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Abstract. We advance sketch research to scenes with the first dataset of
freehand scene sketches, FS-COCO. With practical applications in mind,
we collect sketches that convey scene content well but can be sketched
within a few minutes by a person with any sketching skills. Our dataset
comprises 10, 000 freehand scene vector sketches with per point space-time
information by 100non-expert individuals, offering both object- and scene-
level abstraction. Each sketch is augmented with its text description. Using
our dataset, we study for the first time the problem of fine-grained image
retrieval fromfreehandscenesketchesandsketchcaptions.Wedrawinsights
on: (i) Scene salience encoded in sketches using the strokes temporal order;
(ii) Performance comparison of image retrieval from a scene sketch and an
image caption; (iii) Complementarity of information in sketches and image
captions, as well as the potential benefit of combining the two modalities.
In addition, we extend a popular vector sketch LSTM-based encoder to
handle sketches with larger complexity than was supported by previous
work. Namely, we propose a hierarchical sketch decoder, which we lever-
age at a sketch-specific “pretext” task. Our dataset enables for the first time
research on freehand scene sketch understanding and its practical appli-
cations. We release the dataset under CC BY-NC 4.0 license: FS-COCO
dataset (https://github.com/pinakinathc/fscoco).

1 Introduction

As research on sketching thrives [5,16,21,41], the focus shifts from an analysis of
quick single-object sketches [6–8,40] to an analysis of scene sketches [12,17,29,61],
and professional [19] or specialised [53] sketches. In the age of data-driven com-
puting, conducting research on sketching requires representative datasets. For
instance, the inception of object-level sketch datasets [16,20,21,41,45,58] enabled

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-20074-8_15.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Avidan et al. (Eds.): ECCV 2022, LNCS 13668, pp. 253–270, 2022.
https://doi.org/10.1007/978-3-031-20074-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20074-8_15&domain=pdf
https://github.com/pinakinathc/fscoco
https://doi.org/10.1007/978-3-031-20074-8_15
https://doi.org/10.1007/978-3-031-20074-8_15


254 P. N. Chowdhury et al.

SketchyCOCOImage tesataDruO 0

1

SketchyCOCOImage tesataDruO SketchyCOCOImage tesataDruO

Fig. 1. Comparison of our sketches to the scene sketches from SketchyCOCO, the latter
are obtained by combining together sketches of individual objects. Our freehand scene
sketches contain abstraction at the object and scene level and better capture the content
of reference scenes. This figure demonstrates a large domain gap between freehand
scene sketches and available scene sketches, motivating the need for new datasets.
Our sketches contain stroke temporal order information, which we visualize using the
“Parula” color scheme: strokes in “blue” are drawn first, strokes in “yellow” are drawn
last. (Color figure online)

and propelled research in diverse applications [4,5,13]. Recently, increasingly more
attempts are conducted towards not only collecting the data but also understand-
ing how humans sketch [5,20,22,54,57]. We extend these efforts to scene sketches
by introducing FS-COCO (Freehand Sketches of Common Objects in COntext),
the first dataset of 10, 000unique freehand scene sketches, drawnby 100non-expert
participants. We envision this dataset to permit a multitude of novel tasks and to
contribute to the fundamental understanding of visual abstraction and expressiv-
ity in scene sketching. With our work, we make the first stab in this direction: We
study fine-grained image retrieval from freehand scene sketches and the task of
scene sketch captioning.

Thus far, research on scene sketches leveraged semi-synthetic [17,29,61]
datasets that are obtained by combining together sketches and clip-arts of indi-
vidual objects. Such datasets lack the holistic scene-level abstraction that char-
acterises real scene sketches. Figure 1 shows a visual comparison between the
existing semi-synthetic [17] scene sketch dataset and ours FS-COCO. It shows
interactions between scene elements in our sketches and diversity of objects
depictions. Moreover, our sketches contain more object categories than previous
datasets: Our sketches contain more than 92 categories from the COCO-stuff [9],
while sketches in SketchyScene [61] and SketchyCOCO [17] contain 45 and 17
object categories, respectively.

