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Abstract. We present a novel paradigm of building an animatable 3D
human representation from a monocular video input, such that it can be
rendered in any unseen poses and views. Our method is based on a dynamic
Neural Radiance Field (NeRF) rigged by a mesh-based parametric 3D
human model serving as a geometry proxy. Previous methods usually rely
on multi-view videos or accurate 3D geometry information as additional
inputs; besides, most methods suffer from degraded quality when general-
ized to unseen poses. We identify that the key to generalization is a good
input embedding for querying dynamic NeRF: A good input embedding
should define an injective mapping in the full volumetric space, guided by
surface mesh deformation under pose variation. Based on this observation,
we propose to embed the input query with its relationship to local surface
regions spanned by a set of geodesic nearest neighbors on mesh vertices. By
including both position and relative distance information, our embedding
defines a distance-preserved deformation mapping and generalizes well to
unseen poses. To reduce the dependency on additional inputs, we first ini-
tialize per-frame 3D meshes using off-the-shelf tools and then propose a
pipeline to jointly optimize NeRF and refine the initial mesh. Extensive
experiments show our method can synthesize plausible human rendering
results under unseen poses and views.

1 Introduction

The problem of digital reconstruction, modeling and photo-realistic synthesis
of humans from a video sequence such that it can be rendered with any pose
from any viewpoint is important, which enables various applications ranging
from character animation for games and movies to immersive experience for vir-
tual conferencing. This problem is extremely challenging due to the complicated
joint space of human geometry, appearance, and dynamic motion given only
RGB videos as observation, especially for monocular videos where multi-view
concurrency is unavailable.
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Fig. 1. Left: given a monocular video sequence of human performance with initial
posed 3D human with off-the-shelf tools, our method jointly reconstructs a mesh-
guided neural radiance field (NeRF) and refined per-frame human mesh. Right: our
trained mesh-guided NeRF is rigged with 3D mesh model and enables novel pose and
view synthesis.

Because of the difficulty in jointly modeling shape, pose and appearance of
3D humans from monocular videos, many previous approaches focus on solving
part of the problem only, such as skeleton-based human pose estimation [4,
10] or parametric 3D model [3,18] based human shape reconstruction [14,32].
These methods exploit sophisticated pose and shape priors and are thus able
to partially counteract the geometry ambiguity; however, due to the lack of
appearance information, the obtained results might not perfectly align with the
input observations in certain frames. Extracted texture based on the estimated
surface is usually blurry and cannot be used for photo-realistic synthesis (Fig. 1).

Recently proposed volumetric neural rendering methods, i.e. NeRF and its
variants [2,19,28], have shown great advances in high-quality free-view synthe-
sis for static objects. NeRF models static objects by an implicit radiance field
function with multi-layer perceptron (MLP) networks. Inspired by NeRF, recent
works [17,21,24,25] attempt to model 3D humans by conditioning the radiance
field on 3D poses/parametric meshes. While promising human reconstruction
and view synthesis results have been achieved, these methods only focus on the
modeling of conditional radiance field itself and require accurate 3D poses or
meshes as a prior. This assumption is often too strong to be fulfilled in practical
capture setups, especially with monocular video only.

To this end, we propose a novel paradigm of modeling an animatable 3D
human representation from a monocular video sequence of a single person. Our
goal is to build a reconstruction pipeline with few non-trivial requirements such
as accurate 3D human poses and/or geometry. To achieve this goal, we propose
to jointly optimize per-frame human mesh reconstruction and a dynamic neural
radiance field (NeRF) which is conditional on mesh information. Given a monoc-
ular video sequence as input observations, the optimization process is driven by
the re-rendering error on the neural rendering output corresponding to both the
NeRF and human poses, which are updated via back-propagation. To constrain
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Fig. 2. Our pipeline. A 3D mesh is generated from SMPL model with target pose θ,
followed with a mesh-guided NeRF which takes query embedding of 3D points and
renders image via volume rendering. The query embedding encodes both surface defor-
mation constraint with information of nearest mesh vertices under rest pose, as well
as distance-preserve prior with distance to mesh vertices in a local region under tar-
get pose. During training the pose is initialized with off-the-shelf tools and are jointly
refined with mesh-guided NeRF.

the optimization space of human mesh, we exploit the widely-used parametric
human body model [3], and initialize the optimization with poses provided by
monocular pose estimation solutions [14,32] as a starting point. Our joint opti-
mization strategy connects the (previously mangled) 3D geometry estimation
problem and NeRF-based appearance optimization problem, and eliminates the
requirement of accurate 3D geometry information as a priori, making the mod-
eling pipeline more applicable under monocular video scenarios.

