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Abstract. Two-stage detectors have gained much popularity in 3D
object detection. Most two-stage 3D detectors utilize grid points, voxel
grids, or sampled keypoints for RoI feature extraction in the second
stage. Such methods, however, are inefficient in handling unevenly dis-
tributed and sparse outdoor points. This paper solves this problem in
three aspects. 1) Dynamic Point Aggregation. We propose the patch
search to quickly search points in a local region for each 3D proposal.
The dynamic farthest voxel sampling is then applied to evenly sample the
points. Especially, the voxel size varies along the distance to accommo-
date the uneven distribution of points. 2) RoI-graph Pooling. We build
local graphs on the sampled points to better model contextual infor-
mation and mine point relations through iterative message passing. 3)
Visual Features Augmentation. We introduce a simple yet effective fusion
strategy to compensate for sparse LiDAR points with limited semantic
cues. Based on these modules, we construct our Graph R-CNN as the
second stage, which can be applied to existing one-stage detectors to
consistently improve the detection performance. Extensive experiments
show that Graph R-CNN outperforms the state-of-the-art 3D detection
models by a large margin on both the KITTI and Waymo Open Dataset.
And we rank first place on the KITTI BEV car detection leaderboard.
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1 Introduction

In autonomous driving, 3D object detection is an essential task that has received
substantial attention from industry [1,12,38] and academia [24,39,47]. Among the
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Fig. 1. Illustration of different sampling strategies: (a) random point sampling (RPS)
in existing works and the proposed (b) dynamic farthest voxel sampling (DFVS). And
the comparison of results using (c) LiDAR and (d) LiDAR and Image. We show the
ground truth in pink bounding boxes and our detected objects in green bounding boxes.
(Color figure online)

existing3Ddetectionmethods, two-stagedetectors [25,42] outperformmost single-
stage detectors [12,38] in accuracy due to the proposal refinement stage. Previous
two-stagemethods [7,14,17,24–26,40]haveexploreddifferentRoIpoolingmethods
to capture better proposal features for refinement. PointRCNN [25] and its subse-
quent works [14] sample keypoints from original point clouds near the 3D proposal
and extract the features of the sampled points. Part-A2 Net [26] divides each 3D
proposal into regular voxel grids and applies sparse convolutions to capture the fea-
tures of voxel grids. PV-RCNN [24] and its variants [7,17,35] sample grid points
within each 3Dproposal and use the set abstraction [22] to aggregate the features of
grid points. The methods that utilize the sampled keypoints show more flexibility
than others since they directly process raw points and avoid the predefined voxel
grids [16,40] or grid points [6,31] as intermediaries for RoI feature extraction.

Nevertheless, existing methods relied on sampled points still have some prob-
lems: 1) They ignore that points are unevenly distributed in different parts of
an object, thus yield sub-optimal sampling strategy. As Fig. 1(a) shows, points
for some parts are too sparse to preserve the structure information, which will
hinder the prediction of the object’s size. 2) The point interrelation is not ade-
quately utilized to model the contextual information of sparse points for object
detection. 3) Sparse LiDAR points in a single proposal provide limited semantic
cues, which easily leads to a series of points that resemble a part of an object
yielding high classification scores. Figure 1(c) shows that a wall corner is wrongly
detected as a car. To surmount the above challenges, we introduce three modules:

1) Dynamic Point Aggregation (DPA). To efficiently and effectively group
and sample context and object points for 3D proposals, we propose patch search
(PS) and dynamic farthest voxel sampling (DFVS). We will start with PS to
speed up grouping then move on to DFVS to solve the uneven distribution
problem during sampling.

Previous methods [5,25,26] group points by searching all points to determine
whether they belong to a proposal, which is time-consuming since the theoretical
time complexity is O(NM), where N and M are the number of points and pro-
posals, respectively. Especially for the detection on Waymo Open Dataset [28],
there are often about 180K points and 500 proposals per frame that need to be
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processed. In contrast, PS only searches the points falling in patches occupied
by the proposal to group corresponding context and object points. Then, DFVS
sample keypoints from the grouped points to well retain the objects’ structure,
as shown in Fig. 1(b). Specifically, instead of sampling points directly [14,23,25],
DFVS splits each proposal into evenly distributed voxels and iteratively samples
the most distant non-empty voxels (i.e., voxels involving at least one point).
Further, to ensure the efficiency and accuracy of sampling, we resort to dynamic
voxel size. That is, for nearby objects with many points, we use a large voxel size
to reduce the sampling complexity. While for distant objects with sparse points,
we use a relatively small voxel size to preserve the geometric details.