Our dataset collection setup is practical applications-driven, such as the
retrieval of a video frame given a quick sketch from memory. This is an important
task because, while the text-based retrieval achieved impressive results in recent
years, it might be easier to communicate via sketching fine-grained details. How-
ever, this will only be practical if users can provide a quick sketch and are not
expected to be good sketchers. Therefore, we collect easy to recognize but quick
to create freehand scene sketches from recollection (similar to object sketches
collected previously [16,41]). As reference images, we select photos from the MS-
COCO [28], a benchmark dataset for scene understanding that ensures diversity
of scenes and is complemented with rich annotations in a form of semantic seg-
mentation and image captions.
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Equippedwith ourFS-COCOdataset,we for the first time study the problemof
a fine-grained image retrieval from freehand scene sketches. First, we show the pres-
ence of a domain gap between freehand sketches and semi-synthetic ones [17,61],
which are easier to collect, on the example of fine-grained sketch-based image
retrieval. Then, in our work we aim at understanding how scene-sketch-based
retrieval compares to text-based retrieval, and what information sketch captures.
To obtain a thorough understanding, we collect for each sketch its text description.
Thetextdescriptionmakesthesubjectwhocreatedthesketch,eliminatingthenoise
due to sketch interpretation.Bycomparing sketch textdescriptionswith image text
descriptions from the MS-COCO [28] dataset, we draw conclusions on the comple-
mentary nature of the two modalities: sketches and image text descriptions.

Our dataset of freehand scene sketches enables analysis towards insights into
how humans sketch scenes, not possible with earlier datasets [17]. We continue
the recent trend on understanding and leveraging strokes order [5,19,20,54] and
observe the same trends of coarse-to-fine sketching in scene sketches: We study
stroke order as a factor of its salience for retrieval. Finally, we study sketch-
captioning as an example of a sketch understanding task.

Collecting human sketches is costly, and despite our dataset being relatively
large-scale, it is hard to reach the scale of the existing datasets of photos [33,43,
47]. To tackle this known problem of sketch data, recent work [4,34] to improve
the performance of the encoder-decoder-based architectures on the downstream
tasks proposed to pre-train the encoder relying on some auxiliary task. In our
work, we build on [4] and consider the auxiliary task of raster sketch to vector
sketch generation. Since our sketches are more complex than those of single
objects considered before, we propose a dedicated hierarchical RNN decoder.
We demonstrate the efficiency of the pre-training strategy and our proposed
hierarchical decoder on fine-grained retrieval and sketch-captioning.

In summary, our contributions are: (1) We propose the first dataset of
freehand scene sketches and their captions; (2) We study for the first time
fine-grained freehand-scene-sketch-based image retrieval (3) and the relations
between sketches, images and their captions. (4) Finally, to address the chal-
lenges of scaling sketch datasets and complexity of scene sketches, we introduce
a novel hierarchical sketch decoder that exploit temporal stroke order available
for our sketches. We leverage this decoder at the pre-training stage for fine-
grained retrieval and sketch captioning.

2 Related Work

Single-Object Sketch Datasets. Most freehand sketch datasets contain sketches
of individual objects, annotated at the category level [16,21] or part level [18],
paired to photos [41,45,58] or 3D shapes [38]. Category-level and part-level
annotations enable tasks such as sketch recognition [42,59] and sketch gener-
ation [5,18]. Paired datasets allow to study practical tasks such as sketch-based
image retrieval [58] and sketch-based image generation [52].

However, collecting fine-grained paired datasets is time-consuming since one
needs to ensure accurate, fine-grained matching while keeping the sketching task
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Table 1. Properties of scene sketch datasets.

Dataset
Abstraction # pho-

tos
Stroke

temporal order
Cap-
tions

Free-
handObject Scene

SketchyScene [61] ✓ ✗ 7,264 ✗ ✗ ✗

SketchyCOCO [17] ✗ ✓ 14,081 ✗ ✗ ✗

FS-COCO ✓ ✓ 10,000 ✓ ✓ ✓

natural for the subjects [24]. Hence, such paired datasets typically contain a
few thousand sketches per category, e.g., QMUL-Chair-V2 [58] consists of 1432
sketch-photo pairs on a single ‘chair’ category, Sketchy [41] has an average of
600 sketches per category, albeit over 125 categories.

Our dataset contains 10,000 scene sketches, each paired with a ‘reference’
photo and text description. It contains scene sketches rather than sketches of
individual objects and excels the existing fine-grained datasets of single-object
sketches in the amount of paired instances.

Scene Sketch Datasets. Probably the first dataset of 8,694 freehand scene sketches
was collected within the multi-model dataset [2]. It contains sketches of 205 scenes,
but the examples are not paired between modalities. Scene sketch datasets with
the pairing between modalities [17,61] have started to appear, however they are
‘semi-synthetic’. Thus, the SketchyScene [61] dataset contains 7, 264 sketch-image
pairs. It is obtained by providing participants with a reference image and clip-art
like object sketches to drag-and-drop for scene composition. The augmentation is
performed by replacing object sketches with other sketch instances belonging to
the same object category. SketchyCOCO [17] was generated automatically relying
on the segmentation maps of photos from COCO-Stuff [9] and leveraging freehand
sketches of single objects from [16,21,41].

