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Abstract. Event cameras demonstrate unique characteristics such as
high temporal resolution, low latency, and high dynamic range to
improve performance for various image enhancement tasks. However,
event streams cannot be applied to neural networks directly due to their
sparse nature. To integrate events into traditional computer vision algo-
rithms, an appropriate event representation is desirable, while existing
voxel grid and event stack representations are less effective in encoding
motion and temporal information. This paper presents a novel event rep-
resentation named Neural Event STack (NEST), which satisfies physical
constraints and encodes comprehensive motion and temporal information
sufficient for image enhancement. We apply our representation on multi-
ple tasks, which achieves superior performance on image deblurring and
image super-resolution than state-of-the-art methods on both synthetic
and real datasets. And we further demonstrate the possibility to generate
high frame rate videos with our novel event representation.
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1 Introduction

Event cameras, such as Dynamic Vision Sensor (DVS) [16], can detect bright-
ness changes and trigger events whenever the increase (decrease) of latent irra-
diance exceeds a preset threshold. They are widely used in image enhancement
tasks since they possess clear advantages over traditional cameras in various
aspects, such as high temporal resolution, low latency, and high dynamic range
(HDR). However, event streams are represented as multiple four coordinates
signals (x, y, t, p), and such continuous event signals cannot be processed by
traditional computer vision algorithms directly, which brings a natural gap to
leverage the advantages of events for image enhancement.
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Fig. 1. An example result of NEST-guided image enhancement with 4× super-
resolution. (a) Blurry image. (b) Corresponding events (color pair {blue, red} rep-
resents the event polarity {positive, negative} throughout this paper). (c) Result of
eSL-Net [31]. (d) Our result. (Color figure online)

Finding a favored representation as input is important for event-based image
enhancement tasks. Discretizing event signals in the time domain is an intuitive
choice. This could be achieved by recording the timestamp of the last event in
each pixel location [14], by inserting events into a voxel grid using a linearly
weighted accumulation similar to bilinear interpolation [37], or by merging and
stacking events within a time interval or a fixed number of events [32]. Despite
their simplicity, when the number of channels divided from events increases,
noisy events in such hand-crafted representations become hardly distinguishable
from useful signals.

Neural representation has become a popular choice in event embedding pro-
cedures recently. Useful features could be extracted from event sequences with
multi-layer perceptron (MLP) [6,25], spike neural network (SNN) [35], long
short-term memory (LSTM) [3,20], and graph neural network (GNN) [1,15].
Despite their effectiveness in object recognition [1,3,6,15,20,35] and segmen-
tation [25], these representations are not supposed to be optimized for image
enhancement tasks, since they focus more on preserving semantic information
well instead of caring about pixel-wise information, while the latter is crucial for
image enhancement. The fact that hand-crafted event representations are prone
to noise and neural representations sacrifice contextual information motivates us
to propose a tailored representation for event-based image enhancement.

In this paper, we introduce Neural Event STack (NEST), which satisfies
event physical constraints while faithfully encodes motion and temporal infor-
mation with less noise involved. We first propose a NEST estimator to trans-
form an event sequence into NESTs by a bidirectional convolutional long short-
term memory (ConvLSTM) block [28] in a data-driven manner to fulfill event
embedding. Tailored to the NEST, we then propose a NEST-guided Deblur-
ring Net (D-Net) for image deblurring and a NEST-guided Super-resolution Net
(S-Net) for image super-resolution, with simple architectures (a NEST-guided
image enhancement example is shown in Fig. 1). By parallel processing multiple
NESTs with D-Net and S-Net, high frame rate (HFR) videos can be restored
with sharper edges and higher resolution.

Overall, this paper contributes in the following aspects:
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Table 1. Comparison of LSTM-based event representations. H and W denote the
image height and width, C denotes the number of channels, and T denotes the number
of temporal bins.

Representation Dimensions Characteristics
Direction Resolution Hidden states

PhasedLSTM [20] 1D vector Uni-direction Fixed Discarded
MatrixLSTM [3] C × H × W

NEST T × C × H × W Bi-direction Arbitrary Preserved

– a neural representation (NEST) comprehensively encoding motion and tem-
poral information from events in a noise-robust manner;

– event-based solutions for image deblurring and super-resolution taking benefit
from the new representation;

– a unified framework for HFR video generation guided by NESTs.

