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Abstract. This paper introduces a data-driven shape completion app-
roach that focuses on completing geometric details of missing regions of
3D shapes. We observe that existing generative methods lack the train-
ing data and representation capacity to synthesize plausible, fine-grained
details with complex geometry and topology. Our key insight is to copy
and deform patches from the partial input to complete missing regions.
This enables us to preserve the style of local geometric features, even if it
drastically differs from the training data. Our fully automatic approach
proceeds in two stages. First, we learn to retrieve candidate patches from
the input shape. Second, we select and deform some of the retrieved can-
didates to seamlessly blend them into the complete shape. This method
combines the advantages of the two most common completion methods:
similarity-based single-instance completion, and completion by learning
a shape space. We leverage repeating patterns by retrieving patches from
the partial input, and learn global structural priors by using a neu-
ral network to guide the retrieval and deformation steps. Experimen-
tal results show our approach considerably outperforms baselines across
multiple datasets and shape categories. Code and data are available at
https://github.com/GitBoSun/PatchRD.

1 Introduction

Completing geometric objects is a fundamental problem in visual computing
with a wide range of applications. For example, when scanning complex geomet-
ric objects, it is always difficult to scan every point of the underlying object [33].
The scanned geometry usually contains various levels of holes and missing
geometries, making it critical to develop high-quality geometry completion tech-
niques [1,10,13,18,24,61,68]. Geometry completion is also used in interactive
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Fig. 1. We propose PatchRD, a non-parametric shape completion method based on
patch retrieval and deformation. Compared with the parametric generation methods,
our method is able to recover complex geometric details as well as keeping the global
shape smoothness.

shape modeling [7], as a way to suggest additional content to add to a par-
tial 3D object/scene. Geometry completion is challenging, particularly when the
missing regions contain non-trivial geometric content.

Early geometry completion techniques focus on hole filling [1,10,13,18,24,
61,68]. These techniques rely on the assumption that the missing regions are
simple surface patches and can be filled by smoothly extending hole regions.
Filling regions with complex shapes rely on data priors. Existing approaches fall
into two categories. The first category extracts similar regions from the input
shape. The hypothesis is that a physical 3D object naturally exhibits repeating
content due to symmetries and texture. While early works use user-specified
rules to retrieve and fuse similar patches, recent works have studied using a
deep network to automatically complete a single image or shape [20,21,62]. The
goal of these approaches is to use different layers of the neural network (e.g.,
a convolutional neural network) to automatically extract repeating patterns.
However, these approaches are most suitable when the repeating patterns are
prevalent within the partial input. They cannot infer correlations between the
missing surface and the observed surface (Fig. 1).

Another category [12,17,43,46,59,71,73,78] consists of data-driven tech-
niques, which implicitly learn a parametric shape space model. Given an incom-
plete shape, they find the best reconstruction using the underlying generative
model to generate the complete shape. This methodology has enjoyed success
for specific categories of models such as faces [4,48,74,80] and human body
shapes [1,26,30,38,45], but they generally cannot recover shape details due to
limited training data and difficulty in synthesizing geometric styles that exhibit
large topological and geometrical variations.

This paper introduces a shape completion approach that combines the
strengths of the two categories of approaches described above. Although it
remains difficult to capture the space of geometric details, existing approaches
can learn high-level compositional rules such as spatial correlations of geometric
primitives and parts among both the observed and missing regions. We propose



PatchRD 505

to leverage this property to guide similar region retrieval and fusion on a given
shape for geometry completion.

Specifically, given an input incomplete shape, the proposed approach first
predicts a coarse completion using an off-the-shelf method. The coarse comple-
tion does not necessarily capture the shape details but it provides guidance on
locations of the missing patches. For each coarse voxel patch, we learn a shape
distance function to retrieve top-k detailed shape patches in the input shape.
The final stage of our approach learns a deformation for each retrieved patch
and a blending function to integrate the retrieved patches into a continuous
surface. The deformation prioritizes the compatibility scores between adjacent
patches. The blending functions optimize the contribution of each patch and
ensure surface smoothness.

Fig. 2. Approach pipeline. Given an incomplete shape S, we first predict a coarse
shape C with the rough structure and no details. For each patch on C, K detailed
patch candidates are retrieved from the input shape. Then we predict deformations and
blending weights for all retrieved candidates. Finally, the output shape Ŝ is computed
by summing up the deformed patches and their blending weights.