Leveraging the semi-synthetic datasets, previous work studied scene
sketch semantic segmentation [61], scene-level fine-grained sketch based image
retrieval [29], and image generation [17]. Nevertheless, sketches in the existing
datasets are not representative of freehand human sketches as shown in Fig. 1,
and therefore the existing results can be only considered preliminary. Unlike
existing semi-synthetic datasets, our dataset of freehand scene sketches captures
abstraction at the object level and holistic scene level, and contains stroke tem-
poral information. We provide a comparative statistics with previous datasets
in Table 1, discussed in Sect. 4.1. We demonstrate the benefit and importance of
the newly proposed data on two problems: image retrieval and sketch captioning.

3 Dataset Collection

Targeting practical applications, such as sketch-based image retrieval, we aimed
to collect representative freehand scene sketches with object- and scene-levels of
abstraction. Therefore, we define the following requirements towards collected
sketches: (1) created by non-professionals, (2) fast to create, (3) recognizable,
(4) paired with images, and (5) supplemented with sketch-captions.
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Data Preparation. We randomly select 10k photos from MS-COCO [28], a stan-
dard benchmark dataset for scene understanding [10,11,39]. Each photo in this
dataset is accompanied by image captions [28] and semantic segmentation [9].
Our selected subset of photos includes 72 “things” instances (well-defined fore-
ground objects) and 78 “stuff” instances (background instances with potentially
no specific or distinctive spatial extent or shape: e.g., “trees”, “fence”), according
to the classification introduced in [9]. We present detailed statistics in Sect. 4.1.

Task. We built a custom web application1 to engage 100 participants, each
annotating a distinct subset of 100 photos. Our objective is to collect easy-
to-recognize freehand scene sketches drawn from memory, alike single-object
sketches collected previously [16,41]. To imitate real world scenario of sketch-
ing from memory, following the practice of single object dataset collection, we
showed a reference scene photo to a subject for a limited duration of 60 sec-
onds, determined through a series of pilot studies. To ensure recognizable but
not overly detailed drawings, we also put time limits on the duration of the
sketching. We determined the optimal time limits through a series of pilot stud-
ies with 10 participants, which showed that 3min were sufficient for participants
to comfortably sketch recognizable scene sketches. We allow repeated sketching
attempts, with the subject making an average of 1.7 attempts. Each attempt
repeats the entire process of observing an image and drawing on a blank canvas.
Upon satisfaction with their sketch, we ask the same subject to describe their
sketch in text. The instructions to write a sketch caption are similar to that of
Lin et al. [28] and are provided in supplemental materials. To reduce fatigue
that can compromise data quality, we encourage participants to take frequent
breaks and complete the task over multiple days. Thus, each participant spent
12–13 h to annotate 100 photos over an average period of 2 days.

Quality Check. We check the quality of sketches. We hired as a human judge
one appointed person (1) with experience in data collection and (2) non-expert
in sketching. The human judge instructed to “mark sketches of scenes that are
too difficult to understand or recognize.” The tagged photos were sent back to
their assigned annotator. This process guarantees the resulting scene sketches
are recognizable by a human, and therefore, should be understood by a machine.

Participants. We recruited 100 non-artist participants from the age group 22–44,
with an average age of 27.03, including 72 males and 28 females.

4 Dataset Composition

Our dataset consists of 10, 000 (a) unique freehand scene sketches, (b) textual
descriptions of the sketches (sketch captions), (c) reference photos from the MS-
COCO [28] dataset. Each photo in [28] contains 5 associated text descriptions
(image captions) by different subjects [28]. Figures 1 and 3 show samples from our
dataset, and supplemental materials visualize more sketches from our dataset.
1 https://github.com/pinakinathc/SketchX-SST.

https://github.com/pinakinathc/SketchX-SST
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Table 2. Comparison of scene sketch datasets based on the distribution of categories
in sketch-image pairs. ‘FG’ denotes subsets of datasets that are recommended for use
in Fine-Grained tasks, such as fine-grained retrieval. el/ec denotes estimates based on
semantic segmentation labels in images and based on the occurrence of a word in a
sketch caption, respectively. See Sect. 4 for details.

