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Abstract. Current object detectors are limited in vocabulary size due to
the small scale of detection datasets. Image classifiers, on the other hand,
reason about much larger vocabularies, as their datasets are larger and
easier to collect. We propose Detic, which simply trains the classifiers of a
detector on image classification data and thus expands the vocabulary of
detectors to tens of thousands of concepts. Unlike prior work, Detic does
not need complex assignment schemes to assign image labels to boxes
based on model predictions, making it much easier to implement and
compatible with a range of detection architectures and backbones. Our
results show that Detic yields excellent detectors even for classes without
box annotations. It outperforms prior work on both open-vocabulary and
long-tail detection benchmarks. Detic provides a gain of 2.4 mAP for
all classes and 8.3 mAP for novel classes on the open-vocabulary LVIS
benchmark. On the standard LVIS benchmark, Detic obtains 41.7 mAP
when evaluated on all classes, or only rare classes, hence closing the
gap in performance for object categories with few samples. For the first
time, we train a detector with all the twenty-one-thousand classes of the
ImageNet dataset and show that it generalizes to new datasets without
finetuning. Code is available at https://github.com/facebookresearch/
Detic.

1 Introduction

Object detection consists of two sub-problems - finding the object (localization)
and naming it (classification). Traditional methods tightly couple these two sub-
problems and thus rely on box labels for all classes. Despite many data col-
lection efforts, detection datasets [18,28,34,49] are much smaller in overall size
and vocabularies than classification datasets [10]. For example, the recent LVIS
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Fig. 1. Top: Typical detection results from a strong open-vocabulary LVIS detector.
The detector misses objects of “common” classes. Bottom: Number of images in LVIS,
ImageNet, and Conceptual Captions per class (smoothed by averaging 100 neighboring
classes). Classification datasets have a much larger vocabulary than detection datasets.

detection dataset [18] has 1000+ classes with 120K images; OpenImages [28] has
500 classes in 1.8M images. Moreover, not all classes contain sufficient anno-
tations to train a robust detector (see Fig. 1 Top). In classification, even the
ten-year-old ImageNet [10] has 21K classes and 14M images (Fig. 1 Bottom).

In this paper, we propose Detector with image classes (Detic) that uses
image-level supervision in addition to detection supervision. We observe that
the localization and classification sub-problems can be decoupled. Modern region
proposal networks already localize many ‘new’ objects using existing detection
supervision. Thus, we focus on the classification sub-problem and use image-
level labels to train the classifier and broaden the vocabulary of the detector.
We propose a simple classification loss that applies the image-level supervision to
the proposal with the largest size, and do not supervise other outputs for image-
labeled data. This is easy to implement and massively expands the vocabulary.

Most existing weakly-supervised detection techniques [13,22,36,59,67] use
the weakly labeled data to supervise both the localization and classification sub-
problems of detection. Since image-classification data has no box labels, these
methods develop various label-to-box assignment techniques based on model pre-
dictions to obtain supervision. For example, YOLO9000 [45] and DLWL [44]
assign the image label to proposals that have high prediction scores on the
labeled class. Unfortunately, this prediction-based assignment requires good ini-
tial detections which leads to a chicken-and-egg problem—we need a good detec-
tor for good label assignment, but we need many boxes to train a good detector.
Our method completely side-steps the prediction-based label assignment pro-
cess by supervising the classification sub-problem alone when using classification
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Fig. 2. Left: Standard detection requires ground-truth labeled boxes and cannot lever-
age image-level labels. Center: Existing prediction-based weakly supervised detection
methods [3,44,45] use image-level labels by assigning them to the detector’s predicted
boxes (proposals). Unfortunately, this assignment is error-prone, especially for large
vocabulary detection. Right: Detic simply assigns the image-labels to the max-size
proposal. We show that this loss is both simpler and performs better than prior work.

data. This also enables our method to learn detectors for new classes which would
have been impossible to predict and assign.