Experimental results on the ShapeNet dataset [6] show that our approach
outperforms existing shape completion techniques for reconstructing shape
details both qualitatively and quantitatively.

In summary, our contributions are:

– We propose a non-parametric shape completion method based on patch
retrieval and deformation.

– Our method preserves local shape details while enforcing global consistency.
– Our method achieves state-of-the-art shape completion results compared with

various baselines.

2 Related Work

Shape Completion. Shape completion is a crucial and long-studied task in
geometry processing. Non-data-driven works [27,28,40,54] address hole-filling in
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a purely geometric manner. Without any high-level prior on the resulting shape,
they target filling holes in a “smooth-as-possible” manner with membranes. To
complete more complex shapes, several works [29,34,36,44,50,55] rely on data-
driven methods to get the structure priors or part references. Similarly to our
method, [34,44,50] retrieve some candidate models from a database, then per-
form a non-rigid surface alignment to deform the retrieved shape to fit the input.
However, our approach operates at the patch level and can reconstruct shapes
that are topologically different from those in the training data. With the devel-
opment of deep learning, neural networks can be used to learn a shape prior
from a large dataset and then complete shapes. Voxel-based methods [12,69,70]
are good at capturing rough structures, but are limited to low resolution by the
cubic scaling of voxel counts. Our framework is especially designed to circumvent
these resolution limitations. Alternatively, point cloud completion [42,59,67,71–
73,77,78] has become a popular venue as well. [25,66,73] use coarse-to-fine struc-
tures to densify the output point cloud and refine local regions. NSFA [79] and
HRSC [19] used a two stage method to infer global structures and refine local
geometries. SnowflakeNet [71] modeled the progressive generation hierarchically
and arranged the points in locally structured patterns. As point clouds are sparse
and unstructured, it is difficult to recover fine-grained shape details. 3D-EPN
[12] and our method both use coarse-to-fine and patch-based pipelines. However,
their method only retrieves shapes from the training set and directly copies the
nearest patches based on low-level concatenation of distance fields. Our method
retrieves patch-level details from the input and jointly learns deformation and
blending, which enables our method to handle complex details as well as main-
tain global coherence.

Patch-Based Image In-Painting. In the 2D domain, many works utilize
detailed patches to get high-resolution image inpainting results. Traditional
methods [2,14,22,32] often synthesize textures for missing areas or expanding
the current images. PatchMatch [2] proposed an image editing method by effi-
ciently searching and replacing local patches. SceneComp [22] patched up holes
in images by finding similar image regions in a large database. Recently, with the
power of neural networks, more methods [37,47,49,60,75,76] use patch-guided
generation to get finer details. [37,47,60] modeled images to scene graphs or
semantic layouts and retrieve image patches for each graph/layout component.
[49,75,76] add transformers [65], pixel flow and patch blending to get better
generation results respectively. Our method leverages many insights from the
2D domain, however these cannot be directly transferred to 3D, for two reasons:
i) the signals are inherently different, as 2D pixels are spatially-dense and con-
tinuous, while voxels are sparse and effectively binary; ii) the number of voxels
in a domain scales cubically with resolution, as opposed to the quadratic scaling
of pixels. This significantly limits the performance of various algorithms. The
novel pipeline proposed herein is tailor-made to address these challenges.

3D Shape Detailization. Adding or preserving details on 3D shapes is an
important yet challenging problem in 3D synthesis. Details can be added to a
given surface via a reference 3D texture [23,56,81]. More relevant to use various
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geometric representations to synthesize geometric details [5,8,9,16,35]. DLS [5]
and LDIF [16] divide a shape to different local regions and reconstruct local
implicit surfaces. D2IM-Net [35] disentangles shape structure and surface details.
DECOR-GAN [9] trained a patch-GAN to transfer details from one shape to
another. In our case, we focus on the task of partial-to-full reconstruction, and
use detailization as a submodule during the process.

3D Generation by Retrieval. Instead of synthesizing shapes from scratch
with a statistical model, it is often effective to simply retrieve the nearest shape
from a database [15,31,57,58]. This produces high-quality results at the cost
of generalization. Deformation-aware retrieval techniques [39,51,63,64] improve
the representation power from a limited database. Our method also combines
deformation with retrieval, but our retrieval is at the level of local patches from
the input shape itself. RetrievalFuse [52] retrieves patches from a database for
scene reconstruction. An attention-based mechanism is then used to regener-
ate the scene, guided by the patches. In contrast, we directly copy and deform
retrieved patches to fit the output, preserving their original details and fidelity.