Dataset # photos #categories # categories per sketch # sketches per category
Mean Std Min Max Mean Std Min Max

SketchyScene [61] 7,264 45 7.88 1.96 4 20 1079.76 1447.47 31 5723
SketchyCOCO [17] 14,081 17 3.33 0.9 2 7 1932.41 3493.01 33 9761

SketchyScene FG 2,724 45 7.71 1.88 4 20 394.51 540.30 3 2154
SketchyCOCO FG 1,225 17 3.28 0.89 2 6 164.71 297.79 5 824

FS-COCO (ec) 10,000 92 1.37 0.57 1 5 99.42 172.88 1 866
FS-COCO (el) 10,000 150 7.17 3.27 1 25 413.18 973.59 1 6789

4.1 Comparison to Existing Datasets

Table 2 provides comparison with previous dataset and statistics on distribution
of object categories in our sketches, which we discuss in more detail below.

Categories. First, we obtain a joint set of labels from the labels in [17,61] and [9].
To compute statistics on the categories present in [17,61], we use the semantic
segmentation labels available in these datasets. For our dataset, we compute two
estimates of the category distribution across our data: (1) el, based on semantic
segmentation labels in images and (2) ec, based on the occurrence of a word in a
sketch caption. As can be seen from Fig. 3, the participants do not exhaustively
describe in the caption all the objects present in sketches. Our dataset contains
ec/el = 92/150 categories, which is more than double the number of categories
in previous scene sketch datasets (Table 2). On average, each category is present
in ec/el = 99.42/413.18 sketches. Among the most common category in all three
datasets are ‘cloud’, ‘tree’ and ‘grass’ common to outdoor scenes. In our dataset
‘person’ is also among one of the most frequent categories along with common
animals such as ‘horse’, ‘giraffe’, ‘dog’, ‘cow’ and ‘sheep’. Our dataset, according
to lower/upper estimates, contains 33/71 indoor categories and 59/79 outdoor
categories. We provide detailed statistics in supplemental materials.

Sketch Complexity. Existing datasets of freehand sketches [16,41] contain
sketches of single objects. The complexity of scene sketches is unavoidably higher
than the one of single-object sketches. Sketches in our dataset have a median
stroke count of 64. For comparison, a median strokes count in the popular
Tu-Berlin [16] and Sketchy [41] datasets is 13 and 14, respectively.

5 Towards Scene Sketch Understanding

5.1 Semi-synthetic Versus Freehand Sketches

To study the domain gap between existing ‘semi-synthetic’ and our freehand
scene sketches, we evaluate the state-of-the-art methods for Fine Grained Sketch
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Table 3. Evaluation of a domain gap between ‘semi-synthetic’ sketches [17,61] and
freehand sketches FS-COCO. The details on the compared methods are in Sect. 5.1.
Top-1/Top-10 accuracy (R@1/R@10) is the percentage of test sketches for which the
ground-truth image is among the first 1/10 ranked retrieval results.

Trained On
SketchyScene (S-Scene) [61] SketchyCOCO (S-COCO) [17] FS-COCO (Ours)

Evaluate on Evaluate on Evaluate on
Methods

S-Scene S-COCO FS-COCO S-Scene S-COCO FS-COCO S-Scene S-COCO FS-COCO

R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10

Siam.-VGG16 [58] 22.8 43.5 1.1 4.1 1.8 6.6 0.3 2.1 37.6 80.6 <0.1 0.4 5.8 24.5 2.4 11.6 23.3 52.6

HOLEF [46] 22.6 44.2 1.2 3.9 1.7 5.9 0.4 2.3 38.3 82.5 0.1 0.4 6.0 24.7 2.2 11.9 22.8 53.1

CLIP zero-shot [39] 1.26 9.70 – – – – – 1.85 9.41 – – – – – – 1.17 6.07

CLIP∗ 8.6 24.8 1.7 6.6 2.5 8.2 1.3 5.1 15.3 43.9 0.6 3.1 1.6 11.9 2.6 12.5 5.5 26.5

Based Image Retrieval (FG-SBIR) on the three datasets: SketchyCOCO [17],
SketchyScene [61] and FS-COCO (ours) (Table 3).

Methods and Training Details. Siam.-VGG16 adapts the pioneering method
of Yu et al. [58] by replacing the Sketch-a-Net [59] feature extractor with
VGG16 [44] trained using triplet loss [50,55], as we observed that this increases
retrieval performance. HOLEF [46] extends Siam.-VGG16 by using spatial
attention to better capture fine-scale details and introducing a novel trainable
distance function in the context of triplet loss.

