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Fig. 1. Overview. BEAT is a large-scale, multi-modal mo-cap human gestures dataset
with semantic, emotional annotations, diverse speakers and multiple languages.

Abstract. Achieving realistic, vivid, and human-like synthesized con-
versational gestures conditioned on multi-modal data is still an unsolved
problem due to the lack of available datasets, models and standard eval-
uation metrics. To address this, we build Body-Expression-Audio-Text
dataset, BEAT, which has i) 76 h, high-quality, multi-modal data cap-
tured from 30 speakers talking with eight different emotions and in four
different languages, ii) 32 millions frame-level emotion and semantic rel-
evance annotations. Our statistical analysis on BEAT demonstrates the
correlation of conversational gestures with facial expressions, emotions,
and semantics, in addition to the known correlation with audio, text,
and speaker identity. Based on this observation, we propose a baseline
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model, Cascaded Motion Network (CaMN), which consists of above
six modalities modeled in a cascaded architecture for gesture synthe-
sis. To evaluate the semantic relevancy, we introduce a metric, Semantic
Relevance Gesture Recall (SRGR). Qualitative and quantitative exper-
iments demonstrate metrics’ validness, ground truth data quality, and
baseline’s state-of-the-art performance. To the best of our knowledge,
BEAT is the largest motion capture dataset for investigating human
gestures, which may contribute to a number of different research fields,
including controllable gesture synthesis, cross-modality analysis, and
emotional gesture recognition. The data, code and model are available
on https://pantomatrix.github.io/BEAT/.

1 Introduction

Synthesizing conversational gestures can be helpful for animation, entertain-
ment, education and virtual reality applications. To accomplish this, the com-
plex relationship between speech, facial expressions, emotions, speaker identity
and semantic meaning of gestures has to be carefully considered in the design of
the gesture synthesis models.

While synthesizing conversational gestures based on audio [20,32,52] or text
[3,5,8,53] has been widely studied, synthesizing realistic, vivid, human-like con-
versational gestures is still unsolved and challenging for several reasons. i) Qual-
ity and scale of the dataset. Previously proposed methods [32,52] were
trained on limited mo-cap datasets [17,46] or on pseudo-label [20,21,52] datasets
(cf. Table 1), which results in limited generalization capability and lack of robust-
ness. ii) Rich and paired multi-modal data. Previous works adopted one or
two modalities [20,52,53] to synthesize gestures and reported that conversational
gestures are determined by multiple modalities together. However, due to the
lack of paired multi-modal data, the analysis of other modalities, e.g., facial
expression, for gesture synthesis is still missing. iii) Speaker style disentan-
glement. All available datasets, as shown in Table 1, either have only a single
speaker [17], or many speakers but different speakers talk about different topics
[20,21,52]. Speaker-specific styles were not much investigated in previous studies
due to the lack of data. iv) Emotion annotation. Existing work [7] analyzes
the emotion-conditioned gestures by extracting implicit sentiment features from
texts. Due to the unlabeled, limited emotion categories in the dataset [52], it can-
not cover enough emotion in daily conversations. v) Semantic relevance. Due
to the lack of semantic relevance annotation, only a few works [31,52] analyze the
correlation between generated gestures and semantics though listing subjective
visualization examples. It will enable synthesizing context-related meaningful
gestures if existing semantic labels of gestures. In conclusion, the absence of a
large-scale, high-quality multi-modal dataset with semantic and emotional anno-
tation is the main obstacle to synthesizing human-like conversational gestures.

There are two design choices for collecting unlabeled multi-modal data, i) the
pseudo-label approach [20,21,52], i.e., extracting conversational gestures, facial
landmark from in-the-wild videos using 3D pose estimation algorithms [12] and

https://pantomatrix.github.io/BEAT/
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Table 1. Comparison of Datasets. We compare with all 3D conversational ges-
ture and face datasets. “#”, “LM” and “BSW” indicate the number, landmark and
blendshape weight, respectively. best and second are highlighted. Our dataset is the
largest mocap dataset with multi-modal data and annotations