We quantitatively and qualitatively evaluate our method on both synthetic and
real datasets and demonstrate its superior performance over state-of-the-art
methods.

2 Related Work

2.1 Event Representation

Event data possess many attractive advantages such as high speed and high
dynamic range. However, it is difficult to apply computer vision algorithms
designed for ordinary images to events, since event data are essentially differ-
ent from image frames. Many algorithms try to find an event representation
compatible with frame-based data, and they can be divided into two categories:
hand-crafted representation and data-driven representation.

Hand-Crafted Representation. Lagorce et al. [14] proposed the time surface
representation, obtained by keeping track of the timestamp of the last event that
occurred in each location. Based on the time surface representation, Sironi et
al. [30] proposed using histograms of averaged time surfaces (HATS), preserving
more temporal information in histograms. To avoid the “motion overwriting”
problem in the time surface representation, Zhu et al. [37] proposed the voxel grid
representation, which inserts events into a voxel grid using a linearly weighted
accumulation similar to bilinear interpolation. Wang et al. [32] proposed an
event stack representation, which forms events as multiple frame event stacks by
merging and stacking them within a time interval or a fixed number of events.

Data-Driven Representation. Recently data-driven models show higher
robustness for event representation. Sekikawa et al. [25] proposed a recursive
architecture and used MLP for computing a recursive formula. Gehrig et al. [6]
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used MLP to encode time information of event sequences and summed up values
from MLP to construct an event spike tensor. Inspired by biological mecha-
nisms, Yao et al. [35] encoded events with attention SNN by processing events
as asynchronous spikes. To better exploit the topological structure inside events
sequences, Bi et al. [1] and Li et al. [15] used a graph to represent the event cloud
with GNN and further conducted graph convolutions to obtain the event repre-
sentation. Besides, to better exploit temporal information of events sequences,
Neil et al. [20] proposed PhasedLSTM with a new time gate for processing asyn-
chronous events. Cannici et al. [3] proposed the MatrixLSTM representation
which integrates event sequences conditionally with LSTM cells. Although these
representations show great potential in multiple computer vision tasks (e.g.,
object recognition, segmentation, and optical flow estimation), hand-crafted rep-
resentations are still popular for image enhancement tasks, since data-driven
representations for these tasks are not readily available. Particularly, LSTM-
based methods show great potential in event representation. A comparison of
LSTM-based event representations and their design choices are summarized in
Table 1. The method in [3] emphasizes preserving sparsity when computing the
MatrixLSTM, it is not suitable for image enhancement tasks due to the loss
of connection around neighboring pixels. Thus, a proper event representation
method tailored to image enhancement tasks is desired.

2.2 Event-Based Image Enhancement

Event-Based Image Deblurring. Pan et al. [21] proposed a simple and effec-
tive approach, the Event-based Double Integral (EDI) model, to reconstruct an
HFR sharp video from a single blurry frame and corresponding event data. Jiang
et al.[11] proposed a convolutional recurrent neural network and a differentiable
directional event filtering module to recover sharp images. Lin et al. [17] pro-
posed a deep CNN with a dynamic filtering layer to deblur and generate videos
in a frame-aware manner. Wang et al. [31] proposed an event-enhanced sparse
learning network named eSL-Net to address deblurring, denoising, and super-
resolution simultaneously. Shang et al. [26] detected the nearest sharp frames
with events, and then performed deblurring guided by the nearest sharp frames.

Event-Based Image Super-Resolution. Jing et al. [12] proposed an event-
based video super-resolution framework, which reconstructs high-frequency low
resolution (LR) frames interpolated with events and merges them to form a
high resolution (HR) frame. Han et al. [7] proposed a two-stage network to
fuse event temporal information with images and established event-based single
image super-resolution as a multi-frame super-resolution problem.