Experiments on the open-vocabulary LVIS [17,18] and the open-vocabulary
COCO [2] benchmarks show that our method can significantly improve over a
strong box-supervised baseline, on both novel and base classes. With image-
level supervision from ImageNet-21K [10], our model trained without novel class
detection annotations improves the baseline by 8.3 point and matches the per-
formance of using full class annotations in training. With the standard LVIS
annotations, our model reaches 41.7 mAP and 41.7 mAPrare, closing the gap
between rare classes and all classes. On open-vocabulary COCO, our method
outperforms the previous state-of-the-art OVR-CNN [72] by 5 point with the
same detector and data. Finally, we train a detector using the full ImageNet-
21K with more than twenty-thousand classes. Our detector generalizes much
better to new datasets [28,49] with disjoint label spaces, reaching 21.5 mAP on
Objects365 and 55.2 mAP50 on OpenImages, without seeing any images from
the corresponding training sets. Our contributions are summarized below:

– We identify issues and propose a simpler alternative to existing weakly-
supervised detection techniques in the open-vocabulary setting.

– Our proposed family of losses significantly improves detection performance
on novel classes, closely matching the supervised performance upper bound.

– Our detector transfers to new datasets and vocabularies without finetuning.
– We release our code (in supplement). It is ready-to-use for open-vocabulary

detection in the real world. See examples in supplement (Fig. 2).

2 Related Work

Weakly-Supervised Object Detection (WSOD) trains object detector
using image-level labels. Many works use only image-level labels without any
box supervision [30,51,52,63,70]. WSDDN [3] and OIRC [60] use a subnet-
work to predict per-proposal weighting and sum up proposal scores into a single
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image scores. PCL [59] first clusters proposals and then assign image labels at
the cluster level. CASD [22] further introduces feature-level attention and self-
distillation. As no bounding box supervision is used in training, these methods
rely on low-level region proposal techniques [1,62], which leads to reduced local-
ization quality.

Another line of WSOD work uses bounding box supervision together with
image labels, known as semi-supervised WSOD [12,13,31,35,61,68,75].
YOLO9000 [45] mixes detection data and classification data in the same mini-
batch, and assigns classification labels to anchors with the highest predicted
scores. DLWL [44] combines self-training and clustering-based WSOD [59], and
again assigns image labels to max-scored proposals. MosaicOS [73] handles
domain differences between detection and image datasets by mosaic augmen-
tation [4] and proposed a three-stage self-training and finetuning framework. In
segmentation, Pinheiro et al. [41] use a log-sum-exponential function to aggregate
pixels scores into a global classification. Our work belongs to semi-supervised
WSOD. Unlike prior work, we use a simple image-supervised loss. Besides image
labels, researchers have also studied complementary methods for weak localiza-
tion supervision like points [7] or scribles [47].

Open-Vocabulary Object Detection, or also named zero-shot object
detection, aims to detect objects outside of the training vocabulary. The basic
solution [2] is to replace the last classification layer with language embeddings
(e.g., GloVe [40]) of the class names. Rahman et al. [43] and Li et al. [33] improve
the classifier embedding using external text information. OVR-CNN [72] pre-
trains the detector on image-text pairs. ViLD [17], OpenSeg [16] and langSeg [29]
upgrade the language embedding to CLIP [42]. ViLD further distills region fea-
tures from CLIP image features. We use CLIP [42] classifier as well, but do not
use distillation. Instead, we use additional image-labeled data for co-training.

Large-Vocabulary Object Detection [18,45,53,69] requires detecting 1000+
classes. Many existing works focus on handling the long-tail problem [6,14,32,
39,65,74]. Equalization losses [55,56] and SeeSaw loss [64] reweights the per-
class loss by balancing the gradients [55] or number of samples [64]. Federated
Loss [76] subsamples classes per-iteration to mimic the federated annotation [18].
Yang et al. [69] detects 11K classes with a label hierarchy. Our method builds
on these advances, and we tackle the problem from a different aspect: using
additional image-labeled data.

Proposal Network Generalization. ViLD [17] reports that region proposal
networks have certain generalization abilities for new classes by default. Dave
et al. [9] shows segmentation and localization generalizes across classes. Kim
et al. [25] further improves proposal generalization with a localization quality
estimator. In our experiments, we found proposals to generalize well enough (see
Appendix A), as also observed in ViLD [17]. Further improvements to RPNs [17,
25,27,38] can hopefully lead to better results.
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3 Preliminaries

We train object detectors using both object detection and image classification
datasets. We propose a simple way to leverage image supervision to learn object
detectors, including for classes without box labels. We first describe the object
detection problem and then detail our approach.

