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Abstract. Decision-based attack poses a severe threat to real-world
applications since it regards the target model as a black box and only
accesses the hard prediction label. Great efforts have been made recently
to decrease the number of queries; however, existing decision-based
attacks still require thousands of queries in order to generate good qual-
ity adversarial examples. In this work, we find that a benign sample, the
current and the next adversarial examples can naturally construct a tri-
angle in a subspace for any iterative attacks. Based on the law of sines,
we propose a novel Triangle Attack (TA) to optimize the perturbation by
utilizing the geometric information that the longer side is always opposite
the larger angle in any triangle. However, directly applying such infor-
mation on the input image is ineffective because it cannot thoroughly
explore the neighborhood of the input sample in the high dimensional
space. To address this issue, TA optimizes the perturbation in the low
frequency space for effective dimensionality reduction owing to the gen-
erality of such geometric property. Extensive evaluations on ImageNet
dataset show that TA achieves a much higher attack success rate within
1,000 queries and needs a much less number of queries to achieve the
same attack success rate under various perturbation budgets than exist-
ing decision-based attacks. With such high efficiency, we further validate
the applicability of TA on real-world API, i.e., Tencent Cloud API.

1 Introduction

Despite the unprecedented progress of Deep Neural Networks (DNNs) [24,
25,27], the vulnerability to adversarial examples [46] poses serious threats to
security-sensitive applications, e.g ., face recognition [15,20,30,37,42,47,49,55,
62], autonomous driving [4,7,19,40,61], etc. To securely deploy DNNs in vari-
ous real-world applications, it is necessary to conduct an in-depth analysis on
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the intrinsic properties of adversarial examples, which has inspired numerous
researches on adversarial attacks [3,5,6,8,11,17,36,51] and defenses [23,34,52,
56,57,64]. Existing attacks can be split into two categories: white-box attack has
full knowledge of the target model (often leveraging the gradient) [6,17,21,34]
while black-box attack can only access the model output, which is more applica-
ble in real-world scenarios. The black-box attack can be implemented in different
ways. Transfer-based attack [17,32,54,59] adopts the adversaries generated on
the substitute model to fool the target model. Score-based attack [2,9,26,31]
assumes that the attacker can access the output logits while decision-based
(a.k.a. hard label) attack [5,10,11,29,35] only has access to the prediction (top-
1) label.

Among the black-box attacks, decision-based attack is more challenging and
practical due to the minimum information requirement for attack. The number
of queries on target model often plays a significant role in decision-based attack,
since the access to a victim model is usually restricted in practice. Though recent
works manage to reduce the total number of queries from millions to thousands
of requests [5,29,38], it is still insufficient for most practical applications [35].

Non-adversarial space Adversarial space

Decision boundary

Benign Adv.

Fig. 1. Illustration of the candidate triangle
at an arbitrary iteration of TA. At the t-th
iteration, TA constructs a triangle with the
learned angle αt which satisfies βt+2αt > π in
the sampled subspace to find a new adversar-
ial example xadv

t+1 and update αt accordingly.
Note that different from existing decision-
based attacks [5,35,38], TA does not restrict
xadv
t on the decision boundary but minimizes

the perturbation in the low frequency space
using the geometric property; making TA itself
query-efficient

Existing decision-based attacks [5,
29,35,38] first generate a large
adversarial perturbation and then
minimize the perturbation while
keeping adversarial property by
various optimization methods. As
shown in Fig. 1, we find that at the
t-th iteration, the benign sample x,
current adversarial example xadv

t ,
and next adversarial example xadv

t+1

can naturally construct a triangle
for any iterative attacks. According
to the law of sines, the adversar-
ial example xadv

t+1 at the (t + 1)-th
iteration should satisfy βt + 2αt >
π to guarantee that the perturba-
tion decreases, i.e., δt+1 = ‖xadv

t+1 −
x‖p < δt = ‖xadv

t − x‖p (when
βt+2·αt = π, it would be an isosce-
les triangle, i.e., δt+1 = δt).

Based on the above geometric property, we propose a novel and query-efficient
decision-based attack, called Triangle Attack (TA). Specifically, at t-th iteration,
we randomly select a directional line across the benign sample x to determine a
2-D subspace, in which we iteratively construct the triangle based on the current
adversarial example xadv

t , benign sample x, learned angle αt, and searched angle
βt until the third vertex of the constructed triangle is adversarial. Using the
geometric information, we can conduct TA in the low frequency space generated
by Discrete Cosine Transform (DCT) [1] for effective dimensionality reduction
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to improve the efficiency. And we further update αt to adapt to the perturbation
optimization for each constructed triangle. Different from most existing decision-
based attacks, there is no need to restrict xadv

t on the decision boundary or
estimate the gradient at each iteration, making TA query-efficient.