3 Overview

Our framework receives an incomplete or a partial shape S as input and com-
pletes it into a full detailed shape Ŝ. Our main observation is that local shape
details often repeat and are consistent across different regions of the shape, up to
an approximately rigid deformation. Thus, our approach extracts local regions,
which we call patches, from the given incomplete shape S, and uses them to
complete and output a full complete shape. In order to analyze and synthesize
topologically diverse data using convolutional architectures, we represent shapes
and patches as voxel grids with occupancy values, at a resolution of sshape cells.

The key challenges facing us are choosing patches from the partial input, and
devising a method to deform and blend them into a seamless, complete detailed
output. This naturally leads to a three-stage pipeline: (i) complete the partial
input to get a coarse complete structure C to guide detail completion; (ii) for
each completed coarse patch in C, retrieve candidate detailed patches from the
input shape S; (iii) deform and blend the retrieved detailed patches to output the
complete detailed shape Ŝ (see Fig. 2). Following is an overview of the process;
we elaborate on each step in the following sections.

Coarse Completion. We generate a full coarse shape C from the partial input
S using a simple 3D-CNN architecture. Our goal is to leverage advances in 3D
shape completion, which can provide coarse approximations of the underlying
ground truth, but does not accurately reconstruct local geometric details.

Patch Retrieval (Sect. 4). We train another neural network to retrieve k can-
didate detailed patches from S for each coarse patch in C. Namely, we learn geo-
metric similarity, defined by a rigid-transformation-invariant distance d, between
the coarse and detailed patches.
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Deformation and Blending of Patches (Sect. 5). Given k candidate
patches, we use a third neural network to predict rigid transformations and
blending weights for each candidate patch, which together define a deformation
and blending of patches for globally-consistent, plausible shape completion.

4 Patch Retrieval

The input to this stage is the partial detailed shape S, and a coarse and com-
pleted version of the shape, C. The goal of this step is to retrieve a set of patch
candidates that can be deformed and stitched to get a fully detailed shape. A
patch is a cube-shaped sub-region extracted from a shape, composed of s3patch
voxels. Our patch sampling process P takes a shape as input and outputs a
collection of patches, where coarse patches P(C) serve as queries and detailed
patches from the partial input P(S) as sources.

Fig. 3. Retrieval learning. We learn a feature mapping to predict geometric distances
between the query coarse patches and the sampled detailed patches. We use the geo-
metric distances between the GT detailed patches and the sampled patches as the
supervision. Distances for patches that are close up to a rigid transformation are small.
Otherwise, distances are large.

In order to decide whether a retrieved detailed patch could be an apt substitu-
tion for a true detailed patch, we propose a geometric distance metric invariant to
rigid deformations (Sect. 4.1). This geometric distance will be used to supervise
the neural network used during testing time, which learns similarities between
coarse patches P(C) and their detailed counterparts P(S) (Sect. 4.2). Finally, we
describe how to use this network at inference time to retrieve candidate patches
for the full shape (Sect. 4.3).

4.1 Geometric Distance

We define a measure of geometric distance, d, between two detailed shape patches
(p1, p2). This metric should be agnostic to their poses, since the pose can be fixed
at the deformation stage, hence we define the distance as the minimum over all
possible rigid transformations of the patch:

d(p1, p2) = min
T

‖T (p1) − p2‖1
‖T (p1)‖1 + ‖p2‖1

(1)
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where T is a rigid motion composed with a possible reflection, i.e., T = (R, t, f),
R ∈ SO(3) is the rotation, t ∈ R

3 is the translation, f ∈ {0, 1} denotes if a
reflection is applied, and || · ||1 denotes the L1 norm of positional vectors to
patch centers. To practically compute this distance, we run ICP [3], initialized
from two transformations (with and without reflection enabled) that align patch
centers. While this geometric distance can be computed for detailed patches, at
inference time we only have coarse patches. Therefore, we train a network to
embed coarse patches into a latent space in which Euclidean distances match
the geometric distances of the detailed patches they represent.

