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Abstract. For realistic and vivid colorization, generative priors have
recently been exploited. However, such generative priors often fail for in-
the-wild complex images due to their limited representation space. In this
paper, we propose BigColor, a novel colorization approach that provides
vivid colorization for diverse in-the-wild images with complex structures.
While previous generative priors are trained to synthesize both image
structures and colors, we learn a generative color prior to focus on color
synthesis given the spatial structure of an image. In this way, we reduce
the burden of synthesizing image structures from the generative prior and
expand its representation space to cover diverse images. To this end, we
propose a BigGAN-inspired encoder-generator network that uses a spa-
tial feature map instead of a spatially-flattened BigGAN latent code,
resulting in an enlarged representation space. BigColor enables robust
colorization for diverse inputs in a single forward pass, supports arbi-
trary input resolutions, and provides multi-modal colorization results.
We demonstrate that BigColor significantly outperforms existing meth-
ods especially on in-the-wild images with complex structures.
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1 Introduction

Image colorization aims to hallucinate the chromatic dimension of a grayscale
image and has been studied for decades in computer vision and graphics. Its
application includes not only modernizing classic black-and-white films but also
providing artistic control over grayscale imagery with diverse color distributions
[4,20,25,34,39].

Early works propagate user-annotated color strokes based on pixel affin-
ity [13,22,28,36,38] or find similar regions in reference images to mimic the ref-
erence color distributions [4,6,9]. With the advent of deep learning, data-driven
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Fig. 1. We achieve robust colorization for in-the-wild images using a generative color
prior. (a) For an input image with complex spatial structures, existing colorization
methods suffer from (b) desaturated color and (c) unnatural color distribution. (d) In
contrast, BigColor synthesizes natural colors consistent with the input structure using
a learned generative color prior. (Color figure online)

colorization approaches have rapidly advanced by adopting neural networks to
learn a mapping from grayscale images to trichromatic images. This trend was
sparked by using a convolutional neural network (CNN) and a regression loss
such as mean-squared error (MSE) [1,31,32,39], which unfortunately suffers from
desaturated colors as shown in Fig. 1(b), as the MSE loss encourages to find an
average of plausible color images corresponding to an input image.

To synthesize vivid colors, high-quality representations learned in pretrained
generative adversarial network (GAN) models have recently been exploited as
generative priors for image colorization [8,27,33,34,37]. Adopting GAN inver-
sion, these methods invert an input grayscale image to a latent code of a pre-
trained GAN model by minimizing the structural discrepancy between the input
gray-scale image and the generated color image from the latent code. While GAN
inversion allows us to utilize the learned generative prior of natural images, it
also inherits a notable problem of existing GAN models: limited representation
space. Thus, existing colorization methods using generative priors fail to handle
in-the-wild images with complex structures and semantics, resulting in desatu-
rated and unnatural colors as shown in Fig. 1(c).

In this paper, we proposeBigColor, a novel image colorizationmethod that syn-
thesizesvividandnatural colors for in-the-wild imageswithcomplexstructures.For
vivid colorization,weadopt theGAN-inversionapproachbyusingapretrainedBig-
GAN [2], which is a state-of-the-art class-conditional generative model. As directly
using the BigGAN model hampers colorization performance for in-the-wild images
due to its limited representation space, we offload the burden of the BigGAN model
that was responsible for synthesizing both structures and colors to focus on color
synthesis. This offloading strategy allows us to learn a generative color prior that
can cover in-the-wild images with complex structures.

Specifically, we learn a generative color prior with an encoder-generator
neural network. Unlike conventional GAN-inversion colorization methods, our
encoder extracts a spatial feature map describing the structure of an input image
better than using a spatially-flattened latent code in BigGAN. As a spatial fea-
ture map has a higher spatial resolution than an original BigGAN latent code,
the representation space of the entire network can be enlarged, i.e., we can map
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features to a wider range of natural images. We then design our generator to
directly exploit the spatial feature by using the fine-scale network layers adopted
from the multi-scale BigGAN generator. We jointly train the encoder and gen-
erator networks to encourage the network to focus on color synthesis by making
use of the spatial feature. As our network is fully convolutional and departs from
using a fixed-size flattened latent code of BigGAN, BigColor can process images
with arbitrary sizes which were not feasible for conventional GAN-inversion col-
orization methods that use the original latent codes of GANs [8,27,33,34,37].
Also, BigColor allows us to synthesize multi-modal colorization results by using
different condition vectors for the network. We assess BigColor with extensive
experiments including a user study and demonstrate that BigColor outperforms
previous methods across all tested scenarios in particular for in-the-wild images.