Problem Setup. Given an image I ∈ R
3×h×w, object detection solves the two

subproblems of (1) localization: find all objects with their location, represented
as a box bj ∈ R

4 and (2) classification: assign a class label cj ∈ Ctest to the j-th
object. Here Ctest is the class vocabulary provided by the user at test time. During
training, we use a detection dataset Ddet = {(I, {(b, c)k})i}|Ddet|

i=1 with vocabulary
Cdet that has both class and box labels. We also use an image classification
dataset Dcls = {(I, {ck})i}|Dcls|

i=1 with vocabulary Ccls that only has image-level
class labels. The vocabularies Ctest, Cdet, Ccls may or may not overlap.

Traditional Object Detection considers Ctest = Cdet and Dcls = ∅. Pre-
dominant object detectors [20,46] follow a two-stage framework. The first stage,
called the region proposal network (RPN), takes the image I and produces a
set of object proposals {(b, f , o)j}, where fj ∈ R

D is a D-dimensional region
feature and o ∈ R is the objectness score. The second stage takes the object
feature and outputs a classification score and a refined box location for each
object, sj = Wfj , b̂j = Bfj + bj , where W ∈ R

|Cdet|×D and B ∈ R
4×D are

the learned weights of the classification layer and the regression layer, respec-
tively.1 Our work focuses on improving classification in the second stage. In
our experiments, the proposal network and the bounding box regressors are not
the current performance bottleneck, as modern detectors use an over-sufficient
number of proposals in testing (1K proposals for < 20 objects per image. See
Appendix A for more details).

Open-vocabulary Object Detection allows Ctest �= Cdet. Simply replacing
the classification weights W with fixed language embeddings of class names
converts a traditional detector to an open-vocabulary detector [2]. The region
features are trained to match the fixed language embeddings. We follow Gu et
al. [17] to use the CLIP embeddings [42] as the classification weights. In theory,
this open-vocabulary detector can detect any object class. However, in practice,
it yields unsatisfying results as shown in Fig. 1. Our method uses image-level
supervision to improve object detection including in the open-vocabulary setting.

4 Detic: Detector with Image Classes

As shown in Fig. 3, our method leverages the box labels from detection datasets
Ddet and image-level labels from classification datasets Dcls. During training, we
compose a mini-batch using images from both types of datasets. For images with

1 We omit the two linear layers and the bias in the second stage for notation simplicity.



Detecting Twenty-Thousand Classes Using Image-Level Supervision 355

Fig. 3. Approach Overview. We mix train on detection data and image-labeled
data. When using detection data, our model uses the standard detection losses to train
the classifier (W) and the box prediction branch (B) of a detector. When using image-
labeled data, we only train the classifier using our modified classification loss. Our loss
trains the features extracted from the largest-sized proposal.

box labels, we follow the standard two-stage detector training [46]. For image-
level labeled images, we only train the features from a fixed region proposal
for classification. Thus, we only compute the localization losses (RPN loss and
bounding box regression loss) on images with ground truth box labels. Below we
describe our modified classification loss for image-level labels.

A sample from the weakly labeled dataset Dcls contains an image I and a set
of K labels {ck}Kk=1. We use the region proposal network to extract N object
features {(b, f , o)j}Nj=1. Prediction-based methods try to assign image labels to
regions, and aim to train both localization and classification abilities. Instead,
we propose simple ways to use the image labels {ck}Kk=1 and only improve clas-
sification. Our key idea is to use a fixed way to assign image labels to regions,
and side-step a complex prediction-based assignment. We allow the fixed assign-
ment schemes miss certain objects, as long as they miss fewer objects than the
prediction-based counterparts, thus leading to better performance.

Non-prediction-Based Losses. We now describe a variety of simple ways to
use image labels and evaluate them empirically in Table 1. Our first idea is to
use the whole image as a new “proposal” box. We call this loss image-box. We
ignore all proposals from the RPN, and instead use an injected box of the whole
image b′ = (0, 0, w, h). We then apply the classification loss to its RoI features
f ′ for all classes c ∈ {ck}Kk=1:

Limage-box = BCE(Wf ′, c)

where BCE(s, c) = −logσ(sc)−∑
k �=c log(1−σ(sk)) is the binary cross-entropy

loss, and σ is the sigmoid activation. Thus, our loss uses the features from the
same ‘proposal’ for solving the classification problem for all the classes {ck}.