4.2 Metric Embedding

We train two neural networks to act as encoders, one for coarse patches and
one for detailed patches, Ec and Ed, respectively. We aim to have the Euclidean
distances between their generated codes reflect the distances between the true
detailed patches observed during training. Given a coarse patch c ∈ P(C) with
its true corresponding detailed patch q ∈ P(Ŝgt), as well as a some other detailed
patch p ∈ P(S), we define a metric embedding loss:

Lr =
∑

(c,p,q)∈T
‖‖Ec(c) − Ed(p)‖2 − d(p, q))‖2. (2)

where d(p, q) is the geometric distance defined in Eq. (1). Our training triplets
are composed of true matches and random patches: T = Ttrue ∪ Trnd. Where in
both sets c is a random coarse patch, q is the corresponding true detailed patch.
We either set p = q for Ttrue or randomly sample p ∈ P(S) for Trnd. See Fig. 3
for an illustration.

4.3 Retrieval on a Full Shape

We can now use trained encoder networks at inference time to retrieve detailed
patches for each coarse patch. First, we encode all the detailed patches in P(S)
via Ed. Similarly, for each non-empty coarse patch c ∈ P(C) with lowest corner
at location l, we encode it with Ec and find the K-nearest-neighbor detailed
codes. We store the list of retrieved patches for each location, denoted as Rl.

We sample the coarse patches using a fixed-size (s3patch) sliding window with
a stride γpatch. Note that in the retrieval stage we do not assume that we know
which parts of the detailed shape need to be completed. Since our feature learning
step observed a lot of positive coarse/fine pairs with the detailed input, we found
that the input is naturally reconstructed from the retrieved detailed patches.

5 Deformation and Blending of Patches

The input to this stage is the coarse shape C, partial input S, and the retrieval
candidates. The output is the full detailed shape Ŝ, produced by deforming
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and blending the retrieved patches. As illustrated by Fig. 2 we first apply a
rigid transformation to each retrieved patch and then blend these transformed
patches into the final shape. Our guiding principle is the notion of partition-of-
unity [41], which blends candidate patches with optimized transformations into
a smooth completion. Unlike using fixed weighting functions, we propose to learn
the blending weights. These weights serve the role of selecting candidate patches
and stitching them smoothly.

Table 1. Shape completion results on the random-crop dataset on 8 ShapeNet cate-
gories. We show the L2 Chamfer distance (CD) (×103) between the output shape and
the ground truth 16384 points from PCN dataset [78] (lower is better). Our method
reduces the CD drastically compared with the baselines.

Average Chair Plane Car Table Cabinet Lamp Boat Couch

AtlasNet [17] 7.03 6.08 2.32 5.32 5.38 8.46 14.20 6.01 8.47

Conv-ONet [46] 6.42 2.91 2.29 8.60 7.94 12.6 5.82 4.03 7.21

TopNet [59] 6.30 5.94 2.18 4.85 5.63 5.13 15.32 5.60 5.73

3D-GAN [69] 6.00 6.02 1.77 3.46 5.08 7.29 12.23 7.20 4.92

PCN [78] 4.47 3.75 1.45 3.58 3.32 4.82 10.56 4.22 4.03

GRNet [73] 2.69 3.27 1.47 3.15 2.43 3.35 2.54 2.50 2.84

VRCNet [42] 2.63 2.96 1.30 3.25 2.35 2.98 2.86 2.23 3.13

SnowflakeNet [71] 2.06 2.45 0.72 2.55 2.15 2.76 2.17 1.33 2.35

PatchRD (Ours) 1.22 1.08 0.98 1.01 1.32 1.45 1.23 0.99 1.67

We observe that learning the blending weights requires some context (our
method needs to be aware of at least a few neighboring patches), but does
not require understanding the whole shape (coarse shape and retrieved patches
already constrain the global structure). Thus, to maximize efficiency and gen-
eralizability, we opt to perform deformation and blending at the meso-scale of
subvolumes V ⊂ S with size ssubv.

Next, we provide more details on our blending operator (Sect. 5.1) and how
to learn it from the data (Sect. 5.2).