Our main contributions are summarized as follows:

– To our knowledge, it is the first work that directly optimizes the perturbation
in frequency space via geometric information without restricting the adver-
sary on decision boundary, leading to high query efficiency.

– Extensive evaluations on ImageNet dataset show that TA exhibits a much
higher attack success rate within 1,000 queries and needs a much less number
of queries to achieve the same attack success rate with the same perturbation
budget on five models than existing SOTA attacks [8,11,12,29,35,38].

– TA generates more adversarial examples with imperceptible perturbations on
Tencent Cloud API, showing its industrial-grade applicability.

2 Related Work

Since Szegedy et al . [46] identified adversarial examples, massive adversarial
attacks have been proposed to fool DNNs. White-box attacks, e.g ., single-step
gradient-based attack [21], iterative gradient-based attack [14,28,34,36], and
optimization-based attack [3,6,46], often utilize the gradient and exhibit good
attack performance. They have been widely adopted for evaluating the model
robustness of defenses [13,16,34,41,64], but are hard to be applied in real-world
with limited information. To make adversarial attacks applicable in practice, var-
ious black-box attacks, including transfer-based attack [17,50,51,58–60], score-
based attack [2,9,18,26,48,63,65], and decision-based attack [5,8,12,35,38], have
gained increasing interest. Among them, decision-based attack is most challeng-
ing since it can only access the prediction label. In this work, we aim to boost the
query efficiency of decision-based attack by utilizing the geometric information
and provide a brief overview of existing decision-based attacks.

BoundaryAttack [5] is the first decision-based attack that initializes a large
perturbation and performs random walks on the decision boundary while keep-
ing adversarial. Such a paradigm has been widely adopted in the subsequent
decision-based attacks. OPT [11] formulates the decision-based attack as a real-
valued optimization problem with zero-order optimization. And SignOPT [12]
further computes the sign of the directional derivative instead of the magni-
tude for fast convergence. HopSkipJumpAttack (HSJA) [8] boosts Boundary-
Attack by estimating the gradient direction via binary information at the deci-
sion boundary. QEBA [29] enhances HSJA for better gradient estimation using
the perturbation sampled from various subspaces, including spatial, frequency,
and intrinsic components. To further improve the query efficiency, qFool [33]
assumes that the curvature of the boundary is small around adversarial exam-
ples and adopts several perturbation vectors for efficient gradient estimation.
BO [43] uses Bayesian optimization for finding adversarial perturbations in low
dimension subspace and maps it back to the original input space to obtain the
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final perturbation. GeoDA [38] approximates the local decision boundary by a
hyperplane and searches the closest point to the benign sample on the hyper-
plane as the adversary. Surfree [35] iteratively constructs a circle on the decision
boundary and adopts binary search to find the intersection of the constructed
circle and decision boundary as the adversary without any gradient estimation.

Most existing decision-based attacks restrict the adversarial example at each
iteration on the decision boundary and usually adopt different gradient estima-
tion approaches for attack. In this work, we propose Triangle Attack to minimize
the adversarial perturbation in the low frequency space directly by utilizing the
law of sines without gradient estimation or restricting the adversarial example
on the decision boundary for efficient decision-based attack.

3 Methodology

In this section, we first provide the preliminaries. Then we introduce our moti-
vation and the proposed Triangle Attack (TA).

3.1 Preliminaries

Given a classifier f with parameters θ and a benign sample x ∈ X with ground-
truth label y ∈ Y, where X denotes all the images and Y is the output space.
The adversarial attack finds an adversary xadv ∈ X to mislead the target model:

f(xadv; θ) �= f(x; θ) = y s.t. ‖xadv − x‖p < ε,

where ε is the perturbation budget. Decision-based attacks usually first generate
a large adversarial perturbation δ and then minimize the perturbation as follows:

min ‖δ‖p s.t. f(x + δ; θ) �= f(x; θ) = y. (1)

Existing decision-based attacks [11,12,29] often estimate the gradient to min-
imize perturbation, which is time-consuming. Recently, some works adopt the
geometric property to estimate the gradient or directly optimize the perturba-
tion. Here we introduce two geometry-inspired decision-based attacks in details.

