraints or connectivity of the view-graph
into optimization and thus barely over-performs conventional counterparts on
accuracy, as improved later in [6,31,48]. Other work exploits the algebraic or
geometric relations among the given images and train the networks to predict to
locate the images [4,6,38,41], among which [6] leverages temporal consistency of
the sequential images by equipping bi-directional LSTMs [18] with a CNN-RNN
model such that temporal regularity can provide more pose information in the
regression. The approach in [4] trains DNNs model with the pair-wise geometric
constraints between frames, by leveraging additional sensor measurements.

Recent work [48] is the first study to leverage GNNs in a full absolute cam-
era pose regression framework, where the authors model the view-graph with
CNN-feature nodes. Later study [26] proposes a pose-graph optimization frame-
work with GNNs, guided by the multiple rotation averaging scheme. In [33],
a multi-scene absolute camera pose regression framework with Transformers is
proposed. While GNNs are capable of effectively capturing the topological neigh-
borhood information of each individual node (i.e., the featured frame in such
task), they are rather prone to noise; Moreover, co-visibility graphs in real-world
camera relocalization tasks are often quite dense, causing either noise removal
or ‘edge-dropping’ further entangled [13,26,44,51]. Leveraging graph Transform-
ers in relocalization tasks facilitates the noise handling by virtue of the atten-
tion mechanism in (original) Transformers. Our work differs from [33] on: 1) we
model the pose regression with a graph structure; 2) we train one end-to-end
graph Transformer network while in [33] two separate Transformers are adopted
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for rotation and translation regression respectively; 3) we leverage rotation aver-
aging addressing both the graph consistency and pose accuracy to guide the
training, whereas only camera pose loss is exploited in the training of [33].

3 Problem Formulation

Given a set of 2D image frames and a known 3D scene, camera re-localization
seeks a consistent set of optimized camera rigid motions, aiming to recover the
locations and orientations of the camera aligned with the scene coordinate. For-
mally, let Ri ∈ SO(3) and ti ∈ R

3 denote the camera orientation and the cam-
era translation for the ith image frame respectively, the absolute camera pose is
denoted by Ti = [Ri|ti]. Then the camera re-localization task can be formulated
into the following pose regression objective

arg min
Ti

∑

i

ρ
(
d(Ti, Ti)

)
, (1)

where ρ(·) is a robust cost function, d(·, ·) is a distance metric and Ti =
[
Ri|ti

]

denotes the groundtruth camera poses. Accordingly, let Tij = [Rij |tij ] denote
the relative camera motion between the ith and jth image frames. In our formu-
lation, we leverage multiple rotation averaging [25,26,29,34,49] and introduce
the graph-level consistency term into the objective, that is

arg min
Ri,Rj

∑

(i,j)

ρ
(
d(Rij ,RjR−1

i )
)
. (2)

In detail, given the camera relative orientations {Rij}, the optimization process
involves minimizing a cost function that penalizes the discrepancy between the
camera relative orientations achieved from image retrieval and those inferred
from the solved absolute camera poses. We argue that low costs in Eq. 2 indicate
high global consistency of the solution set, and thus fuse the cost into the loss
function as the global consistency loss. Therefore, given the ground truth camera
poses, the objective function is assembled as

arg min
Ri,Rj

∑

(i,j)

ρ
(
dR(Rij ,RjR−1

i )
)

+ arg min
Ri

∑

i

ρ′(dR(Ri,Ri)
)

+ arg min
ti

∑

i

ρ′′(dt(ti, ti)
)
, (3)

where ρ′ and ρ′′ are robust cost functions, dR : SO(3) × SO(3) → R+ and
dt : R

3 × R
3 → R+ are the distance metrics for rotations and translations

respectively. Specifically, the first term measures the global consistency, i.e., it
should be zero if the relative transformations on the edges align perfectly with
the absolute transformations on the nodes for the whole graph. The other two
terms depict the rotation and translation prediction errors respectively, echoing
Eq. 1. Details on the loss function formulation are given in Sect. 4.4.
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In the design of our proposed network, we model the multi-view camera
re-localization problem as graphs and embed the 2D image features and the
camera absolute pose Ti as the corresponding latent node information, whereas
the inter-frame camera relative motions Tij are encoded as the edge attributes,
as introduced in Sect. 4.2.