2 Related Work

Optimization-Based Colorization. Early colorization methods utilize color
annotations from users and propagate them to neighbor pixels based on pixel
affinity by solving constrained optimization problems [13,22,28,36,38]. Data-
driven colorization methods find reference color images with similar semantics
to an input grayscale image and use the reference color distributions via opti-
mization [4,6,9,24]. Unfortunately, the optimization-based approaches demand
dense user annotations or accurate reference matching, failing to provide robust
and automatic colorization.

Colorization with Regression Networks. Learning a mapping function from
a grayscale image to a color image has been extensively studied with the advent of
neural networks. Regression-based neural networks minimize average reconstruc-
tion error, resulting in desaturated colors [5,7,14,21]. Vivid color synthesis then
became one of the core challenges in network-based image colorization methods.
Notable examples in this line of research include optimizing over a quantized
color space [39], detection-guided colorization [31], adversarial training [1,32],
and global reasoning using a transformer [20]. While significant progress has
been made, it is still challenging to synthesize vivid and natural colors for in-
the-wild grayscale images with complex structures.

Colorization with Generative Prior. GANs have recently achieved remark-
able success in learning low-dimensional latent representations of natural color
images, enabling synthesizing high-fidelity natural images [2,17,18]. This suc-
cess has led to using the learned generative prior for image restoration such
as deblurring [33,37], super-resolution [3,26,27], denoising [33,37], and coloriza-
tion [8,27,33,34,37]. Most previous approaches are limited to handling a single
class of images, such as human faces using StyleGAN [17,18], due to the limited
representation space of modern GAN models.

Recently, a few attempts [27,34] have been made to colorize natural images
of multiple classes using a pretrained BigGAN generator [2]. Specifically, deep
generative prior (DGP) [27] jointly optimizes the BigGAN latent code and the
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Fig. 2. We extract the spatial feature f of the input image xg using a class-conditioned
convolutional encoder E. The generator G, which is initialized with the fine levels of
the pretrained BigGAN [2], takes the spatial feature f as inputs and synthesizes a
colorized image x̂rgb conditioned on the control parameters of the class code c and
the random sample z. A is a class embedding layer that transforms a one-hot class
vector to a class code c. Jointly training the encoder-generator model with a pretrained
BigGAN discriminator D enables us to learn the generative color prior with an enlarged
representation space. (Color figure online)

pretrained BigGAN generator to synthesize a color image via GAN inversion.
The representation space of the DGP is still not enough to cover complex images
because of the difficulty in synthesizing both structures and colors from the gen-
erator. Wu et al. [34] attempted to bypass the structural mismatch between a
GAN-inverted color image and an input grayscale image by warping the syn-
thesized color features into the input grayscale. Nonetheless, considerable mis-
matches between a GAN-inverted and an input image cannot be fully resolved,
and thus produce colorization artifacts. In contrast to the previous methods, Big-
Color effectively enlarges the representation space by using an encoder-generator
architecture that uses spatial features. This allows us to handle diverse images
with complex structures.

3 Colorization Using a Generative Color Prior

In this section, we describe the framework of BigColor and our strategy to learn a
generative color prior. BigColor has an encoder-generator network architecture,
where the encoder E estimates a spatial feature map f from an input grayscale
image xg, and the generator G synthesizes a color image x̂rgb from the feature
f . Note that different from conventional GAN-based colorization methods, we
do not rely on the spatially-flattened latent code of BigGAN, but instead use
a spatial feature map f that has a larger dimension. In order to exploit the
effectiveness of the BigGAN architecture for image synthesis [2], we design the
encoder E and the generator G by using the fine-scale layers of the BigGAN
generator. Also, we use two control variables for conditioning the encoder and
the generator: the class code c and the random code z sampled from a normal
distribution. The class code c enables class-specific feature extraction for effective
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Fig. 3. We design our encoder E by inverting the fine layers of the BigGAN genera-
tor [2], consisting of the five encoder blocks shown in the top right. Each encoder block
denoted as an orange box extracts the spatial features conditioned on the class (Color
figure online)

colorization and the random code z accounts for the multi-modal nature of image
colorization.