For these event-based image enhancement methods, event stack is the most
widely adopted choice [7,10–12,17,26,33] for representation due to simplicity,
despite its poor robustness to noise. In the next section, we will first revisit
the formulation of deblurring and super-resolution with events and analyze the
demerits of applying the event stack representation method for image enhance-
ment. We then propose the NEST representation to solve these problems.
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3 NEST: Representation

In this section, we first derive the formulation of bidirectional event summations,
which bridge the gap between low-quality images and high-quality images with
events in Sect. 3.1. Based on bidirectional event summations, we briefly ana-
lyze the advantages and disadvantages of event stack representation. To avoid
noisy events interference, we propose a neural representation to robustly imple-
ment bidirectional event summations in Sect. 3.2. Finally, we introduce the model
design of our NEST estimator in Sect. 3.3.

3.1 Bidirectional Event Summation

An event e is a quadruple (x, y, t, p) triggered when the log intensity change
exceeds a preset threshold c, i.e.,

| log(Itx,y) − log(It−Δt
x,y )| ≥ c, (1)

in which Itx,y and It−Δt
x,y represent the instantaneous intensity at time t and

t − Δt respectively for pixel (x, y), and Δt denotes the time interval since the
last event occurred at the same position. Polarity p ∈ {1,−1} indicates the
direction (increase or decrease) of intensity change. Eq. (1) applies to each pixel
(x, y) independently, and pixel indices are omitted henceforth.

Given two instantaneous intensity frames Itr and Iti , let’s assume there are
Ne events triggered between time tr and ti, denoted as {ek}Ne

k=1. According to
the physical model of the event camera, if tr ≤ ti, the event makes a connection
between Itr and Iti as:

Iti = Itr · exp(
Ne∑

k=1

cr · ek)

= Itr · S̃cr
r→i (tr ≤ ti), (2)

where S̃
cr
r→i denotes event summation from time tr to ti in the exponential space

with a time-varying threshold cr. cr approximately follows a normal distribution
over time [22].

Deriving from Eq. (2), we can also obtain Itr from Iti by reversing the event
summation (tr > ti). Thus, we formulate the bidirectional event summation Scr

r→i

to consider both cases, i.e.,

Scr
r→i =

⎧
⎨

⎩
S̃
cr
r→i (tr ≤ ti),

1/S̃
ci
i→r (tr > ti).

(3)

Combining Eq. (3), Eq. (2) can be further expanded to include both forward
and reverse event summation:

Iti = Itr · Scr
r→i. (4)
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Image Enhancement with Events. Ill-posedness is a common problem in
image enhancement tasks, such as image deblurring and super-resolution. For
image deblurring, a blurry image B can be modeled as the average over a
sequence of latent sharp frames {Iti}Nf

i=1 [21]:

B ≈ 1
Nf

Nf∑

i=1

Iti , (5)

in which Nf is the number of latent sharp frames. Obviously, there are multiple
groups of latent frames satisfying Eq. (5), which brings difficulty to recover sharp
frames from a single blurry image.

For image super-resolution, an HR frame can be reconstructed by a sequence
of latent sharp frames {ItiLR}Nf

i=1, i.e.,

ItiSR =⇑ {ItjLR}Nf

j=1, (6)

where ⇑ denotes the multi-frame super-resolution operator, combining informa-
tion from multiple LR frames to recover details that are missing in individual
frames. However, it is hard to record multiple latent sharp frames with tradi-
tional cameras, which means we need to generate an HR frame with a single LR
frame leading to ill-posedness.

As Eq. (4) has shown the relationship of two latent frames by correspond-
ing events, ill-posedness can be relieved by integrating image and events. By
combining Eq. (4) and Eq. (5), we obtain:

B ≈ Iti · (
1

Nf

Nf∑

j=1

Sci
i→j). (7)

By substituting Eq. (4), we can rewrite Eq. (6) as follows:

ItiSR =⇑ {ItiLR · Sci
i→j}Nf

j=1. (8)

Since the bidirectional event summations {Sci
i→j}Nf

j=1 are independent of the
latent frames, we can restore arbitrary sharp latent frames from a single blurry
image or reconstruct arbitrary HR frames from a single LR frame with the cor-
responding events directly.