In practice, the image-box can be replaced by smaller boxes. We introduce
two alternatives: the proposal with the max object score or the proposal with
the max size:

Lmax-object-score = BCE(Wfj , c), j = argmaxjoj

Lmax-size = BCE(Wfj , c), j = argmaxj(size(bj))
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We show that all these three losses can effectively leverage the image-level super-
vision, while the max-size loss performs the best. We thus use the max-size loss
by default for image-supervised data. We also note that the classification param-
eters W are shared across both detection and classification data, which greatly
improves detection performance. The overall training objective is

L(I) =

{
Lrpn + Lreg + Lcls, if I ∈ Ddet

λLmax-size, if I ∈ Dcls

where Lrpn, Lreg, Lcls are standard losses in a two-stage detector, and λ = 0.1
is the weight of our loss.

Relation to Prediction-Based Assignments. In traditional weakly-
supervised detection [3,44,45], a popular idea is to assign the image to the
proposals based on model prediction. Let F = (f1, . . . , fN ) be the stacked fea-
ture of all object proposals and S = WF be their classification scores. For each
c ∈ {ck}Kk=1, L = BCE(Sj , c), j = F(S, c), where F is the label-to-box assign-
ment process. In most methods, F is a function of the prediction S. For example,
F selects the proposal with max score on c. Our key insight is that F should not
depend on the prediction S. In large-vocabulary detection, the initial recognition
ability of rare or novel classes is low, making the label assignment process inac-
curate. Our method side-steps this prediction-and-assignment process entirely
and relies on a fixed supervision criteria.

5 Experiments

We evaluate Detic on the large-vocabulary object detection dataset LVIS [18].
We mainly use the open-vocabulary setting proposed by Gu et al. [17], and also
report results on the standard LVIS setting. We describe our experiment setup
below.

LVIS. The LVIS [18] dataset has object detection and instance segmentation
labels for 1203 classes with 100K images. The classes are divided into three
groups - frequent, common, rare based on the number of training images. We
refer to this standard LVIS training set as LVIS-all. Following ViLD [17], we
remove the labels of 337 rare-class from training and consider them as novel
classes in testing. We refer to this partial training set with only frequent and
common classes as LVIS-base. We report mask mAP which is the official metric
for LVIS. While our model is developed for box detection, we use a standard
class-agnostic mask head [20] to produce segmentation masks for boxes. We
train the mask head only on detection data.

Image-Supervised Data. We use two sources of image-supervised data:
ImageNet-21K [10] and Conceptual Captions [50]. ImageNet-21K (IN-21K) con-
tains 14M images for 21K classes. For ease of training and evaluation, most of
our experiments use the 997 classes that overlap with the LVIS vocabulary and
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denote this subset as IN-L. Conceptual Captions [50] (CC) is an image caption-
ing dataset containing 3M images. We extract image labels from the captions
using exact text-matching and keep images whose captions mention at least one
LVIS class. See Appendix B for results of directly using captions. The resulting
dataset contains 1.5M images with 992 LVIS classes. We summarize the datasets
used below.

Notation Definition #Images #Classes

LVIS-all The original LVIS dataset [18] 100K 1203

LVIS-base LVIS without rare-class annotations 100K 866

IN-21K The original ImageNet-21K dataset [10] 14M 21k

IN-L 997 overlapping IN-21K classes with LVIS 1.2M 997

CC Conceptual Captions [50] with LVIS classes 1.5M 992

5.1 Implementation Details

Box-Supervised: A Strong LVIS Baseline. We first establish a strong base-
line on LVIS to demonstrate that our improvements are orthogonal to recent
advances in object detection. The baseline only uses the supervised bounding
box labels. We use the CenterNet2 [76] detector with ResNet50 [21] backbone.
We use Federated Loss [76] and repeat factor sampling [18]. We use large scale
jittering [15] with input resolution 640× 640 and train for a 4× (∼ 48 LVIS
epochs) schedule. To show our method is compatible with better pretraining, we
use ImageNet-21k pretrained backbone weights [48]. As described in Sect. 3, we
use the CLIP [42] embedding as the classifier. Our baseline is 9.1 mAP higher
than the detectron2 baseline [66] (31.5 vs. 22.4 mAPmask) and trains in a similar
time (17 vs. 12 h on 8 V100 GPUs). See Appendix C for more details.

Resolution Change for Image-Labeled Images. ImageNet images are inher-
ently smaller and more object-focused than LVIS images [73]. In practice, we
observe it is important to use smaller image resolution for ImageNet images.
Using smaller resolution in addition allows us to increase the batch-size with the
same computation. In our implementation, we use 320 × 320 for ImageNet and
CC and ablate this in Appendix D.