A key property of a good neural representation of humans is that it should
have good generalization under unseen human poses after training on limited
observations. This is a non-trivial task as previous NeRF-based works for human
modeling [24,25] suffer from degraded quality more or less when generalized to
unseen human poses. Our observation is that the key for better pose generaliza-
tion lies in the embedding method of input for querying NeRF. Intrinsically, the
dynamic NeRF-based representation of humans can be regarded as a static NeRF
under rest pose equipped with 3D volume deformation that is conditioned on
the mesh deformation from rest pose to any arbitrary target pose. Thus, a good
embedding for querying a dynamic NeRF input under arbitrary poses should
“reverse” the pose deformation in an injective way to find the correct point at
the static NeRF. As the “correct” deformation mapping is only available on
the surface mesh, the reverse deformation at any off-surface region in the space
should be constrained with additional priors. Otherwise, the deformation map-
ping will be distorted and collapsed, thus failing to generalize to unseen poses.

Based on this observation, we propose a new embedding method for querying
mesh-guided dynamic NeRF by encoding the input position with its relationship
to local nearby surface regions. Specifically, given a query point and a human
mesh corresponding to a target pose, we project the query point onto the mesh
and find a set of nearest neighbor mesh vertices locally; we then construct the
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input embedding with distances to these vertices in the target space as well
as the normalized position of these vertices in the canonical space with rest
human pose, eliminating pose deformation and view transformation.

Out proposed embedding method is able to guide the volume deformation
at off-surface points with nearby surface deformation (as we give the inverse-
transformed nearest neighbor vertices on mesh). It has two key properties that
are essential for improving generalization. First, the embedding is locally based
on a nearby small connected region on the guided mesh. The local priors are
crucial because they prevent the network from inadvertently relating the output
to irrelevant articulated parts, which is known to hurt model generalization to
poses unseen during training [21,34]. Second, since we give the distances to all
nearest neighboring vertices in the target space, the embedding will encourage
a locally distance-preserve prior to restrain the deformation from collapse.

Our method requires only the monocular video of a single person with a fixed
camera, which does not rely on dedicated capture devices and/or accurate human
pose information. Extensive experimental results demonstrate the superiority of
our model on a variety of data that exhibit various human shapes and poses. To
summarize, our contributions are as follows:

– We propose a novel paradigm for building a neural human representation that
can be rendered in unseen poses and views with monocular video inputs.

– We propose a novel input embedding representation for querying mesh-guided
NeRF which improves the generalization ability on novel poses.

– We develop a pipeline for joint optimization of 3D human meshes and mesh-
guided dynamic NeRF supervised by the reconstruction loss only.

2 Related Works

Human Reconstruction. The problem of digital reconstruction of humans
is a long-standing problem in computer vision and computer graphics. Tradi-
tional methods usually achieve high quality with complicated capture setups
such as multi-view capture studio [8,35,36] or RGB-D camera arrays [30,33]. To
reduce capture efforts, recent methods leverage deep neural networks to directly
reconstruct 3d humans from even single images [7,14,20,27]. These methods
often estimate output coefficients of parametric models of 3D human shape and
poses [18]. The parametric model of 3D humans is often constructed from a
large database of scanned shapes of different humans in a variety of poses and
the rigged with a pre-defined skeleton to animate the human mesh.

