
PoseGPT: Quantization-Based 3D Human
Motion Generation and Forecasting

Thomas Lucas(B), Fabien Baradel, Philippe Weinzaepfel, and Grégory Rogez

NAVER LABS Europe, Meylan, France
thomas.lucas@naverlabs.com

https://europe.naverlabs.com/research/computer-vision/posegpt

Abstract. We address the problem of action-conditioned generation of
human motion sequences. Existing work falls into two categories: forecast
models conditioned on observed past motions, or generative models condi-
tioned on action labels and duration only. In contrast, we generate motion
conditionedonobservationsofarbitrarylength,includingnone.Tosolvethis
generalizedproblem,weproposePoseGPT,anauto-regressivetransformer-
based approach which internally compresses human motion into quantized
latent sequences.An auto-encoder firstmaps humanmotion to latent index
sequences in a discrete space, and vice-versa. Inspired by the Generative
Pretrained Transformer (GPT), we propose to train a GPT-like model for
next-index prediction in that space; this allows PoseGPT to output distri-
butions on possible futures, with or without conditioning on past motion.
The discrete and compressed nature of the latent space allows the GPT-
like model to focus on long-range signal, as it removes low-level redundancy
in the input signal. Predicting discrete indices also alleviates the common
pitfall of predicting averaged poses, a typical failure case when regressing
continuous values, as the average of discrete targets is not a target itself.
Our experimental results show that our proposed approach achieves state-
of-the-art results on HumanAct12, a standard but small scale dataset, as

Fig. 1. Method Overview. PoseGPT generates a human motion sequence, condi-
tioned on an action label, a duration T , and optionally on an observed past human
motion. A GPT-like [52] model G sequentially predicts discrete latent indices, which
are decoded using a decoder D into a generated human motion. When conditioning
also on past human motion, the input human motion is encoded with E and quantized
using q(.) into the discrete latent space.
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well as on BABEL, a recent large scale MoCap dataset, and on GRAB, a
human-object interactions dataset.

1 Introduction

Generating realistic and controllable human motion is still an open research ques-
tion despite decades of efforts in this domain [5,6]. In this work, we tackle the task
of action-conditioned generation of realistic human motion sequences of varying
length, with or without observation of past motion. Most of the effort in human
motion synthesis has been focused on future motion prediction, typically condi-
tioned on a sequence of past frames [4,9,29,69,70]; however, this requirement is a
limiting constraint. In particular applications to virtual reality or character con-
trol [31,59] ideally should not require real world observations. And indeed, recent
works [27,49] have shown that deep models can handle the highly multi-modal
nature of human motion sequences, without conditioning on the past to narrow
it down. Nevertheless, many possible applications of human motion modeling do
require conditioning. In particular, vision based human-robot interactions may
require robots to observe humans and predict likely future movements to success-
fully avoid them or interact with them. Therefore, we propose a class of models
flexible enough to approach the more general problem of motion generation con-
ditioned on observations of arbitrary length, including none.

Auto-regressive generative models [45,46] are natural candidates to handle
this task. By factorizing distributions over the time dimension, they can be
conditioned on past sequences of arbitrary length. However when applied to
human motion sequences their potential is limited in at least two ways by the
nature of the data. First, they are costly and inefficient to train on data captured
at high frame rates, e.g.30 frames per second (fps), in particular when using state-
of-the-art transformer architectures. Second, long-term future is highly multi-
modal; in a continuous target space this leads to average unrealistic predictions
and, in turn, to error drift when sampling from auto-regressive models. Indeed,
related previous works that have proposed auto-regressive approaches (based on
LSTMs [22] and GRUs [43]), have shown that they are subject to error drift and
prone to regress unrealistic average poses.