We also explore CLIP [39], a recent method that has shown an impressive
ability to generalize across multiple photo datasets [28,37]. CLIP (zero-shot) uses
the pre-trained photo encoder, trained on 400 million text-photo pairs that do
not include photos from the MS-COCO dataset. In our experiments, we use the
publicly available ViT-B/32 version2 of CLIP, which uses the visual transformer
backbone as a feature extractor. Finally, CLIP* means CLIP fine-tuned on the
target data. Since we found training CLIP to be very unstable, we train only
the layer normalization [3] modules and add a fully connected layer to map the
sketch and photo representations to a shared 512 dimensional feature space. We
train CLIP* using triplet loss [50,55] with a margin value set to 0.2 with a batch
size 256 and a low learning rate of 0.000001.

Train and Test Splits. We train Siam.-VGG16 and HOLEF, and fine-tune
CLIP* on the sketches from one of three datasets: SketchyCOCO [17],
SketchyScene [61] and FS-COCO. For our FS-COCO dataset 70% of each user
sketches are used for training and the remaining 30% for testing. This results
in a training/tasting sets of 7, 000 and 3, 000 sketch-image pairs. For [17,61] we
use subsets of sketch-image pairs, since both datasets contain noisy data, which
leads to performance degradation when used for the fine-grained tasks such as
fine-grained retrieval. For SketchyCOCO [17], following Liu et al. [29], we sort
the sketches based on the number of the foreground objects and select the top
1,225 scene sketch-photo pairs. We then randomly split those into training and

2 https://github.com/openai/CLIP.

https://github.com/openai/CLIP
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Fig. 2. Sketching strategies in our freehand scene sketches: Sect. 5.2. (a) Humans fol-
low a coarse-to-fine sketching strategy, drawing longer strokes first. (b) Humans draw
strokes more salient for the retrieval task early on. We plot the Top-10 (R@10) retrieval
accuracy when certain strokes during testing are masked out. Top-10 accuracy calcu-
lates the percentage of test sketches for which the ground-truth image is among the
first 10 ranked retrieval results.

test sets of 1, 015 and 210 pairs, respectively. For SketchyScene [61] we follow
their approach used to evaluate image retrieval, and manually select sketch-photo
pairs that have same categories present in images and sketches. We obtain train-
ing and test sets of 2, 472 and 252 pairs, respectively. The statistics on object
categories in these subsets are given in Table 2 (‘FG’). Note that in each exper-
iment, the image gallery size is equal to the test set size. Therefore, in the case
of our dataset, the retrieval is performed among the largest number of images.

Evaluation. Table 3 shows that training on ‘semi-synthetic’ sketch datasets like
SketchyCOCO [17] and SketchyScene [61] does not generalize to freehand scene
sketches from our dataset: training on FS-COCO/SketchyCOCO/SketchyScene
and testing on our data results in R@1 of 23.3/< 0.1/1.8. Training with the
sketches from [61] rather than from [17] results in better performance on our
sketches, probably due to the larger variety of categories in [61] (46 categories)
than in [17] (17 categories). Table 3 also shows a large domain gap between all
three datasets.

As the image gallery is larger when tested on our sketches than for other
datasets, the performance on our sketches in Table 3 is lower, even when trained
on our sketches. For a fairer comparison, we create 10 additional test sets con-
sisting of 210 sketch-image pairs (the size of the SketchyCOCO dataset’s image
gallery) by randomly selecting them from the initial set of 3000 sketches. For
Siam-VGG16, the average retrieval accuracy and its standard deviation over ten
splits are: Top-1 is 50.39%±2.15% and Top-10 is 89.38%±2.0%. For CLIP ∗, the
average retrieval accuracy and its standard deviation over ten splits are: Top-1 is
42.53%±3.16% and Top-10 is 87.93%±2.14%. These high performance numbers
show the high quality of the sketches in our dataset.

5.2 What Does a Freehand Sketch Capture?

Sketching Strategy. We observe that humans follow a coarse-to-fine sketching
strategy in scene sketches: in Fig. 2(a) we show that the average stroke length
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decreases with time. Similarly, coarse-to-fine sketching strategies has previously
been observed in single object sketch datasets [16,20,41,54]. We also verify the
hypothesis that humans draw salient and recognizable regions early [5,16,41].
We first train the classical SBIR method [58] on sketch-image pairs from our
dataset: 70% of each user’s sketches are used for training and 30% for testing.
During the evaluation, we follow two strategies: (i) We gradually mask out a
certain percentage of strokes drawn early, which is indicated by the red line
in Fig. 2(b). (ii) We then gradually mask out strokes drawn towards the end,
which is indicated by the blue line in Fig. 2(b). We observe that masking strokes
towards the end has a smaller impact on the retrieval accuracy than masking
early strokes. Thus we quantify that humans draw longer (Fig. 2a) and more
salient for retrieval (Fig. 2b) strokes early on.