Neural 3D Representations. Recently, neural representation of 3D scenes
has attracted considerable attention in the literature [2,5,6,19,22,28]. These
methods exploit a neural network (usually multi-layer perceptrons) to represent
implicit fields such as signed distance functions for surface or volumetric radi-
ance fields, thus inherently encoding 3D information in a view-consistent man-
ner. Among those neural representations, NeRF [19] (and its variants) has sur-
passed previous state-of-the-art methods on novel view synthesis tasks for static
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objects. Some works also extended NeRF to handle general space-time dynamic
scenes [23,26,31]. Our method targets extending NeRF to model dynamic rep-
resentation of 3D humans with the help of parametric 3D body mesh models.

Rigging NeRF. A prevalent approach for representing dynamic humans with
NeRF is to rig NeRF with articulated models. Common articulation choices are
3D pose skeletons [21,29] and parametric 3D mesh models [9,17,24,25]. Our
method utilizes a parametric 3D mesh model [3] for articulation. While we are
similar to previous and concurrent works [17,21,24,29] by sharing the same goal
of modeling dynamic human body with articulated NeRF representation, our
method differs them in two aspects. First, we attempts to simplify the input to
monocular video input as opposed to multi-view video inputs [17,24] and relax
the dependence on accurate 3D geometry input [21] a priori. Second, we propose
a new embedding method for querying articulated dynamic NeRF with locality
and distance-preserving constraints. Noguchi et al. [21] proposed to learn a most
relevant articulated part for any given query point. The concurrent work of Su et
al. [29] propose a similar framework with joint-optimization of NeRF and human
pose, using the skeleton as the human shape representation and directly relates
the input query to all articulated skeleton joints. We focus on improving the
generalization ability for NeRF-based animatible 3D human reconstruction with
novel embedding designs. Our method preserves locality via nearest-neighbor
projection, and encourages locality distance-preserving to avoid collapse of defor-
mation in the whole volume.

3 Method

Given a monocular video sequence {Ii}Ki=1 as input, we aim to construct a neu-
ral human representation that encodes both appearance and geometry knowl-
edge and can be rendered under an arbitrary pose θ. In particular, we model
our representation with a neural radiance field (NeRF). Our NeRF is dynami-
cally controlled by an underlying parametric mesh model (Sect. 3.1). Given an
observation-space pose, the mesh surface is deformed from its rest pose corre-
spondingly. We design a novel query embedding (Sect. 3.2) for the input which
encodes both information of surface deformation and addition constraints. Based
on the proposed mesh-guided NeRF, we propose an analysis-by-synthesis method
to jointly estimate pre-frame 3D mesh from the input video and train NeRF
(Sect. 3.3), using off-the-shelf tools for mesh initialization.

3.1 Mesh-Guided NeRF

In NeRF, the rendered color C̄(u, v) at image pixel (u, v) is generated by querying
and blending the radiance along the corresponding camera ray according to the
volume density value:

C̄(u, v) =
N∑

i=1

Ti(1 − exp(−σiδi))ci, (1)
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where

Ti = exp(−
i−1∑

j=1

(−σjδj))), (2)

and
(ci, σi) = F (xi). (3)

ci ∈ R3 and σi are the color and volume density of the i-th sampled point xi

along the ray direction. F (x) is usually parameterized with an MLP network.
We extend NeRF to handle the dynamic, articulated human body with a

mesh-based parametric 3D model SMPL [18]. An SMPL model S(θ, β) takes a
human 3D pose θ of skeleton joint rotations as well as a low-dimensional feature
vector of human shape as input and outputs a 3D mesh. As we mainly focus on
synthesizing humans under different poses, we omit the shape β afterwards.

Formally, given a pose input θ, the radiance color c(x) and volume density
of our mesh-guided NeRF at point x is computed as follows:

(c(x), σ(x)) = FΦ(q(x, S(θ))), (4)

where the query embedding q is the most important part as it directly relates
the output of NeRF with the underlay deformable mesh, as we will discuss next.