4 GTCaR Architecture

In this section we detail the network architecture of the proposed GTCaR. First
we provide the architecture overview in Sect. 4.1, followed by the elaboration of
feature embedding and graph embedding in Sect. 4.2. We then emphasize the
structure of the spatiotemporal graph Transformer layers in Sect. 4.3, followed
by the graph update and the proposed graph loss function illustrated in Sect. 4.4.

4.1 Architecture Overview

As shown in Fig. 1, the proposed network takes query RGB images as input.
The images are first fed into a pre-trained CNN-type [17] feature network, then
the output feature maps are embedded in an initial view-graph such that the
nodes encode the visual information of the images, and the edges encode inter-
frame correlations. Additionally, the local feature matching information and the
aggregated image matching score are combined and arranged into a tensorized
adjacency matrix, namely the adjacency tensor.

After assembling the images into a graph, the adjacency tensor and the hid-
den node features are first passed into MPNN [16] layers such that, for each
node, the neighboring node features are aggregated efficiently with the implicit
attention information embedded in the adjacency tensor. Then the aggregated
node features are fed into graph Transformer encoder layers, where the self atten-
tion mechanism are equipped with edge features such that the camera relative
transformations encoded on the edges can be exploited to generate the attention
weights. Additionally, the temporal Transformer encoder layers capture the self-
attention for the sequential input. The global camera poses, as node attributes,
are updated through the network and are embedded in the final output as the
localized camera poses.

4.2 Graph Embedding

We propose to model the input query images, the corresponding camera poses
and the pair-wise camera transformations into a graph based on the construction
of conventional pose graph, i.e., each node represents an image frame and the
edges connecting two nodes represent the inter-frame image relations. In detail,
consider a graph G = (V, E) where V = {vi} denotes the set of the images
and E = {(i, j)|vi, vj ∈ V} represents the pair-wise feature-base connectivity
between frames. Additionally, let AG denote the adjacency matrix of G such
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Fig. 2. Each element aij of the adjacency tensor A embeds the feature correspondences
and the normalized aggregated value. mij = 0 if there exists none co-visible feature
between image i and image j. Note that A is symmetric.

that AG(i, j) = 0 if (i, j) �∈ E and vice versa. For simplicity of notation, we will
use A for AG in the following discussion.

Node Attributes. Consider an image Ii, let xi denote the feature vector as
the output of the CNN-type feature sub-network, and denote pi ∈ R

7 as the
camera absolute pose vector, where pi consists of the 4-dimensional quaternion
ωi representing the camera orientation and the 3-dimensional ti representing the
camera translation. That is, the vector embedding of each node vi contains the
information part which encodes the image latent feature and the learning part
which embeds the camera pose. It is noteworthy to mention that, in contrast
with NLP tasks where the word positions or text orders are crucial, the camera
absolute poses are invariant to node positions as we leverage the graph structure
to model the problem. We believe that topological position (vertex degree, local
neighborhood structure, global connectivity, etc.) plays a significant role in the
proposed graph-based framework, therefore we skip the positional encoding in
the original Transformer model [39] and embed the ‘relative position’ or ‘relative
distance’ as the image matching vector into the adjacency tensor instead.

Adjacency Tensor. Let aij be the element at (i, j) of the adjacency matrix
with self-connections A, by convention aij = 1 if there exists an edge connecting
vi and vj and aij = 0 otherwise. To capture and maintain the pair-wise rela-
tion, we introduce the adjacency tensor where aij represents the vector feature
correspondence index between the ith and jth image frames.

Specifically, consider aij ∈ A and let xi and xj be the corresponding feature
vectors, and assume that there exists some feature correspondences between
image i and image j. Then ak

ij , i.e., the kth element of aij portraying the kth

feature correspondence, is a tuple with the feature index in xi and xj respec-
tively. That is, xi(ak

ij(1)) ∼ xj(ak
ij(2)). Additionally, each vector aij is aggre-

gated into an initial meta-feature mij as the normalized feature correspondence
score with range [0, 1], which measures the edge credibility evaluation and the
image matching result between the two connected nodes. The adjacency tensor
encodes pixel-wise and image-wise correspondence, depicting the edge weights
and is updated through the network while interacting spatiotemporally with the
whole evolving graph. Illustration of the adjacency tensor is given in Fig. 2.