Therefore, we propose to compress human motion into a space that is lower
dimensional and discrete, to reduce input redundancy. This allows training an
auto-regressive model using discrete targets rather than to regress in a continuous
space, such that the average of targets is not a valid output itself. We propose
an auto-encoder transformer-based network which maps the human motion to a
low dimensional space, discretized using a quantization bottleneck [47], and vice
versa. Importantly, we ensure that the causal structure of the time dimension
is kept in the latent representations such that it respects the arrow of the time
(i.e. only the past influences the present). To do so we rely on causal attention
in the encoder. This is crucial to enable conditioning of our model on observed
past motions of arbitrary length, unlike in [49].
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Then, we employ an auto-regressive GPT-like model to capture human
motion directly in the learned discrete space. Transformer models have become
the de-facto architecture for language tasks [51,52,65] and are increasingly
adopted in computer vision [15,20]. This requires adaptations to deal with con-
tinuous and locally redundant data, which is not well suited to the quadratic
computational cost induced by the lack of inductive prior in transformers. The
input data used in this work falls into this category: we employ parametric
3D models [40,48] which represent human motion as a sequence of human
3D meshes, a continuous, high-dimensional and redundant representation. Our
proposed discretization of the human motion alleviates the need for the auto-
regressive model to capture low-level signal and enables it to concentrate on
long-range relations. Indeed, while the space of human body model parameters
[48] is high-dimensional and sparse – random samples are unlikely to be realistic
– the quantization step concentrates useful regions into a finite set of points. In
particular, random sequences in that space produce locally realistic sequences
that lack temporal coherence. The GPT-like component of our method, called
PoseGPT, is trained to predict a distribution over the next index in the discrete
space. This allows probabilistic modeling of possible futures, with or without
conditioning on past motion.

Motion capture (MoCap) datasets with action labels are costly to create
[32,62]. We have been able to learn models from several orders of magnitude more
data than prior art [27,49], owing to the recent availability of the BABEL [50]
dataset, and also relying on the smaller HumanAct12 for fair comparison with
previous works. In addition, we propose an evaluation protocol which we believe
aggregates the best practices from prior art [49] and from the generative image
modeling literature [8,41,44,57]. It is based on three principles; first, sample
quality is evaluated using metrics based on classifiers, inspired from the GAN
literature. Second, we strive to account for over-fitting together with sample
quality. Indeed, sample quality metrics typically compare synthetic data to train
data, without employing a validation set, which rewards over-fitting. While this
is harmless when working with plentiful and complex data that deep models
are unlikely to over-fit, we show that is not the case with small human motion
datasets such as HumanAct12. Finally, we report likelihood based metrics to
evaluate mode coverage. Indeed, while it is notoriously difficult to measure diver-
sity from samples alone [44,57], that is in principle not the case for models that
allow likelihood computations on test data. Using these principles we show that
our proposed approach outperforms existing ones while being more flexible.

2 Related Work

Human Motion Forecasting. Predicting future human poses given a past
motion is a topic of interest in human motion analysis [5,6]. The first successful
methods were based on statistical models [11,23], with most recent work relying
on deep learning based methods [26,34]. In particular image generation meth-
ods such as GANs [26] and VAEs [34] have been extended to human motion
forecasting [9,28,39]. In DLow [69], a pretrained model is employed to enforce
diversity in the predicted motions. In Cao et al. [14], the scene context is also



420 T. Lucas et al.

taken into account to predict future human motion. However they both show
limitations when it comes to predicting long-term future horizons; in particular
they tend to predict average poses, which is a known issue for methods trained
by predicting continuous values [25]. In contrast, we propose a method able to
predict future motion without error drift by quantizing motions.

Human Motion Synthesis. The task of human motion synthesis, given a
class query, was first tackled with a focus on simple and cyclic human actions
such as walking [61,63]. More recently, a lot of focus has been devoted to human
pose and motion generation conditioned on a rich query representation such as
a short textual description [2,3,19,24,38,39] or an audio representation such as
music [36,37]. Class labels can be seen as a coarse case of textual descriptions;
they bring less information about the motion than detailed descriptions, but are
simpler to acquire and use. A few recent propositions have tackled 3D human
motion generation given action classes [27,49,54], and in particular ACTOR [49]
shows impressive results at generating human motion for non-periodic actions.
However only small scale-datasets were available at the time [27,73,74]. The
generated human motions are always front view, and the trajectories in the
training data lack diversity. In [54], action sequences are modeled by conditioning
predictions at each time frame on the last; this performs well for short sequences
but does not allow conditioning on observations of arbitrary length. To go beyond
these limitations, we develop a method trained on large-scale datasets, with
long-tailed class distributions such as the recently released BABEL [50]. Our
method can optionally be conditioned on past observations of arbitrary length,
and obtains state-of-the-art performance. Most similar to ours, the concurrent
work in [58] also relies on a quantization step and a GPT model for successfully
learning dance motion conditioned on music.