Quailty Modality Annotation Scale

dataset #body #hand face audio text #speaker #emo sem #seq dura

TED [52] pseudo

label

9 – – En � >100 – – 1400 97 h

S2G [20,21] 14 42 2D LM En – 6 – – N/A 33 h

MPI [47]

mo-cap

23 – – – � 1 11 – 1408 1.5 h

VOCA [16] – – 3D Mesh En – 12 – – 480 0.5 h

Takechi [46] 24 38 – Jp – 2 – – 1049 5 h

Trinity [17] 24 38 – En � 1 – – 23 4 h

BEAT (Ours) mo-cap 27 48 3D BSW E/C/S/J � 30 8 � 2508 76 h

ii) the motion capture approach [17], i.e., recording the data of speakers through
predefined themes or texts. In contrast to the pseudo-labeling approach, which
allows for low-cost, semi-automated access to large-scale training data, e.g., 97h
[52], motion-captured data requires a higher cost and more manual work resulting
in smaller dataset sizes, e.g., 4h [17]. However, Due to the motion capture can
be strictly controlled and designed in advance, it is able to ensure the quality
and diversity of the data, e.g., eight different emotions of the same speaker, and
different gestures of 30 speakers talking in the same sentences. Besides, high-
quality motion capture data are indispensable to evaluate the effectiveness of
pseudo-label training.

Based on the above analysis, to address these data-related problems, we
built a mo-cap dataset BEAT containing semantic and eight different emotional
annotations (cf. Fig. 1), from 30 speakers in four modalities of Body-Expression-
Audio-Text, annotated in total of 30M frames. The motion capture environment
is strictly controlled to ensure quality and diversity, with 76 h and more than
2500 topic-segmented sequences. Speakers with different language mastery pro-
vided data in three other languages at different durations and in pairs. The
ratio of actors/actresses, range of phonemes, and variety of languages are care-
fully designed to cover natural language characteristics. For emotional gestures,
feedback on the speakers’ expressions was provided by professional instructors
during the recording process and re-recorded in case of non-expressive gesturing
to ensure the expressiveness and quality of the entire dataset. After statistical
analysis on BEAT, we observed the correlation of conversational gestures with
facial expressions, emotions, and semantics, in addition to the known correlation
with audio, text, and speaker identity.

Additionally, we propose a baseline neural network architecture, Cascaded
Motion Network (CaMN), which learns synthesizing body and hand gestures
by inputting all six modalities mentioned above. The proposed model consists
of cascaded encoders and decoders for enhancing the contribution of audio and
facial modalities. Besides, in order to evaluate the semantic relevancy, we pro-
pose Semantic-Relevant Gesture Recall (SRGR), which weights Probability of
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Correct Keypoint (PCK) based on semantic scores of the ground truth data.
Overall, our contributions can be summarized as follows:

– We release BEAT, which is the first gesture dataset with semantic and emo-
tional annotation, and the largest motion capture dataset in terms of duration
and available modalities to the best of our knowledge.

– We propose CaMN as a baseline model that inputs audio, text, facial
blendweight, speaker identity, emotion and semantic score to synthesize con-
versational body and hand gestures through cascaded network architecture.

– We introduce SRGR to evaluate the semantic relevancy as well as the human
preference for conversational gestures.

Finally, qualitative and quantitative experiments demonstrate the data quality
of BEAT, the state-of-the-art performance of CaMN and the validness of SRGR.

2 Related Work

Conversational Gestures Dataset. We first review mo-cap and pseudo-label
conversational gestures datasets. Volkova et al. [47] built a mo-cap emotional
gestures dataset in 89 mins with text annotation, Takeuchi et al. [45] captured
an interview-like audio-gesture dataset in total 3.5-h with two Japanese speakers.
Ferstl and Mcdonnell [17] collected a 4-hour dataset, Trinity, with a single male
speaker discussing hobbies, etc., which is the most common used mo-cap dataset
for conversational gestures synthesis. On the other hand, Ginosar et al. [20] used
OpenPose [12] to extract 2D poses from YouTube videos as training data for
144 h, called S2G Dataset. Habibie et al. [21] extended it to a full 3D body with
facial landmarks, and the last available data is 33 h. Similarly, Yoon et al. [52]
used VideoPose3D [39] to build on the TED dataset, which is 97 h with 9 joints
on upper body. The limited data amount of mo-cap and noise in ground truth
makes a trade-off for the trained network’s generalization capability and quality.
Similar to our work, several datasets are built for talking-face generation and
the datasets can be divided into 3D scan face, e.g., VOCA [46] and MeshTalk
[42] or RGB images [4,11,15,26,49]. However, these datasets cannot be adopted
to synthesize human gestures.

