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Abstract. We present a novel unsupervised domain adaptation method
for semantic segmentation that generalizes a model trained with source
images and corresponding ground-truth labels to a target domain. A key
to domain adaptive semantic segmentation is to learn domain-invariant
and discriminative features without target ground-truth labels. To this
end, we propose a bi-directional pixel-prototype contrastive learning
framework that minimizes intra-class variations of features for the same
object class, while maximizing inter-class variations for different ones,
regardless of domains. Specifically, our framework aligns pixel-level fea-
tures and a prototype of the same object class in target and source images
(i.e., positive pairs), respectively, sets them apart for different classes
(i.e., negative pairs), and performs the alignment and separation pro-
cesses toward the other direction with pixel-level features in the source
image and a prototype in the target image. The cross-domain matching
encourages domain-invariant feature representations, while the bidirec-
tional pixel-prototype correspondences aggregate features for the same
object class, providing discriminative features. To establish training pairs
for contrastive learning, we propose to generate dynamic pseudo labels
of target images using a non-parametric label transfer, that is, pixel-
prototype correspondences across different domains. We also present a
calibration method compensating class-wise domain biases of prototypes
gradually during training. Experimental results on standard benchmarks
including GTA5 → Cityscapes and SYNTHIA → Cityscapes demon-
strate the effectiveness of our framework.

Keywords: Bi-directional contrastive learning · Domain adaptive
semantic segmentation · Dynamic pseudo label

1 Introduction

Semantic segmentation is to assign a semantic label to each pixel in an image.
In the past decade, supervised methods based on convolutional neural networks
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Fig. 1. An illustration of our framework for UDASS. We generate pseudo labels of
target images using a nonparametric label transfer. We then perform bi-directional
pixel-prototype contrastive learning. This encourages pixel-level features in a target
image and a prototype of the same object class in a source domain to pull each other,
while setting them apart for different ones. We also perform the alignment and sepa-
ration in a reverse direction, with pixel-level features of source images and prototypes
of a target domain.

(CNNs) [1,17,26,33,41,56] have achieved remarkable improvements in semantic
segmentation. Training networks for the dense prediction task generally requires
lots of pixel-level labels. Annotating pixel-level labels of high-resolution images
is, however, significantly labor-intensive and time-consuming. For example, anno-
tating the labels for an image of size 2048 × 1024 in Cityscapes [6] takes about
90 min. One alternative is to leverage synthetic datasets, e.g., GTA5 [32] and
SYNTHIA [34], that contain realistic images and corresponding pixel-level labels.
The annotation cost is much cheaper than the manual labeling, but CNNs trained
with synthetic datasets do not work well on real images, due to the domain dis-
crepancy between synthetic and real images.

To reduce the domain discrepancy, several methods [4,15,16,23,43,44] have
exploited an unsupervised domain adaptation approach. It transfers knowledge
learned from a source domain (e.g., a synthetic dataset) to a target one (e.g., a
real dataset), with labels for the source domain alone. Many unsupervised
domain adaptation methods leverage an adversarial training scheme [12] that
aligns distributions of source and target domains by fooling a domain classi-
fier [3–5,10,15,16,23,27,28,30,36,42,44,48,49,55]. However, they typically focus
on reducing the domain discrepancy globally, and fail to keep pixel-level seman-
tics [50]. For example, regions corresponding to a car class in a source image
might align with those for a bus class in a target image. Self-training meth-
ods [22,50,51,58,59] enable a class-aware alignment. They generate pseudo labels
for target images iteratively in a parametric approach, typically using CNNs
trained with a source dataset, and then retrain a segmentation model on both
source and target samples with the pseudo labels. This aligns cross-domain fea-
tures in a class-level, improving performance of the model on target images
progressively. The pseudo labels obtained using a parametric approach have the
following drawbacks: First, they are very sparse, since low confident predictions
are discarded to obtain reliable labels. Second, estimating pseudo labels is also
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computationally demanding, making them not to be updated frequently dur-
ing training. These problems cause the segmentation model to overfit to pseudo
labels, resulting in a large bias and a variance of predictions. In the following,
we will call the labels estimated using a parametric approach as static pseudo
labels.