Edge Attributes. Similar with the 7-dimensional pose feature embedded on
the nodes, the camera relative transformation is encoded on the edge connecting
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Fig. 3. The graph Transformer encoder layer structure. Q, K and V are compliant
with the original Transformer, E represents the edge attention module.

vi and vj as pij = 〈ωij , tij〉. During the graph embedding, only nodes with
matched features are connected with edges with initialized edge feature (unit
quaternion translation and zero vector translation). In our modeling of the graph
we consider the edge features as node-symmetric according to the nature of pose
graph construction. As we aim to keep the graph lightweight, the edges do not
contain any low-level correspondence information between the connected nodes.
Instead, the inter-node dependency is implicitly arranged into the adjacency
tensor A.

4.3 Graph Transformer Layer

Now we have constructed the graph embedding the node and edge features as
the input into the graph Transformer layer. Our proposed network adopts the
encoder layer structure in the original Transformer [39] and transforms the ini-
tial source graph to the target graph with evolved structural edge information
and derived pose values on the nodes. Specifically, the graph Transformer layer
exploits the multi-head attention mechanism to generate the sptiotemporal rela-
tion between nodes, such that 1) the edges connecting two nodes where high
amounts of common features (pair-wise co-visible visual features) are equipped
with high attention weights and 2) the edges carrying abundant or noisy image
matching yield low attention weights or get removed from the graph. The emerg-
ing adjacency tensor progressively interacts with the whole graph and propagates
the update over the nodes and the edges.

Message Passing. Before passing the graph into the graph Transformer encoder
layer, the neighboring node features are aggregated along with the adjacency
tensor for each node. Specifically, consider the graph at the lth layer and let
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Zl denote the hidden feature tensor of the nodes, let Al denote the adjacency
tensor. Then after the message passing layers the node tensor is thus

Ẑl = Zl ++ [φ(Al, Zl) ⊗ Zl], (4)

where ++ denotes the concatenation operation, φ(, ) denotes the message aggre-
gation, ⊗ denotes the tensor product. We adopt the mean function as the aggre-
gation operation in this work. Precisely, Zl embeds the node information while
the latter term embeds the edge information over the neighborhood. The adja-
cency tensor is exploited here instead of the edges as A has collected the local
attention information such that the message passing is more efficient.

Graph Transformer Encoder Layer. We leverage the multi-head self atten-
tion mechanism in the graph Transformer encoder layer with edge features. Bor-
rowing notations from the original Transformer network, let Ql

k,K
l
k, V

l
k ∈ R

dk×d,
where k = 1 to N is the number of the attention heads, dk denotes the query
dimension. Consider the attention weight for the kth head on the edge connecting
the source node i and the target node j, that is

wij = softmaxj(Ql
kẐ

l
i 	 Kl

kẐ
l
j), (5)

where 	 denotes the Hadamard product. Following [13], we add the edge fea-
tures into generating the attention. Let El

k be in the same dimension space with
Ql

k,K
l
k, V

l
k and let qij denote the hidden edge features, then the attention weight

with edge feature is thus

we
ij = softmaxjΘ(Ql

kẐ
l
i ,K

l
kẐ

l
j , E

l
kq

l
ij), (6)

where Θ denotes the consecutive dot product operation. Then the update func-
tion for nodes and edges are thus

Zl+1
i = ++k (we

ijV
l
k Ẑl

j) ⊗ Ol
Z , (7)

ql+1
ij = ++k (we

ij) ⊗ Ol
e, (8)

where Ol
Z , Ol

e ∈ R
d×d, d is the dimension of the hidden space of nodes and edges,

++k denotes multihead (k heads) concatenation. Illustration is given in Fig. 3.