2) RoI-graph Pooling (RGP). To alleviate the missing detection, we utilize
the graph neural network (GNN) to build connections among points to better
model contextual information through iterative message passing. Compared with
previous point-based methods [21,22], the GNN allows more complex features
to be determined along the edges and avoids grouping and sampling the points
repeatedly. Specifically, RGP constructs local graphs in each 3D proposal, which
treats the sampled points as graph nodes. To compensate for the information
loss caused by downsampling, we use PointNet [21] to encode neighbor points of
each node into the initial features. Then, RGP iteratively aggregates messages
from its neighbors on a k-NN graph to mine the relations among nodes. Finally,
we propose multi-level attentive fusion (MLAF) to capture abundant spatial
features from multi-level nodes with different receptive fields and fully exploit
graph nodes to extract robust RoI features.

3) Visual Features Augmentation (VFA). Though LiDAR points provide
accurate depth information, the lack of sufficient semantic features makes it
difficult to distinguish objects with similar geometric structures. Thus, a simple
yet effective fusion method is used to fuse geometric features from LiDAR and
semantic features from images for suppressing the false positives, as shown in
Fig. 1(d). We decorate local graphs with image features by bilinear interpola-
tion since graph nodes serve as a natural bridge between the LiDAR and image.
We train the two streams in an end-to-end manner and show the complex multi-
modality cut-and-paste augmentation [30,45] is not necessary for our framework.

Based on the three modules, we present our Graph R-CNN that can replace
the second stage of other two-stage detectors or supplement any one-stage detec-
tor for further improvement. Extensive experiments have been conducted on sev-
eral detection benchmarks to verify the effectiveness of our approach. We con-
sistently improve existing 3D detectors by a large margin and achieve new state-
of-the-art results on both Waymo Open Dataset (WOD) [28] and KITTI [8].

Our contributions can be summarized as follows:

– We fully consider the uneven distribution of point clouds and propose dynamic
point aggregation (DPA).

– We introduce RoI-graph Pooling (RGP) to capture the robust RoI features
by iterative graph-based message passing.

– We demonstrate a simple yet effective fusion strategy (VFA) to fuse image
features with point features during the refinement stage.
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– We present an accurate and efficient 3D object detector (Graph R-CNN) that
can be applied to existing 3D detectors. Extensive experiments are conducted
to verify the effectiveness of our methods.

2 Related Works

3D Object Detection Using Point Cloud. Current 3D detectors can be mainly
divided into two streams: one-stage and two-stage methods. One-stage detectors
jointly predict an output class and location of objects at the projected volumet-
ric grids or downsampled points. SECOND [38] rasterizes point cloud into 3D
voxels and accelerates VoxelNet [50] by exploiting sparse 3D convolution. Point-
Pillars [12] partitions points into pillars rather than voxels. 3DSSD [39] proposes
a fusion farthest point sampling strategy by utilizing both feature and geometry
distance for better classification performance.

Two-stage detectors first use a region proposal network (RPN) to generate
coarse object proposals and then use a dedicated per-region head to classify and
refine them. PointRCNN [25] generates RoIs based on foreground points from
the scene and conducts canonical 3D box refinement after point cloud region
pooling. PV-RCNN [24] incorporates the advantage from 3D voxel Convolutional
Neural Network and Point-based set abstraction to learn discriminative point
cloud features. Voxel R-CNN [7] proposes a voxel RoI pooling to extract RoI
features directly from voxel features to refine proposals in the second stage.
CenterPoint [42] detects centers of objects using a keypoint detector and refines
these estimates using additional point features on the object.

3D Object Detection Using Multi-modality Fusion. Recently, much progress has
been made to exploit the advantages of the camera and LiDAR sensors. MV3D [4]
generates 3D proposals from the bird’s eye view and fuses multi-view features
via region-based representation. EPNet [11] proposes LI-Fusion module to fuse
the deep features of point clouds and camera images in a point-wise paradigm.
However, insufficient multi-modality augmentation makes these methods per-
form only marginally better or sometimes worse than approaches that only use
point cloud. Recent works [30,45] overcome the constraint by extending the cut-
and-paste augmentation [38] to multi-modality methods. But a complex process
is needed to avoid collisions between objects in both point cloud and 2D imagery
domain. PointPainting [29] augments LiDAR points with segmentation scores,
which are suboptimal to cover color and textures in images.

3DObjectDetectionUsingGraphNeuralNetworks. Graph Neural Networks [9] are
introduced to model intrinsic relationships of graph-structured data. Since they
are suitable for processing 3D point clouds, some works have adopted GNNs for 3D
object detection. 3DVID [41] explores spatial relations amongdifferent grid regions
by treating the non-empty pillar grids as graph nodes to enhance pillar features.
Object DGCNN [33] uses DGCNN [34] to construct a graph between the queries for
incorporating neighborhood information in object detection estimates. DOPS [19]
creates a graph where the points are connected to those with similar center predic-
tions for consolidating the per-point object predictions. Point-GNN [27] encodes
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point clouds in a fixed radius near-neighbors graph and predicts the category and
shape of the object that each node in the graph belongs to. Our work differs from
previous works by constructing local graphs during the refinement stage, which
greatly saves computational and memory overhead since the k-nearest neighbor
algorithm can be parallelly applied in each 3D proposal, and numerous background
points can be avoided to build graphs.