Multi-dataset Training. We sample detection and classification mini-batches
in a 1 : 1 ratio, regardless of the original dataset size. We group images from the
same dataset on the same GPU to improve training efficiency [77].

Training Schedules. To shorten the experimental cycle and have a good ini-
tialization for prediction-based WSOD losses [44,45], we always first train a con-
verged base-class-only model (4× schedule) and finetune on it with additional
image-labeled data for another 4× schedule. We confirm finetuning the model
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Table 1. Prediction-based vs non-prediction-based methods. We show overall
and novel-class mAP on open-vocabulary LVIS [17] (with 866 base classes and 337 novel
classes) with different image-labeled datasets (IN-L or CC). The models are trained
using our strong baseline Sect. 5.1 (top row). This baseline is trained on boxes from the
base classes and has non-zero novel-class mAP as it uses the CLIP classifier. All models
in the following rows are finetuned from the baseline model and leverage image-labeled
data. We repeat experiments for 3 runs and report mean/ std. All variants of our pro-
posed non-prediction-based losses outperform existing prediction-based counterparts.

IN-L (object-centric) CC (non object-centric)

mAPmask mAPmask
novel mAPmask mAPmask

novel

Box-Supervised (baseline) 30.0±0.4 16.3±0.7 30.0±0.4 16.3±0.7

Prediction-based methods

Self-training [54] 30.3±0.0 15.6±0.1 30.1±0.2 15.9±0.8

WSDDN [3] 29.8±0.2 15.6±0.3 30.0±0.1 16.5±0.8

DLWL* [44] 30.6±0.1 18.2±0.2 29.7±0.3 16.9±0.6

YOLO9000 [45] 31.2±0.3 20.4±0.9 29.4±0.1 15.9±0.6

Non-prediction-based methods

Detic (Max-object-score) 32.2±0.1 24.4±0.3 29.8±0.1 18.2±0.6

Detic (Image-box) 32.4±0.1 23.8±0.5 30.9±0.1 19.5±0.5

Detic (Max-size) 32.4±0.1 24.6±0.3 30.9±0.2 19.5±0.3

Fully-supervised (all classes) 31.1±0.4 25.5±0.7 31.1±0.4 25.5±0.7

using only box supervision does not improve the performance. The 4× schedule
for our joint training consists of ∼24 LVIS epochs plus ∼4.8 ImageNet epochs
or ∼3.8 CC epochs. Training our ResNet50 model takes ∼ 22 hours on 8 V100
GPUs. The large 21K Swin-B model trains in ∼24 hours on 32 GPUs.

5.2 Prediction-Based vs Non-prediction-Based Methods

Table 1 shows the results of the box-supervised baseline, existing prediction-
based methods, and our proposed non-prediction-based methods. The baseline
(Box-Supervised) is trained without access to novel class bounding box labels.
It uses the CLIP classifier [17] and has open-vocabulary capabilities with 16.3
mAPnovel. In order to leverage additional image-labeled data like ImageNet or
CC, we use prior prediction-based methods or our non-prediction-based method.

We compare a few prediction-based methods that assign image labels to pro-
posals based on predictions. Self-training assigns predictions of Box-Supervised
as pseudo-labels offline with a fixed score threshold (0.5). The other prediction-
based methods use different losses to assign predictions to image labels online.
See Appendix E for implementation details. For DLWL [44], we implement a sim-
plified version that does not include bootstrapping and refer to it as DLWL*.

Table 1 (third block) shows the results of our non-prediction-based methods
in Sect. 4. All variants of our proposed simpler method outperform the com-
plex prediction-based counterparts, with both image-supervised datasets. On the
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novel classes, Detic provides a significant gain of ∼ 4.2 points with ImageNet
over the best prediction-based methods.

Using Non-object Centric Images from Conceptual Captions. ImageNet
images typically have a single large object [18]. Thus, our non-prediction-based
methods, for example image-box which considers the entire image as a bounding
box, are well suited for ImageNet. To test whether our losses work with differ-
ent image distributions with multiple objects, we test it with the Conceptual
Captions (CC) dataset. Even on this challenging dataset with multiple object-
s/labels per image, Detic provides a gain of ∼ 2.6 points on novel class detection
over the best prediction-based methods. This suggests that our simpler Detic
method can generalize to different types of image-labeled data. Overall, the
results from Table 1 suggest that complex prediction-based methods that overly
rely on model prediction scores do not perform well for open-vocabulary detec-
tion. Amongst our non-prediction-based variants, the max-size loss consistently
performs the best, and is the default for Detic in our following experiments.