Temporal Transformer Encoder Layer. The temporal inter-frame relation
contains high amounts of useful information especially when the input is sequen-
tial images or video clips. In the proposed network we address the temporal
dependencies for consecutive camera re-localization tasks by equipping the net-
work with an optional temporal Transformer encoder layer. The temporal Trans-
former encoder layer exploits the standard Transformer network structure, takes
the graph embedding as input and generates intra-graph temporal dependencies
between nodes by constructing temporal attention.
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4.4 Graph Loss and Update

GTCaR is trained end-to-end, guided by the joint loss function representing both
the graph consistency and the accuracy of the predicted camera poses. Recalling
the objective function Eq. 3, the loss function is thus assembled as follows

L = α
∑

i,j

ρ(dR(ωij , ωjω
−1
i )) + α′

∑

i,j

ρ′(dt(tij , dt(ti, tj)))

+ β
∑

i

ρ(dR(ωi, ωi)) + β′
∑

i

ρ′(dt(ti, ti)), (9)

where α, α′, β, β′ ∈ R are the loss parameters, ωi, ti are the ground truth camera
orientations and translations. The graph loss function can be seen as a joint
optimization regarding both the graph consistency and the prediction accuracy.

Specifically, during the training the nodes are updated according to a) edge
updates which reflect both relative transformation updates and graph connec-
tivity updates (first two terms in Eq. 9), and b) node updates according to the
absolute pose loss (last two terms in Eq. 9). Therefore the graph evolves in terms
of 1) message passing aggregates attention with the pose information embedded
into the nodes and the local connectivity embedded by the adjacency tensor,
then 2) attention mechanism assists to update attention weights on the edges,
followed by 3) node and edge features (absolute and relative poses) are updated
according to the attention, represented in Eq. 7 and Eq. 8. The graph is therefore
evolving with nodes, edges, and adjacency updated.

5 Experimental Results

The proposed network is evaluated on three public benchmarks: 7-Scenes [35],
the Cambridge dataset [22] and the Oxford Robotcar dataset [27]. We first elab-
orate the datasets, metrics, baselines and implementation details we conduct
the experiments with (Sect. 5.1), followed by the evaluation results (Sect. 5.2),
we then conduct the ablation study on the spatiotemporal mechanism of the
proposed network (Sect. 5.3) and discuss the limitations (Sect. 5.4).

5.1 Experiment Setting

Implementation Details. The proposed network is implemented in PyTorch
on a machine with Intel(R) i7-7700 3.6 GHz processors with 8 threads and 64 GB
memory and a single Nvidia GeForce 3060Ti GPU with 8 GB memory. For train-
ing we adopt standard SGD optimizer with no dropout, the learning rate is
annealed geometrically starting at 1e−3 and decreases to 1e−5.

We adopt ResNet [17] pretrained on ImageNet [9] for the feature handling.
The input RGB images are scaled to 341 × 256 pixels, normalized by the sub-
traction of mean pixel values. The proposed network is pre-trained end-to-end
on ScanNet [7], an RGB-D video sequence dataset which contains 2.5 million
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Table 1. Experiment results on the 7—Scenes Dataset [35]. Results are cited directly,
the best results are highlighted.

Scene
Scene scale

Chess
3 × 2 m2

Fire
2.5 × 1 m2

Heads
2 × 0.5 m2

Office
2.5 × 2 m2

Pumpkin
2.5 × 2 m2

Kitchen
4 × 3 m2

Stairs
2.5 × 2 m2

Avg.

RelocNet [2] 0.12 m, 4.14◦ 0.26 m, 10.4◦ 0.14 m, 10.5◦ 0.18 m, 5.32◦ 0.26 m, 4.17◦ 0.23 m, 5.08◦ 0.28 m, 7.53◦ 0.21 m, 6.73◦

LsG [47] 0.09 m, 3.28◦ 0.26 m, 10.92◦ 0.17 m, 12.70◦ 0.18 m, 5.45◦ 0.20 m, 3.69◦ 0.23 m, 4.92◦ 0.23 m, 11.3◦ 0.19 m, 7.47◦

MapNet [4] 0.08 m, 3.25◦ 0.27 m, 11.69◦ 0.18 m, 13.25◦ 0.17 m, 5.15◦ 0.22 m, 4.02◦ 0.23 m, 4.93◦ 0.30 m, 12.08◦ 0.21 m, 7.77◦