3 Methods

In this section, we present the design of Graph R-CNN, as shown in Fig. 2.
We first introduce dynamic point aggregation in Sect. 3.1. Next, we will demon-
strate RoI-graph pooling in Sect. 3.2. Then, we will illustrate how to incorporate
semantic features from the image into our framework in Sect. 3.3. Finally, we
will show the definition of the loss function in Sect. 3.4.

3.1 Dynamic Point Aggregation

In this section, we present a differentiable dynamic point aggregation (DPA) to
efficiently and effectively group and sample points and their features for each
proposal. We first enlarge each proposal’s size by σ to wrap enough object and
context points. Then, DPA uses patch search (PS) to quickly group the points in
each enlarged proposal and dynamic farthest voxel sampling (DFVS) to evenly
sample the grouped points.

Patch Search. Unlike previous works [14,23,25] that need to search all points
to determine whether they belong to an enlarged proposal, we divide the entire
scene into patches and only search the points falling in patches occupied by
the proposal, as shown in Fig. 3. PS consists of three major steps: 1) We turn
the rotated box into an axis-aligned box to make it easier to find the occupied
patches. 2) We build point2patch and patch2box index arrays, which store the
point and patch indices as keys, and the corresponding patch and box indices as
values, respectively. 3) We finally group the points for each proposal according
to the point2patch and patch2box index arrays, as shown in Fig. 3(a). We note
that all the steps can be conducted in parallel on GPUs. In this way, we reduce
the theoretical time complexity from O(NM) to O(QK), where Q is the number
of points that fall in all occupied patches, and K is the predefined maximum
number of boxes per patch since the same patch may be occupied by multiple
boxes. Notably, Q and K are much smaller than N and M , respectively.

Dynamic Farthest Voxel Sampling. Since the number of raw points in a box is
usually far more than that of the sampled points (e.g., 70112 vs. 256, as Fig. 4(b)
shows), it’s nontrivial to ensure every part of an object is sampled. Therefore,
we propose DFVS to balance sampling efficiency and accuracy. To be specific,
DFVS partitions proposals into evenly distributed voxels and then iteratively
sample the most distant non-empty voxels. Considering the number of points
varies with the distance of the box, as Fig. 4(a) shows, the voxel size should be
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Fig. 2. The overall architecture. We take 3D proposals and points from the region
proposal network (RPN) and 2D feature map from the 2D detector as inputs. We
propose dynamic point aggregation to sample context and object points and visual
features augmentation to decorate the points with 2D features. RoI-graph pooling
serves sampled points as graph nodes to build local graphs for each 3D proposal. We
iterate the graph for T times to mine the geometric features among the nodes. Finally,
each node is fully utilized through graph aggregation to produce robust RoI features.

Fig. 3. Illustration of dynamic point aggregation, which includes (a) patch search and
(b) dynamic farthest voxel sampling. In (a), we use different colors to represent different
keys and values. In (b), we flatten the voxel grids of each proposal for better display.

changed dynamically according to the distance to ensure the sampling efficiency
of nearby objects and accuracy of distant objects, as shown in Fig. 3. Formally,
the voxel size Vi of the box bi can be calculated by:

Vi = λ · e−
√

x2
i
+y2

i
+z2

i
δ (1)

where (xi, yi, zi) is the i-th box’s center, and λ and δ determine the relationship
between the voxel size and the distance from the box to the LiDAR sensor.

Assume we have grouped the points in the box bi by patch search and
obtained Pi = {pi

j =
[
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i
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i
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i
j

] ∈ R
4 : j = 1, · · · , N}, where (xi
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i
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j indicate j-th point’s coordinate in the i-th box’s canonical coordinate system

and the reflectance intensity. We assign each point to evenly divided voxel grids,

and the grid index of the point pi
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�, � yi

j

Vi
�, � zi

j

Vi
�)}.

Each non-empty voxel can be represented by a randomly selected point in the
voxel. Next, farthest point sampling (FPS) [22] is applied to iteratively sample
the most distant non-empty voxels.

A potential problem with DVFS lies in that, for the distant box, a small voxel
size will divide the box into numerous voxels, of which the non-empty voxels only
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Fig. 4. The statistical plot of the (a) average and (b) maximum number of points in
each ground truth on Waymo Open Dataset for vehicle and pedestrian.

occupy a small part. And to utilize the parallel computation of GPUs, voxel grids
of other boxes need to be padded to the largest grid number, which will increase
the memory overhead, as shown in Fig. 3(b). Since we only care about non-empty
voxels, we use a hash table [18] to record the hashed grid indices of non-empty
voxels and quadratic probing to resolve the collisions in the hash table.