3.2 Neural Representation

According to Sect. 3.1, the bidirectional event summation establishes the rela-
tionship between low-quality (blurry, LR) images and high-quality (sharp, HR)
images. As shown in Eq. (7) and Eq. (8), image deblurring needs the average
value of the set, and image super-resolution depends on the magnitude differ-
ence of each element in the set for recovering details. Thus, the event signal
can be discretized in the time domain to form bidirectional event summations
{Sci

i→j}Nf

j=1, which can guide image enhancement tasks.
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Event stack forms events as multiple frames by merging and stacking them
within a time interval or a fixed number of events [32]. Intuitively bidirectional
event summations can be seen as a combination of event stacks with linear
weights, which can be learned implicitly by a neural network, so that event
stack works well in image enhancement tasks. However, event stack will be noise-
sensitive when the time resolution increases since they become sparser with more
channel numbers, which degrades the restored image quality. Thus, it is necessary
to transform event stacks [32] into a more robust representation.

Inspired by data-driven representations in the deep learning field, to fully
utilize such information to address these problems, we propose a robust neural
representation, named Neural Event STack (NEST), to replace {Sci

i→j}Nf

j=1 and
guide image enhancement. NEST representation explicitly learns the combina-
tion parameters of event stack to achieve a robust representation. By substituting
bidirectional event summations with NESTs, high-quality frames can be restored
according to Eq. (7) and Eq. (8) as below:

Iti = fd
(
B,Ei

)
, (9)

ItiSR = fs
(
ItiLR,Ei

)
, (10)

where fd and fs are implicit functions derived from Eq. (7) and Eq. (8), and Ei

denotes a NEST.
From Eq. (9) and Eq. (10), we could see that once the NEST Ei is properly

estimated, image enhancement tasks such as deblurring and super-resolution can
be solved in a more robust manner. Besides, since the NEST is implemented by
deep neural networks in a data-driven manner, it naturally extracts semantic
information in the event sequence, which can facilitate the reconstruction of
high-quality images. Therefore, our goal turns into estimating NESTs first, and
then using NESTs to guide image deblurring and super-resolution procedures. To
achieve that goal, we propose three specific sub-networks for estimating NESTs
and modeling the implicit functions fd and fs respectively, as introduced in the
following sections.

3.3 NEST Estimator

To obtain robust event representation, we design a NEST estimator to transform
event stacks [32] into NESTs. From Eq. (3), we can divide Ei into two parts.
The preceding part {Sci

i→j}i−1
j=1 is represented by Ei

p, and the following part

{Sci
i→j}Nf

j=i is represented by Ei
f , which encodes the events before and after time

ti respectively. Therefore, we design the NEST estimator to encode preceding and
following events separately as shown in Fig. 2. Such a network can be expressed
as:

{Ei}Nf

i=1 = {(Ei
p,Ei

f)}Nf

i=1 = fn

(
{ei+1

i }Nf

i=1

)
, (11)

where fn denotes our NEST estimator and {e}i+1
i represents the events triggered

in ti to ti+1.
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Fig. 2. The architecture of our NEST estimator, which consists of a parameter-shared
feature extractor and a bidirectional ConvLSTM block. The input raw events {e}i+1

i

(triggered in ti to ti+1) are first binned into an event stack (voxelization), and then
transformed into a NEST Ei. ConvLSTMp encodes the preceding part and ConvLSTMf

for the following part of events.

We first use a feature extractor block, consisting of multiple dense convolution
layers [9], to perform local event feature extraction. Recent work has shown that
dense convolution can extract high-level features, and filter most noisy events [4].
Then a bidirectional ConvLSTM block [28] is used to construct NESTs, which
can not only encode temporal information lying in events but also fuse spatial
information and reconstruct gradient information by the convolution operation.

From the event formation model [5], the expectation of event noise is zero.
Since NESTs are generated by bi-directional encoding, paired noisy events are
combined with temporal-variant thresholds, effectively suppressing noisy events.
Besides, thanks to the data-driven encoding operation, NESTs also contain con-
textual information of the scene, which cannot be encoded by hand-crafted repre-
sentations like event stacks [32]. As the example shown in Fig. 3, NESTs contain
the statistical event information such as event-triggered frequency (Fig. 3 (c)) to
indicate the blurry region, and a rough segmentation (Fig. 3 (d)) of the captured
frame to distinguish the less blurred background, which both serve as global
priors for reconstructing the high-quality image.