3.2 Query Embedding for NeRF

The input of NeRF for querying radiance value at point x is given by its 3D
location (x, y, z) and 2D viewing direction θ, φ in the world space. A natural
extension of input querying for the dynamic scene is to define a deformation
field that transforms observation-space points to rest space. Directly estimating
a general deformation field together with the NeRF, as in [23,26,31], is highly ill-
posed and prone to local minima. Inspired by [17,24], we leverage the deformable
SMPL model as the human prior to guide our transformation for input queries.
The underlay SMPL model defines reasonable deformation fields on its surface;
however, a radiance field from NeRF is defined on full 3D volume, and we still
need to determine the deformation on unconstrained off-surface points. Naively
projecting off-surface points to its nearest vertex point on the mesh is not optimal
because the off-surface deformation will be collapsed, as illustrated in Fig. 3.

We address this issue from another perspective: instead of inputting an
inverse-transformed point with an explicitly defined deformation field for query-
ing NeRF, we construct a query embedding of the input point which encodes
two types of information: (1) information that guides how the deformation field
should roughly be (denoted as Deformation Guidance), and (2) priors that pre-
vent the deformation field from collapsed local minima (denoted as Deformation
Priors). The NeRF then implicitly learns a radiance field based on the input
embedding. Figure 2 illustrates our design of query embedding.

Deformation Guidance. Our deformation guidance is based on the underlay
SMPL model. For the SMPL model, the transformation relationship between a
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Fig. 3. An illustration of our distance-preserved query embedding. (a) Naively embed-
ding the query with nearest neighbor vertex on mesh (the red line), leads to indis-
tinguishable embedding of different surface deformation patterns. (b) With additional
geometric K-NN distance information (purple lines), different deformation patterns are
clearly separated.

canonical-space surface point v and its observation space counterpart v′ is given
by the linear blend skinning (LBS) algorithm [15]:

v′ = (
K∑

k=1

w(v)kGk)v, (5)

where K is the number of human parts, Gk ∈ SE(3) is the transformation matrix
of the k-th part on the human skeleton, and w(v) is the blend weight.

Intuitively, the guidance information from the SMPL model should neither
be too global such that the network inadvertently relates the output to irrelevant
articulated parts [21,34], nor collapse to a single nearest neighboring point as the
deformation field will remain unconstrained (Fig. 3). To this end, we build the
deformation guidance part of the input query with the nearest projected vertex
on the mesh as well as the k-nearest adjacent vertices of the projected vertex in
rest space via inverse LBS as:

qg(x) = (xdir,v0,v1, ...,vk), (6)

where vk = (
∑L

l=1 w(vk)lGl)−1v′
k and v′

k is the k-th nearest neighboring mesh
point in the observation space. Note that, we additionally give the relative direc-
tion from query point x to its projected point v0:

xdir = R((
K∑

k=1

w(v)kGk)−1)
v0 − x

‖v0 − x‖2
. (7)

Here R denotes the rotational part of the transformation matrix.

Deformation Priors. Our deformation guidance embedding qg itself is based
on mesh surface only and insufficient to ensure a well-defined deformation field in
the whole volume. We therefore provide an additional part to the query embed-
ding by equipping the input query with the Euclidean distances to its nearest
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points in the observation space:

qp(x) = (d0, d1, ..., dk), (8)

where dk = ‖v′
k − x‖2. Using the distance in the observation space is important

as such information preserves the local difference under different poses and leads
to a distance-preserved deformation field.

Appearance Latent Code. To better capture the geometry and appearance
detail which cannot be captured by surface mesh deformation, we additionally
provide a learnable latent code lk defined on each mesh vertex:

qa(x) = (l0, l1, ..., lk). (9)

The complete query embedding for the NeRF input is generated by feeding
the concatenation vectors into a tiny 3-layer MLP network ψ:

q(x) = ψ(γ(qg(x)), γ(qp(x)), qa(x)), (10)

where γ denotes positional encoding as used in the original NeRF [19].

3.3 Joint Mesh Estimation and NeRF Training

Training the mesh-guided NeRF from monocular video input requires paired
data of input frames {Ii} and human mesh {Mi}. State-of-the-art monocular
video based human mesh reconstruction methods such as [13,14] produce plau-
sible results for human mesh estimation; however, they are still not accurate
enough for training our NeRF as non-aligned mesh part to the image will give
incorrect guidance and make the NeRF over-fitting to misaligned training poses.
Hence we opt to use the plausible mesh estimates provided by prior solutions
as initialization, and jointly fine-tune the mesh with NeRF training. Practically,
we choose to optimize the pose parameter θi for each training frame instead
of per-vertex mesh offset, as it gives us enough capability to refine mesh-image
misalignment without too much flexibility that overfits to local minima.