We present a novel contrastive learning framework using cross-domain pixel-
prototype correspondences for unsupervised domain adaptive semantic segmen-
tation (UDASS). It aligns pixel-level features of each object class in target
images, obtained by pseudo labels, with prototypes of corresponding class in
a source domain, computed by ground truth, while setting them apart for dif-
ferent classes (Fig. 1). The alignment and separation process is also performed
in a reverse direction, with pixel-level features of source images and prototypes
of a target domain. The cross-domain matching encourages domain-invariant
feature representations, and the bidirectional pixel-prototype correspondences
provide compact and discriminative representations. We also present a nonpara-
metric approach to generating dynamic pseudo labels using pixel-prototype cor-
respondences. Specifically, we calibrate prototypes of individual object classes
in a source domain, while considering the domain discrepancy in target images,
and establish correspondences for each prototype with individual pixel-level fea-
tures in target images. We then transfer ground-truth labels of prototypes to
corresponding pixels in target images. In contrast to the parametric approach
in current self-training methods, our nonparametric approach provides denser
pseudo labels, and generates the labels dynamically, whenever source images
are changed during training. This helps to obtain more accurate pseudo labels,
and prevents the overfitting problem. Experimental results on standard bench-
marks including GTA5-to-Cityscapes [6,32] and SYNTHIA-to-Cityscapes [6,34]
demonstrate that our contrastive learning framework provides domain-invariant
and discriminative features for UDASS. The main contributions can be summa-
rized as follows:

• We introduce a novel contrastive learning framework using bi-directional
pixel-prototype correspondences to learn domain-invariant and discrimina-
tive feature representations for UDASS.

• We propose a nonparametric approach to generating dynamic pseudo labels.
We also present a calibration method to reduce domain biases for pixel-
prototype correspondences between target and source domains.

• We set a new state of the art on standard benchmarks for UDASS, and
demonstrate the effectiveness of our contrast learning framework.

2 Related Work

UDASS. UDASS leverages knowledge learned from a label-rich source domain
to predict semantic labels of a scene in a target domain, where ground-truth
annotations are not available. Synthetic images (e.g., GTA5 [32] and SYN-
THIA [34]) are widely used as source samples, as pixel-level labels can be gener-
ated automatically using computer graphics engines. The key factor for UDASS
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is hence to learn domain-invariant features to reduce the discrepancy between
source and target domains. To this end, many UDASS methods adopt an adver-
sarial learning framework [12] to fool a domain discriminator. They can generally
be categorized into image-level and feature-level alignment methods. Motivated
by image translation techniques [18,57], image-level alignment methods [5,15,23,
30,49] transfer the styles (e.g., texture and illumination) of target images to the
source, so that segmentation models can accommodate both domains. Feature-
level alignment methods [3,4,10,16,27,28,36,42,44,48,55] align the feature dis-
tributions of source and target images explicitly. These adversarial approaches,
however, align source and target distributions globally. Namely, they perform
a class-agnostic alignment, and ignore positional information of a scene. This
suggests that the adversarial approaches fail to transfer pixel-level semantics,
related to the structural information of a scene, from source to target domains.

UDASS methods based on self-training [22,58,59] have recently been intro-
duced. The self-training approach first segments target images using a model
trained on a source dataset, and obtains pseudo labels if the confidence of
semantic labels predicted by the model exceeds a pre-defined threshold. It then
retrains the model iteratively with both ground-truth and pseudo labels of
source and target datasets, respectively. The representative work of [58] pro-
poses to use different thresholds for individual object categories to consider
a class imbalance problem. In [59], soft pseudo labels have been introduced,
together with a confidence regularization technique that helps transfer discrim-
inative feature representations from source to target domains. The self-training
approaches [22,52,58,59] are, however, likely to overfit to pseudo labels. The rea-
sons are as follows: (1) Pseudo labels are fixed for a few epochs during training,
due to computational overheads, which accumulates error from incorrect pseudo
labels; (2) Pseudo labels are very sparse, as high confident predictions are cho-
sen only as the labels. Our method alleviates these limitations by generating
denser pseudo labels dynamically in a nonparametric way using pixel-prototype
correspondences. Most similar to ours is PLCA [20] using pixel-wise matches.
It adopts a contrastive learning scheme to reduce the distances between source
and target features directly at a pixel-level. The pixel-level domain alignment,
however, does not consider contextual information, and fails to obtain compact
representations between corresponding object categories in source and target
domains. Our method instead uses bidirectional pixel-prototype correspondences
for contrastive learning, which encourages intra-class compactness and inter-class
separability across domains.