4 NEST: Application

In this section, we conduct three experiments: image deblurring (Sect. 4.1), super
resolution (Sect. 4.2), and HFR video generation (Sect. 4.3) guided by NESTs to
validate the effectiveness of NEST.
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Fig. 3. An example of NEST layer visualization. (a) Blurry image. (b) The error map
between blurry image and ground truth, indicating the blurry region with higher differ-
ence values. (c) Visualization of the 27th layer of NEST, illustrating the blurry region.
As highlighted in orange boxes, the blurry region has a higher response value, since
more events are generated in this region. (d) Visualization of the 94th layer of NEST,
separating less blurry sky apart from the foreground with different response values.

4.1 NEST-Guided Image Deblurring

After embedding events as NESTs, we can use them to conduct image deblur-
ring. Since NESTs contain not only motion information but also global semantic
information (an example shown in Fig. 3 (c) and (d)), we propose the NEST-
guided D-Net to perform image deblurring by making full use of motion and
global semantic information. Guided by NESTs, the image deblurring can be
viewed as multi-modality fusion tasks. Thus, we adopt a U-Net-like [23] network
architecture to perform image deblurring. We also formulate it as the residual
learning with global connection, by fusing motion and intensity information to
calculate the residual between the blurry image and the sharp one.1

Experiment Result. Our experiment can be divided into 3 parts. The
first part (I) compares NEST-guided image deblurring with a state-of-the-art
learning-based video deblurring method ESTRNN [36] and three state-of-the-
art event-based image deblurring methods: EDI [21], LEDVDI [17], and eSL-
Net [31]. To validate the effectiveness of the NEST representation, the second
part (II) compares with the event stack representation method and another
two data-driven event representations combined with our D-Net (denoted
EvST+D/S [32], EST+D/S [6] and MatrixLSTM+D/S [3]). Besides, the third
part (III) replaces eSL-Net’s event stack representation with NEST representa-
tion (named NEST+eSL) to better illustrate the robustness of NEST. For a fair
comparison, we retrained ESTRNN [36] on our training dataset.2

The quantitative comparison results are shown in Table 2 (a) and qualita-
tive comparisons are shown in Fig. 4. We can see that our method outperforms
others on all metrics. Compared to the video deblurring method ESTRNN [36],
our method recovers sharper details encoding inside NESTs. As for event-based
methods and other event representation methods, our method restored sharp
images with fewer artifacts, with NEST’s robust event representation. Thanks
to the motion and semantic information encoded inside the NESTs, our network
can handle blurry images with complicated real scenarios. Besides, as compari-

1 Detailed D-Net and S-Net configurations are in the supplementary material.
2 ∗ denotes retraining on our training dataset.
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Fig. 4. Qualitative comparisons for deblurring application on synthetic data (upper)
and real data (lower). (a) Blurry image. (b) Ground truth (synthetic data) / Event
(real data). (c)∼(j) Deblurring results of ours,Matrix+D/S [3], LEDVDI [17], eSL-
Net [31], ESTRNN [36], EvST+D/S [32], EST+D/S [6], and EDI [21]. Close-up views
are provided below each image.

son between eSL-Net [31] and NEST+eSL has shown Table 2, much lower LPIPS
values demonstrate NEST representation can improve the performance.

4.2 NEST-Guided Image Super-Resolution

Event cameras show higher temporal resolution than traditional cameras, which
demonstrates the possibility of performing single image super-resolution like
multi-frame super-resolution with events to relieve the ill-posed issue. However,
frame alignment is an unavoidable difficulty for multi-frame super-resolution.
Fortunately, the high temporal resolution property of events only brings slight
changes for consecutive latent frames. Besides, our NEST estimator adopts a
bidirectional ConvLSTM block, which also aligns temporal information implic-
itly. To better exploit semantic information hidden in NESTs, we design the
NEST-guided S-Net for image super-resolution.