MapNet+ [4] 0.10 m, 3.17◦ 0.20 m, 9.04◦ 0.13 m, 11.13◦ 0.18 m, 5.38◦ 0.19 m, 3.92◦ 0.20 m, 5.01◦ 0.30 m, 13.37◦ 0.19 m, 7.29◦

MapNet(pgo) [4] 0.09 m, 3.24◦ 0.20 m, 9.29◦ 0.12 m, 8.45◦ 0.19 m, 5.42◦ 0.19 m, 3.96◦ 0.20 m, 4.94◦ 0.27 m, 10.57◦ 0.18 m, 6.55◦

PoseNet15 [22] 0.32 m, 8.12◦ 0.47 m, 14.4◦ 0.29 m, 12.0◦ 0.48 m, 7.68◦ 0.47 m, 8.42◦ 0.59 m, 8.64◦ 0.47 m, 13.8◦ 0.44 m, 10.4◦

PoseNet16 [20] 0.37 m, 7.24◦ 0.43 m, 13.7◦ 0.31 m, 12.0◦ 0.48 m, 8.04◦ 0.61 m, 7.08◦ 0.58 m, 7.54◦ 0.48 m, 13.1◦ 0.47 m, 9.81◦

PoseNet17 [21] 0.14 m, 4.50◦ 0.27 m, 11.80◦ 0.18 m, 12.10◦ 0.20 m, 5.77◦ 0.25 m, 4.82◦ 0.24 m, 5.52◦ 0.37 m, 10.60◦ 0.24 m, 7.87◦

PoseNet17+ [21] 0.13 m, 4.48◦ 0.27 m, 11.30◦ 0.17 m, 13.00◦ 0.19 m, 5.55◦ 0.26 m, 4.75◦ 0.23 m, 5.35◦ 0.35 m, 12.40◦ 0.23 m, 8.12◦

LSTM+Pose [42] 0.24 m, 5.77◦ 0.34 m, 11.9◦ 0.21 m, 13.7◦ 0.30 m, 8.08◦ 0.33 m, 7.00◦ 0.37 m, 8.83◦ 0.40 m, 13.7◦ 0.31 m, 9.85◦

Hourglass [28] 0.15 m, 6.17◦ 0.27 m, 10.84◦ 0.19 m, 11.63◦ 0.21 m, 8.48◦ 0.25 m, 7.01◦ 0.27 m, 10.15◦ 0.29 m, 12.46◦ 0.23 m, 9.53◦

BranchNet [45] 0.18 m, 5.17◦ 0.34 m, 8.99◦ 0.20 m, 14.15◦ 0.30 m, 7.05◦ 0.27 m, 5.10◦ 0.33 m, 7.40◦ 0.38 m, 10.26◦ 0.29 m, 8.30◦

VidLoc [6] 0.18 m, — 0.26 m, — 0.14 m, — 0.26 m, — 0.36 m, — 0.31 m, — 0.26 m, — 0.25 m, —

CNN+GNN [48] 0.08 m, 2.82◦ 0.26 m, 8.94◦ 0.17 m, 11.41◦ 0.18 m, 5.08◦ 0.15 m, 2.77◦ 0.25 m, 4.48◦ 0.23 m, 8.78◦ 0.19 m, 6.33◦

MS-Trans. [33] 0.11 m, 4.66◦ 0.24 m, 9.6◦ 0.14 m, 12.19◦ 0.17 m, 5.66◦ 0.18 m, 4.44◦ 0.17 m, 5.94◦ 0.26 m, 8.45◦ 0.18 m, 7.28◦

GTCaR (ours) 0.09 m, 1.94◦ 0.27 m, 8.45◦ 0.12 m, 9.34◦ 0.12 m, 2.41◦ 0.15 m, 2.13◦ 0.21 m, 2.73◦ 0.26 m, 8.92◦ 0.17 m, 5.13◦

views in over 1500 indoor scans, we only use the RGB monocular images and
the ground truth camera pose values are given by [8]. The node poses (absolute
pose) and edge poses (relative pose) are initialized as unit orientations and zero
translations. We fix the input query size to be 32 though we have observed that
the proposed network is capable of taking large input size up to 128. In all the
experiments, the image frames are fed sequentially from the test set, analogous
to existing work [6,47,48] for a fair comparison.