Prototypical Learning. The seminal work of [40] introduces prototypical net-
works that extract prototype representations for individual object categories.
The prototypical features have proven useful in the limited-data regime for the
task of, e.g., few-/zero-shot classification. PL [9] extends the idea of prototyp-
ical learning for few-shot semantic segmentation in such a way that class pro-
totypes obtained from a support set are matched to pixel-level features in a
query image. PANet [46] presents a bidirectional framework exploiting corre-
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spondences between prototypical features for a support set and pixel-level ones
for query images, and vice versa, for few-shot semantic segmentation. Similar to
these methods, we exploit prototypical features for semantic segmentation. Dif-
ferently, we leverage them within a framework of contrastive learning for UDASS.
We use pixel-prototype correspondences to obtain domain-invariant and discrim-
inative feature representations. We also leverage the correspondences to obtain
dynamic pseudo labels, which alleviates the limitations of current self-training
methods using static pseudo labels.

Contrastive Learning. Contrastive learning [2,13] is a de facto approach to
learning generic feature representations in a self-supervised way. The basic idea
is to encourage positive pairs with the same label to be close, while negative
ones with different labels to be distant. In order to set positive and negative
pairs without ground-truth labels, contrastive learning augments a single input
image, e.g., using random cropping and color jittering. It then considers the
original image and the augmented one as a positive pair, while setting the pairs
composed of the original and other images as negative ones. Similar to ours,
CANet [19] adopts contrastive learning for unsupervised domain adaptive clas-
sification. It computes the domain discrepancies using image-level features, and
then performs a class-wise alignment using target labels obtained by a clustering
method. Differently, our method leverages contrastive learning using correspon-
dences between pixels and prototypes across domains. Optimizing bidirectional
correspondences jointly in our method also enables aggregating features for the
same object category, regardless of domains.

Nonparametric Label Transfer. Label transfer has been widely used in
object localization [29], scene segmentation [25,31,35,39], automatic image anno-
tation [45], and image translation [38]. Label transfer methods first search visu-
ally similar images or patches in large datasets for given queries, and then trans-
fer labels of retrieved samples to the queries. Similar to our approach, the work
of [8] adopts a nonparametric label transfer method for scene parsing under dif-
ferent domains (e.g., weather or illumination). Specifically, it extracts features
from query images with pre-trained networks, finds the best matching images
using SIFT flow [24], and transfers labels of the images to the queries via a prob-
abilistic MRF model, suggesting that this approach requires source images and
ground-truth labels at both training and test time. Our method, on the other
hand, uses source images and corresponding ground-truth labels only at training
time. Namely, we leverage non-parametric label transfer to train a parametric
segmentation model.

3 Approach

3.1 Overview

We introduce a cross-domain contrastive learning framework for UDASS using
pixel-prototype correspondences (Fig. 2). It first extracts feature maps from
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MAP: masked average pooling: Contrastive learning
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Fig. 2. An overview of our framework. (Left) Bi-directional contrastive learning: We
first extract feature maps, fS and fT, from source and target images, xS and xT, respec-
tively. We then obtain prototypes in a source domain, ρS using ground-truth labels of
source images yS. Prototypes in a target domain ρT are similarly computed but with
dynamic pseudo labels of target images yT. Bidirectional contrastive terms, FCL and
BCL, exploit pixel-prototype correspondences across domains to learn domain-invariant
and discriminative features for UDASS. (Right) Hybrid pseudo labels: We generate
dynamic pseudo labels yD using pixel-prototype correspondences across domains, while
calibrating the prototypes to reduce domain discrepancies. We then combine them with
static ones yF using a parametric approach to obtain hybrid pseudo labels yT.