In our S-Net, we use multiple Residual in Residual Dense Blocks (RRDBs) as
proposed in ESRGAN [34] to extract different features from NESTs and images
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Table 2. Quantitative comparisons for deblurring (a) and super-resolution (b) appli-
cation on the synthetic testing dataset. ↑ (↓) indicates the higher (lower), the better.
The best performances are highlighted in bold. Our experiment can be divided into 3
parts: The first part (I) is to compare with state-of-the-art image-based and event-based
image enhancement methods; the second part (II) compares “X+D/S”, where “X” is
other event representation methods; and the third part (III) compares “NEST+X”,
where “X” is another state-of-the-art event-based image enhancement method;

Methods Applications
(a) Deblurring (b) Super-resolution
PNSR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

I EDI [21] 20.96 0.5752 0.2537 – – –
LEDVDI [17] 22.08 0.6222 0.1905 – – –
ESTRNN∗ [36] 30.52 0.8901 0.1105 – – –
SPSR∗ [18] – – – 27.63 0.7471 0.2763
RBPN∗ [8] – – – 27.23 0.7738 0.2956
EvIntSR [7] – – – 27.52 0.7334 0.2893

II EvST+D/S [32] 31.09 0.8977 0.0689 28.89 0.7992 0.3150
EST+D/S [6] 24.10 0.6987 0.2253 13.14 0.6574 0.4765
Matrix+D/S [3] 31.28 0.9022 0.0596 27.88 0.7966 0.2844

III eSL-Net [31] 29.73 0.8697 0.1078 28.23 0.7783 0.3950
NEST+eSL [31] 29.92 0.8935 0.0634 28.87 0.7961 0.3096

Ours 32.56 0.9354 0.0422 29.43 0.8128 0.2745

independently. Besides, we incorporate features extracted from NESTs to the
image branch, fusing temporal and global semantic information hidden in the
NESTs to guide image super-resolution. Finally, we add a pixel shuffle layer [27]
to rearrange features and predict image residual between LR image and HR
image. By employing it to the upsampled image with bilinear interpolation, the
super-resolved image can be restored.

Experiment Results. Similar to deblurring application, the first part (I) com-
pares NEST-guided image super-resolution with two state-of-the-art learning-
based image super-resolution methods SPSR [18] (taking in a single frame) and
RBPN [8] (taking in multiple frames from a video), and two state-of-the-art
event-based image super-resolution methods: eSL-Net [31] and EvIntSR [7]. The
second part (II) compares with event stack representation method and two data-
driven event representations combined with our S-Net (denoted EvST+D/S [32],
EST+D/S [6] and MatrixLSTM+D/S [3]). The third part (III) replaces eSL-
Net’s event stack representation with NEST (named NEST+eSL).

The quantitative comparison results are shown in Table 2 (b) and qualitative
comparisons are shown in Fig. 5. As experiments on real data show in Fig. 5,
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Fig. 5. Qualitative comparisons for super-resolution application on synthetic data
(upper) and real data (lower). (a) LR image. (b) Ground truth (synthetic data) / Event
(real data). (c)∼(j) Super-resolved 4× results of ours, Matrix+D/S [3], SPSR [18],
NEST+eSL [31], EvIntSR [7], EvST+D/S [32], EST+D/S [6], and RBPN [8]. Close-up
views are provided below each image.

results obtained by compared methods are distorted by noise, since the quality
of intensity frames captured by DAVIS346 cameras is lower than the outputs of
traditional cameras. But our method is noise-resistant thanks to NEST’s robust
representation. Like the deblurring application, eSL-Net [31] can achieve better
performance combined with NEST.3

4.3 NEST-Guided HFR Video Generation

As Eq. (11) shows, we can obtain multiple NESTs in one pass by ConvLSTM.
As shown in Table 1, compared to other LSTM-based event representations such
as MatrixLSTM [3] or PhasedLSTM [20], our method preserves the interme-
diate states of ConvLSTM cells. Therefore, it brings the possibility to extend
our D-Net and S-Net to process multiple NESTs in parallel to produce HFR