Semantic or Emotion-Aware Motion Synthesis. Semantic analysis of
motion has been studied in the action recognition and the sign-language anal-
ysis/synthesis research domains. For example, in some of action recognition
datasets [9,13,14,25,28,34,40,43,44,48] clips of action with the corresponding
label of a single action, e.g., running, walking [41] is used. Another example
is audio-driven sign-language synthesis [27], where hand gestures have specific
semantics. However, these datasets do not apply to conversational gestures syn-
thesis since gestures used in natural conversations are more complex than sin-
gle actions, and their semantic meaning differs from sign-language semantics.
Recently, Bhattacharya [7] extracted emotional cues from text and used them for
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gesture synthesis. However, the proposed method has limitations in the accuracy
of the emotion classification algorithm and the diversity of emotion categories
in the dataset.

Conditional Conversational Gestures Synthesis. Early baseline mod-
els were released with datasets such as text-conditioned gesture [53], audio-
conditioned gesture [17,20,45], and audio-text-conditioned gesture [52]. These
baseline models were based on CNN and LSTM for end-to-end modelling. Several
efforts try to improve the performance of the baseline model by input/output
representation selection [19,30], adversarial training [18] and various types of
generative modeling techniques [1,36,50,51], which can be summarized by ”Esti-
mating a better distribution of gestures based on the given conditions.”. As an
example, StyleGestures [2] uses Flow-based model [23] and additional control
signal to sample gesture from the distribution. Probabilistic gesture generation
enables generating diversity based on noise, which is achieved by CGAN [51],
WGAN [50]. However, due to the lack of paired multi-modal data, the analysis
of other modalities, e.g., facial expression, for gesture synthesis is still missing.

3 BEAT: Body-Expression-Audio-Text Dataset

In this section, we introduce the proposed Body-Expression-Audio-Text (BEAT)
Dataset. First, we describe the dataset acquisition process and then introduce
text, emotion, and semantic relevance information annotation. Finally, we use
BEAT to analyze the correlation between conversational gestures and emotions
and show the distribution of semantic relevance.

3.1 Data Acquisition

Fig. 2. Capture System and Subject Distribution of BEAT. (a) A 16-camera
motion capture system is adopted to record data in Conversation and Self-Talk sessions.
(b) Gestures are divided into four categories in Conversation session. (c) Seven addi-
tional emotion categories are set in equal proportions in the self-talk session. Besides,
(d) our dataset includes four languages which mainly consist of English, (e) by 30
speakers from ten countries with different recording duration.
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Motion Capture System. The motion capture system shown in Fig. 2a, is
based on 16 synchronized cameras recording motion 120 Hz. We use Vicon’s suits
with 77 markers (cf. supplementary materials for the location of markers on the
body). The facial capture system uses ARKit with a depth camera on iPhone
12 Pro, which extracts 52 blendshape weights 60 Hz. The blendshape targets are
designed based on Facial Action Coding System (FACS) and are widely used by
industry novice users. The audio is recorded in a 48 KHz stereo.

Design Criteria. BEAT is equally divided into conversation and self-talk ses-
sions, which consist of 10-min and 1-min sequences, respectively. The conver-
sation is between the speaker and the instructor remotely, i.e., to ensure only
the speaker’s voice is recorded. As shown in Fig. 2b, The speaker’s gestures are
divided into four categories talking, instantaneous reactions to questions, the
state of thinking (silence) and asking. We timed each category’s duration dur-
ing the recording process. Topics were selected from 20 predefined topics, which
cover 33% and 67% debate and description topics, respectively. Conversation
sessions would record the neutral conversations without acting to ensure the
diversity of the dataset. The self-talk sessions consist of 120 1-minute self-talk
recordings, where speakers answer questions about daily conversation topics,
e.g., personal experiences or hobbies. The answers were written and proofread
by three English native speakers, and the phonetic coverage was controlled to be
similar to the frequently used 3000 words [24]. We covered 8 emotions, neutral,
anger, happiness, fear, disgust, sadness, contempt and surprise, in the dataset
referring to [35] and the ratio of each emotion is shown in Fig. 2c. Among the 120
questions, 64 were for neutral emotions, and the remaining seven had eight ques-
tions each. Different speakers were asked to talk about the same content with
their personalized gestures. Details about predefined answers and pronunciation
distribution are available in the supplementary materials.