Pose Representation. Human body representations are often expressed as
skeleton representations, where a known kinematic structure is available. Most
work in human modeling, ranging from human pose estimation [1,56,67,71] to
human pose modeling [25,30], have used this type of representations for a while.
However recent works are moving toward 3D body shape models [7,35,40,48]
which are more realistic and enable more powerful applications such as aug-
mented and virtual reality. Representing the 3D human body, and in particular
the pose, is not straightforward. One can express a human pose as a set of 3D
joint locations in the Euclidean space or as a set of bone angles encoding the
rotations necessary to obtain the pose. However the lack of continuity in the
space of rotation representations is a commonly observed issue [12,72] for deep
learning methods. There has not been convergence towards a unified human
pose representation format so far. In this work, we do not explicitly enforce any
human pose representation but rather propose a model that can learn to embed
and quantize any representation to a discrete latent space learned by the model.

Generative Modeling. Deep generative models can be broadly classified in
two categories: maximum-likelihood based models, trained to maximize the like-



PoseGPT: Quantization-Based 3D Human Motion Generation 421

Fig. 2. Discrete latent representation for human motion. The encoder E maps a
human motion p to a latent representation ẑ which is then quantized using a codebook
Z. The decoder D reconstructs the human motion p̂ from the quantized latent sequence
zq.

lihood of generating training data, and adversarial models [26] trained to max-
imize the quality of generated images as evaluated by a discriminator model.
In the maximum-likelihood based literature, which is most relevant to our
work, there are two dominant paradigms to handle the highly multi-modal
nature of perceptual data. The first family is that of variational auto-encoders
(VAEs) [34,55], which relies on an encoder, and the second that of autoregressive
models [16,46] which relies on the chain rule decomposition of high-dimensional
data. Both paradigms are leveraged in our work: in the first stage of our approach
we adapt a flavour of auto-encoders called VQVAEs [64], which uses quantized
latent variables, to our problem. In the second stage, we train a transformer based
auto-regressive model to sequentially predict discrete latent sequences. Similar
recipes have been applied to high-resolution image generation in [18,21,53], to
video prediction [66,68] and to speech modeling in [17]. Note that while GANs
generally display an impressive aptitude to generate high quality samples [13],
they are not well suited to the task of human future pose/motion prediction.
Indeed, they suffer from mode-collapse [57], i.e., the inability to cover the full
variability of the training data. This ability is critical for example for applica-
tions such as human-robot interactions where likely modes of the distribution of
possible futures must not be ignored. Thus, this class of models is not a good
candidate on its own.

3 The PoseGPT Model

In this section we describe PoseGPT, our proposed approach for generative mod-
eling of human pose sequences. First, we present how we compress human motion
to a discrete space, and reconstruct motion from it (Sect. 3.1). Second, we intro-
duce a GPT-like model trained for next-index probabilistic prediction in that
space (Sect. 3.2).

3.1 Learning a Discrete Latent Space Representation

Human actions defined by body-motions can be characterized by the rotations
of body parts, disentangled from the body shape. This allows the generation
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Fig. 3. Conditioning on past with causal attention. Masking attention maps in
the encoder leads to models that can be conditioned on past observations. Masking the
attention maps in the decoder as well allows models that can make on-line predictions.

of motions with actors of different morphology. For this, we rely on paramet-
ric differential body models – SMPL [40] and SMPL-X [48] – which disentan-
gle body parts rotations from body shape; a human motion p of length T is
represented as a sequence of body poses and translations of the root joints:
p = {(θ1, δ1), . . . , (θT , δT )} where θ and δ represent the body pose and the
translation respectively. We use an encoder E and a quantization operator q to
encode pose sequences and a decoder D to reconstruct p̂ = D(q(E(p)). We use
causal attention mechanisms to maintain a temporally coherent latent space and
neural discrete representation learning [47] for quantization. An overview of the
training procedure is shown in Fig. 2.