GeoDA [38] argues that the decision boundary at the vicinity of a data point
x can be locally approximated by a hyperplane passing through a boundary point
xB close to x with a normal vector w. Thus, Eq. (1) can be locally linearized:

min ‖δ‖p s.t. w�(x + δ) − w�xB = 0.

Here xB is a data point on the boundary, which can be found by binary search
with several queries, and GeoDA randomly samples several data points for esti-
mating w to optimize the perturbation at each iteration.

Surfree [35] assumes the boundary can be locally approximated by a hyper-
plane around a boundary point x + δ. At each iteration, it represents the adver-
sary using polar coordinates and searches optimal θ to update the perturbation:

δt+1 = δt cos θ(u cos θ + v sin θ),

where u is the unit vector from x to xadv
t and v is the orthogonal vector of u.
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3.2 Motivation

Different from most decision-based attacks with gradient estimation [11,12,29,
38] or random walk on the decision boundary [5,35], we aim to optimize the
perturbation using the geometric property without any queries for gradient esti-
mation. After generating a large adversarial perturbation, the decision-based
attacks move the adversarial example close to the benign sample, i.e., decrease
the adversarial perturbation δt, while keeping the adversarial property at each
iteration. In this work, as shown in Fig. 1, we find that at the t-th iteration, the
benign sample x, current adversarial example xadv

t and next adversarial example
xadv

t+1 can naturally construct a triangle in a subspace for any iterative attacks.
Thus, searching for the next adversarial example xadv

t+1 with smaller perturbation
is equivalent to searching for a triangle based on x and xadv

t , in which the third
data point x′ is adversarial and satisfies ‖x′ − x‖p < ‖xadv

t − x‖p. This inspires
us to utilize the relationship between the angle and side length in the triangle to
search an appropriate triangle to minimize the perturbation at each iteration.
As shown in Sect. 4.4, however, directly applying such a geometric property on
the input image leads to poor performance. Thanks to the generality of such
a geometric property, we optimize the perturbation in the low frequency space
generated by DCT [1] for effective dimensionality reduction, which exhibits great
attack efficiency as shown in Sect. 4.4.

Moreover, since Brendel et al . [5] proposed BoundaryAttack, most decision-
based attacks [8,11,12,35,38] follow the setting in which the adversarial example
at each iteration should be on the decision boundary. We argue that such a
restriction is not necessary in decision-based attacks but introduces too many
queries on the target model to approach the boundary. Thus, we do not adopt
this constraint in this work and validate this argument in Sect. 4.4.

3.3 Triangle Attack

In this work, we have the following assumption that the adversarial examples
exist for any deep neural classifier f :

Assumption 1. Given a benign sample x and a perturbation budget ε, there
exists an adversarial perturbation ‖δ‖p ≤ ε towards the decision boundary which
can mislead the target classifier f .

This is a general assumption that we can find the adversarial example xadv for
the input sample x, which has been validated by numerous works [3,5,6,21,53].
If this assumption does not hold, the target model is ideally robust so that
we cannot find any adversarial example within the perturbation budget, which
is beyond our discussion. Thus, we follow the framework of existing decision-
based attacks by first randomly crafting a large adversarial perturbation and
then minimizing the perturbation. To align with previous works, we generate a
random perturbation close to the decision boundary with binary search [29,35,
38] and mainly focus on the perturbation optimization.
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In two arbitrary consecutive iterations of the perturbation optimization pro-
cess for any adversarial attacks, namely the t-th and (t + 1)-th iterations without
loss of generalization, the input sample x, current adversarial example xadv

t and
next adversarial example xadv

t+1 can naturally construct a triangle in a subspace
of the input space X . Thus, as shown in Fig. 1, decreasing the perturbation to
generate xadv

t+1 is equivalent to searching for an appropriate triangle in which the
three vertices are x, xadv

t and xadv
t+1, respectively.

Theorem 1 (The law of sines). Suppose a, b and c are the side lengths of a
triangle, and α, β and γ are the opposite angles, we have a

sinα = b
sinβ = c

sin γ .