5.1 The Deformation and Blending Operator

Given a subvolume V , we first identify [rm,m = 1...M ] an ordered list of M
best patches to be considered for blending. These patches are from the retrieved
candidates Rl such that l ∈ V , and sorted according to two criteria: (i) retrieval
index, (ii) x, y, z ordering. If more than M such patches exist, we simply take
the first M . Each patch rm is transformed with a rigid motion and possible
reflection: Tm, and we have a blending weight for each patch at every point x in
our volume: ωm[x]. The output at voxel x is the weighted sum of the deformed
blending candidates:
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V [x] =
1

ξ[x]

∑

m=1...M

ωm[x] · Tm(rm)[x] (3)

where ωm[x] is the blending weight for patch m at voxel x, and Tm(rm) is the
transformed patch (placed in the volume V , and padded with 0), and ξ[x] =∑

m=1..M ωm[x] is the normalization factor. At inference time, when we need to
reconstruct the entire shape, we sample V over the entire domain Ŝ (with stride
γsubv), and average values in the region of overlap.

5.2 Learning Deformation and Blending

Directly optimizing deformation and blending is prone to being stuck in local
optimum. To address this we develop a neural network to predict deformations
and blending weights and train it with reconstruction and smoothness losses.

Prediction Network. We train a neural network g to predict deformation and
blending weights. The network consists of three convolutional encoders, one for
each voxel grid: the coarse shape (with a binary mask for the cropped subvol-
ume V ), the partial input, and the tensor of retrieved patches (M channels at
resolution of V ). We use fully-connected layers to mix the output of convolu-
tional encoders into a bottleneck, which is than decoded into deformation T and
blending ω parameters.

Reconstruction Loss. The first loss Lrec aims to recover the target shape Ŝgt:

Lrec = ‖V gt − V ‖2, (4)

where V gt ⊂ Ŝgt and V ⊂ Ŝ are corresponding true and predicted subvolumes
(we sample V randomly for training).

Blending Smoothness Loss. The second loss Lsm regularizes patch pairs.
Specifically, if two patches have large blending weights for a voxel, then their
transformations are forced to be compatible on that voxel:

Lsm =
∑

x∈V

∑

m,n

‖ωm[x] · ωn[x] · (Tm(rm)[x] − Tn(rn)[x])‖

where x iterates over the volume and m,n over all retrieved patches. Note that
rm and rn are only defined on a small region based on where the patch is placed,
so this sum only matters in regions where transformed patches Tm(rm) and
Tn(rn) map to nearby points x accordingly.

Final Loss. The final loss term is

L = Lrec + αLsm. (5)
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6 Experiments

We primarily evaluate our method on the detail-preserving shape completion
benchmark (Sect. 6.1), and demonstrate that our method outperforms state-of-
the-art baselines (Sect. 6.2). We further demonstrate that our method can gener-
alize beyond the benchmark setup, handling real scans, data with large missing
areas, and novel categories of shapes (Sect. 6.3). Finally, we run an ablation study
(Sect. 6.4) and evaluate sensitivity to the size of the missing area (Sect. 6.5).

6.1 Experimental Setup

Implementation Details. We use the following parameters for all experiments.
The sizes of various voxel grids are: sshape = 128, spatch = 18, ssubv = 40 with
strides γpatch = 4, γsubv = 32. We sample |Trnd| = 800 and |Ttrue| = 400 triplets
to train our patch similarity (Sect. 4.2). Our blending operator uses M = 400 best
retrieved patches (Sect. 5.1). We set α = 10 for Eq. 5. To improve performance
we also define our blending weights ωm at a coarser level than V .

Input 3D-GAN Conv-ONet VRCNet Snowflake PatchRD
(Ours)

GT

Fig. 4. Qualitative shape completion results on the Random-Crop Dataset. Our results
recover more geometric details and keep the shape smooth while other baselines often
produce coarse, noisy, or discontinuous results.
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Table 2. FID comparison on the chair class (note that we can only apply this metric
to volumetric baselines). Our method produces more plausible shapes.

Conv-ONet [46] 3D-GAN [69] PatchRD(Ours)

FID 174.72 157.19 11.89

In particular, we use windows of size s3blend = 83 to have constant weight,
and compute the blending smoothness term at the boundary of these windows.

Dataset. We use shapes from ShapeNet [6], a public large-scale repository of
3D meshes to create the completion benchmark. We pick eight shape categories
selected in prior work PCN [78]. For each category, we use the same subset of
training and testing shapes with 80%/20% split as in DECOR-GAN work [9]. For
voxel-based methods, we convert each mesh to a 1283 voxel grid, and for point-
based baselines, we use the existing point clouds with 16384 points per mesh [78].
We create synthetic incomplete shapes by cropping (deleting) a random cuboid
with 10%–30% volume with respect to the full shape. This randomly cropped
dataset is generated to simulate smaller-scale data corruption. We also show
results on planar cutting and point scans in Sect. 6.3.