3.2 RoI-Graph Pooling

In this section, we describe the process of RoI-graph pooling, as shown in Fig. 2,
which treats sampled points as nodes to build local graphs in 3D proposals. It
consists of graph construction, iteration, and aggregation.

Graph Construction. Given sampled points P = {pj = [xj , yj , zj , rj ] ∈ R
4 : j =

1, · · · , T} for each proposal b (we drop the i subscript for ease of notation), we
construct a local graph G = (V, E), where node vj ∈ V represents a sampled
point pj ∈ P, and edge ek

j ∈ E indicates the connection between node vj and
vk. To reduce the computational overhead, we define G as a k-nearest neighbor
(k-NN) graph, which is built from the geometric distance among different nodes.
Despite efficient, building graphs on down-sampled points inevitably loss fine-
grained features. Thus, we use PointNet [21] to encode original neighbor points
within a radiu r for each node. We note that neighbor query only induces a
marginal computational overhead because it is only conducted for each proposal.

The same graph nodes may be wrapped by different proposals, which will
result in the same pooling features and thus introduce ambiguity in the refine-
ment stage [14,26]. Inspired by [23], we add the 3D proposal’s local corners
(i.e., the corners are transformed to the proposal’s canonical coordinate system)
for each node to make them have the ability to discriminate differences. In our
experiments, we found that two diagonal corners are sufficient. Formally, the
initial state s0j of each node vj at iteration step t = 0 can be represented by:

s0j = [xj , yj , zj , rj , fj , uj , wj ] , (2)

where [·, ·] is concatenation function, fj is the features from PointNet, and uj

and wj are two diagonal corners of the 3D proposal.
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Fig. 5. Illustration of multi-level attentive fusion.

Graph Iteration. To mine the rich geometric relations among nodes, we itera-
tively pass the message on G and update the node’s state at each iteration step.
Concretely, at step t, a node vj aggregates information from all the neighbor
nodes vk ∈ Nvj

in the k-NN graph. Following [2,33,41], we use EdgeConv [34]
to update the state st+1

j :

st+1
j = max

vk∈Nvj

φθ([st
k − st

j , s
t
j ]), (3)

where φθ is parameterized by a Multilayer Perceptron (MLP).

Graph Aggregation. To capture robust RoI features, we propose multi-level atten-
tive fusion (MLAF) to fuse the nodes’ features, as shown in Fig. 5. Specifically,
we concatenate the nodes’ features [s1j , · · · , sT

j ] from different iterations and feed
them into several MLPs to learn the channel-wise weights. Then, we reweight
[s1j , · · · , sT

j ] to enhance the features for final detection. After that, it’s nontrivial
to fully utilize every graph node for the proposal refinement. We explore sev-
eral aggregation operations, e.g., the channel-wise Transformer [23], Set Trans-
former [13], attention sum, average pooling, and max pooling. Our final model
uses max pooling as it provides the best empirical performance. Then, Dropout
is used in later MLPs to reduce overfitting, and a shortcut connection is added
to fuse more features without adding much cost.

3.3 Visual Features Augmentation

Cut-and-paste augmentation (CPA) [38] is widely used for 3D object detection
to increase the training samples, which could speed up training convergence
and improve the detection performance. Since our Graph R-CNN extracts RoI
features directly from raw point clouds, we doubt whether CPA is required for
our model. We carefully study its influence in Sect. 4.4 and find that our model
does not depend on it. Thus, CPA is only used to pretrain the RPN and disabled
when training the whole framework.

For the camera image, we extract high-level semantic features using a pre-
trained 2D detector. Then, we apply two 1 × 1 convolutional kernels to reduce
the dimensionality of the output feature, as Fig. 2 shows. The benefit brought
by it is twofold. Firstly, it can learn to select features that contribute greatly
to the performance of the refinement. Secondly, it can ease the optimization to
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fuse low-dimensionality point features with high-dimensionality image features.
Then, we project the graph node to the location in the camera image and collect
the feature vector at that pixel in the camera image through bilinear interpola-
tion. Lastly, the features will be appended to s0j for each node vj .

3.4 Loss Functions

Classification Loss. For class-agnostic confidence score prediction, we follow [24,
42] to use a score target Ii guided by the box’s 3D IoU with the corresponding
ground-truth bounding box:

Ii = min (1,max (0, 2 × IoUi − 0.5)) , (4)

where IoUi is the IoU between the i-th proposal box and the ground truth. The
training is supervised with a binary cross entropy loss:

Lcls =
1
B

B∑

i=1

−Ii log
(
Îi

)
− (1 − Ii) log

(
1 − Îi

)
, (5)

where Îi is the predicted confidence score, and B is the number of sampled region
proposals at the training stage.