Causal Latent Space. The encoder first represents human motion sequences as
a latent sequence representation ẑ = {ẑ1, . . . , ẑTd} = E(p) where Td ≤ T is the
temporal dimension of the latent sequence. By default, we require that our latent
representation respects the arrow of time, i.e., that for any t ≤ Td, {ẑ1, . . . , ẑt}
depends only on {p1, . . . , p�t·T/Td�}; such as illustrated in Fig. 3. For this, we
rely on transformers with causal attention; it avoids any inductive prior besides
causality, by modeling interactions between all inputs using self-attention [65],
modified to respect the arrow of time. Intermediate representations are mapped
using three feature-wise linear projections, into query Q ∈ R

N×dk , key K ∈
R

N×dk and value V ∈ R
N×dv ; in addition, a causal mask is defined as Ci,j =

−∞ · �i > j� + �i ≤ j�, and the output is computed as:

Attn(Q,K, V ) = softmax
(

QK� · C√
dk

)
V ∈ R

N×dv . (1)

The causal mask ensures that all entries below the diagonal of the attention
matrix do not contribute to the final output and thus that the arrow of time
is respected. This is crucial to allow conditioning on past observations when
sampling from the model: if latent variables depend on the full sequence, they
are impossible to compute from past observations alone.

Quantizing the Latent Space. To build an efficient latent representation
of human motion sequences, we then rely on a discrete codebook of learned
temporal representations; more precisely a latent space sequence ẑ ∈ R

Td×nz
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Fig. 4. Future motion prediction. In the discrete latent space, an auto-regressive
transformer model G predicts the next latent index given previous ones. We condition
on a human action label, a sequence duration and optionally on an observed motion.

is mapped to a sequence of codebook entries zq ∈ ZTd , where Z is a set of C
codes of dimension nz. Equivalently, this can be summarized as a sequence of Td

indices corresponding to the code entries in the codebook. A given sequence p
is approximately reconstructed by p̂ = D(zq) where zq is obtained by encoding
ẑ = E(x) ∈ R

Td×nz and mapping each temporal element of this tensor with q(·)
to its closest codebook entry zk:

zq = q(ẑ):=
(

arg min
zk∈Z

‖ẑt − zk‖
)

∈ R
Td×nz (2)

p̂ = D(zq) = D (q(E(p))) . (3)

Equation (3) is non differentiable; the standard way to backpropagate
through it is to rely on the straight-through gradient estimator, which dur-
ing the backward pass simply approximates the quantization step as an identity
function by copying the gradients from the decoder to the encoder [10]. Thus
the encoder, decoder and codebook can be trained by optimizing:

LVQ(E,D,Z) = ‖p − p̂‖2 + ‖sg[E(p)] − zq‖22 + β‖sg[zq] − E(p)‖22, (4)

with sg[·] the stop-gradient operator. The term ‖sg[zq] − E(p)‖22, dubbed the
“commitment loss” [47], has been shown necessary to stable training.

Product Quantization. To increase the flexibility of the discrete representa-
tions learned by the encoder E, we propose using product quantization [33]: each
element ẑi ∈ R

nz in the sequence of latent representation is cut into K chunks
(ẑ1

i , . . . , ẑ
K
i ) ∈ R

nz/K×K , and each chunk is discretized separately using K dif-
ferent codebooks {Z1, . . . ,ZK}. The size of the discrete space learned increases
exponentially with K, for a total of CTd·K combinations. We empirically vali-
date the utility of using product quantization in our experiments. Instead of one
index target per time step, product quantization produces K targets. To capture
relations between them, we propose a prediction head that models the K factors
sequentially rather than in parallel, called ‘auto-regressive’ head and evaluated
in Sect. 3.2; see the supplementary material for more details.
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Fig. 5. Samples generated from scratch. Samples generated without any observed
motion for the action labels ‘jumping’ (top) and for the action ‘dancing’ (bottom).
Note: Times flows from left to right (i.e., the blue texture corresponds to the first
frame and the red texture to the last frame).