Training Objective. Our training is guided by the reconstruction error between
the mesh-guided NeRF and the ground-truth frames over the whole video
sequence as well as a regularization term penalizing too large deviation from
the initial pose estimation θ0:

L =
∑

i

∑

u,v

Li(u, v) + λp

∑

i

‖θi − θi0‖2
2, (11)

and
Li(u, v) = ‖C̄(u, v) − Ii(u, v)‖2

2, (12)

where Ii(u, v) is the ground truth pixel value at (u, v) from the i-th frame. C̄(u, v)
is computed using Eq. 1, Eq. 4 and the proposed query embedding (Eq. 10).
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4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on different datasets as follows:

– People-Snapshot [1]: This dataset contains 24 subjects with monocular videos
performing turning around. Among them, we choose female-1-casual, female-
3-casual, male-1-sport and male-9-plaza for training. We remove the back-
ground of the video frames with ground truth silhouettes provided and resize
the video to half-size (1080p → 540p). An initial mesh is provided in the data.

– DoubleFusion [33]: This dataset contains only a sequence of one man, where
the actor performs more complex actions while turning around. Thus, we
consider it not suitable for a quantitative benchmark and only use it to show
qualitative comparisons on novel pose synthesis. The initial mesh is provided
in the dataset using additional depth information.

– ZJU-MoCap [25]: This dataset contains multi-view video sequences of 9
objects with 21 cameras. We choose a single view (subject 313 and subject
386 from camera 7) for training.

– Human3.6M [11]: This dataset consists of a large number of 3D human poses
and corresponding multi-view video sequences. We follow the same protocol
as [29], extracting every 64th frame of the videos. We train the model on the
subject 9 and subject 11. For each video, we select camera 2 as the input view
and employ SPIN [14] to estimate the initial mesh from video frames.

Network Structure. The network ψ in the query embedding module is imple-
mented with a 3-layer MLP with 128 channels. The NeRF network φ is com-
posed of an 8-layer MLP with 256 channels. In the position embedding module,
we implement the tiny 3-layer MLP ψ with 128 channels, and the NeRF mod-
ule φ for rendering is composed of 8-layer MLP with 256 channels. We apply a
positional encoding of 10 frequencies to query embedding features except latent
codes.

Training Details. We utilize Adam optimizer [12] with learning rate of 1e−4 for
optimizing NeRF and latent code. The learning rate of body poses is set to 5e−4
and λp is set to 2.0. For volumetric rendering we employ the coarse-to-fine ray
sampling strategy of [19]. We also constrain the sampled rays to be more focused
on the human part in the image by sampling rays within the 1.2× padding
bounding box of 2D keypoints with 70% probability, and randomly sampled in
the whole image with 30% probability. Each sampled ray is discreted within
[znear − 0.04, zfar + 0.04], where znear and zfar denote the nearest and farthest
ray-point intersection with body mesh, respectively. Our model is trained with a
single Nvidia Tesla V100 32 GB GPU, and the training approximately takes 60 h
to converge. For datasets without background mask available, we either apply
an off-the-shelf matting algorithm [16] or jointly model the background during
training. Please check the supplemental materials for details.

Evaluation Metrics. Peak-Signal-to-Noise Ratio (PSNR) and Structural Sim-
ilarity Index Measure (SSIM) are used to evaluate image quality.
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Table 1. Ablation studies on (a) type of direction, (b) type of distances and (c) type
of neighborhood selection for embedding construction.

SSIM ↑ PSNR ↑
Training Novel Training Novel

w/o distance 0.935 0.906 29.18 27.51

canonical distance 0.926 0.916 29.06 27.48

observation distance 0.980 0.973 35.87 34.75

(a) Impact of distance embedding.