Regression Loss. For box prediction, we transform the 3D proposal bi =
(xi, yi, zi, li, wi, hi, θi) and the corresponding 3D ground-truth bounding box
bgt
i = (xgt

i , ygt
i , zgt

i , lgt
i , wgt

i , hgt
i , θgt

i ) from the global reference frame to the canon-
ical coordinate system of 3D proposal:

b̃i = (0, 0, 0, li, wi, hi, 0) ,

b̃gt
i =

(
xgt

i − xi, y
gt
i − yi, z

gt
i − zi, l

gt
i , wgt

i , hgt
i ,Δθi

)
,

(6)

where Δθi = θgt
i − θi. Then, the regression targets for center tci , size tsi , and

orientation toi can be defined as:

tci =
(
xgt

i − xi, y
gt
i − yi, z

gt
i − zi

)
,

tsi =
(
lgt
i − li, w

gt
i − wi, h

gt
i − hi

)
,

toi = Δθi − �Δθi

π
+ 0.5� × π.

(7)

Having all the targets ti = (tci , t
s
i , t

o
i ), our regression loss is defined as:

Lreg =
1

B+

B+∑

i=1

L1 (oi − ti) , (8)

where oi is the output of the model’s regression branch, and B+ is the number
of positive samples.
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Total Loss. Finally, the overall loss is formulated as:

L = Lcls + αLreg, (9)

where α is a hyperparameter to balance the loss, which is 1 by default.

4 Experiments

4.1 Datasets

Waymo Open Dataset is a large-scale autonomous driving dataset consisting of
798 scenes for training and 202 scenes for validation. The evaluation protocol
consists of average precision (AP) and average precision weighted by heading
(APH). It includes two difficulty levels: LEVEL 1 denotes objects containing
more than 5 points, and LEVEL 2 denotes objects containing at least 1 point.

KITTI contains 7481 training samples and 7518 testing samples in autonomous
driving scenes. We follow [4,7,24] to divide the training data into a train set
with 3712 samples and a val set with 3769 samples. The performance on the val
set and the test leaderboard are reported.

4.2 Implementation Settings

Implementation Details. The codebase of CenterPoint is used for WOD. Then,
we replace the second stage of CenterPoint-Voxel with our method (i.e., Graph-
Ce) and train the network separately. For the dynamic point aggregation, we
sample 256 points for each proposal and set σ = 0.4. In dynamic farthest voxel
sampling, we set hash size as 4099 and λ and δ as 0.18 and 50, respectively. In
patch search, the K and patch size are set to 32 and 1.0, respectively. For the
RoI-graph pooling, we set r = 0.4 and the embedding channels to [16, 16] in
PointNet. We update the graph with T = 3, and the output dimensions of the
three iterations are [32, 32, 64]. The number k of nearest neighbors is set as 8. In
MLAF, the embedding dimension is 256, and the dropout ratio is 0.1.

For KITTI, the codebase of OpenPCDet is used. We propose Graph-Pi,
Graph-Vo, and Graph-Po that use the pillar-based PointPillars, the voxel-based
SECOND, and the point-based 3DSSD as their region proposal networks, respec-
tively. We incorporate the image branch in Graph-Vo (i.e., Graph-VoI) to com-
pare with previous multi-modality methods. For 2D detector, we use the Cen-
terNet [48] with DLA-34 [44] backbone, which takes images with a resolution of
1280 × 384 as input. The dimension of the output features will be reduced to 32
by the feature reduction layer.

Training Details. For WOD, we use the same training schedules and assignment
strategies as CenterPoint-Voxel. The second stage is trained for 6 epochs on 4
GTX 1080Ti GPUs with 8 batch size per GPU.
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Table 1. Vehicle detection results on WOD validation sequences. CenterPoint-Voxel†

is reproduced by us based on the officially released code. CenterPoint-Voxel‡ is the first
stage of CenterPoint-Voxel†.

Difficulty Methods 3D AP (IoU = 0.7) 3D APH (IoU = 0.7) BEV AP (IoU = 0.7) BEV APH (IoU = 0.7)

Overall 0–30 m 30–50 m 50 m-Inf Overall 0–30 m 30–50 m 50 m-Inf Overall 0–30 m 30–50 m 50 m-Inf Overall 0–30 m 30–50 m 50 m-Inf