From Theorem 1, we can obtain the relationship between the side length and
opposite angle for the triangle in Fig. 1:

δt
sin αt

=
δt+1

sin (π − (αt + βt))
. (2)

To greedily decrease the perturbation δt, the t-th triangle should satisfy that
δt+1
δt

= sin (π−(αt+βt))
sinαt

< 1, i.e., π − (αt + βt) < αt. Thus, decreasing the per-
turbation at the t-th iteration can be achieved by finding a triangle constructed
by the input sample x, current adversarial example xadv

t and the angles βt and
αt, which satisfy βt + 2αt > π and the third vertex should be adversarial. We
denote such a triangle as candidate triangle and T (x, xadv

t , αt, βt,St) as the third
vertex, where St is a sampled subspace. Based on this observation, we propose
a novel decision-based attack, called Triangle Attack (TA), that searches the
candidate triangle at each iteration and adjusts angle αt accordingly.

Input Space

TA

DCT

DCT

IDCTmask

mask

Frequency Space Input Space

Fig. 2. Illustration of the entire procedure of
TA attack at the t-th iteration. We construct
the triangle in the frequency space to effi-
ciently craft adversarial examples. Note that
here we adopt DCT for illustration but we do
not need it for x at each iteration. We still
adopt x and xadv

t in the frequency space with-
out ambiguity due to the one-to-one mapping
of DCT

Sampling the 2-D Subspace
S of Frequency Space. The
input image often lies in a high-
dimensional space, such as 224 ×
224 × 3 for ImageNet [27], which
is too large for the attack to
explore the neighborhood for min-
imizing the adversarial perturba-
tion efficiently. Previous works [22,
29,35] have shown that utiliz-
ing the information in various
subspaces can improve the effi-
ciency of decision-based attacks.
For instance, QEBA [29] samples
the random noise for gradient esti-
mation in the spatial transformed
space or low frequency space but minimizes the perturbation in the input space
with estimated gradient. Surfree [35] optimizes the perturbation in the subspace
of the input space determined by a unit vector randomly sampled in the low
frequency space. In general, the low frequency space contains the most critical
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Non-adversarial space Adversarial space

Decision boundary

Benign

Adv.

Fig. 3. Illustration of a symmetric candi-
date triangle (x, xadv

t and xadv
t+1,2). When

the angle β cannot result in adversarial
example (xadv

t+1,1), we would further con-
struct the symmetric triangle based on
line 〈x, xadv

t 〉 to check data point xadv
t+1,2

Non-adversarial space Adversarial space

Decision boundary

Benign Adv.

Fig. 4. The effect of magnitude on α
for the candidate triangle used in TA.
For the same sampled angle β, the
larger angle α leads to smaller pertur-
bation but is also more likely to cross
over the decision boundary

information for images. With the poor performance of TA in the input space as
shown in Sect. 4.4 and the generality of the geometric property shown in Fig. 2,
we directly optimize the perturbation in the frequency space at each iteration
for effective dimensionality reduction. And we randomly sample a d-dimensional
line across the benign sample in the low frequency space (top 10%). The sampled
line, directional line from benign sample x and current adversary xadv

t can deter-
mine a unique 2-D subspace S of the frequency space, in which we can construct
the candidate triangle to minimize the perturbation. The final adversary can be
converted into the input space by Inverse DCT (IDCT).

Searching the Candidate Triangle. Given a subspace St, the candidate tri-
angle only depends on angle β since α is updated during the optimization. As
shown in Fig. 3, if we search an angle β without leading to an adversarial exam-
ple (xadv

t+1,1), we can further construct a symmetric triangle with the same angle
in the opposite direction to check data point xadv

t+1,2, which has the same mag-
nitude of perturbation as xadv

t+1,1 but in different direction. We denote the angle
as −β for the symmetric triangle without ambiguity. Note that with the same
angle α, a larger angle β would make the third vertex closer to the input sample
x, i.e., smaller perturbation. After determining the subspace St, we first check
angle βt,0 = max(π − 2α, β), where β = π/16 is a pre-defined small angle. If
neither T (x, xadv

t , αt, βt,0,St) nor T (x, xadv
t , αt,−βt,0,St) is adversarial, we give

up this subspace because it brings no benefit. Otherwise, we adopt binary search
to find an optimal angle β∗ ∈ [max(π −2α, β),min(π −α, π/2)] which is as large
as possible to minimize the perturbation. Here we restrict the upper bound of
β because T (x, xadv

t , αt, β,St) would be at the opposite direction w.r.t. x for
β > π/2 and π − α guarantees a valid triangle.

Adjusting Angle α. Intuitively, angle α balances the magnitude of perturba-
tion and the difficulty to find an adversarial example.
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Algorithm 1: Triangle Attack
Input: Target classifier f with parameters θ; Benign sample x with

ground-truth label y; Maximum number of queries Q; Maximum
number of iteration N for each sampled subspace; Dimension of the
directional line d; Lower bound β for angle β.