3.2 Learning a Density Model in the Discrete Latent Space

The latent representation zq = q(E(p)) ∈ R
Td×nz produced by composing the

encoder E and the quantization operator q(·) can be represented as the sequence
of codebook indices of the encodings, i ∈ {0, . . . , |Z| − 1}Td , by replacing each
code by its index in the codebook Z, i.e., it = k such that (zq)t = zk. Indices
of i can be mapped back to the corresponding codebook entries and decoded to
a sequence p̂ = D(zi1 , . . . , ziTd

).

Learning to Predict Next Pose Index. As a second step to our method, we
propose to learn a prior distribution over learned latent code sequences. A motion
sequence p of the human action a is encoded into (it)1..Td

. We then formulate
the problem of latent sequence generation as auto-regressive index prediction; for
this we keep the natural temporal ordering, which can be interpreted as time due
to the use of causal attention in the encoder. We train a transformer model [65]
denoted G – well suited to discrete sequential data – using maximum-likelihood
estimation, similar in spirit to GPT [52].

Given i<j , the action a and the sequence length T , the transformer outputs
a softmax distribution over the next indices, i.e., pG(ij |i<j , a, T ), the likelihood
of the latent sequence is pG(i) =

∏
j pG(ij |i<j , a, T ) and the model is trained to

minimize:

LGPT = Ei

⎡
⎣−

∑
j

log pG(ij |i<j , a, T )

⎤
⎦ . (5)

An overview of the training procedure is shown in Fig. 4 and, in the supplemen-
tary material, we discuss different input sequence embeddings for processing by
the GPT.

Sampling Human Motion. Human motion is generated sequentially by sam-
pling from p(si|s<i , a, T ) to obtain a sequence of pose indices z̃ given an action
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Fig. 6. Latent space design. We define models for T/Td ∈ {2, 4, 8} by varying K
and C and present results as a function of the capacity of latent sequence.

and sequence length, and decoding it into a sequence of pose p̃ = D(z̃) (see
Fig. 5 for samples).

4 Experiments

We experiment with two parametric 3D models: SMPL [40] for comparison to
state-of-the-art approaches, and SMPL-X [48] to enable control of the face and
hands. We now present the three datasets considered for evaluation; architectural
and implementation details are in the supplementary material.
HumanAct12 allows comparison to prior art [27,49], but its small size and the
absence of train/val/test splits are limiting. It contains 1191 videos and SMPL
pose parameters, 12 action classes and a single action per video. The poses,
automatically optimized from estimated 3D joints, are noisier than annotations
from capture environments.
BABEL [50] is a subset of AMASS [42], a large collection of MoCap data
captured in controlled environments for high quality annotations. It contains
28K sequences (43 hours of motion in total); sequence length varies from 3 s to
several minutes and there are 120 manually annotated human actions in total.
The action distribution is very long-tailed so we use only the 60 most common
actions as proposed by the authors. In short, BABEL is over 40 times bigger
than HumanAct12, has a train/val/test split, no noise in the SMPL parameters
and a rich variety of human actions; we believe this makes it a dataset of choice
to move forward.
GRAB [60] contains whole-body SMPL-X of people grasping objects, with 11
persons performing 29 motions with 51 different rigid objects, for a total of 1500
sequences of 8 seconds on average, with 7 persons for training and 2 for testing.

4.1 Evaluation Metrics

Generative models can be evaluated through generated data; a perfect set of
samples contains data that is as realistic and as diverse as real unseen test



426 T. Lucas et al.

data. These aspects are not always trivial to quantify, and we now discuss how
they are measured in practice.

Sample Quality Evaluation. The dominant approach [27,49] to measure sam-
ple quality relies on pretrained classifiers. In particular the Frechet Inception
Distance (FID), which we report, measures a distance between distributions of
classifier features obtained from a set of samples Dsamples and real data. Follow-
ing [49], we also rely on a classifier T pre-trained on train data and report the
ratio between accuracies on sampled and test data:

RT (Dsamples,Dtest) =
|Dsamples|

|Dtest|
·

∑
x∈Dtest

accT (x)∑
x∈Dsamples

accT (x)
. (6)

This metric is not sensitive to diversity – the model can drop modes as long as
the rest is very well classified. The ratio normalizes values that otherwise depend
on choices orthogonal to sample quality; we refer to the supplementary material
for details on the action classifier.