3 Qualitative comparison between eSL-Net and NEST+eSL on deblurring and SR
applications can be found in the supplementary material.
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Fig. 6. Qualitative comparisons for HFR video generation application on synthetic
data. The crop of reconstructed video frames from (a) EDI [21], (b) LEDVDI [17], (c)
eSL-Net [31], and (d) ours are shown.

videos without modifying the original architecture. To implement this, after
event sequence was transformed into NESTs. We can then generate multiple
sharp images in parallel by D-Net by combining multiple NESTs with a single
blurry image. After that, S-Net can generate multiple deblurred HR frames from
LR frames to form an HFR video.

Experiment Results. We conduct qualitative comparisons on synthetic data
in Fig. 6 for generating HFR videos from a single blurry image, compared with
three state-of-the-art event-based HFR video generation methods: EDI [21],
LEDVDI [17], and eSL-Net [31]. The results demonstrate that our method can
generate frames with sharper edges and better visual quality than other state-
of-the-art methods.

4.4 Implementation Details

Loss Function. We use the same loss function for training D-Net and S-Net,
which is defined as

L = α · L2(Io, Igt) + β · Lperc(Io, Igt), (12)

where Io denotes output image, Igt for ground truth, and α and β are set to 200
and 0.5 respectively. L2 denotes the loss on L2 norm and Lperc for perceptual
loss, which is defined as

Lperc(Io, Igt) = L2(φh(Io), φh(Igt)), (13)

where φh denotes the feature map from h-th layer of VGG-19 network [29] pre-
trained on ImageNet [24], and we use activations from V GG3,3 and V GG5,5

convolutional layer here.

Training Details. We implement our method using PyTorch on an NVIDIA
3090Ti GPU. D-Net and S-Net are both trained for 100 epochs and after the
first 50 epochs, we linearly decay the learning rate to 0 over the next 50 epochs.
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Table 3. Quantitative evaluation results of ablation study on the synthetic testing
dataset.

Methods Applications
(a) Deblurring (b) Super-resolution
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

W/o global 30.74 0.8932 0.0569 28.66 0.7917 0.3075
W/o feature 31.68 0.9064 0.0520 29.20 0.8096 0.2768
Our complete model 32.56 0.9354 0.0422 29.43 0.8128 0.2745

The initial learning rate is set to 1 × 10−3 for D-Net and 1 × 10−4 for S-Net,
respectively, and ADAM optimizer [13] is used in the training procedure.

Dataset. Our training and testing datasets are adopted from Wang et al. [31].
As their datasets only contain the gray-scale images, we regenerate RGB blurry
images and LR images from the original REDS dataset [19] as Wang et al. [31]
suggested. And our real data are captured by a DAVIS346 camera.

4.5 Ablation Study

We conduct a series of ablation studies. The quantitative comparison results of
deblurring application are shown in Table 3 (a) and super-resolution application
for Table 3 (b), to verify the validity of each model design choice. We first show
the effectiveness of the feature extractor in the NEST estimator by removing it
(W/o feature). Next, we show the effectiveness of learning the residual in D-Net
and S-Net by removing the global connection (W/o global). As the results show,
our complete model achieves the best performance.

5 Conclusion

We propose a novel event representation (NEST) and apply it to event-based
image deblurring, super-resolution, and HFR video generation. Thanks to the
advantage of NESTs, all these image enhancement methods demonstrate supe-
rior performance over state-of-the-art methods.

Discussion. Limited by the low quality of the intensity frame captured by a
DAVIS346 camera, although this paper demonstrates convincing evidence of fus-
ing event data to improve the quality of an intensity frame, the final quality still
has a gap with sharp frames captured by a modern DLSR camera. In our future
work, we hope to build an event-RGB hybrid camera to fuse with high-quality
intensity frames. Although event cameras also demonstrate the high dynamic
range property (130 dB for DAVIS240 [2]), due to the lack of HDR paired images
in our training dataset, we do not optimize the results to handle the HDR issue
from a single LDR image with corresponding events. Extending NEST with a
well-designed HDR dataset and network is also left as our future work.
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