Output: An adversarial example xadv.
1 Initialize a large adversarial perturbation δ0;

2 xadv
0 = x + δ0, q = 0, t = 0, α0 = π/2;

3 while q < Q do
4 Sampling 2-D subspace St in the low frequency space;
5 βt,0 = max(π − 2α, β);

6 if f(T (x, xadv
t , αt,0, βt,0, St); θ) = f(x; θ) then

7 q = q + 1, update αt,0 based on Eq. (3);

8 if f(T (x, xadv
t , αt,0, −βt,0, St); θ) = f(x; θ) then

9 q = q + 1, update αt,0 based on Eq. (3);
10 Go to line 3; � give up this subspace

11 βt,0 = min(π/2, π − α);

12 for i = 0 → N do � binary search for angle β

13 βt,i+1 = (βt,i + βt,i)/2;

14 if f(T (x, xadv
t , αt,i, βt,i+1, St); θ) = f(x; θ) then

15 q = q + 1, update αt,i based on Eq. (3);

16 if f(T (x, xadv
t , αt,i, −βt,i+1, St); θ) = f(x; θ) then

17 βt,i+1 = βt,i+1, βt,i+1 = βt,i;

18 q = q + 1, update αt,i+1 based on Eq. (3);

19 xadv
t+1 = T (x, xadv

t , αt,i+1, βt,i+1, St), t = t + 1;

20 return xadv
t .

Proposition 1. With the same angle β, a smaller angle α makes it easier to
find an adversarial example while a larger angle α leads to smaller perturbation.

Intuitively, as shown in Fig. 4, a smaller angle α results in larger perturbation
but is more likely to cross over the decision boundary, making it easier to search
an adversarial example, and vice versa. It is hard to consistently find an optimal
α for each iteration, letting alone various input images and target models. Thus,
we adaptively adjust angle α based on the crafted adversarial example:

αt,i+1 =
{

min(αt,i + γ, π/2 + τ) if f(xadv
t,i+1; θ) �= y

max(αt,i − λγ, π/2 − τ) Otherwise
(3)

where xadv
t,i+1 = T (x, xadv

t , αt,i, βt,i,St) is the adversarial example generated by
αt,i, γ is the change rate, λ is a constant, and τ restricts the upper and lower
bounds of α. We adopt λ < 1 to prevent decreasing the angle too fast consid-
ering much more failures than successes during the perturbation optimization.
Note that a larger angle α makes it harder to find an adversarial example.
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However, a too small angle α results in a much lower bound for β, which also
makes T (x, xadv

t , αt, βt,St) far away from the current adversarial example xadv
t ,

decreasing the probability to find an adversarial example. Thus, we add bounds
for α to restrict it in an appropriate range.

TA iteratively searches the candidate triangle in subspace St sampled from
the low frequency space to find the adversarial example and update angle α
accordingly. The overall algorithm of TA is summarized in Algorithm 1.

4 Experiments

We conduct extensive evaluations on the standard ImageNet dataset using five
models and Tencent Cloud API to evaluate the effectiveness of TA. Code is
available at https://github.com/xiaosen-wang/TA.

Table 1. Attack success rate (%) on five models under different RMSE thresholds. The
maximum number of queries is set to 1,000. We highlight the highest attack success
rate in bold

Model VGG-16 Inception-v3 ResNet-18 ResNet-101 DenseNet-121

RMSE 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

OPT 76.0 38.5 5.5 34.0 17.0 4.0 67.0 36.0 6.0 51.5 21.0 5.0 51.5 29.0 5.5

SignOPT 94.0 57.5 12.5 50.5 27.0 8.0 84.5 49.5 13.0 69.0 33.0 8.0 69.5 44.0 10.0

HSJA 92.5 58.5 13.0 32.5 14.0 4.0 83.0 51.0 12.5 71.5 37.5 12.0 70.5 43.5 10.5

QEBA 98.5 86.0 29.0 78.5 54.5 17.0 98.0 81.5 34.5 94.0 59.0 20.5 91.0 66.0 24.0

BO 96.0 72.5 17.0 75.5 43.0 10.0 94.5 74.0 16.0 89.5 63.0 16.5 93.0 64.5 16.5

GeoDA 99.0 94.0 35.0 89.0 61.5 23.5 99.5 90.0 30.5 98.0 81.5 22.0 100.0 84.5 27.5

Surfree 99.5 92.5 39.5 87.5 67.5 24.5 98.5 87.0 36.0 95.5 76.5 27.0 97.0 78.0 29.0

TA (Ours) 100.0 95.0 44.5 96.5 81.5 30.0 100.0 94.0 51.5 99.0 88.5 40.0 99.5 92.5 43.5

4.1 Experimental Setup

Dataset. To validate the effectiveness of the proposed TA, following the setting
of Surfree [39], we randomly sample 200 correctly classified images from the
ILSVRC 2012 validation set for evaluation on the corresponding models.