LEVEL 1 MVF [49] 62.93 86.30 60.02 36.02 – – – – 80.40 93.59 79.21 63.09 – – – –

Pillar-od [32] 69.80 88.53 66.50 42.93 – – – – 87.11 95.78 84.74 72.12 – - – –

PV-RCNN [24] 70.30 91.92 69.21 42.17 69.69 91.34 68.53 41.31 82.96 97.35 82.99 64.97 82.06 96.71 82.01 63.15

VoTr-TSD [18] 74.95 92.28 73.36 51.09 74.25 91.73 72.56 50.01 – – – – – – – –

Voxel R-CNN [7] 75.59 92.49 74.09 53.15 – – – – 88.19 97.62 87.34 77.70 – – – –

LiDAR R-CNN [14] 76.00 92.10 74.60 54.50 75.50 91.60 74.10 53.40 90.10 97.00 89.50 78.90 89.30 96.50 88.60 77.40

Pyramid-PV [17] 76.30 92.67 74.91 54.54 75.68 92.20 74.21 53.45 – – – – – – – –

CenterPoint-Voxel† [42] 76.86 92.27 75.31 54.10 76.33 91.81 74.74 53.35 91.61 97.19 91.05 82.06 90.85 96.69 90.23 80.59

CenterPoint-Voxel‡ [42] 74.78 91.51 73.25 50.67 74.24 91.04 72.67 49.93 90.94 97.02 90.26 80.78 90.12 96.51 89.39 79.20

Graph-Ce (Ours) 80.77 93.59 79.68 60.41 80.28 93.20 79.16 59.62 92.69 97.56 92.15 84.31 92.01 97.15 91.43 82.94

LEVEL 2 PV-RCNN [24] 65.36 91.58 65.13 36.46 64.79 91.00 64.49 35.70 77.45 94.64 80.39 55.39 76.60 94.03 79.40 53.82

VoTr-TSD [18] 65.91 – – – 65.29 – – – – – – – – – – –

Voxel R-CNN [7] 66.59 91.74 67.89 40.80 – – – – 81.07 96.99 81.37 63.26 – – – –

Pyramid-PV [17] 67.23 – – – 66.68 – – – – – – – – – – –

LiDAR R-CNN [14] 68.30 91.30 68.50 42.40 67.90 90.90 68.00 41.80 81.70 94.30 82.30 65.80 81.00 93.90 81.50 64.50

CenterPoint-Voxel† [42] 69.09 91.41 69.43 42.40 68.59 90.96 68.89 41.78 85.43 96.35 86.44 70.06 84.66 95.86 85.63 68.66

CenterPoint-Voxel‡ [42] 66.66 90.63 66.90 39.50 66.17 90.16 66.36 38.90 84.87 96.21 85.69 69.08 84.04 95.69 84.81 67.58

Graph-Ce (Ours) 72.55 92.75 73.74 47.84 72.10 92.36 73.25 47.19 86.56 96.79 87.59 72.06 85.86 96.38 86.86 70.72

Table 2. Vehicle, pedestrian, and cyclist results on WOD validation sequences.

Difficulty Methods Vehicle Pedestrian Cyclist

3D AP 3D APH BEV AP BEV APH 3D AP 3D APH BEV AP BEV APH 3D AP 3D APH BEV AP BEV APH

LEVEL 1 CenterPoint-Voxel‡ [42] 74.78 74.24 90.94 90.12 75.95 69.75 82.01 75.05 72.27 71.12 75.95 74.70

Graph-Ce (Ours) 80.77 80.28 92.69 92.01 82.35 76.64 86.75 80.51 75.28 74.21 77.42 76.30

LEVEL 2 CenterPoint-Voxel‡ [42] 66.66 66.17 84.87 84.04 68.42 62.67 75.06 68.46 69.69 68.59 73.24 72.03

Graph-Ce (Ours) 72.55 72.10 86.56 85.86 74.44 69.02 79.50 73.45 72.52 71.49 74.64 73.56

For KITTI, we use the same training configuration as PV-RCNN and train
the whole model end-to-end for 80 epochs on 4 GTX 1080Ti GPUs with 4 batch
size per GPU, and the pretrained RPN and 2D detector are frozen during train-
ing. For 2D detector, we pretrain CenterNet on WOD for 24 epochs and finetune
it on KITTI for 12 epochs. We use Adam optimizer with one-cycle policy and
set batch size to 2 and learning rate to 0.00025.

4.3 Comparison with State-of-the-Art Methods

Waymo Open Dataset. We compare Graph-Ce for the vehicle class at different
distances on the full WOD validation with previous methods. Table 1 shows that
Graph-Ce achieves the state-of-the-art results in both level 1 and level 2 among
all the published papers with a single frame LiDAR input. In Table 2, we present
our results for the vehicle, pedestrian, and cyclist classes. Compared with our
baseline, i.e., CenterPoint-Voxel‡, our method improves the 3D APH in level 2
for the vehicle, pedestrian, and cyclist by 5.93%, 6.35%, and 2.90%, respectively.