Diversity Evaluation. First, we evaluate sample diversity by training a classi-
fier S on samples and evaluating it on unseen test data, following [57]. Intuitively,
for S to perform as well as T , samples need to be as diverse and as realistic as
real data; we measure it with:

RS(Dtest) =
∑

x∈Dtest

accS(x)
accT (x)

. (7)

This metric is sensitive to diversity as real data modalities not captured by the
generator will not be seen by S and misclassified, but not by T , which will
degrade the ratio. The pair (RS , RT ) is best considered together [57]: if RS is
close to one, we consider sample quality to be high, and gains in RT can be
attributed to diversity [44]. Note that S and T have the same architecture and
are trained with the same hyper parameters. More classically, we also report
likelihood based metrics; dropped modes will lead to data points with very low
likelihood, so they are sensitive to mode coverage [8]. In particular, we report the
test reconstruction error of the auto-encoder using the Per-Vertex Error (pve),
and the test likelihood of the GPT on encoded test sequences. As these metrics
do not guarantee realistic samples, we consider them together with classifier
based quality metrics.

Over-Fitting. Sample quality metrics typically used – standard FID or clas-
sification accuracy [49] – measure differences between train data and generated
data, without involving a test set. This does not account for over-fitting and
rewards models that perfectly copy train data: on small datasets, all metrics will
monotonically improve with model capacity. To remedy this, we keep unseen
data on BABEL and compute the FID, RS ratio and maximum-likelihood based
metrics using that test data. Our only metric not sensitive to over-fitting is RT ;
we rely on the others to detect over-fitting.
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Table 1. Impact of latent space capacity on BABEL for T/Td = 2 (left) and for
C = 256 (right). bold denotes best in column (across K); underlined denotes best in
row (across C).

K
(nb. codebooks)

pve↓ RT ↑ RS↑ FID↓ pve↓ RT ↑ RS↑ FID↓ pve↓ RT ↑ RS↑ FID↓

C = 128 C = 256 C = 512

1 60.1 0.91 0.60 4.3 52.1 0.98 0.61 3.5 49.7 0.99 0.62 3.7

2 40.2 0.84 0.60 3.2 38.3 0.86 0.61 2.8 33.8 0.87 0.63 2.9

4 30.6 0.84 0.64 2.9 28.2 0.79 0.62 2.7 27.3 0.80 0.61 2.5

8 27.2 0.48 0.49 3.0 23.7 0.49 0.46 4.4 26.7 0.41 0.47 4.3

K
(nb. codebooks)

pve↓ RT ↑ RS↑ FID↓ pve↓ RT ↑ RS↑ FID↓

T/Td = 4 T/Td = 8

2 50.7 0.94 0.63 3.2 47.5 0.93 0.66 3.2

4 35.5 0.93 0.67 3.1 37.5 0.77 0.60 3.1

8 28.8 0.64 0.54 2.5 65.6 0.85 0.59 3.6

(T/Td = 2) (C = 256)

4.2 Ablative Study of Design Choices

We now ablate the main design choices made in PoseGPT. The first is the
design of the discrete latent space, in particular the quantization bottleneck and
its capacity. The second regards the GPT component, trained for next index
prediction; in particular we ablate the choice of input embedding method and
prediction head. Finally, we evaluate the impact of using causal attention in the
auto-encoder. Note that as there is no test split on HumanAct12; because it is too
small to define one of reasonable size without severely degrading performance,
we compute the FID using train data on this dataset.

Latent Sequence Space Design. The main design choice regarding the latent
sequence space is the quantization bottleneck. We now study the impact of its
capacity, mostly controlled by Td (latent sequence length), K (nb. of product
quantization factor) and C (total number of centroids). More capacity yields
lower reconstruction errors at the cost of less compressed representations. In our
case, that means more indices to predict for the GPT, which impacts sampling,
and we now explore this trade-off.

In Table 1 (left), models trained on BABEL show that as expected, pve goes
down monotonously with both K and C, but not the RS and RT ratios, as also
shown in Fig. 6. Models with K = 1 obtain high sample classification accuracy
but poor reconstruction on test data and lower RS ; this suggests insufficient

Table 2. Latent space design
on HumanAct12. Bold denotes
best value.