Datasets and Metrics. We conduct extensive experiments on datasets with
different scales and report the median errors of camera orientation (◦) and trans-
lation (m). The 7-Scenes dataset [35] consists of RGB-D video sequences cover-
ing seven small indoor scenes, captured by hand-held Kinect camera. In some of
the scenes, many texture-less surfaces and repetitive patterns are present, thus
making the dataset challenging in spite of its relatively small size containing less
than 10K images. The Cambridge dataset is a large-scale dataset containing six
outdoor scene scans outside the Cambridge University, the dataset consists of
around 12K images and the corresponding camera pose ground truth.

The Oxford RobotCar dataset contains image sequences taken through driv-
ing in Oxford with different weathers, traffic conditions and lighting, the total
trajectory is over 10km and is very challenging for camera re-localization. Follow-
ing [4,47,48], we conduct experiments on the LOOP route (1120 m) and FULL
route (9562 m) to evaluate the performance of the proposed network on long con-
secutive sequences. In all the experiments, we comply with the train/test split
provided in the original 7-Scenes and Cambridge benchmarks, and that given in
MapNet [4] for fair comparisons.

Baselines. The proposed network is evaluated against recent state-of-the-art
camera re-localization networks, including single image-based absolute cam-
era pose regression network PoseNet and its variants [20–22,42] among which,
LSTM+Pose [42] along with MapNet and its variants [4], LsG [47] and VidLoc [6]
have utilized temporal inter-frame relations in the network. CNN+GNN [48]
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Table 2. Experiment results on the Cambridge Dataset [22]. Evaluation with Map-
Net [4] is cited from [31], other results are cited directly. The average is taken on the
first four datasets. The best results are highlighted.

Scene
Scene scale

College
5.6 × 103 m2

Shop
8.8 × 103 m2

Church
4.8 × 103 m2

Hospital
2.0 × 103 m2

Court
8.0 × 103 m2

Street
5.0 × 103 m2

Avg.

MapNet [4] 1.07 m, 1.89◦ 1.49 m, 4.22◦ 2.00 m, 4.53◦ 1.94 m, 3.91◦ 7.85 m, 3.76◦ 22.23 m, 27.55◦ 1.63 m, 3.64◦

PoseNet15 [22] 1.66 m, 4.86◦ 1.41 m, 7.18◦ 2.45 m, 7.96◦ 2.62 m, 4.90◦ - - 2.04 m, 6.23◦

PoseNet16 [20] 1.74 m, 4.06◦ 1.25 m, 7.54◦ 2.11 m, 8.38◦ 2.57 m, 5.14◦ - - 1.92 m, 6.28◦

LSTM+Pose [42] 0.99 m, 3.65◦ 1.18 m, 7.44◦ 1.52 m, 6.68◦ 1.51 m, 4.29◦ - - 1.30 m, 5.52◦

PoseNet17 [21] 0.99 m, 1.06◦ 1.05 m, 3.97◦ 1.49 m, 3.43◦ 2.17 m, 2.94◦ 7.00 m, 3.65◦ 20.70 m, 25.70◦ 1.43 m, 2.85◦

PoseNet17+ [21] 0.88 m, 1.04◦ 0.88 m, 3.78◦ 1.57 m, 3.32◦ 3.20 m, 3.29◦ 6.83 m, 3.47◦ 20.30 m, 25.50◦ 1.63 m, 2.86◦

CNN+GNN [48] 0.59 m 0.65◦ 0.50 m, 2.87◦ 1.90 m, 3.29◦ 1.88 m, 2.78◦ 6.67 m, 2.79◦ 14.72 m, 22.44◦ 1.12 m, 2.40◦

MS-Trans. [33] 0.83 m 1.47◦ 0.86 m, 3.07◦ 1.62, 3.99◦ 1.81 m, 2.39◦ - - 1.28 m, 2.73◦

GTCaR (ours) 0.42 m, 0.52◦ 0.64 m, 1.56◦ 1.55 m, 2.56◦ 1.32 m, 1.97◦ 5.62 m, 2.17◦ 10.27 m, 19.88◦ 0.98 m, 1.65◦

models the multi-view camera pose regression with a graph and leverages GNNs
on the task. Other approaches include RelocNet [2], Hourglass [28] and Branch-
Net [45].