Speaker Selection and Language Ratio. We strictly control the proportion
of languages as well as accents to ensure the generalization capability of the
dataset. As shown in Fig. 2d, the dataset consists mainly of English data: 60 h
(81%), 12 h of Chinese, 2 h of Spanish and Japanese. The Spanish and Japanese
are also 50% of the size of the previous mo-cap dataset [17]. The English com-
ponent includes 34 h of 10 native English speakers, including the US, UK, and
Australia, and 26 h of 20 fluent English speakers from other countries. As shown
in Fig. 2e, 30 speakers (including 15 females) from different ethnicities can be
grouped into two depending on their total recording duration as 4-h (10 speak-
ers) and 1-h (20 speakers), where the 1-h data is proposed for few-shot learning
experiments. It is recommended to check the supplementary material for details
of the speakers.

Recording. Speakers were asked to read answers in self-talk sections profi-
ciently. However, they were not guided to perform a specific style of gesture
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but were encouraged to show a natural, personal, daily style of conversational
gestures. Speakers would watch 2–10 mins of emotionally stimulating videos cor-
responding to different emotions before talking with the particular emotion. A
professional speaker would instruct them to elicit the corresponding emotion cor-
rectly. We re-record any unqualified data to ensure the data’s correctness and
quality.

3.2 Data Annotation

Text Alignment. We use an in-house-built Automatic Speech Recognizer
(ASR) to obtain the initial text for the conversation session and proofread it
by annotators. Then, we adopt Montreal Forced Aligner (MFA) aligner [37] for
temporal alignment of the text with audio.

Emotion and Semantic Relevance. The 8-class emotion label of self-talk
is confirmed, and the on-site supervision guarantees the correctness. For the
conversation session, annotators would watch the video with corresponding audio
and gestures to perform frame-level annotation. For the semantic relevance, we
get the score on a scale of 0–10 from assigned 600 annotators from Amazon
Mechanical Turk (AMT). The annotators were asked to annotate a small amount
of test data as a qualification check, of which only 118 annotators succeeded in
the qualification phase for the final data annotation. We paid ∼ $10 for each
annotator per hour in this task.

(a) (b)

Fig. 3. Emotional Gesture Clustering and Examples. (a) T-SNE visualization
for gestures in eight emotion categories. Gestures with different emotions are basically
distinguished into different groups, e.g., the Happiness (blue) and Anger (orange). (b)
Examples of Happiness (top) and Anger gestures from speaker-2. (Color figure online)

3.3 Data Analysis

The collection and annotation of BEAT have made it possible to analyze cor-
relations between conversational gestures and other modalities. While the con-
nection between gestures and audio, text and speaker identity has been widely
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studied. We further discuss the correlations between gestures, facial expressions,
emotions, and semantics.

Facial Expression and Emotion. Facial expressions and emotions were
strongly correlated (excluding some of the lip movements), and we first analyze
the correlation between conversational gestures and emotional categories here.
As shown in Fig. 3a, We visualized the gestures in T-SNE based on a 2s-rotation
representation, and the results showed that gestures have different characteristics
in different emotions. For example, as shown in Fig. 3b, speaker-2 has different
gesture styles when angry and happy, e.g., the gestures are larger and faster
when angry. The T-SNE results also significantly differ between happy (blue)
and angry (yellow). However, the gestures for the different emotions are still not
perfectly separable by the rotation representation. Furthermore, the gestures of
the different emotions appear to be confounded in each region, which is also
consistent with subjective perceptions.