KITTI. We compare Graph-Pi, Graph-Vo, Graph-Po, and Graph-VoI with pre-
vious methods listed in Table 3. Graph-Pi achieves the fastest inference speed
among all two-stage methods. Compared with methods using only LiDAR as
input, Graph-Po ranks the 1st place in 3D AP and BEV AP with competitive
inference speed. Graph-VoI outperforms all previous multi-modality methods
by a large margin (+2.08% for 3D easy AP and +2.6% for 3D moderate AP).
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Table 3. Performance comparison on the KITTI testing sever for 3D car detection. L
and I represent the LiDAR point cloud and the camera image, respectively.

Methods Modality 3D AP BEV AP FPS (Hz)

Easy Moderate Hard Easy Moderate Hard

One-stage:

Point-GNN [27] L 88.33 79.47 72.29 93.11 89.17 83.90 1.7

3DSSD [39] L 88.36 79.57 74.55 92.66 89.02 85.86 26.3

SA-SSD [10] L 88.75 79.79 74.16 95.03 91.03 85.96 25.0

CIA-SSD [46] L 89.59 80.28 72.87 93.74 89.84 82.39 32.5

SASA [3] L 88.76 82.16 77.16 92.87 89.51 86.35 27.8

Two-stage:

PV-RCNN [24] L 90.25 81.43 76.82 94.98 90.65 86.14 12.5

Voxel R-CNN [7] L 90.90 81.62 77.06 94.85 88.83 86.13 25.2

CT3D [23] L 87.83 81.77 77.16 92.36 88.83 84.07 14.3

Pyramid-PV [17] L 88.39 82.08 77.49 92.19 88.84 86.21 7.9

VoTr-TSD [18] L 89.90 82.09 79.14 94.03 90.34 86.14 7.2

SPG [37] L 90.50 82.13 78.90 94.33 88.70 85.98 6.4

PointPainting [29] L+I 82.11 71.70 67.08 92.45 88.11 83.36 2.5

PI-RCNN [36] L+I 84.37 74.82 70.03 91.44 85.81 81.00 10.0

MMF [15] L+I 88.40 77.43 70.22 93.67 88.21 81.99 12.5

EPNet [11] L+I 89.81 79.28 74.59 94.22 88.47 83.69 10.0

3D-CVF [43] L+I 89.20 80.05 73.11 93.52 89.56 82.45 13.3

CLOCs PVCas [20] L+I 88.94 80.67 77.15 93.05 89.80 86.57 10.0

Graph-Pi (Ours) L 90.94 82.42 77.00 95.06 91.52 86.42 28.5

Graph-Vo (Ours) L 91.29 82.77 77.20 95.27 91.72 86.51 25.6

Graph-Po (Ours) L 91.79 83.18 77.98 95.79 92.12 87.11 16.1

Graph-VoI (Ours) L+I 91.89 83.27 77.78 95.69 90.10 86.85 13.3

Table 4. Performance of our model on the KITTI val set with AP calculated by 40
recall positions for car class. † indicates our reproduced results.

Methods 3D AP BEV AP

Easy Moderate Hard Easy Moderate Hard

Pointpillars† (Pillar-based) [12] 89.67 80.38 78.80 93.56 89.53 88.57

Graph-Pi (Ours) 93.16 85.87 83.29 96.18 91.84 89.46

SECOND† (Voxel-based) [38] 92.15 82.43 79.26 95.78 91.26 88.57

Graph-Vo (Ours) 93.33 86.12 83.29 96.35 92.16 91.54

Graph-VoI (Ours) 95.67 86.87 84.09 96.28 92.68 92.11

3DSSD† (Point-based) [39] 91.68 82.72 79.74 96.04 91.45 88.89

Graph-Po (Ours) 93.27 86.50 83.87 96.64 92.45 89.92

Table 4 shows our method could consistently improve PointPillars, SECOND,
and 3DSSD by a large margin, demonstrating the efficacy of the method.

4.4 Ablation Study

Analysis of the Dynamic Point Aggregation. The third and fourth rows in Table 5
show that the dynamic point aggregation (DPA) contributes an improvement
of 1.06% and 0.87% APH at level 2 for vehicle and pedestrian, respectively.
Especially, Table 6 shows that DPA improves the baseline by 1.49% APH at 0–
30m since the nearby objects suffer more from the uneven distribution problem.
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Table 5. Ablation study of every module: RoI-graph pooling (RGP), multi-level atten-
tive fusion (MLAF), dynamic point aggregation (DPA), PointNet (PN), and diagonal
corners (DC). We show the 3D APH at level 2 on the WOD validation set.

w/ RGP w/ MLAF w/ DPA w/ PN w/ DC Vehicle Pedestrian

66.17 62.67

� 69.48 66.79

� � 69.77 67.00

� � � 70.83 67.87

� � � � 71.04 67.96

� � � � � 72.10 69.02

Table 6. Ablation study of the perfor-
mance of DPA at different distances. We
show the level 2 APH on the WOD vali-
dation set for vehicle class.

w/ DPA Overall 0–30m 30–50m 50m-Inf

69.77 90.25 71.21 45.40

� 70.83 91.74 71.36 45.40

Table 7. Ablation study of FPS and
DFVS based on 3DSSD. We report the
mAP on KITTI val set for car class and
the runtime of sampling.