5.2 Performance Evaluation

7-Scenes. We first evaluate GTCaR on the 7-Scenes dataset against recent
state-of-the-art approaches, the experiment results are given in Table 1. It can
be observed that our proposed network overperforms the other approaches on
most of the scenes. Among the approaches, LsG [47], MapNet [4] and VidLoc [6]
rely heavily on the temporal information of the input, i.e., the approaches can
handle consecutive sequences more efficiently but tend to lose the spatial inter-
frame correlation especially for large-scale datasets or over long camera trajecto-
ries. Additionally, PoseNet [22] and its variants conduct absolute pose regression
from single images, such that the networks perform poorly on the scene where
repetitive patterns or texture-less surfaces are present (Table 2).

Similar to our proposed network, CNN+GNN [48] leverages graphs to model
the multi-view camera re-localization with message passing among the image-
embedded nodes. However, the network does not exploit temporal information
in sequential images, and enforces a maximum value of neighbors of each node.
As a result, it tends to miss the temporal correlation for consecutive frames
or discard useful inter-frame spatial correlation. It is also noteworthy that the
proposed approach achieves real-time performance for all the experiments, as we
have observed the average runtime ranging from 12 ms to 23 ms per frame with
the batch size set to be 32, while [48] records 8-batch performance with unknown
runtime efficiency.

Cambridge. We demonstrate the capability to handle large-scale dataset of
GTCaR by evaluating the network on the Cambridge dataset, where the pro-
posed network outperforms the baselines on most of the scenes. Among the
scenes, ‘Court’ and ‘Street’ are the largest datasets in size and cover long complex
trajectories and huge outdoor areas, as challenging to handle with single image-
based regression networks like PoseNet15, PoseNet16 and even LSTM+Pose
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Table 3. Experiment results on the Oxford Robotcar Dataset [27]. Evaluation with
PoseNet [22] is cited from [4], other results are cited directly, the best results are
highlighted.

Scene
Scene scale

LOOP
1120 m

FULL
9562 m

MapNet [4] 9.84 m, 3.96◦ 41.4 m, 12.5◦

MapNet+ [4] 8.17 m, 2.62◦ 30.3 m, 7.8◦

MapNet(pgo) [4] 6.73 m, 2.23◦ 29.5 m, 7.8◦

PoseNet [22] 25.29 m, 17.45◦ 125.6 m, 27.1◦

LsG [47] 9.19 m, 3.52◦ 31.65 m, 4.51◦

CNN+GNN [48] 8.15 m, 2.57◦ 17.35 m, 3.47◦

GTCaR (ours) 5.46 m, 1.98◦ 14.37 m, 3.68◦

with additional LSTM units, the aforementioned networks have not reported
the results on these two datasets. It can be observed that GTCaR demonstrates
great improvements over approaches solely relying on temporal relation or spa-
tial relation on datasets with long camera trajectories.

RobotCar. The RobotCar dataset is especially challenging for the presence of
weather variations, dynamic objects/pedestrians, occlusions, etc. Following [4,
22,47,48], we conduct experiments on the two subsets from the dataset. The
LOOP route covers 1120 m and the FULL route has a total length of 9562 m.

As PoseNet [22] conducts camera pose regression with heavy reliance on the
visual information from singe images, large amounts of outliers are produced
with insufficient inter-frame correlations, thus yielding low accuracy. MapNet [4]
utilizes inputs from other sensors like GPS and IMU and fuses the measurements
to aid the camera re-localization. Specifically, MapNet(pgo) acquires the relative
camera pose from VO and acts in a sliding-window manner to predict the abso-
lute poses. Compared with GNN-based approach [48], the proposed network
shows major improvement as it efficiently models the spatiotemporal relation
for sequential images, whereas the former network mainly relies on the spatial
inter-frame dependencies (Table 3).