source and target images, respectively, using a siamese network. We obtain pro-
totypes of source and target domains using ground-truth labels of source images
and pseudo labels of target ones, respectively. Our method then establishes corre-
spondences between the prototypes and pixel-level features across domains, and
leverages them to learn domain-invariant and discriminative representations via
contrastive learning. To this end, we introduce a bi-directional contrastive loss
that consists of a forward contrastive term (FCL) and a backward contrastive
term (BCL). FCL matches individual pixel-level features of a target image with
prototypes of a source domain, and enforces pixel-prototype pairs with the same
class labels to be aligned closely than other ones. BCL performs the alignment
process in a reverse direction, with pixel-level features of a source image and
prototypes of a target domain, encouraging our model to provide discrimina-
tive and compact features. In order to establish training pairs for computing
the bi-directional contrastive loss, we require pseudo labels of target images.
To this end, we use dynamic pseudo labels obtained by a nonparametric label
transfer, addressing the drawbacks of static pseudo labels. Specifically, given a
pair of source-target images, we establish correspondences between prototypes
of a source domain and pixel-level features of a target image, while calibrating
the prototypes progressively during training to compensate domain discrepan-
cies. We then set the pseudo labels of pixel-level features to the class labels of
the corresponding prototypes in a source domain. Unlike static pseudo labels
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estimated by a parametric approach [22,58], our approach can generate novel
pseudo labels of target images dynamically, whenever a pair of source-target
images are changed, during training. We estimate hybrid pseudo labels by com-
bining dynamic and static labels, and use them for the bi-directional contrastive
learning.

3.2 Bi-directional Contrastive Learning

Given a pair of source and target images, our goal is to aggregate pixel-level fea-
tures for the same object class, regardless of domains, to learn domain-invariant
and discriminative feature representations. To this end, we formulate UDASS as
bi-directional pixel-prototype contrastive learning. Let us denote by C the set of
object classes. We obtain prototypes of source and target domains for the class
c ∈ C, ρS(c) and ρT(c), using masked average pooling (MAP) as follows:

ρS(c) =

∑
p fS(p)yS(p, c)
∑

p yS(p, c)
, ρT(c) =

∑
p fT(p)yT(p, c)
∑

p yT(p, c)
, (1)

where we denote by fS(p) and fT(p) pixel-level features of source and target
images, respectively, at position p. yS(p, c) and yT(p, c) are one-hot labels, i.e., 1
if the class label at position p correspond to c and 0 otherwise. Note that we
use ground-truth labels of source images yS and hybrid pseudo labels of tar-
get ones yT to set the labels, yS and yT, respectively. Using the prototypes of
source and target domains, we perform cross-domain contrastive learning in a bi-
directional way. We leverage a bi-directional constative loss that consists of FCL
and BCL. FCL exploits prototypes of a source domain and pixel-level features
of a target image. To be specific, given pixel-level features of a target image,
we select the prototypes of a source domain having the same class labels as the
features, and set them as positive pairs, while other prototypes are used to set
negative ones. FCL maximizes the similarities between positive pairs as follows:

LFC = −
∑

c

∑

p

yT(p, c) log
exp

(
s(fT(p), ρS(c))/τ

)

∑
c exp

(
s(fT(p), ρS(c))/τ

) , (2)

where τ is a temperature parameter, and s(·, ·) computes cosine similarity. Sim-
ilarly, BCL exploits prototypes of a target domain and pixel-level features of a
source image. It encourages positive pairs sharing the same labels to pull each
other, while making others set apart as follows:

LBC = −
∑

c

∑

p

yS(p, c) log
exp

(
s(fS(p), ρT(c))/τ

)

∑
c exp

(
s(fS(p), ρT(c))/τ

) . (3)

In summary, using the bidirectional contrastive loss, pixel-level features for the
same object class are embedded closely, regardless of domains, while those for
different classes are distinguished from each other. That is, by jointly optimizing
FCL and BCL, we can minimize intra-class variations and maximize inter-class
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variations of pixel-level features progressively during training. In contrast to cur-
rent UDASS methods [22,50,51,54,58,59] that do not consider such variations
for domain adaptation, our approach provides more discriminative and compact
features. This in turn allows to perform more accurate class-wise alignments
across domains, and enables our model to generalize better on a target domain.