In the spirit of adversarial learning, we also adopt a pretrained BigGAN
discriminator D. We jointly train the encoder E, the generator G, and the dis-
criminator D, resulting in an enlarged representation space where the generator
G takes the responsibility of synthesizing color on top of the spatial feature f
extracted from the encoder E. See Fig. 2 for an overview of BigColor. In the
following, we describe each component of BigColor and the training scheme in
detail.

3.1 Encoder

Our encoder takes an input grayscale image xg and estimates a spatial feature
map f , which is fed to the generator. For an input image size of 256 × 256, our
spatial feature f has the spatial resolution of 16×16 with the channel size of 768.
To successfully extract the spatial feature f , we design our encoder inspired by
an inversion of the BigGAN generator as shown in Fig. 3. The encoder consists of
five blocks, where all the blocks except for the first have average pooling layers to
reduce the spatial size of an input feature. We also adopt dropout layers except
for the last block for better generalization on test-case inputs.

To extract class-specific spatial structures, we inject the class information
of an input image into the encoder. Specifically, we obtain the scale and bias
parameters of the batch-normalization layers through an affine transformation of
the BigGAN class code c ∈ R

128×1 [2]. We adopt the BigGAN’s class embedding
layer (A in Fig. 2) to obtain the class code c from a class vector in the form of
the one-hot vector representation. The class vector can be either provided by the
user or estimated using an off-the-shelf classifier. In our experiments, we use a
1,000-dimensional vector for the class vector representing ImageNet-1K classes.
More details on the architecture can be found in the Supplemental Document.
In summary, our encoder E extracts the class-specific spatial feature map f that
contains the structure information of an input image xg as

f = E(xg; c). (1)
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Fig. 4. (a)&(b) Colorization with conventional GAN inversion often fail to invert in-
the-wild images. (c) We exploit the spatial feature of the input and the fine-scale layers
of the pretrained BigGAN generator, effectively enlarging the representation space. (d)
Jointly optimizing the encoder-generator module improves the representation coverage
and provides vivid and natural colorization. (e) We boost high-frequency details by
replacing the luminance of synthesized image with the input luminance. (Color figure
online)

3.2 Generator

Our generator G synthesizes colors given the spatial feature f of the input gray-
scale image xg. Analogously to the encoder design, we design and initialize our
generator G using the fine-scale layers of the pretrained BigGAN generator,
specifically from the third to the last layers. The generator G uses two condition
variables of the class vector c and the random vector z sampled from a normal
distribution. We concatenate the class vector c and the random vector z as
an input to the generator G as in the original BigGAN architecture [2]. Our
generator G synthesizes a color image x̂rgb conditioned on the class and the
random codes as

x̂rgb = G(f ; c, z). (2)

We note that unlike the original BigGAN generator that uses a spatially-flattend
latent code, our generator G takes the spatial feature f as input. To restore high-
frequency spatial details, we replace the luminance of the synthesized color image
x̂rgb with the luminance of the input grayscale image xg in the CIELAB color
space [31,32,39]. See Fig. 4(e).

Generative Color Prior. We learn the generative color prior for colorizing
in-the-wild images with complex structures using our generator G. To this end,
we exploit our specific network architecture and training scheme. For the archi-
tecture, our generator G takes the fine-scale spatial feature map f as an input
of which resolution is 16 × 16 × 768 when the grayscale image has 256 × 256
resolution. The dimension of the feature f is higher than that of the original
BigGAN latent code of which resolution is 119 × 1. Thus, we can effectively
enlarge the representation space of our generator G compared to the conventional
GAN-inversion colorization methods by utilizing the structural information pro-
vided in the large-dimensional feature f . Compare the colorization results of
Fig. 4(b)&(c). We note that a similar finding was used in BDInvert [15], a
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recent transform-robust GAN-inversion method using a spatial feature for Style-
GAN [17,18].

In terms of training strategy, we initialize the generator G and the discrim-
inator D with the corresponding layers of the ImageNet-pretrained BigGAN
model. As such, we can leverage the learned structure-color distribution of nat-
ural images of the pretrained BigGAN. However, our generator G at the initial
point is still not fully focusing on synthesizing colors as it was originally trained
to synthesize both structure and color. We unlock the full potential of our net-
work by jointly optimizing the encoder E, the generator G, and the discriminator
D. The joint training allows the generator G to learn a generative color prior
by focusing on synthesizing colors on top of the spatial feature f . The reduced
learning complexity of the generator results in an enlarged representation space,
covering in-the-wild natural images as demonstrated in Fig. 4(d).