Methods 3D mAP BEV mAP Runtime (ms)

FPS 81.73 88.57 29.6

DFVS 81.75 88.55 20.3

Table 8. Ablation study of different sampling and searching strategies. † is tested by
us based on the officially released code.

w/ PR† w/ PS w/ VS w/ DVS w/ DFVS w/ FPS APH Runtime (ms)

� 69.77 69.7

� 69.77 1.9

� � 70.39 2.2

� � 70.67 2.2

� � 70.83 2.8

� � 70.83 7.3

The first and second rows in Table 8 show that the patch search (PS) is 35×
faster than the baseline, i.e., point cloud region pooling (PR) [25].

We also explore several sampling strategies in Table 8 to solve the uneven
distribution problem, i.e., voxel sampling (VS), dynamic voxel sampling (DVS),
dynamic farthest voxel sampling (DFVS), and farthest point sampling (FPS).
We note that VS is a special case of DVS when δ is large, and FPS is a special
case of DFVS when λ is small. Table 8 shows that DFVS achieves the best
trade-off between accuracy and efficiency. Further, we explore the use of DFVS
on point-based 3D object detectors as an alternative to FPS. Table 7 shows that
DFVS achieves similar results with FPS but costs less runtime.



Graph R-CNN 675

Table 9. Ablation study of the number
of iterations to update the graph.

# iterations Overall 0–30m 30–50m 50m-Inf

T=1 68.76 89.84 70.19 44.03

T=2 69.07 89.95 70.60 44.49

T=3 69.48 89.97 71.02 45.18

Table 10. Ablation study of different
methods to aggregate nodes’ features.

Methods CT ST AS AP MP

Vehicle 71.67 71.82 71.86 71.85 72.10

Pedestrian 68.82 68.74 68.66 68.76 69.02

Table 11. Ablation study of image features and CPA. † and ‡ indicate CPA is used in
RPN and refinement, respectively.

w/ CPA† w/ CPA‡ w/ RGB w/ Seg w/ Feat 3D AP BEV AP

85.38 91.48

� � 86.12 92.16

� 86.11 92.23

� � 86.20 92.35

� � 86.38 92.59

� � 86.87 92.68

Analysis of the RoI-Graph Pooling. The first and second rows in Table 5 show
that the RoI-graph pooling (RGP) raises the APH at level 2 for vehicle and
pedestrian by 3.31% and 4.12%, respectively. In Table 9, we study the effect
of the number of iterations on the detection accuracy, where the number of
neighbors is set to 8 by default to save GPU memory. This result suggests it
is beneficial to iterate more times to mine geometric relations. Besides, we find
accuracy gains for distant objects are greater than for nearby objects since the
contextual information is better modeled to alleviate the missing detection of
distant objects. For graph construction, we investigate the components used in
the initial state of the graph node. The fourth and fifth rows in Table 5 show that
using PointNet (PN) raises 0.21% APH for vehicle class since the downsampling
introduces the loss of fine-grained details, and the fifth and sixth rows show that
adding two diagonal corners (DC) for each node raises 1.06% APH for both vehi-
cle and pedestrian. For graph aggregation, the second and third rows in Table 5
show that multi-level attentive fusion (MLAF) boosts the performance by 0.29%
APH for vehicle class. Furthermore, we study influences of different aggregation
methods in Table 10, i.e., channel-wise Transformer (CT), Set Transformer (ST),
attention sum (AS), average pooling (AP), and max pooling (MP). Transformer
does not achieve better results, probably because it has more parameters leading
to overfitting.

Analysis of the Visual Features Augmentation. By comparing the fourth and fifth
rows in Table 4, we observe that the image feature raises the detection results
by 2.34%, 0.75%, and 0.8% 3D AP respectively in terms of easy, moderate,
and hard. We carefully analyze the effect of the cut-and-paste augmentation
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(CPA) at different stages in Table 11. We find that the refinement stage is hardly
affected by CPA. Thus, we can conveniently train the LiDAR branch and the
image branch end-to-end without the help of CPA. We also provide the study
of different image features, i.e., the RGB of the input image, the segmentation
scores, and the output features of the 2D detector. We find that using the 2D
features achieves the best results.

5 Conclusions

We present an accurate and efficient 3D object detector Graph R-CNN that can
be applied to existing 3D detectors. Our framework can handle the unevenly
distributed and sparse point clouds by utilizing the dynamic point aggregation
and the semantic-decorated local graph.
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