3.3 Dynamic Pseudo Labels

Current self-training methods [22,50,51,54,58,59] employ a parametric model
trained with ground-truth labels of source images to obtain static pseudo labels
of target images. Specifically, using the parametric segmentation model, confi-
dence scores for individual object classes are computed for each pixel-level feature
from entire target images. The pixel-level features with high confidence scores
are chosen, and corresponding object classes are used as pseudo labels. Although
exploiting static pseudo labels of target images enables performing class-aware
UDASS, they have the following drawbacks: First, computing the pixel-level
confidence scores for all target images to obtain the pseudo labels is computa-
tionally demanding. Current self-training methods perform this process for a few
iterations (e.g., 10000) during training, and update the pseudo labels of target
images very occasionally. The error from incorrect pseudo labels might hence
be accumulated. Second, current self-training methods choose highly confident
pixel-level features only for static pseudo labels, and thus they are very sparse.
These problems cause a model to overfit to the static pseudo labels, and induce
suboptimal class-wise alignments between domains. To overcome the limitations,
we introduce a novel approach to generating dynamic pseudo labels. It leverages
a nonparametric label transfer technique using pixel-prototype correspondences
between source and target images. That is, we estimate pseudo labels using pairs
of source and target images. This suggests that our approach generates pseudo
labels of target images dynamically, whenever source images are changed during
training. In other words, the pseudo labels for the same target image could be
different, depending on which source images are used to establish pixel-prototype
correspondences w.r.t the target one (Fig. 3).

Concretely, given a pair of source and target images, we establish correspon-
dences between prototypes of a source image and pixel-level features of a target
one. To obtain reliable correspondences, we alleviate domain biases between
source and target domains. We could estimate the degree of domain biases by
calculating average class-wise features for each domain using all source and target
images, followed by computing differences between the average features, which
however requires lots of computational overheads. We instead leverage proto-
types of source and target images. We first update prototypes of source and
target domains progressively during training using an exponential moving aver-
age with a momentum parameter of λ as follows:

μS(c) ← λμS(c) + (1 − λ)ρS(c), (4)
μT(c) ← λμT(c) + (1 − λ)ρT(c), (5)
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Static label

Dynamic label 2

Dynamic label 1 Hybrid label 1

Hybrid label 2 Source label 2

Source label 1

: Hybrid: Static : Dynamic

Ground truth

Fig. 3. Visual comparison of static, dynamic, and hybrid pseudo labels for a target
image. In contrast to the static label (the first column), estimated using a parametric
segmentation model, dynamic labels are obtained by a nonparametric label transfer
between source and target images. This suggests that they are denser and cheap to
update. We can also obtain different dynamic labels (the second column), according
to source images (the fourth column). We combine both labels to get hybrid pseudo
labels (the third column), and use them to augment the number of positive and negative
pairs for contrastive learning.

where we denote by μS(c) and μT(c) updated prototypes of source and target
domains, respectively, for the class c. We then estimate class-wise domain biases:

ξ(c) = μT(c) − μS(c), (6)

and obtain calibrated prototypes for each object class in a source domain as
follows:

ρS→T(c) = ρS(c) + ξ(c). (7)

Using the calibrated prototypes, we can establish more correct correspondences
across domains. We consider the correspondences are correct, if similarity scores
between the pixel-prototype matches are larger than a pre-defined threshold, and
set dynamic pseudo labels of target images to corresponding object categories
of the prototypes, as follows:

yD(p, c) =

{
1, if s(fT(p)), ρS→T(c)) > T and c = c′

0, otherwise
, (8)

where yD(p, c) is a dynamic pseudo label for the class c at position p, T is a
pre-defined threshold, and

c′ = argmax
c

(s(fT(p)), ρS→T(c))). (9)
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Hybrid Pseudo Labels. We can obtain diverse pseudo labels even for the
same target image every iteration, and the dynamic labels are much denser than
static ones. Static pseudo labels, on the other hand, are sparse but reliable. In
order to take advantage of both, we combine them and obtain hybrid pseudo
labels yT as follows:

yT(p, c) =

⎧
⎪⎨

⎪⎩

yD(p, c), if yD(p, c) = 1
yF(p, c), if yD(p, c′) = 0 for c′ ∈ C, and yF(p, c) = 1
0, otherwise

, (10)

where yF(p, c) is a static pseudo label for the class c at position p.

3.4 Training Loss

Following the previous works [22,50,51,58,59], we exploit segmentation and
entropy terms using ground-truth and pseudo labels of source and target images,
respectively. The former encourages our model to provide accurate pixel-wise
predictions, and the latter minimizes the entropy of the predictions. We define
a loss for training a baseline model as follows:

Lbase = λS
segLS

seg + λT
segLT

seg + λS
entLS

ent + λT
entLT

ent, (11)

where LS
seg and LT

seg are segmentation losses for source and target domains,
respectively. LS

ent and LT
ent are entropy terms for source and target domains,

respectively. λS
seg, λT

seg, λS
ent, and λT

ent are balance parameters for each term.
For the baseline, we obtain static pseudo labels using the method of [58]. As
our final model, we additionally use a bi-directional contrastive loss to learn
domain-invariant and discriminative representations as follows:

L = Lbase + λFCLFC + λBCLBC , (12)

where λFC and λBC are weighting factors for forward and backward contrastive
terms, respectively.