Multi-modal Image Colorization. Image colorization is an inherently ill-
posed problem as multiple potential color images could explain a single grayscale
image. We handle this multi-modal nature of image colorization by injecting
the random code z sampled from a normal distribution into the generator G.
Sampling multiple latent code z enables synthesizing diverse color images. Note
that we do not provide the random code to the encoder as the multi-modal
nature only applies to the color synthesis, not the spatial feature extraction.

3.3 Training Details

Adversarial Training. We train our framework in an alternating manner for
adversarial learning. We define our encoder-generator loss function LG as a sum
of three terms:

LG = LG
mse + λperLG

per + λadvLG
adv, (3)

where LG
mse and LG

per are the MSE reconstruction losses that penalize the color
and perceptual discrepancies between the synthesized image x̂rgb and the ground
truth image xrgb. For the perceptual loss LG

per, we use the VGG16 [30] features
at 1st, 2nd, 6th, and 9th layers. LG

adv is the adversarial loss, specifically the class-
conditional hinge loss [23] defined as LG

adv = −D(x̂rgb, c). We use the balancing
weights λper and λadv set as 0.2 and 0.03 respectively. For discriminator training,
we also use the hinge loss [23]

LD
adv = −min(0,−1 + D(xrgb, c)) + min(0,−1 − D(x̂rgb, c)). (4)

Color Augmentation. To promote synthesizing vivid color, we apply a simple
color augmentation to the real color images fed to the discriminator. Specifically,
we scale chromaticity of images in YUV color space as {U, V } ← {1.2U, 1.2V }.
This color augmentation makes colors of semantically different regions in train-
ing images more distinguishable. As a result, it helps the generator learn to
synthesize not only more vivid but also semantically more correct colors, which
is not achievable by direct augmentation of generator output as will be shown
in Sect. 4.2.
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Table 1. Quantitative comparison with other colorization methods using the three
metrics of colorfulness [10], FID [12], and classification accuracy [39]. BigColor outper-
forms all previous work with significant margins. Aug. denotes our color-augmentation
scheme. The bold and underlined scores are the best and 2nd best results.

Colorful ↑ [10] FID ↓ [12] Classification ↑
CIC [39] 33.036 11.322 69.976

ChromaGAN [32] 26.266 8.209 70.374

InstColor [31] 25.507 7.890 68.422

DeOldify [1] 23.793 3.487 72.364

ColTran [20] 34.485 3.793 67.210

ToVivid [34] 35.128 4.078 73.816

BigColor (w/o Aug.) 36.157 1.288 76.302

BigColor (w/ Aug.) 40.006 1.243 76.516

4 Experiments

Implementation. We train our model on 1.2M color images of the ImageNet
1K [29] training set after excluding 10% original images with low colorful-
ness scores [10]. We generate grayscale images based on a conventional linear-
combination method1. We resize and crop the training images to be 256 × 256.
For training, we use the Adam optimizer [19] with the coefficients of β1 = 0.0
and β2 = 0.999. The learning rates are set to 0.0001 for the encoder-generator
module and 0.00003 for the discriminator with the decay rate of 0.9 per epoch.
We also use the exponential moving average [16] with the coefficient of β = 0.999
for model parameter update. We set the batch size to 60 and train the entire
model for 12 epochs.

4.1 Evaluation

We evaluate the effectiveness of BigColor on the ImageNet-1K validation set of
50 K images [29] that have complex spatial structures.

Comparison with Other Colorization Methods. We compare BigColor to
recent automatic colorization methods including CIC [39], ChromaGAN [32],
DeOldify [1], InstColor [31], ColTran [20] and ToVivid [34]. Figure 5 shows that
BigColor qualitatively outperforms all the methods on six challenging images.
BigColor successfully colorizes the complex structures of human faces, penguin
heads, food, and buildings with semantically-natural and vivid colors. The two
notable state-of-the-art methods of ToVivid [34] and ColTran [20] suffer from
unnatural colorization as shown on the penguins and the human face due to
their limited representation space. This clearly demonstrates the effectiveness of

1 L = 0.2989R + 0.5870G + 0.1140B, where L is the grayscale intensity and R,G,B
are the trichromatic color intensities.
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Fig. 5. Qualitative comparison with other colorization methods. For in-the-wild images
with complex structure, our method synthesizes natural and vivid color images while
the other methods suffer from desaturated and unnatural color distributions. (Color
figure online)

our learned generative color prior to in-the-wild images. See the Supplemental
Document for more qualitative results.
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Table 2. BigColor is robust for colorizing complex images compared to the previous
colorization methods, achieving the best performance in terms of classification accuracy
with a marginal performance drop similar to the real ground-truth color images.