Models. We consider five widely adopted models, i.e., VGG-16 [44], Inception-
v3 [45], ResNet-18 [24], ResNet-101 [24] and DenseNet-121 [25]. To validate the
applicability in the real world, we evaluate TA on Tencent Cloud API1.

Baselines. We take various decision-based attacks as our baselines, including
four gradient estimation based attacks, i.e., OPT [11], SignOPT [12], HSJA [8],
QEBA [29], one optimization based attack, i.e., BO [43], and two geometry-
inspired attacks, i.e., GeoDA [38], Surfree [35].
1 https://cloud.tencent.com/.

https://github.com/xiaosen-wang/TA
https://cloud.tencent.com/
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Fig. 5. Number of queries to achieve the given attack success rate on ResNet-18 for
the attack baselines and the proposed TA under various perturbation budgets. The
maximum number of queries is 10,000

Evaluation metrics. Following the standard setting in QEBA [29], we adopt
the root mean squared error (RMSE) between benign sample x and adversarial
example xadv to measure the magnitude of perturbation:

d(x, xadv) =

√√√√ 1
w · h · c

w∑
i=1

h∑
j=1

c∑
k=1

(x[i, j, k] − xadv[i, j, k])2, (4)

where w, h, c are the width, height and number of channels of the input image,
respectively. We also adopt the attack success rate, the percentage of adversarial
examples which reach a certain distance threshold.

Hyper-parameters. For fair comparison, all the attacks adopt the same adver-
sarial perturbation initialization approach as in [35] and the hyper-parameters
for baselines are exactly the same as in the original papers. For our TA, we adopt
the maximum number of iterations in each subspace N = 2, the dimension of
directional line d = 3 and γ = 0.01, λ = 0.05 and τ = 0.1 for updating angle α.

4.2 Evaluation on Standard Models

To evaluate the effectiveness of TA, we first compare the attack performance on
five popular models with different decision-based attacks and report the attack
success rate under various RMSE thresholds, namely 0.1, 0.05 and 0.001.

We first evaluate the attack within 1,000 queries, which is widely adopted in
recent works [8,35,38]. The attack success rate is summarized in Table 1, which
means the attack would fail to generate adversarial example for the input image
if it takes 1,000 queries without reaching the given threshold. We can observe
that TA consistently achieves much higher attack success rate than existing
decision-based attacks under various perturbation budgets on five models with
different architectures. For instance, TA outperforms the runner-up attack with
a clear margin of 1.0%, 7.5% and 13.0% under the RMSE threshold of 0.1,
0.05, 0.01 on ResNet-101, which is widely adopted for evaluating the decision-
based attacks. In particular, the proposed TA significantly outperforms the two
geometry-inspired attacks, i.e., GeoDA [38] and Surfree [35], which exhibit the
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Table 2. The number of adversarial examples successfully generated by various attack
baselines and the proposed TA on Tencent Cloud API within 200/500/1,000 queries.
The results are evaluated on 20 randomly sampled images from the correctly classified
images in ImageNet due to the high cost of online APIs

RMSE OPT SignOPT HSJA QEBA GeoDA Surfree TA (Ours)

0.1 4/6/6 8/8/9 7/8/8 12/12/12 15/15/15 13/13/13 17/17/17

0.05 1/3/3 4/4/7 6/6/8 11/11/12 13/14/14 12/12/13 15/17/17

0.01 1/1/2 1/1/3 2/5/6 3/8/9 3/7/12 5/8/10 8/12/13

best attack performance among the baselines. This convincingly validates the
high effectiveness of the proposed TA. Besides, among the five models, Inception-
v3 [45], which is rarely investigated in decision-based attacks, exhibits better
robustness than other models under various perturbation budgets against both
baselines and TA. Thus, it is necessary to thoroughly evaluate the decision-based
attacks on various architectures instead of only ResNet models.