SSIM ↑ PSNR ↑
Training Novel Training Novel

w/o direction 0.942 0.923 30.52 28.15

w/o inverse 0.959 0.921 32.14 28.12

full 0.980 0.972 35.87 34.75

(b) Impact of direction embedding.

SSIM ↑ PSNR ↑
Training Novel Training Novel

Euclidean, 2 neighbors 0.950 0.935 32.35 30.69

Geodesic, 2-hop neighbors 0.962 0.954 32.74 31.97

Geodesic, only nearest neighbor 0.961 0.938 31.87 30.07

Geodesic 1-hop neighbors 0.980 0.972 35.87 34.75

(c) Impact of neighborhood selection.

4.2 Ablation Studies

To validate the influence of our proposed query embedding, we conduct the
ablation study on the People-Snapshot dataset and report quantitative results
on both training and test (unseen) poses, from the following aspects:

Neighborhood Range: As we have discussed in Sect. 3.2, the deformation
guidance from the SMPL model should be neither too global nor too local. We
verified this by conducting training with different ranges of mesh neighborhood.
The results are shown in Table 1c. Either increasing range (2-hop neighbors) or
only nearest neighbor projected point leads to degraded performance, both for
training and novel poses. We also test a variant of our method by sampling K-NN
point based on Euclidean distance (spatial K-NN ) instead of geodesic distance.
The results are also degraded as it fails to aware human part connectivity (i.e.
two adjacent points in Euclidean space might belong to distinct human parts).

Distance Prior: We validate the importance of distance information in
Table 1a. We remove the distance feature in the w/o distance model, and sub-
stitute rest-pose distance for observation-pose distance in the canonical distance
model. Obviously, without distance information, the results are significantly
degraded and the difference between training and novel poses is increased.

Relative Direction: The impact of relative direction embedding is demon-
strated in Table 1b, where w/o direction denotes embedding without direction,
and w/o inverse denotes embedding direction in observation space. It is worth
noting that the w/o inverse greatly reduces the generalization on novel poses.

Pose Refinement: Our joint pose refinement with NeRF training is crucial
when the initial mesh is not accurate enough. To validate this, we conduct
experiments on both Human3.6M and People-Snapshot dataset. The People-
Snapshot dataset has provided an initial mesh that is rather reasonable; yet, we
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Fig. 4. Qualitative comparison between original and optimized mesh. The final result
corrects the initial human mesh, e.g., the alignment error on the arms.

Table 2. The effect of using joint
pose refinement.

Dataset Method SSIM ↑ PSNR ↑
Human3.6M w/ refinement 0.978 31.51

w/o refinement 0.951 29.04

People-Snapshot w/ refinement 0.972 34.75

w/o refinement 0.969 32.99

Table 3. Quantitative comparison with
AniNeRF and A-NeRF.

ZJU-Mocap Human3.6M People-snapshot

AniNeRF Ours AniNeRF A-NeRF Ours AniNeRF Ours

SSIM ↑ 0.758 0.768 0.865 0.928 0.912 0.948 0.973

PSNR ↑ 23.75 25.01 23.44 27.45 27.11 29.11 34.75

still observe minor artifacts without pose refinement and our joint training fur-
ther improves the result, both quantitatively (Table 2) and qualitatively (Fig 4
and Fig. 5).

4.3 Comparsions

As there is very few (formally peer-reviewed and published) NeRF-based work
that shares the same succinct monocular inputs with mesh-based geometry
proxy as ours, we compare with the following methods:

AniNeRF (ICCV 2021). AniNeRF [24] is NeRF-based method for dynamic
human modeling. AniNeRF also uses mesh as geometry guidance but requires
more strict input requirements of multi-view video input. It produces high qual-
ity results with typically 3 to 4 synchronized views. For a fair comparison, we
follow the same single view setting and training data to re-train AniNeRF, and
report the comparison results in Fig. 7. We emphasize that this experiment setup
with monocular input is not for producing best-quality results, but to demon-
strate the challenge of monocular video scenario as well as the benefit of our
proposed method. Compared with AniNeRF, our method generates complete
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skin and cloth, whereas AniNeRF is unable to model the whole body with lim-
ited view. The quantitative result reported in Table 3 also shows our method
outperforms AniNeRF under the same settings. We also refer to the supple-
mental material for a comparsion to NeuralBody [25], the precursor method of
AniNeRF.