Dataset Classification acc. Performance drop

Whole Complex Whole → Complex

Ground truth 78.530 76.000 −2.530

CIC [39] 69.976 64.000 −5.976

ChromaGAN [32] 70.374 60.000 −10.374

InstColor [31] 68.422 65.000 −3.422

DeOldify [1] 72.364 68.000 −4.364

ColTran [20] 67.210 65.000 −2.210

ToVivid [34] 73.816 65.000 −8.816

BigColor 76.516 74.000 −2.516

We further evaluate BigColor using the three quantitative metrics of colorful-
ness, FID, and classification accuracy commonly used in the image colorization
field. Colorfulness measures the overall colorfulness of an image based on psycho-
logical experiments [10]. FID describes the distributional distance between the
real color images and synthesized color images [12]. The classification accuracy
measures whether a classifier trained on natural color images, specifically the
pretrained ResNet50-based classifier [11], can predict the correct classes of syn-
thesized color images which were used in CIC [39]. Table 1 shows that BigColor
outperforms the previous methods with significant margins across all tested met-
rics with and without the color-augmentation scheme.

In-the-Wild Images with Complex Structures. We test the robustness of
BigColor specifically on challenging in-the-wild images with complex structures.
To this end, we select 100 challenging images selected from the ImageNet1K
validation set which contain as many humans as possible using an off-the-shelf
object detector [35], assuming the proportionality between the number of people
and the image complexity. On the curated dataset with 100 samples, Table 2
shows the classification accuracy of the synthesized color images for all the meth-
ods. BigColor again achieves the best performance with only a 2.5% accuracy
drop from the whole-data evaluation. Our performance drop of 2.5% is at the
same level of the ground-truth case, where real color images are used to obtain
the classification accuracy. We refer to the Supplemental Document for further
quantitative and qualitative evaluations.

User Study. We conducted a user study to investigate the perceptual preference
of colorization methods using Amazon Mechanical Turk (AMT). Specifically, 33
subjects are presented with 100 input and colorized images randomly selected
from the ImageNet 1K validation set. The subjects choose the best-restored
color image among the results obtained with different methods [1,20,31,32,34,
39]. Figure 6 shows that users clearly prefer BigColor over the state-of-the-art
methods. More details can be found in the Supplemental Document.
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4.2 Ablation Study

We conduct extensive ablation studies to assess BigColor in details by using 10%
of the ImageNet training images amounting to 100 image classes.

Fig. 6. We conduct a user study to evaluate the preference for colorization results. In
all tested metrics, our method outperforms the other methods. The dashed green line
and the bold gray line inside the bars are the mean and the median respectively. (Color
figure online)

Fig. 7. The resolution of the spatial feature f plays an important role for maintaining a
balance between keeping the spatial structure of the input and providing the degree of
freedom for synthesizing color. We empirically chose 16 × 16 as the best configuration.
(Color figure online)

Resolution of the Spatial Feature. We evaluate the impact of the resolution
of the spatial feature f . Figure 7 shows the colorization results with varying
spatial resolutions of the feature f from 8×8 to 64×64. As the spatial resolution
increases, the synthesized color images can exploit more structural information
of the input image for colorization. However, a large spatial resolution could
harm the colorization results as it reduces the capacity of the generator with
fewer layers. We chose 16 × 16 as the spatial resolution of the feature f .
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Fig. 8. We evaluate the impact of initializing the generator G and the discriminator
D with the pretrained BigGAN model. Compared to the random initialization, pre-
trained initialization results in vivid and natural colorization. Also, adversarial training
is critical to achieving vivid colorization without desaturation. (Color figure online)

Table 3. Initialization with the pretrained BigGAN model provides quantiatively bet-
ter results in terms of FID and classification accuracy.

Model G D G D G D G D w/o adv.

Pretrained � � � - - � – –

FID [12] 5.714 8.058 6.852 7.201 7.692

Class. Acc. 81.44 78.96 80.78 80.60 75.52

Initialization with a Pretrained Generative Prior. We initialize our gener-
ator and discriminator using the BigGAN pretrained model in order to leverage
the learned structure-color distribution of natural images. Figure 8 and Table 3
show that the pretrained initialization improves performance over the training-
from-scratch alternatives with random initialization. Specifically, we test all four
combinations of the generator-discriminator initialization settings with and with-
out the pretrained initialization. The qualitative and quantitative results indicate
that BigColor successfully exploits the pretrained information in the BigGAN
generator and the discriminator. We also confirmed the importance of including
the adversarial loss to achieve vivid colorization.