Distribution of Semantic Relevance. There is large randomness for the
semantic relevance between gestures and texts, which is shown in Fig. 4, where
the frequency, position and content of the semantic-related gestures vary from
speaker to speaker when the same text content is uttered. In order to better
understand the distribution of the semantic relevance of the gestures, we con-
ducted a semantic relevance study based on four hours of two speakers’ data. As
shown in Figure 4b, for the overall data, 83% of the gestures have low seman-
tic scores (≤ 0.2). For the words-level, the semantic distribution varied between
words, e.g., i and was which are sharing a similar semantic score but different

Fig. 4. Distribution of semantic labels. (a) Different speaker ID speaks in a same
phase happens different levels of semantic relevance and different styles of gesture. (b)
The overall semantic distribution of BEAT. (c) The semantic relevance of the high
frequency words which are grouped by their lexical in different color. (d, e) Different
distribution of semantic relevance happens in words i and was even sharing almost the
same level of semantic relevance. (Color figure online)
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in the score distribution. Besides, Figure 4c shows the average semantic scores
of nine high-frequency words in the text corpus. It is to be mentioned that the
scores of the Be-verbs showed are comparatively lower than that Pronouns and
Prepositions which are shown in blue and yellow, respectively. Ultimately, it
presents a different probability distribution to the semantically related gestures.

4 Multi-modal Conditioned Gestures Synthesis Baseline

In this section, we propose a baseline that inputs all the modalities for generat-
ing vivid, human-like conversational gestures. The proposed baseline, Cascaded
Motion Network (CaMN), is shown in Fig. 5, which encodes text, emotion con-
dition, speaker identity, audio and facial blendshape weights to synthesize body
and hands gestures in a multi-stage, cascade structure. In addition, semantic rel-
evancy is adopted as a loss weight to make the network generate more semantic-
relevant gestures. The text, audio and speaker ID encoders network selection
are referred to [52] and customized for better performance. All input data have
the same time resolution as the output gestures so that the synthesized gestures
can be processed frame by frame through a sequential model. The gesture and
facial blendshape weights are downsampled to 15 FPS, and the word sentence is
inserted with padding tokens to correspond to the silence time in the audio.

Text Encoder. First, words are converted to word embedding set vT ∈ R
300 by

pre-trained model in FastText [10] to reduce dimensions. Then, the word sets are
fine-tuned by customized encoder ET, which is a 8-layer temporal convolution
network (TCN) [6] with skip connections [22], as

zTi = ET(vT
i−f , ..., vTi+f ), (1)

For each frame i, the TCN fusions the information from 2f = 34 frames to
generate final latent feature of text, the set of features is note as zT ∈ R

128.

Fig. 5. Cascaded Motion Network (CaMN). As a multi-modal gesture synthesis
baseline, CaMN inputs text, emotion label, speaker ID, audio and facial blendweight in
a cascaded architecture, the audio and facial feature will be extracted by concatenating
the features of previous modalities. The fused feature will be reconstructed to body
and hands gestures by two cascaded LSTM+MLP decoders.
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Speaker ID and Emotion Encoders. The initial representation of speaker
ID and emotion are both one-hot vectors, as vID ∈ R

30 and vE ∈ R
8. Follow

the suggestion in [52], we use embedding-layer as speaker ID encoder, EID. As
the speaker ID does not change instantly, we only use the current frame speaker
ID to calculate its latent features. On the other hand, we use a combination of
embedding-layer and 4-layer TCN as the emotion encoder, EE, to extract the
temporal emotion variations.

zIDi = EID(vID
i ), zEi = EE(vE

i−f , ..., vEi+f ), (2)

where zID ∈ R
8 and zE ∈ R

8 is the latent feature for speaker ID and emotion,
respectively.

Audio Encoder. We adopt the raw wave representation of audio and down-
sample it to 16 KHZ, considering audio as 15 FPS, for each frame, we have
vA ∈ R

1067. We feed the audio joint with the text, speakerID and emotion
features into audio encoder EA to learn better audio features. As

zAi = EA(vA
i−f , ..., vEi+f ; vT

i ; vE
i ; vID

i ), (3)

The EA consists of 12-layer TCN with skip connection and 2-layer MLP, features
in other modifies are concatenated with the 12th layer audio features thus the
final MLP layers are for audio feature refinement, and the final latent audio
feature is zA ∈ R

128.

Facial Expression Encoder. We take the vF ∈ R
52 as initial representation

of facial expression. 8-layer TCN and 2-layer MLP based encoder EF is adopt
to extract facial latent feature zF ∈ R

32, as

zFi = EF(vF
i−f , ..., vFi+f ; vT

i ; vE
i ; vID

i ; vA
i ), (4)

the features are concatenated at 8th layer and the MLP is for refinement.