K (nb.

codebooks)

FID ↓ RS(↑) FID ↓ RS(↑)

C = 256 C = 512

8 0.12 93.8 0.11 93.7

16 0.11 94.5 0.10 94.9

32 0.09 95.1 0.08 95.2 Fig. 7. Cost of compressing zq using the GPT,
in bits and bits per dimension.
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Table 3. GPT design on BABEL and Human-
Act12. Bold text denotes best value. ar denotes
auto-regressive.

Fig. 8. Index pred. accu-
racy using concatenation
vs.summation.

capacity to capture the full diversity of the data. On the other hand, models
with the most capacity (e.g., K = 8) yield sub-par performance. The best trade-
offs are achieved with (K,C) ∈ {(2, 256), (2, 512), (4, 128), (4, 256)}. The table
on the right shows that the model can handle decreased temporal resolution.
Note that using K = 8 works better at coarser resolutions, as it compensates
for the loss of information. In Table 2, all metrics improve monotonically with
K and C; this is expected as over-fitting is not factored out by the metrics and
the dataset is small enough to over-fit. Finally, in Fig. 7, we report the cost of
compressing zq using the GPT model. We observe that the absolute compression
cost in bits (left) increases, i.e., zq contains more information, while the cost per
dimension decreases: each sequence index is easier to predict individually.

Fig. 9. Sample quality with our best model for different amounts of observed motion,
and different temperatures, measure with the FID and RS metrics.

Ablations on Next Index Prediction. We now study two design choices
made in the GPT component of PoseGPT: the choices of input embedding and
predictions head. Using the proper input embedding has a strong impact on the
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performance of transformer architectures [52], and depends on the input data. In
Table 3, we study this impact when working with human motion. For this abla-
tion, we fix the latent sequence space, i.e., the auto-encoder hyper-parameters
and weights, and train our GPT model with different input embeddings. We
measure sample quality, and the accuracy of the GPT model at predicting dis-
crete sequence indices. Note that this accuracy is directly comparable across
models, as the latent space is frozen and identical.

In the first row, we observe that embedding the action at each timestep,
rather than as an extra transformer input, has significant positive impact. Con-
ditioning on the sequence length is also beneficial (Row 3 vs.Row 4); this is
expected, as it relieves the model from having to predict when to stop generat-
ing new poses. As an added benefit, it also allows extra control at inference time.
We also see that a concatenation of the embedded information, followed by a
linear projection – which can be seen as a learned weighted sum – is better than
simple summation on BABEL. On the other hand this extra model capacity is
not beneficial on HumanAct12, which may be due to the size of the dataset. In
Fig. 8, we also observe that models using concatenation rather than summation
train significantly faster.

Having determined the best input configuration for both datasets, we further
experiment with more expressive output layers for the model; we show that hav-
ing a MLP head rather than a single fully-connected layer is beneficial, and we
obtain further gains using an auto-regressive layer (see Sect. 3.2). This can be
explained by the fact that with product quantization, several codebook indices
are extracted simultaneously from a single input vector, but are not indepen-
dent, and using an MLP and/or an auto-regressive layer better captures the
correlations between them.

Causal Attention. In Table 4, we study the impact of using causal attention
in the auto-encoder, for K ∈ {2, 4} and C = 256. Causal attention is a restric-
tion on model flexibility, as it limits the inputs used by features in the encoder.
Empirically, we observe that adding causal attention indeed degrades perfor-
mance. Adding it to the encoder, which is mandatory to create a model that can
be conditioned on past observations, causes only a mild degradation. Adding it
in the decoder as well allows to run the model on-line, i.e., make observations
and predictions in parallel, but strongly degrades performance.

Conditioning and Temperature. Conditioning the model on past observa-
tion is expected to improve the quality of generated samples. In Fig. 9 (left),
we see that indeed both RS and the FID improve monotonically as the length
of observations increases. In the right plot, we see that increasing or decreas-
ing the softmax temperature leads to a trade-off between the two metrics; this
behaviour can be expected: decreasing the temperature improves sample quality
by concentrating the mass on major modes of the distribution, and thus increases
mode-dropping.
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Table 4. Impact of causal
attention in the encoder and
decoder for C = 256.