Metrics. To evaluate the quality of the completion, we use the L2 Chamfer
Distance (CD) with respect to the ground truth detailed shape. Since CD does
not really evaluate the quality of finer details, we also use Frechet Inception
Distance (FID), to evaluate plausibility. FID metric computes the distance of
the layer activations from a pre-trained shape classifier. We use 3D VGG16 [53])
trained on ShapeNet and activations of the first fully connected layer.

Baseline Approaches. To the best of our knowledge, we are the first to do
the 3D shape completion task on the random-cropped dataset. Considering the
task similarity, we compare our method with the other shape completion and
reconstruction baselines.

Our baselines span different shape representations: PCN [78], TopNet [59],
GRNet [73], VRCNet [42], and SnowFlakeNet [71] are point-based scan comple-
tion baselines, 3D-GAN [69] is a voxel-based shape generation method, Conv-
ONet [46] is an implicit surfaces-based shape reconstruction methods, and Atlas-
Net [17] is an atlas-based shape reconstruction method. We show our method
outperforms these baselines both quantitatively and qualitatively.

6.2 Shape Completion Results

Table 1 and Table 2 show quantitative comparisons between PatchRD and base-
lines, demonstrating that our method significantly outperforms all baselines.
PatchRD achieved superior performance on all categories except airplanes, which
shows that it generalizes well across different classes of shapes.

Specifically, the voxel-based baseline [69] produces coarse shapes where fine
details are missing. Point-based baselines [42,71] often have noisy patterns
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around on fine structures while our method has clean geometry details. The
implicit surface based method [46] could capture the details but the geometry
is not smooth and the topology is not preserved. Our method keeps the smooth
connection between geometry patches. More results can be found in the sup-
plemental materials. Figure 4 shows qualitative comparisons. We pick four rep-
resentative baselines for this visualization including point-based methods that
performed the best on the benchmark [42,71] as well as voxel-based [69] and
implicit-based methods [46]. Our results show better shape quality by recover-
ing local details as well as preserving global shape smoothness.

6.3 Other Applications

Real-World Application: Scan Completion. We test our method on real-
world shape completion from scans. We use shapes from ScanNet [11], 3D indoor
scene dataset as input to our method. Objects in ScanNet often have some
missing parts, especially thin structures, due to occlusion and incompleteness
of scan viewpoints. We convert these point clouds to voxel grids and apply our
completion technique trained on ShapeNet, see results in Fig. 5a. Note how our
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&#'("%)*'$+, -$%#$%!"#$%
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(Point Cloud)

Output Input
(Point Cloud)

Output Input
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Output Input
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(a) Shape completion results on real scans for ScanNet objects. Our method completes
the missing areas and fills the uneven areas with detailed and smooth geometries.

!"#$% &$%#$% !"#$% &$%#$% !"#$% &$%#$% !"#$% &$%#$%Input Output Input Output Input Output Input Output

(b) Shape completion results on shapes with large missing areas. Our method recovers
geometric details even when given relatively small regions with reference patterns.

!"#$% &'"()*+% ,"'-./01+ 20%3456
7)$89:

!"#$% &'"()*+% ,"'-./01+ 20%3456
7)$89:

&40=8Lamp → Chair

Input Conv-ONet[46] Snow[71] PatchRD

Cabinet → Plane

Input Conv-ONet[46]Snow[71]PatchRD

(c) Testing results on novel categories. We show results trained on lamp and cabinet
categories and inferred on lamp and plane categories, respectively. Our method has
better generalization ability.

Fig. 5. More applications on real scans, shapes with large missing areas and novel
categories.
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method completes the undersampled areas, while preserving the details of the
input and smoothly blending new details to the existing content.

Shapes with Large Missing Areas. We also demonstrate that our method
can handle large missing areas (Fig. 5b). In this experiment we cut the shape
with a random plane, where in some cases more than half of the shape might be
missing. Our method recovers the shape structure and extends the local shape
details to the whole shape when only given a small region of reference details.

Completion on Novel Categories. We further evaluate the ability of our
method to generalize to novel categories. Note that only the prediction of the
complete coarse shape relies on any global categorical priors. Unlike other gen-
erative techniques that decode the entire shape, our method does not need to
learn how to synthesize category-specific details and thus succeeds in detail-
preservation as long as the coarse shape is somewhat reasonable. In Fig. 5c we
demonstrate the output of different methods when tested on a novel category.
Note how our method is most successful in conveying overall shape as well as
matching the details of the input.