Body and Hands Decoders. We implement the body and hands decoders
in a separated, cascaded structure, which is based on [38] conclusion that the
body gestures can be used to estimate hand gestures. These two decoders, DB

and DF are based on the LSTM structure for latent feature extraction and 2-
layer MLP for gesture reconstruction. They would combine the features of five
modalities with previous gestures, i.e., seed pose, to synthesis latent gesture
features zB ∈ R

256 and zH ∈ R
256. The final estimated body v̂B ∈ R

27×3 and
hands v̂H ∈ R

48×3 are calculated as,

zMi = zTi ⊗ zIDi ⊗ zEi ⊗ zAi ⊗ zFi ⊗ vB
i ⊗ vH

i , (5)

zB = DB(zM0 , ..., zMn ), zH = DH(zM0 , ..., zMn ; zB), (6)

v̂B = MLPB(zB), v̂H = MLPH(zH), (7)

zM ∈ R
549 is the merged features for all modalities. For Eq. 5, the length for the

seed pose is four frames.
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Loss Functions. The final supervision of our network is based on gesture recon-
struction and the adversarial loss

�Gesture Rec. = E

[∥∥∥vB − v̂B
∥∥∥
1

]
+ αE

[∥∥∥vH − v̂H
∥∥∥
1

]
, (8)

�Adv. = −E[log(Dis(v̂B ; v̂H))], (9)

where the discriminator input to the adversarial training is only the gesture
itself. We also adopt a weight α to balance the body and hands penalties. After
that, during training, we adjust the weights of L1 loss, and adversarial loss using
the semantic-relevancy label λ The final loss function is

� = λβ0�Gesture Rec. + β1�Adv, (10)

where β0 and β1 are predefined weight for L1 and adversarial loss. When semantic
relevancy is high, we encourage the network to generate gestures spatially similar
to ground truth as much as possible, thus strengthening the L1 penalty and
decreasing the adversarial penalty.

5 Metric for Semantic Relevancy

We propose the Semantic-Relevant Gesture Recall (SRGR) to evaluate the
semantic relevancy of gestures, which can also be interpreted as whether the
gestures are vivid and diverse. We utilize the semantic scores as a weight for the
Probability of Correct Keypoint (PCK) between the generated gestures and the
ground truth gestures. Where PCK is the number of joints successfully recalled
against a specified threshold δ. The SRGR metric can be calculated as follows:

DSRGR = λ
∑

1
T×J

∑T
t=1

∑J
j=1 1

[∥∥∥pjt − p̂jt

∥∥∥
2

< δ
]
, (11)

where 1 is the indicator function and T, J is the set of frames and number of
joints. We think the SRGR, which emphasizes recalling gestures in the clip of
interest, is more in line with the subjective human perception of gesture’s valid
diversity than the L1 variance of synthesized gestures.

6 Experiments

In this section, we first evaluate the SRGR metric’s validity, then demonstrate
our dataset’s data quality based on subjective experiments. Next, we demon-
strate the validity of our baseline model using subjective and objective experi-
ments, and finally, we discuss the contribution of each modality based on ablation
experiments.
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6.1 Validness of SRGR

Fig. 6. Comparison of Metrics by Group. SRGR shows the consistence with
human perception, and lower variance comparing with L1 Diversity in evaluation.

A user study is conducted to evaluate the validity of SRGR. Firstly, we randomly
trim the motion sequences with rendered results into clips which are around 40 s.
For each clip, the participants are asked to evaluate the gesture based on its
diversity which is the number of non-repeated gestures. Besides, the participants
then need to score its attractiveness which should be based on the motion itself
instead of the content of the speech. Totally 160 participants took part in the
evaluation study, and each of them evaluated 15 random clips of gestures. There
are totally 200 gesture clips including the results generated by using the methods
from Seq2Seq [53], S2G [20], A2G [32], MultiContext [52], and ground truth, 40
clips for each with the same speaker data. Both of the questions follow a 5-
points Likert scale. As shown in Fig. 6, we found a large variance in L1 diversity
even though we used 100 gesture segments to calculate the average L1 distance,
(usually around 40 segments [32,33]). Secondly, generated results with strong
semantic relevance but a smaller motion range, such as Seq2Seq, obtained a
lower L1 diversity than A2G, which has a larger motion range, yet the statistical
evidence that humans feel that Seq2Seq has higher diversity than A2G. An
explanation is a human evaluating diversity not only on the range of motion
but also on some other implicit features, such as expressiveness and semantic
relevancy of the motion.