K (nb.

codebooks)

Causal E Causal D pve (↓)

2 × × 35.7

2 � × 38.3

2 � � 50.2

4 × × 25.3

4 � × 28.2

4 � � 38.6

Fig. 10. Evaluation of error drift. Model
iteratively conditioned on last predictions made.

Error-Drift in Long-Term Horizon Generation. In Fig. 10, we study the
robustness of PoseGPT to error drift, a typical failure case of models that make
auto-regressive predictions in continuous space. To this end, we sample from our
model several times consecutively, by conditioning the last pose generated by the
model. To initiate this process, the first motion is generated without temporal
conditioning. Empirically, we observe that in this setting, PoseGPT is robust to
long-term error drift: the FID initially degrades but remains stable even when
we repeat the generation process many times.

4.3 Comparison to the State of the Art

In Table 5, we compare PoseGPT against the state-of-the-art results. For fair
comparison, these metrics are computed without conditioning on past observa-
tions. We find that PoseGPT outperforms the state-of-the-art method, namely
ACTOR [49], when looking at the FID metric with a relative gain of 33% (0.12
vs.0.08) on HumanAct12 and over 50% on BABEL. The performance in diversity
and the multimodality indicates that PoseGPT covers the human motion distri-
bution of this dataset. On BABEL, the gains are around 50% in terms of both
FID and classification accuracy. The gains in classification accuracy indicate
both higher quality samples, and a richer distribution.

Table 5. State-of-the-art comparison. On HumanAct12 (left), PoseGPT obtains
better FID and comparable classification accuracy. On BABEL (center) and on GRAB
(right), PoseGPT obtains substantial gains for all metrics. ∗ means trained by us based
on official code. Note that the FID of real data is not 0 due to data augmentations. For
consistency with [27,49], we report diversity and multimodality metrics on Human-
Act12; these metrics are considered good when close to the values obtained on real
data.

Model FID↓ RT (%).↑ Div. Multimod.

Real 0.02 99.4 6.86 2.60

Action2Motion [27] 2.46 92.3 7.03 2.87

ACTOR [49] 0.12 95.5 6.84 2.53

PoseGPT 0.08 95.8 6.85 2.82

Model action cond. length cond. future pred. RS(↑) FID↓ RT (↑)

Real - - - 1.0 0.01 1.0

ACTOR∗ � � X 0.35 9.5 0.56

PoseGPT � � � 0.64 2.7 0.98

Model FID ↓ AccS(D) ↑ AccD(S) ↑
Real 0.01 0.99 -

ACTOR* 20.7 0.20 -

PoseGPT 5.1 0.86 -
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Fig. 11. Samples conditioned on past observation. On the left in green, we show
an observed initial pose, then we sample two different future human motions that we
show side by side. The top row corresponds to the human action ‘jumping’ and the
bottom row is sampled from the human action ‘stretching’.

Fig. 12. Samples conditioned on an initial pose and with four different
actions. Given an initial pose shown in green, we generate four different human
motions conditioned on four different actions. What are these actions?1

Qualitative Examples. Finally, we show samples of human motions generated
by PoseGPT. In Fig. 5, we show samples of human motion generated by condi-
tioning on a human action only. We observe that human motions are realistic
and diverse for both actions. Then in Fig. 11, we display two possible future
motions given an initial pose and an action. The generated human motions are
diverse which demonstrates that PoseGPT is able to handle the multimodal
nature of the future. Finally in Fig. 12, given a initial pose, we generate four
human motions with four different actions1. This demonstrates that the action
information is taken into account and impacts the human motion generation.
We provide more visualizations in the supplementary material.

5 Conclusion

This work introduces PoseGPT, an auto-regressive transformer-based approach
which quantizes human motion into latent sequences. Given a human action, a
duration and an arbitrarily long past observation, it outputs realistic and diverse
3D human motions. We provide quantitative and qualitative experiments to show
the strengths of our proposed method. In particular, ablations demonstrate that

1 From left to right and top to bottom: ‘turning’, ‘touching face’, ‘walking’, ‘sitting’.
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quantization is a key component, and we study each part of our approach in
detail. PoseGPT reaches state-of-the-art performance on three different bench-
marks and is able to generate human motions given an action label, conditioned
on observed past motion of arbitrary length.
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