Why Does Max-Size Work? Intuitively, our simpler non-prediction meth-
ods outperform the complex prediction-based method by side-stepping a hard
assignment problem. Prediction-based methods rely on strong initial detections
to assign image-level labels to predicted boxes. When the initial predictions are
reliable, prediction-based methods are ideal. However, in open-vocabulary sce-
narios, such strong initial predictions are absent, which explains the limited per-
formance of prediction-based methods. Detic’s simpler assignment does not rely
on strong predictions and is more robust under the challenges of open-vocabulary
setting.

We now study two additional advantages of the Detic max-size variant over
prediction-based methods that may contribute to improved performance: 1) the
selected max-size proposal can safely cover the target object; 2) the selected
max-size proposal is consistent during different training iterations.

Figure 4 provides typical qualitative examples of the assigned region for the
prediction-based method and our max-size variant. On an annotated subset of
IN-L, Detic max-size covers 92.8% target objects, vs. 69.0% for the prediction-
based method. Overall, unlike prediction-based methods, Detic’s simpler assign-
ment yields boxes that are more likely to contain the object. Indeed, Detic may
miss certain objects (especially small objects) or supervise to a loose region.
However, in order for Detic to yield a good detector, the selected box need
not be perfect, it just needs to 1) provide meaningful training signal (cover the
objects and be consistent during training); 2) be ‘more correct’ than the box
selected by the prediction-based method. We provide details about our metrics,
more quantitative evaluation, and more discussions in Appendix E.

5.3 Comparison with a Fully-Supervised Detector

In Table 1, compared with the strong baseline Box-Supervised, Detic improves
the detection performance by 2.4 mAP and 8.3 mAPnovel. Thus, Detic with
image-level labels leads to strong open-vocabulary detection performance and
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Fig. 4. Visualization of the assigned boxes during training. We show all boxes
with score > 0.5 in blue and the assigned (selected) box in red. Top: The prediction-
based method selects different boxes across training, and the selected box may not
cover the objects in the image. Bottom: Our simpler max-size variant selects a box
that covers the objects and is more consistent across training. (Color figure online)

Table 2. Open-vocabulary LVIS compared to ViLD [17]. We train our model
using their training settings and architecture (MaskRCNN-ResNet50, training from
scratch). We report mask mAP and its breakdown to novel (rare), common, and
frequent classes. Variants of ViLD use distillation (ViLD) or ensembling (ViLD-
ensemble.). Detic (with IN-L) uses a single model and improves both mAP and
mAPnovel.

mAPmask mAPmask
novel mAPmask

c mAPmask
f

ViLD-text [17] 24.9 10.1 23.9 32.5

ViLD [17] 22.5 16.1 20.0 28.3

ViLD-ensemble [17] 25.5 16.6 24.6 30.3

Detic 26.8 17.8 26.3 31.6

can provide orthogonal gains to existing open-vocabulary detectors [2]. To fur-
ther understand the open-vocabulary capabilities of Detic, we also report the
top-line results trained with box labels for all classes (Table 1 last row). Despite
not using box labels for the novel classes, Detic with ImageNet performs favor-
ably compared to the fully-supervised detector. This result also suggests that
bounding box annotations may not be required for new classes. Detic combined
with large image classification datasets is a simple and effective alternative for
increasing detector vocabulary.

5.4 Comparison with the State-of-the-Art

We compare Detic’s open-vocabulary object detectors with state-of-the-art
methods on the open-vocabulary LVIS and the open-vocabulary COCO bench-
marks. In each case, we strictly follow the architecture and setup from prior
work to ensure fair comparisons.

Open-vocabulary LVIS. We compare to ViLD [17], which first uses CLIP
embeddings [42] for open-vocabulary detection. We strictly follow their training
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Table 3. Open-vocabulary COCO [2]. We compare Detic using the same training
data and architecture from OVR-CNN [72]. We report box mAP at IoU threshold 0.5
using Faster R-CNN with ResNet50-C4 backbone. Detic builds upon the CLIP baseline
(second row) and shows significant improvements over prior work. †: results quoted from
OVR-CNN [72] paper or code. ‡: results quoted from the original publications.