6.4 Ablation Study

We evaluate the significance of deformation learning, patch blending, and blend-
ing smoothness term via an ablation study (see Table 3).

Table 3. Ablation study. In the left figure, we visualize the effect of different compo-
nents in our experiment. Patch alignment can’t get good patch transformation. Results
with no blending are subjective to bad retrievals. Results with no smoothing show dis-
continuity between neighboring patches. Results with all components contain geometric
details as well as smoothness. In the right table, We show the reconstruction error CD
and shape plausibility score FID on ShapeNet chair class. Results with all components
get both better CD and FID.

No Deformation Learning. We simply use ICP to align the retrieved patch
to the query. Table 3 (Patch Alignment) illustrates that this leads to zigzagging
artifacts due to patch misalignments.

No Patch Blending. Instead of blending several retrieved patches, we simply
place the best retrieved patch at the query location. Table 3 (No Blending) shows
that this single patch might not be sufficient, leading to missing regions in the
output.
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No Blending Smoothness. We set the blending smoothness to Lsm = 0 to
remove our penalty for misalignments at patch boundaries. Doing so leads to
artifacts and discontinuities at patch boundaries (Table 3, No Smoothing).

The quantitative results in Table 3 show that our method with all components
performs the best with respect to reconstruction and plausibility metrics.

6.5 Sensitivity to the Size of Missing Regions

The completion task is often ill-posed, and becomes especially ambiguous as the
missing region increases. We evaluate the sensitivity of our method to the size
of the region by trying to increase the crop size from 10% to 50% of the volume.
Table 4 demonstrates that our method can produce plausible completions even
under severe crops. However, in some cases it is impossible to reconstruct details
that are completely removed. We report quantitative results in Table 4. While
both reconstruction and plausibility error increases for larger crops, we observe
that plausibility (FID) score does not deteriorate at the same rate.

Table 4. Sensitivity to the size of missing regions. The left figure shows results with
different crop ratios. Input geometries and shape contours influence the output shapes.
The right table shows the reconstruction error and the shape plausibility with the
increase of crop ratios. As the ratio increases, the reconstruction error keeps growing
although the output shapes remain fairly plausible.

Qualitative Comparison

Input Snow[71]Ours Input Snow[71]Ours

Failure Cases

Input Output GT Input Output GT

Fig. 6. Qualitative results on the PCN Dataset [78]. On the left, we show our method
is able to produce cleaner and more plausible results than the structure-based baseline.
On the right, we show some failure cases where shape details are missing in the input
shape.

7 Conclusions, Limitations and Future Work

Conclusions. This paper proposed a novel non-parametric shape completion
method that preserves local geometric details and global shape smoothness. Our
method recovers details by copying detailed patches from the incomplete shape,
and achieves smoothness by a novel patch blending term. Our method obtained
state-of-the-art completion results compared with various baselines with different
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3D representations. It also achieved high-quality results in real-world 3D scans
and shapes with large missing areas.

Limitations. Our method has two limitations: (1) It builds on the assumption
that the shape details are present in the partial input shape, which might not
hold if large regions are missing in the scan. For completeness, we still evalu-
ate our method in this scenario using the PCN benchmark, which focuses on
large-scale structure recovery from very sparse input. In Fig. 6 we show that our
method succeeds when there are enough detail references in the input, and fails if
the input is too sparse. We also provide quantitative evaluations in supplemental
material. These results suggest that our method is better suited for completing
denser inputs (e.g., multi-view scans).

In the future, we plan to address this issue by incorporating patches retrieved
from other shapes. (2) Our method cannot guarantee to recover the global struc-
ture because the retrieval stage is performed at the local patch level. To address
this issue, we need to enforce suitable structural priors and develop structure-
aware representations. We leave both for future research.

Future Work. Recovering geometric details is a hard but important problem.
Our method shows that reusing the detailed patches from an incomplete shape
is a promising direction. In the direction of the patch-based shape completion,
potential future work includes: (1) Applying patch retrieval and deformation
on other 3D representations such as point cloud and implicit surfaces. This
can handle the resolution limitation and computation burden caused by the
volumetric representation. (2) Unifying parametric synthesis and patch-based
non-parametric synthesis to augment geometric details that are not present in
the partial input shape.
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