Sketch Captions vs. Image Captions. To gain insights into what informa-
tion sketch captures, we compare sketch and image captions (Fig. 3 and 4). The
vocabulary of our sketch captions matches 81.50% vocabulary of image captions.
Specifically, comparing sketch and image captions for each instance reveals that
on average 66.5% words in sketch captions are common with image captions,
while 60.8% of words overlap among the 5 available captions of each image. This
indicates that sketches preserve a large fraction of information in the image.
However, the sketch captions in our dataset are on average shorter (6.55 words)
than image captions (10.46). We explore this difference in more detail by visual-
izing the word clouds for sketch and image captions. From Fig. 4 we observe that,
unlike image captions, sketch descriptions do not use “color” information. Also,
we compute the percentage of nouns, verbs, and adjectives in sketch and image
captions. Figure 4(c) shows that our sketch captions are likely to focus more on
objects (i.e., nouns like “horse”) and their actions (i.e., verbs like “standing”)
instead of focusing on attributes (i.e., adjectives like “a brown horse”).

Fig. 3. A qualitative comparison of image and sketch captions. The overlapping words
are marked in blue, the words present only in image-captions are marked in red, while
the words present only in sketch-captions are marked in green. (Color figure online)

Freehand Sketches vs. Image Captions. To understand the potential
of quick freehand scene sketches in image retrieval, we compare freehand
scene sketch with textual description as queries for fine-grained image retrieval
(Table 4).
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Fig. 4. (a, b) Word clouds show frequently occurring words in image and sketch cap-
tions, respectively. The large the word, the more frequent it is. It shows that color
information such as “white”, “green” is present in image captions but is missing from
sketch captions. (c) Percentage of nouns, verbs, and adjectives in image and sketch
captions, and their overlapping words. (Color figure online)

Methods. For text-based image retrieval, we evaluate two baselines: (1) CNN-
RNN the simple and classic approach where text is encoded with an LSTM and
images are encoded with a CNN encoder (VGG-16 in our implementation) [25,
49], and (2) CLIP [39] which is one of state-of-the-art methods alongside [26] in
text-based image retrieval. For purity of experiments we evaluate here CLIP, as
its training data did not include MS-COCO dataset from which the reference
images in our dataset are coming from. CLIP zero-shot uses off-the-shelf ViT-
B/32 weights. CLIP* is fine-tuned on our sketch-captions by fine-tuning only
layer normalization modules [3] with batch size 256 and learning rate 1e − 7.

Training Details. CNN-RNN and CLIP* are trained with triplet loss [50,55],
with a margin value is set to 0.2. We use the same split to train/test sets as in
Sect. 5.1. For retrieval from image captions, we randomly select one of 5 available
caption versions.

Evaluation. Table 4 shows that image captions result in better retrieval perfor-
mance compared to sketch captions, which we attribute to the color informa-
tion in image captions. However, we observe that CLIP* -based retrieval from
image captions is slightly inferior to Siam.-VGG16 -based retrieval from sketches.
Note that CLIP* is pre-trained on 400 million text-photo pairs, while Siam.-
VGG16 was trained on a much smaller set of 7000 sketch-photo pairs. Therefore,
with even larger sketch datasets the retrieval accuracy from sketches will further
increase. There is an intuitive explanation for this since scene sketches intrinsi-
cally encode fine-grained visual cues that are difficult to convey in text.
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Table 4. Text-based versus sketch-based image retrieval.

Methods Retrieval accuracy
Image captions Sketch captions Sketches
R@1 R@10 R@1 R@10 R@1 R@10

Siam.-VGG16 [58] – – – – 23.3 52.6
CNN-RNN [45] 11.1 31.1 7.2 23.6 – –
CLIP zero-shot [39] 21.0 50.9 11.5 35.3 1.17 6.07
CLIP* 22.1 52.3 14.8 36.6 5.5 26.5

Fig. 5. Qualitative results showing predicted captions from LNFMM (H-Decoder) for
scene sketches from our dataset.