To further verify the high efficiency of TA, we investigate the number of
queries to achieve various attack success rates under the RMSE threshold of
0.1, 0.05 and 0.01, respectively. The maximum number of queries is set to 10,000
and the results on ResNet-18 are summarized in Fig. 5. As shown in Fig. 5a and
5b, TA needs much less number of queries to achieve various attack success rates
with RMSE threshold of 0.1 and 0.05, showing the high query efficiency of our
method. For the smaller threshold of 0.01, as shown in Fig. 5c, our TA still needs
less number of queries when achieving the attack success rate smaller than 50%
but fails to achieve the attack success rate higher than 60%. Note that as shown
in Fig. 6 and Table 1, RMSE threshold of 0.01 is very rigorous so that the per-
turbation is imperceptible but is also hard to generate the adversarial examples
for decision-based attacks. Since we mainly focus on the query efficiency of attack
only based on geometric information, the attack performance under the RMSE
threshold of 0.01 is acceptable because it is impractical for such high number of
queries when attacking real-world applications.

Besides, since TA aims to improve the query efficiency by utilizing the trian-
gle geometry, the global optima might be worse than existing gradient estimation
based attacks when more queries are allowed. Other geometry-inspired methods
also perform poorer than QEBA [29] in this case without gradient estimation.
However, it is not the goal of TA and can be easily solved using gradient estima-
tion. With the high efficiency of TA, we can achieve higher attack performance
with lower number of queries by taking the TA as warm-up for the precise gra-
dient estimation attacks, such as QEBA [29], if the high number of queries is
acceptable. We integrate the gradient estimation used in QEBA [29] into TA
after 2,000 queries, dubbed TAG. For the perturbation budget of 0.01, TAG
achieves the attack success rate of 95% using 7,000 queries, which is better than
the best baseline with the attack success rate of 92% using 9,000 queries.
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4.3 Evaluation on Real-world Applications

With the superior performance and unprecedented progress of DNNs, numerous
companies have deployed DNNs for a variety of tasks and also provide commer-
cial APIs (Application Programming Interfaces) for different tasks. Developers
can pay for these services to integrate the APIs into their applications. However,
the vulnerability of DNNs to adversarial examples, especially the prosperity of
decision-based attack which does not need any information of target models,
poses severe threats to these real-world applications. With the high efficiency of
TA, we also validate its practical attack applicability using Tencent Cloud API.
Due to the high cost of commercial APIs, we randomly sample 20 images from
ImageNet validation set and the maximum number of queries is 1,000.

The numbers of successfully attacked images are summarized in Table 2. We
can observe that TA successfully generates more adversarial examples than the
attack baselines within 200, 500 and 1,000 queries under various RMSE thresh-
olds. In particular, TA can generate even more adversarial examples within 500
queries than the best attack baselines within 1,000 queries, showing the superior-
ity of TA. We also visualize some adversarial examples generated by TA in Fig. 6.
As we can see, TA can successfully generate high quality adversarial examples
for various classes with few queries (≤200), validating the high applicability of
TA in real-world. Especially when the number of queries is 200, the adversar-
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ial examples generated by TA are almost visually imperceptible for humans,
highlighting the vulnerability of current commercial applications.

4.4 Ablation Study

In this section, we conduct a series of ablation studies on ResNet-18, namely
the subspace chosen by TA, the ratio for low frequency subspace and the change
rate γ and λ for updating angle α. The parameter studies on the dimension of
sampled line d and the bound τ for α are summarized in Appendix B.

Table 3. Ablation study on ResNet-
18 for different spaces, i.e. input
space (TAI), frequency space for line
sampling but input space for per-
turbation optimization (TAFI), and
full frequency space without mask
(TAF)

RMSE TAI TAFI TAF TA

0.1 39.5 97.5 98.5 100.0

0.05 17.5 73.0 85.0 94.0

0.01 3.0 22.5 25.5 51.5

On the Subspace Chosen by TA. Dif-
ferent from existing decision-based attacks,
the generality of geometric property used by
TA makes it possible to directly optimize
the perturbation in the frequency space.
To investigate the effectiveness of frequency
space, we implement TA in various spaces,
namely input space (TAI), sampling the
directional line in the frequency space but
optimizing the perturbation in the input
space (TAFI) used by Surfree [35] and full
frequency space (TAF). As shown in Table 3,
due to the high-dimensional input space,
TAI cannot effectively explore the neighbor-
hood of the input sample to find good perturbation and shows very poor perfor-
mance. With the information from frequency space to sample the subspace, TAFI

exhibits much better results than TAI. When optimizing the perturbation in the
full frequency space, TAF can achieve higher attack success rate than TAFI,
showing the benefit of frequency space. When sampling the subspace using the
low frequency information, TA achieves much better performance than all the
other attacks, supporting the necessity and rationality of the subspace chosen
by TA.