6.2 Data Quality

To evaluate the captured ground truth motion data quality, we compare our pro-
posed dataset with the widely used mocap dataset Trinity [17] and in-the-wild
dataset S2G-3D [20,21]. We conducted the user study by comparing clips sam-
pled from ground truth and generated results using motion synthesis networks
trained in each dataset. The Trinity dataset has a total of 23 sequences, with 10
minutes each. We randomly divide the data into 19:2:2 for train/valid/test since
there is no standard for splitting.
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Table 2. User Study Comparison with Trinity for Data Quality. Comparing
with Trinity [17], BEAT get higher user preference score in terms of ground truth
data quality. “-b” and “-h” indicate body and hands, respectively.

correctness-b correctness-h diversity synchrony

S2G A2G GT S2G A2G GT S2G A2G GT S2G A2G GT

Trinity [17] 38.8 37.0 43.8 15.3 14.6 11.7 42.1 36.7 40.2 40.9 36.3 46.4

BEAT (Ours) 61.2 63.0 56.2 84.7 85.4 88.3 57.9 63.3 59.8 59.1 63.7 53.6

Table 3. User Study Comparison with S2G-3D. BEAT get similar user prefer-
ences in terms of naturalness. Based on the score, the model trained on BEAT dataset
would be fitted into a more physically correct, diverse, and attractive distribution.

naturalness correctness diversity attractiveness

S2G-3D [20,21] 33.03 ± 1.93 21.17 ± 2.84 29.17 ± 1.81 28.79 ± 2.53

BEAT (conversation) 34.16 ± 2.16 39.94 ± 3.97 34.69 ± 1.76 29.90 ± 2.19

BEAT (self-talk) 32.81 ± 1.79 38.89 ± 3.75 36.14 ± 1.99 42.31 ± 2.40

We used S2G [20], as well as the SoTA algorithm A2G [32], to cover both
GAN and VAE models. The output layer of the S2G model was adapted for
outputting 3D coordinates. In the ablation study, the final generated 3D skeleton
results were rendered and composited with audio for comparison in the user
study. A total of 120 participant subjects compared the clips randomly sampled
from Trinity and our dataset, with 5–20s in length. The participants were asked
to evaluate gestures correctness, i.e., physical correctness, diversity and gesture-
audio synchrony. Furthermore, the body and hands were evaluated separately
for the gesture correctness test. The results are shown in Table 2, demonstrating
that our dataset received higher user preference in all aspects. Especially for
the hand movements, we outperformed the Trinity dataset by a large margin.
This is probably due to the noise of the past motion capture devices and the
lack of markers on the hands. Table 3 shows preference ratios (%) of 60 subjects
who watch 20 random rendered 3D skeletons pairs per subjective test. Based on
the score, the model trained on the BEAT dataset would be fitted into a more
physically correct, diverse, and attractive distribution.

6.3 Evaluation of the Baseline Model

Training Setting. We use the Adam optimizer [29] to train at a learning rate
of 2e-4, and the 4-speaker data is trained in an NVIDIA V100 environment.
For evaluation metrics, L1 has been demonstrated unsuitable for evaluating the
gesture performance [32,52] thus, we adopt FGD [52] to evaluate the gener-
ated gestures’ distribution distance with ground truth. It computes the distance
between latent features extracted by a pretrained network, we use an LSTM-
based autoencoder as the pretrained network. In addition, we adopt SRGR and
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Table 4. Evaluation on BEAT. Our
CaMN performs best in the term of
FGD, SRGR and BeatAlign, all meth-
ods are trained on our dataset (BEAT)

FGD ↓ SRGR ↑ BeatAlign ↑
Seq2Seq [53] 261.3 0.173 0.729

S2G [20] 256.7 0.092 0.751

A2G [32] 223.8 0.097 0.766

MultiContext [52] 176.2 0.196 0.776

CaMN (Ours) 123.7 0.239 0.783

Table 5. Results of Ablation
Study.