Text and Sketch Synergy. While we have shown that scene sketches have
strong ability in expressing fine-grained visual cues, image captions convey addi-
tional information such as “color”. Therefore, we are exploring whether the two
query modalities combined can improve fine-grained image retrieval. Follow-
ing [30], we use two simple approaches to combine sketch and text: (-concat) we
concatenate sketch and text features and (-add) we add sketch and text features.
The combined features are then passed through a fully connected layer. Com-
paring the results in Table 5 and Table 4 shows that combining image captions
and scene sketches improves fine-grained image retrieval. This confirms that the
scene sketch complements the information conveyed by the text.

Table 5. Fine-grained image retrieval from the combined input of scene sketches and
textual image descriptions.

Methods R@1 R@10 Methods R@1 R@10

CNN-RNN [45] -add 25.3 55.0 CLIP* -add 23.9 53.5
CNN-RNN [45] -concat 24.3 53.9 CLIP* -concat 23.3 52.6
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Table 6. Sketch captioning (Sect. 5.3): our dataset enables captioning of scene sketches.
We provide the results of the popular captioning methods developed for photos. For the
evaluation, we use the standard metrics: BELU (B4) [35], METEOR (M) [14], ROUGE
(R) [27], CIDEr (C) [48], SPICE (S) [1].

Methods B4 M R C S

Xu et al. [56] 13.7 17.1 44.9 69.4 14.5
AG-CVAE [51] 16.0 18.9 49.1 80.5 15.8
LNFMM [31] 16.7 21.0 52.9 90.1 16.0
LNFMM with pre-training (H-Decoder) 17.3 21.1 53.2 95.3 17.2

5.3 Sketch Captioning

While scene sketches are a pre-historic form of human communication, scene
sketch understanding is nascent. Existing literature has solidified captioning as
a hallmark task for scene understanding. The lack of paired scene-sketch and text
datasets is the biggest bottleneck. Our dataset allows us to study this problem
for the first time. We evaluate several popular and SOTA methods in Table 6: Xu
et al. [56] is one of the first popular works to use the attention mechanism with
an LSTM for image captioning. AG-CVAE [50] is a SOTA image captioning model
that uses a variational auto-encoder along with an additive gaussian prior. Finally,
LNFMM[31] is a recent SOTAapproach using normalizing flows [15] to capture the
complex joint distribution of photos and text. We show qualitative results in Fig. 5
using the LNFMM model with the pre-training strategy we introduce in Sect. 6.

6 Efficient “Pretext” Task

Our dataset is large (10,000 scene sketches!) for a sketch dataset. However, scaling
it up to millions of sketch instances paired with other modalities (photos/text) to
match the size of the photo datasets [47] might be intractable in the short term.
Therefore, when working with freehand sketches, it is important to find ways to
go around the limited dataset size. One traditional approach to address this prob-
lem is to solve an auxiliary or “pretext” task [32,36,60]. Such tasks exploit self-
supervised learning, allowing to pre-train the encoder for the ‘source’ domain lever-
aging unpaired/unlabeled data. In the context of sketching, solving jigsaw puz-
zles [34] and converting raster to vector sketch [4] “pretext” tasks were considered.
We extend the state-of-the-art sketch-vectorization [4] “pretext” task to support
the complexity of scene sketches, exploiting the availability of time-space infor-
mation in our dataset. We pre-train a raster sketch encoder with the newly pro-
posed decoder that reconstructs a sketch in a vector format as a sequence of stroke
points. Previous work [4] leverages a single layer Recurrent Neural Network (RNN)
for sketch decoding. However, it can only reliably model up to around 200 stroke
points [21], while our scene sketches can contain more than 3000 stroke points,
which makes modeling scene sketches challenging. We observe that, on average,
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scene sketches consist of only 74.3 strokes, with each stroke containing around 41.1
stroke points. Modeling such number of strokes or stroke points individually is pos-
sible using a standard LSTM network [23]. Therefore, we propose a novel 2-layered
hierarchical LSTM decoder (Fig. 6).

Fig. 6. The proposed hierarchical decoder used for pre-training a sketch encoder.

6.1 Proposed Hierarchical Decoder (H-Decoder)

We denote a raster sketch encoder that our proposed decoder pre-trains as E(·).
Let the output feature map of E(·) be F ∈ R

h′×w′×c, where h′, w′ and c denotes
height, width, and number of channels, respectively. We apply a global max
pooling to F , with consequent flattening, to obtain a latent vector representation
of the raster sketch, lR ∈ R

512.
Naively decoding lR using a single layer RNN is intractable [21]. We propose

a two-level decoder consisting of two LSTMs, referred to as global and local. The
global LSTM (RNNG) predicts a sequence of feature vectors, each representing
a stroke. The second local LSTM (RNNL) predicts a sequence of points for any
stroke, given its predicted feature vector.