Additionally, we report the cumulative distributions of the translation and
rotation prediction errors on the two datasets against prior work in the sup-
plementary. The baselines include PoseNet [22], MapNet [4], LsG [47] and
CNN+GNN [48]. It can be observed that the proposed network outperforms
the baselines on all the datasets.

5.3 Ablation Study

We conduct ablation study to investigate the significance of different modules
of the proposed network. We show the ablation results on ‘Pumpkin’ scene from
7-Scenes dataset, ‘Court’ from the Cambridge and LOOP from the RobotCar
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Table 4. Ablations on Pumpkin, Court and LOOP.

Configuration Pumpkin Court LOOP

GTCaR 0.15 m, 2.13◦ 5.62 m, 2.17◦ 5.46 m, 1.98◦

GTCaR [temporal] 0.31 m, 3.26◦ 6.95 m, 2.95◦ 8.25 m, 3.48◦

GTCaR [graph] 0.17 m, 2.28◦ 7.34 m, 4.84◦ 9.03 m, 3.55◦

GTCaR [MPNN] 0.20 m, 2.13◦ 5.98 m, 2.38◦ 7.95 m, 2.64◦

dataset, to cover scenes of different scales and lengths. The results are given in
Table 4. The comprehensive ablation experiments are given in the supplementary.

We first evaluate GTCaR without the MPNN layers, such that the graph
is directly fed into the graph Transformer layers without the node information
aggregation aided by the adjacency tensor. It can be observed that the perfor-
mance of the network is significantly worse on the ‘Court’ dataset. The reason
is that the simple linear projection of the node features cannot preserve much
information, compared with the message aggregated node features in the orig-
inal network, where the neighboring node information is efficiently preserved.
For the ‘Pumpkin’ scene, high amounts of repetitive patterns are present such
that the graph is densely connected; For the LOOP route, the images are highly
consecutive such that temporal Transformer can capture the neighboring node
information along the temporal dimension. We then study the effects of the indi-
vidual Transformer modules, i.e., the experiments are conducted with GTCaR
without graph Transformer layers (GTCaR[temporal]) and without temporal
Transformer layers (GTCaR[graph]). It can be observed that the accuracy of
GTCaR[temporal] decreases harshly on ‘Court’ and ‘Pumpkin’ without the spa-
tial correlation. Indeed, GTCaR can be seen as a GNN+RNN type of camera
re-localization network, which can only preserve inter-frame dependencies over
short period of time but tend to yield a overly sparse graph. On the other hand,
the performance of GTCaR[graph] is slightly worse than the original network on
all the datasets without significant decreased accuracy.

5.4 Discussions and Limitations

Generalizability. By virtue of utilizing the underlying geometric constraints
implicitly, the proposed network can deliver higher accuracy and better robust-
ness compared to its single-view APR counterparts. Nonetheless we have
observed that the network generalizability to vastly different scenes is still lim-
ited, i.e., the best performance is achieved by training the network on sets of
similar scenes regarding indoor/outdoor, scale and lighting, etc.

Computational Cost. From the experiments and the ablation study, we have
observed that the output graphs are mostly dense according to the spatiotem-
poral dependencies. The high density brings in high amounts of unnecessary
computations, especially in the case where the scene scale is small and the cam-
era motion is slow. Equipping more GNN layers after the Transformer layers
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can remove the unnecessary edges but tends to introduce over-fitting and graph
memory overhead to the network.

6 Conclusion

In this paper we propose a neural network approach with a graph Transformer
backbone, namely GTCaR, to address the multi-view camera re-localization
problem. We model the multi-view camera pose regression problem with graph
embedding, where the image features, camera poses and pair-wise camera trans-
formations are fused into graph attributes. With the introduction of a novel
adjacency tensor, the proposed network can effectively capture the local node
connection information. By leveraging graph Transformer layers with edge fea-
tures and enabling temporal Transformer to generate the spatiotemporal depen-
dencies between the frames, GTCaR can actively gain the graph attention and
achieves state-of-the-art robustness, accuracy and efficiency.
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