On the Ratio for Low Frequency Subspace. The low frequency domain
plays key role in improving the efficiency of TA. However, there is no criterion
to identify the low frequency since it corresponds to high frequency, which is
usually determined by the lower part of the frequency domain with a given
ratio. Here we investigate the effect of this ratio on the attack performance of
TA. As shown in Fig. 7, the ratio has more significant influence on the attack
success rate under the smaller RMSE threshold. In general, increasing the ratio
roughly decreases the attack performance because it makes TA focus more on the
high frequency domain, containing less critical information of the image. Thus,
we adopt the lower 10% parts as the low frequency subspace for high efficiency,
which also helps TA effectively reduce the dimension, making it easier for attack.

On the Change Rate γ and λ for Updating Angle α. As stated in Sect. 3.3,
the angle α plays a key role in choosing a better candidate triangle but it is
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Fig. 8. Attack success rate (%) of TA
on ResNet-18 within 1,000 queries with
various γ and λ used for updating α
under RMSE = 0.01

hard to find a uniformly optimal α for different iterations and input images. We
assume that the larger angle α makes it harder to find a candidate triangle but
leads to smaller perturbation. As in Eq. (3), if we successfully find a triangle, we
would increase α with γ. Otherwise, we would decrease α with λγ. We investigate
the impact of various γ and λ in Fig. 8. Here we only report the results for
RMSE = 0.01 for clarity and the results for RMSE = 0.1/0.05 exhibit the
same trend. In general, γ = 0.01 leads to better attack performance than γ =
0.05/0.005. When we increase λ with γ = 0.01, the attack success rate increases
until λ = 0.05 and then decreases. We also investigate the impact of τ which
controls the bound for α in Eq. (3), which shows stable performance within 1,000
queries but takes effect for 10,000 queries and we simply adopt τ = 0.1. In our
experiments, we adopt γ = 0.01, λ = 0.05 and τ = 0.1.

4.5 Further Discussion
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Fig. 9. Attack success rate (%) of TA using
various number of iterations for binary search
(Nbs) to restrict the adversary on the decision
boundary at each iteration

BoundaryAttack [5] adopts ran-
dom walk on the decision bound-
ary to minimize the perturbation
for decision-based attack and the
subsequent works often follow this
setting to restrict the adversarial
example on the decision bound-
ary. We argue that such a restric-
tion is not necessary and do not
adopt it in our TA. To validate
this argument, we also conduct
binary search to move the adver-
sarial example towards the decision
boundary at each iteration after we
find the candidate triangle to inves-
tigate the benefit of this restriction.
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As illustrated in Fig. 9, when the number of iterations for binary search (Nbs) is
0, it is vanilla TA that exhibits the best attack success rate. When we increase
Nbs, the binary search takes more queries in each iteration which degrades the
total number of iterations under the given total number of queries. In gen-
eral, the attack success rate stably decreases when increasing Nbs especially for
RMSE = 0.01, which means the cost (i.e., queries) for binary search to restrict
the adversarial example on the decision boundary is not worthy. Such restriction
might not be reliable and rational either for most decision-based attacks, espe-
cially for geometry-inspired attacks. We hope this would inspire more attention
to discuss the necessity of restricting the adversarial examples on the decision
boundary and shed new light on the design of more powerful decision-based
attacks.

5 Conclusion

In this work, we found that the benign sample, the current and next adversarial
examples can naturally construct a triangle in a subspace at each iteration for any
iterative attacks. Based on this observation, we proposed a novel decision-based
attack, called Triangle Attack (TA), which utilizes the geometric information
that the longer side is opposite the larger angle in any triangle. Specifically, at
each iteration, TA randomly samples a directional line across the benign sample
to determine a subspace, in which TA iteratively searches a candidate triangle to
minimize the adversarial perturbation. With the generality of geometric prop-
erty, TA directly optimizes the adversarial perturbation in the low frequency
space generated by DCT with much lower dimensions than the input space, and
significantly improves the query efficiency. Extensive experiments demonstrate
that TA achieves a much higher attack success rate within 1,000 queries and
needs much less queries to achieve the same attack success rate. The practical
applicability on Tencent Cloud API also validates the superiority of TA.
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