We initialize the hidden state of the global RNNG using a linear embedding
as follows: hG

0 = WG
h lR + bGh . The hidden state hG

i of decoder RNNG is updated
as follows: hG

i = RNNG(hG
i−1; [lR, Si−1]), where [·] stands for a concatenation

operation and Si−1 ∈ R
512 is the last predicted stroke representation computed

as: Si = WG
y hG

i + bGy .
Given each stroke representation Si, the initial hidden state of local

RNNL is obtained as: hL
0 = WL

h Si + bLh. Next, hL
j is updated as: hL

j =
RNNL(hL

j−1; [Si, Pt−1]), where Pt−1 is the last predicted point of the i-th
stroke. A linear layer is used to predict a point: Pt = WL

y h
L
j + bLj , where

Pt = (xt, yt, q
1
t , q

2
t , q

3
t ) is of size R

2+3 whose first two logits represent absolute
coordinate (x, y), and the later three denote the pen’s state (q1t , q

2
t , q

3
t ) [21].

We supervise the prediction of the absolute coordinate and pen state using
the mean-squared error and categorical cross-entropy loss, as in [4].
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6.2 Evaluation and Discussion

We use our proposed H-Decoder for pre-training a raster sketch encoder for
fine-grained image retrieval (Table 7) and sketch captioning (Table 6).

Training Details. We start pre-training VGG-16 based Siam.VGG16 (Table 7)
and LNFMM (Table 6) encoders on QuickDraw [21], a large dataset of freehand
object sketches, by coupling a VGG16 raster sketch encoder with our H-Decoder.
For CLIP* we start from the model weights in ViT-B/32. We then train CLIP*
and VGG-16-based encoders with our “pretext” task on all sketches from our
dataset. We exploit here that the test data is available but does not have the
paired data – captions, photos. After pre-training, training for downstream tasks
starts with the weights learned during pre-training.

Evaluation. Table 6 shows the benefit of the pre-training with the proposed
decoder. With this pre-training strategy the performance of LNFMM [31] on
sketches approaches the performance on images (CIDEr score of 98.43), increas-
ing, e.g., the CIDEr score from 90.1 to 95.3.

This pre-training also slightly improves the performance of sketch-based
retrieval (Table 7). Next, we compare pre-training with the proposed H-Decoder
and a more naive approach. We simplify scene sketches with the Ramer-Douglas
Peucker (RDP) algorithm (Fig. 7): On average, the simplified sketches contain
165 stroke points, while the original sketches contain 2437 stroke points. Then,
we pre-train with a single layer RNN, as proposed in [4]. In this case Siam.VGG16
achieves R@10 of 52.1, which is lower than the performance without pre-training
(Table 7). This further demonstrates the importance of the proposed hierarchical
decoder to scene sketches.

Fig. 7. Simplifying scene sketch with the RDP algorithm looses salient information.
RNNs can reliably model around 200 points. The training of a single-layer RNN exploits
the simplification level of the most right image.

3 The performance of image captioning goes up to 170.5 when 100 generated captions
are evaluated against the ground-truth instead of 1.
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Table 7. The role of pre-training with H-Decode in retrieval.

Baseline H-Decoder

Method R@1 R@10 R@1 R@10
Siam.-VGG16 23.3 52.6 24.1 54.3
CLIP∗ 5.5 26.5 5.7 27.1

7 Conclusion

We introduce the first dataset of freehand scene sketches with fine-grained paired
text information. With the dataset, we took the first step towards freehand scene
sketch understanding, studying tasks such as fine-grained image retrieval from
scene sketches and scene sketches captioning. We show that relying on off-the-
shelf methods and our data promising image retrieval and sketch captioning
accuracy can be obtained. We hope that future work will leverage our find-
ings to design dedicated methods exploiting the complementary information in
sketches and image captions. In the supplemental materials, we provide a thor-
ough comparison of modern encoders and state-of-the-art methods, and show
how meta-learning can be used for few-shot sketch adaptation to an unseen
user style. Finally, we proposed a new RNN-based decoder that exploits time-
space information embedded in our sketches for a ‘pre-text’ task, demonstrat-
ing substantial improvement on sketch-captioning. We hope that our dataset
will promote research on image generation from freehand scene sketches, sketch
captioning, and novel sketch encoding approaches that are well suited for the
complexity of freehand scene sketches.
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