mAP50box
all mAP50box

novel mAP50box
base

Base-only† 39.9 0 49.9

Base-only (CLIP) 39.3 1.3 48.7

WSDDN [3]† 24.6 20.5 23.4

Cap2Det [71]† 20.1 20.3 20.1

SB [2]‡ 24.9 0.31 29.2

DELO [78]‡ 13.0 3.41 13.8

PL [43]‡ 27.9 4.12 35.9

OVR-CNN [72]† 39.9 22.8 46.0

Detic 45.0 27.8 47.1

setup and model architecture (Appendix G) and report results in Table 2. Here
ViLD-text is exactly our Box-Supervised baseline. Detic provides a gain of 7.7
points on mAPnovel. Compared to ViLD-text, ViLD, which uses knowledge distil-
lation from the CLIP visual backbone, improves mAPnovel at the cost of hurting
overall mAP. Ensembling the two models, ViLD-ens provides improvements for
both metrics. On the other hand, Detic uses a single model which improves both
novel and overall mAP, and outperforms the ViLD ensemble.

Open-vocabulary COCO. Next, we compare with prior works on the popu-
lar open-vocabulary COCO benchmark [2] (see benchmark and implementation
details in Appendix H). We strictly follow OVR-CNN [72] to use Faster R-CNN
with ResNet50-C4 backbone and do not use any improvements from Sect. 5.1.
Following [72], we use COCO captions as the image-supervised data. We extract
nouns from the captions and use both the image labels and captions as supervi-
sion.

Table 3 summarizes our results. As the training set contains only 48 base
classes, the base-class only model (second row) yields low mAP on novel classes.
Detic improves the baseline and outperforms OVR-CNN [72] by a large margin,
using exactly the same model, training recipe, and data.

Additionally, similar to Table 1, we compare to prior prediction-based meth-
ods on the open-vocabulary COCO benchmark in Appendix H. In this setting
too, Detic improves over prior work providing significant gains on novel class
detection and overall detection performance.

5.5 Detecting 21K Classes Across Datasets Without Finetuning

Next, we train a detector with the full 21K classes of ImageNet. We use our
strong recipe with Swin-B [37] backbone. In practice, training a classification
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Table 4. Detecting 21K classes across datasets. We use Detic to train a detec-
tor and evaluate it on multiple datasets without retraining. We report the bounding
box mAP on Objects365 and OpenImages. Compared to the Box-Supervised baseline
(trained on LVIS-all), Detic leverages image-level supervision to train robust detectors.
The performance of Detic is 70%-80% of dataset-specific models (bottom row) that use
dataset specific box labels.

Objects365 [49] OpenImages [28]

mAPbox mAPbox
rare mAP50box mAP50box

rare

Box-Supervised 19.1 14.0 46.2 61.7

Detic w. IN-L 21.2 17.8 53.0 67.1

Detic w. IN-21k 21.5 20.0 55.2 68.8

Dataset-specific oracles 31.2 22.5 69.9 81.8

Table 5. Detic with different classifiers. We vary the classifier used with Detic
and observe that it works well with different choices. While CLIP embeddings give the
best performance (* indicates our default), all classifiers benefit from our Detic.

Classifier Box-supervised Detic

mAPmask mAPmask
novel mAPmask mAPmask

novel

*CLIP [42] 30.2 16.4 32.4 24.9

Trained 27.4 0 31.7 17.4

FastText [24] 27.5 9.0 30.9 19.2

OpenCLIP [23] 27.1 8.9 30.7 19.4

layer of 21K classes is computationally involved.2 We adopt a modified Feder-
ated Loss [76] that uniformly samples 50 classes from the vocabulary at every
iteration. We only compute classification scores and back-propagate on the sam-
pled classes.

As there are no direct benchmark to evaluate detectors with such large vocab-
ulary, we evaluate our detectors on new datasets without finetuning. We evalu-
ate on two large-scale object detection datasets: Objects365v2 [49] and Open-
Images [28], both with around 1.8M training images. We follow LVIS to split
1
3 of classes with the fewest training images as rare classes. Table 4 shows the
results. On both datasets, Detic improves the Box-Supervised baseline by a large
margin, especially on classes with fewer annotations. Using all the 21k classes
further improves performance owing to the large vocabulary. Our single model
significantly reduces the gap towards the dataset-specific oracles and reaches
70%–80% of their performance without using the corresponding 1.8M detection
annotations. See Fig. 5 for qualitative results.