A-NeRF (NeurIPS 2021). A-NeRF [29] is a recent work for modeling 3D
human with NeRF using monocular video input. A-NeRF exploits joint opti-
mization of NeRF with human skeletons. An apple-to-apple comparsion with
A-NeRF is hard as it differs from our method in many implementation aspects
which affects the result quality, e.g., from the underly parametric body represen-
tation (skeleton-based v.s. mesh-based) to the backbone capacities. Nevertheless,
our result on the Human3.6M dataset is quantitatively comparable with A-NeRF
(Table 3).

Non-NeRF methods. Regarding non-NeRF methods, we also compare our
method with a SMPL-model based method, VideoAvatar [1]. The qualitative
results are shown in Fig. 6. Given the same monocular video as input, the NeRF-
based method generates results with more natural and realistic color effects.

Fig. 5. The effect of pose refinement on People-
Snapshot dataset. Jointly refinement contributes to
clearer geometry and eliminates outliers. The improve-
ment brought by refinement is enlarged in red.

Fig. 6. A qualitative com-
parison with mesh-based
method VideoAvatar.

4.4 Applications

Novel Pose Synthesis. Our trained representation enables character animation
from novel unseen poses. We evaluate our generalization ability by comparing
testing data and our rendering driven by the same set of unseen poses on the
People-Snapshot and DoubleFusion dataset. The qualitative result is depicted in
Fig. 8a. Our model successfully disentangles background and foreground pixels
and veritably reconstructs the human body in the Doublefusion dataset (First
row). As for side and back view, our model still generates images of high quality
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Fig. 7. Qualitative comparison of Ani-NeRF [24] and ours under novel view. Both
methods are trained with single view sequence.

Fig. 8. Qualitative and quantitative results of novel pose synthesis on multiple
datasets. (a) Top row: novel pose rendering (left) and ground truth (right) on Dou-
bleFusion. Bottom row: rendering (odd column) and ground truth (even column) on
Human3.6M. (b) Quantitative results of novel pose synthesis on Human3.6M and
People-Snapshot dataset.

as shown in the Human3.6M dataset (Second row). We also provide quantitative
results in Fig. 8b on the People-Snapshot and Human3.6m datasets.

Pose Retargeting. The generalization ability of our model is further evaluated
by pose retargeting experiments. The results are shown in Fig. 9, where the
driven poses derive from the Doublefusion dataset and training body comes
from the People-snapshot dataset. We observe that our model generates realistic
human bodys with various poses, which demonstrates the generalization of the
proposed methods. We refer to the supplemental material for more novel pose
synthesis results, including animation videos.
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Fig. 9. Human animation driven by Doublefusion poses. The synthetic human is
trained on the People-Snapshot dataset.

5 Conclusion

We presented a new method for building animatable neural 3D human repre-
sentations from only monocular video inputs. Our representation is based on
dynamic Neural Radiance Field guided by parametric 3D human meshes. We
designed a novel input query embedding of the mesh-guided NeRF. We train the
representation by we first initialize per-frame 3D meshes using off-the-shelf tools
and then joint optimizing the 3D mesh and dynamic NeRF. The learned neural
representation can generalize well to unseen views and poses.

Limitations. Our method is not without limitations. The input embedding of
our querying is related to a local region on the mesh surface with a restricted
reception field; thus the joint optimization might fail if the initial pose has devi-
ated too much from the ground truth. Due to resolution constraint and the
expressiveness of the mesh model we used, our method is still straggling at
recovering high-resolution details such as human faces.

Future Work. For future works, we plan to explore different kinds of defor-
mation priors and their effects on rigging dynamic NeRF, improving our per-
formance with sharp details, and extending to general, non-articulated dynamic
objects.

Acknowledgements. We would like to thank all the reviewers for their constructive
feedback.
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