Encoder Architecture We considered two main factors for designing our
encoder architecture: extracting image structure and exploiting class informa-
tion. We found that the residual blocks and class-conditioned batch normaliza-
tion in the original BigGAN generator are essential for robust image colorization
as shown in Table 4. Specifically, residual blocks transfer structural information
and the class-conditioned batch normalization extracts the class-specific spatial
feature.

Color Augmentation. We experimentally evaluate the impact of color aug-
mentation on the real color images fed to the discriminator. To this end, we
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Table 4. We analyze our encoder architecture in details to provide insight on the
importance of each encoder component: batch normalization (BN), class-conditioned
batch normalization (CBN), residual learning (RL). The encoder with residual path
and class-conditioned batch normalization shows the best result in terms of FID.

w/o BN w/ BN w/ CBN

w/o RL 6.523 7.286 5.974

w/ RL 5.980 5.854 5.714

Table 5. Augmenting the real color image fed to the discriminator improves the col-
orization performance measured in FID and classification accuracy. Our experiments
also confirm that directly augmenting the synthesized color degrades the colorization
performance. Disc. and Gen. denote the color augmentation on the real color image
fed to the discriminator and the generated color image respectively.

Color Aug. Disc Gen Disc Gen Disc Gen Disc Gen

� - � � – – – �
FID 1.243 1.604 1.288 1.621

Class. Acc 76.516 76.282 76.302 76.238

compare the FID score and the classification accuracy on 1000 classes of the
ImageNet with and without the color augmentation, which shows clear improve-
ments in both metrics as shown in Table 5. We also test applying the color
augmentation on the synthesized image from the generator as a post-processing
after training. This does not consider image semantics, resulting in unnatural
colorization as indicated by the FID and the classification scores. In contrast,
augmenting the discriminator input enables us to effectively learn the vivid and
semantically correct color distribution of the real images. More discussion with
qualitative examples of the color augmentation is provided in the Supplemental
Document.

4.3 Multi-modal Colorization

BigColor is capable of synthesizing diverse colorization results for an input
grayscale image as shown in Fig. 9. We can sample random code z that is injected
into the generator to synthesize diverse color images. In addition, we can also
alter the class vector c to generate class-specific colorization results, for instance
by using the class codes of different classes of birds to colorize an input bird
image as shown in the second row in Fig. 9.

4.4 Black-and-White Photo Restoration

Figure 10 shows the colorization results of BigColor for old monochromatic pho-
tographs with arbitrary resolutions and aspect ratios. Note that BigColor is not



BigColor 363

Fig. 9. BigColor supports multi-modal image colorization by sampling the random
code z or using different class vectors c which can be estimated from the reference
images shown in the insets. The class indices estimated from the reference images are
shown below each of the colorization results. (Color figure online)

Fig. 10. We apply BigColor to old monochromatic photographs of diverse resolutions
and aspect ratios. Left-top to right-bottom: Albert Einstein at Princeton University,
Charlie Chaplin on the movie ‘The Kid’(1921), Marilyn Monroe, Photo by Ansel Adams
of Yosemite. (Color figure online)

limited to a specific input resolution owing to the convolutional spatial feature f
with a variable spatial resolution. In contrast, conventional GAN-inversion meth-
ods [27,34] use a spatially-flattend latent code, enforcing the spatial resolution
to be fixed.

5 Conclusion

We propose BigColor, a robust image colorization method using a generative
color prior for in-the-wild images with complex structures. We exploit the spa-
tial structure of an input grayscale image using a convolutional encoder, effec-
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tively enlarging the representation space of a generator compared to the conven-
tional colorization methods using GAN inversion. Jointly optimizing the encoder-
generator module with a discriminator allows us to learn a generative color prior
where the generator focuses on synthesizing colors on top of the extracted spatial-
structure feature. We extensively assess BigColor in qualitative and quantitative
manners and demonstrate that BigColor outperforms existing state-of-the-art
methods.
Limitations. Our method is not free from limitations. The spatial resolution of
the extracted feature f determines the structural details that can be maintained
for the color synthesis procedure. Thus, tiny regions might be overlooked in the
colorization process. Also, we rely on the BigGAN class code which may not be
perfectly estimated for challenging images.
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