FGD ↓ BGSR ↑ BeatAlign ↑
full cascated 123.7 0.239 0.783

w/o cascaded 137.2 0.207 0.776

w/o text 149.4 0.171 0.781

w/o audio 155.7 0.225 0.733

w/o speaker ID 159.1 0.207 0.774

w/o face 163.3 0.217 0.767

w/o emotion 151.7 0.231 0.775

w/o semantic 151.8 0.194 0.786

BeatAlign to evaluate diversity and synchrony. BeatAlign [33] is a Chamfer Dis-
tance between audio and gesture beats to evaluate gesture-audio beat similarity.

Quantitative Results. The final results are shown in Table 4. In addition to
S2G and A2G, we also compare our results with text-to-gesture and audio&test-
to-gesture algorithm, Seq2Seq [53] and MultiContext [52]. The results show that
both our end2end model and cascaded model archive SoTA performance in all
metrics (cf. supplementary materials for video results).

6.4 Ablation Study

Effectiveness of Cascaded Connection. As shown in Table 5, in contrast
to the end-to-end approach, the cascaded connection can achieve better perfor-
mance because we introduce prior human knowledge to help the network extract
features of different modalities.

Effectiveness of Each Modality. We gradually removed the data of one
modality during the experiment (cf. Table 5). Synchrony would significantly be
reduced after removing the audio, which is intuitive. However, it still main-
tains some synchronizations, such as the padding and time-align annotation of
the text and the lip motion of the facial expression. In contrast, eliminating
weighted semantic loss improves synchrony, which means that semantic gestures
are usually not strongly aligned with audio perfectly. There is also a relation-
ship between emotion and synchrony, but speaker ID only has little effect on
synchrony. The removal of audio, emotion, and facial expression does not sig-
nificantly affect the semantic relevant gesture recall, which depends mainly on
the text and the speaker ID. Data from each modality contributed to improving
the FGD, which means using different modalities of data enhances the network’s
mapping ability. The unities of audio and facial expressions, especially facial
expressions, improve the FGD significantly. We found that removing emotion
and speaker ID also impacts the FGD scores. This is because using the inte-
grated network increases the diversity of features, which leads to a diversity of
results, increasing the variance of the distribution and making it more like the
original data.
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Emotional Gestures. As shown in Table 6, we train a classifier by an addi-
tional 1DCNN + LSTM network and invite 60 subjects each to classify 12 ran-
dom real test clips (with audio). The classifier is trained and tested on speaker-4’s
ground truth data.

Table 6. Emotional Gesture Classification. The classification accuracy (%) gap
between the test real and generated data (1344 clips, 10 s each) is 15.85.

Neutral Happiness Sadness Anger Surprise Contempt Fear Disgust Avg

Human 84.29 74.86 82.65 88.36 76.12 71.59 80.94 72.33 78.89

Real 51.06 98.68 85.08 38.78 99.39 81.08 99.95 99.62 83.26

Generated 36.95 76.83 62.17 37.46 77.91 70.61 81.32 83.03 67.41

6.5 Limitation

Impact of Acting. Self-Talk sessions might reflect the impact of acting, which
is inevitable and controlled. Inevitable: The impact is probably caused by pre-
defined content. However, to explore the semantic-relevancy and personality, it is
necessary to control the variables, i.e., different speakers should talk in the same
text and emotion so that the personality can be carefully explored. Controlled.
Speakers recorded the conversation session first and were encouraged to keep the
same style as the conversation. We also filtered out about 21h of data and six
speakers due to inconsistencies in their styles.

Calculation of SRGR. SRGR now is calculated based on semantic annotation,
which has a limitation for an un-labelled dataset. To solve this problem, training
a scoring network or semantic discriminator is a possible direction.

7 Conclusion

We build a large-scale, high-quality, multi-modal, semantic and emotional anno-
tated dataset to generate more human-like, semantic and emotional relevant
conversational gestures. Together with the dataset, we propose a cascade-based
baseline model for gesture synthesis based on six modalities and achieve SoTA
performance. Finally, we introduce SRGR for evaluating semantic relevancy. In
the future, we plan to expand cross-data checks for AU and emotion recognition
benchmarks. Our dataset and the related statistical experiments could benefit
a number of different research fields, including controllable gesture synthesis,
cross-modality analysis and emotional motion recognition in the future.
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