2 This is more pronounced in detection than classification, as the “batch-size” for the
classification layer is 512× image-batch-size, where 512 is #RoIs per image.
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Fig. 5. Qualitative results of our 21k-class detector. We show random samples
from images containing novel classes in OpenImages (top) and Objects365 (bottom)
validation sets. We use the CLIP embedding of the corresponding vocabularies. We
show LVIS classes in purple and novel classes in green. We use a score threshold of 0.5
and show the most confident class for each box. Best viewed on screen.

Table 6. Detic with different pretraining data. Top: our method using ImageNet-
1K as pretraining and ImageNet-21K as co-training; Bottom: using ImageNet-21K for
both pretraining and co-training. Co-training helps pretraining in both cases.

Pretrain data mAPmask mAPmask
novel

Box-Supervised IN-1K 26.1 13.6

Detic IN-1K 28.8 (+2.7) 21.7 (+8.1)

Box-Supervised IN-21K 30.2 16.4

Detic IN-21K 32.4 (+2.2) 24.9 (+8.5)

5.6 Ablation Studies

We now ablate our key components under the open-vocabulary LVIS setting
with IN-L as the image-classification data. We use our strong training recipe as
described in Sect. 5.1 for all these experiments.

Classifier Weights. We study the effect of different classifier weights W. While
our main open-vocabulary experiments use CLIP [42], we show the gain of Detic
is independent of CLIP. We train Box-Supervised and Detic with different clas-
sifiers, including a standard random initialized and trained classifier, and other
fixed language models [23,24] The results are shown in Table 5. By default, a
trained classifier cannot recognize novel classes. However, Detic enables novel
class recognition ability even in this setting (17.4 mAPnovel for classes without
detection labels). Using language models such as FastText [24] or an open-source
version of CLIP [23] leads to better novel class performance. CLIP [42] performs
the best among them.

Effect of Pretraining. Many existing methods use additional data only for pre-
training [11,72,73], while we use image-labeled data for co-training. We present
results of Detic with different types of pretraining in Table 6. Detic provides



364 X. Zhou et al.

similar gains across different types of pretraining, suggesting that our gains are
orthogonal to advances in pretraining. We believe that this is because pretrain-
ing improves the overall features, while Detic uses co-training which improves
both the features and the classifier.

5.7 The Standard LVIS benchmark

Finally, we evaluate Detic on the standard LVIS benchmark [18]. In this setting,
the baseline (Box-Supervised) is trained with box and mask labels for all classes
while Detic uses additional image-level labels from IN-L. We train Detic with
the same recipe in Sect. 5.1 and use a strong Swin-B [37] backbone and 896×896
input size. We report the mask mAP across all classes and also split into rare,
common, and frequent classes. Notably, Detic achieves 41.7 mAP and 41.7 mAPr,
closing the gap between the overall mAP and the rare mAP. This suggests Detic
effectively uses image-level labels to improve the performance of classes with
very few boxes labels. Appendix I provides more comparisons to prior work [73]
on LVIS. Appendix J shows Detic generalizes to DETR-based [79] detectors
(Table 7).

Table 7. Standard LVIS. We evaluate our baseline (Box-Supervised) and Detic using
different backbones on the LVIS dataset. We report the mask mAP. We also report
prior work on LVIS using large backbone networks (single-scale testing) for references
(not for apple-to-apple comparison). †: detectors using additional data. Detic improves
over the baseline with increased gains for the rare classes.

Backbone mAPmask mAPmask
r mAPmask

c mAPmask
f

MosaicOS† [73] ResNeXt-101 28.3 21.7 27.3 32.4

CenterNet2 [76] ResNeXt-101 34.9 24.6 34.7 42.5

AsyncSLL† [19] ResNeSt-269 36.0 27.8 36.7 39.6

SeesawLoss [64] ResNeSt-200 37.3 26.4 36.3 43.1

Copy-paste [15] EfficientNet-B7 38.1 32.1 37.1 41.9

Tan et al. [57] ResNeSt-269 38.8 28.5 39.5 42.7

Baseline Swin-B 40.7 35.9 40.5 43.1

Detic† Swin-B 41.7 41.7 40.8 42.6

6 Limitations and Conclusions

We present Detic which is a simple way to use image supervision in large-
vocabulary object detection. While Detic is simpler than prior assignment-based
weakly-supervised detection methods, it supervises all image labels to the same
region and does not consider overall dataset statistics. We leave incorporat-
ing such information for future work. Moreover, open vocabulary generalization
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has no guarantees on extreme domains. Our experiments show Detic improves
large-vocabulary detection with various weak data sources, classifiers, detector
architectures, and training recipes.
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