4 Experiments

4.1 Implementation Details

Dataset and Evaluation Metric. We evaluate our framework on two
standard benchmarks (GTA5 [32] → Cityscapes [6], and SYNTHIA [34] →
Cityscapes [6]). GTA5 and SYNTHIA provide 24,996 and 9400 images, respec-
tively. Cityscapes consists of 2975, 500, and 1525 images for training, validation,
and testing, respectively. Following the standard protocol in [15,43,58,59], we
report the mean intersection over Union (mIoU) on 19 classes for GTA5 →
Cityscapes and 13 (or 16) classes for Synthia → Cityscapes.
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Table 1. Quantitative comparison with state-of-the-art methods on GTA5 →
Cityscapes in terms of mIoU. AT: methods based on adversarial training; ST: methods
based on self-training. †: a method using a different network architecture.

GTA5 → Cityscapes

Split Methods Type Road Side Build Wall Fence Pole Light Sign Veg. Terrian Sky Person Rider Car Truck Bus Train Motor Bike mIoU

Validation Source-only - 45.4 16.5 66.4 14.4 21.6 25.1 36.3 17.2 80.1 16.3 69.1 61.4 24.9 68.6 28.4 4.7 4.4 40.8 27.5 35.2

AdaptSeg [43] AT 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

CBST [58] ST 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

CRST [59] ST 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

PLCA [20] - 84.0 30.4 82.4 35.3 24.8 32.2 36.8 24.5 85.5 37.2 78.6 66.9 32.8 85.5 40.4 48.0 8.8 29.8 41.8 47.7

CAG UDA [53] ST 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2

FDA [51] ST 92.5 53.5 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

TPLD [37] ST 94.2 60.5 82.8 36.6 16.6 39.3 29.0 25.5 85.6 44.9 84.4 60.6 27.4 84.1 37.0 47.0 31.2 36.1 46.4 51.2

CorDA [47] ST 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6

ProDA [52] ST 87.1 55.1 78.1 45.6 43.8 44.6 52.5 53.4 89.1 44.7 82.1 70.1 39.1 88.4 43.8 59.1 1.0 48.7 54.4 56.5

Ours ST 93.5 60.2 88.1 31.1 37.0 41.9 54.7 37.8 89.9 45.5 89.9 72.7 38.2 90.7 34.3 53.2 4.4 47.2 58.5 57.1

Test AdaptSeg [43] AT 88.5 40.4 81.0 26.3 20.6 25.6 36.0 12.9 84.8 45.5 87.2 63.7 35.8 76.4 27.7 28.0 2.9 33.0 26.1 44.3

CBST [58] ST 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

CRST [59] ST 93.5 57.6 84.6 39.3 24.1 25.2 35.0 17.3 85.0 40.6 86.5 58.7 28.7 85.8 49.0 56.4 5.4 31.9 43.2 49.9

FDA-MBT [51] ST 93.4 55.8 83.6 25.4 23.1 33.2 39.0 36.9 84.0 47.2 88.8 66.3 40.6 87.4 26.9 49.6 12.8 35.2 42.8 51.2

CorDA [47] ST 94.2 62.9 88.1 30.2 41.2 40.1 49.1 49.9 89.1 49.1 90.1 69.1 28.9 86.2 46.2 59.5 1.2 35.2 52.3 57.5

ProDA [52] ST 88.1 57.1 81.2 46.1 45.2 41.5 55.1 56.2 86.1 45.1 78.1 73.2 40.1 88.8 48.7 60.1 1.1 50.3 53.1 57.6

Ours ST 93.8 59.7 90.1 38.0 33.4 39.9 45.3 30.5 92.2 58.2 94.8 81.9 47.9 93.2 40.1 53.1 13.1 51.2 58.2 58.5

Table 2. Quantitative comparison with state-of-the-art methods on SYNTHIA →
Cityscapes results in terms of mIoU. We report the results for 13 classes (mIoU∗) and
16 classes (mIoU). AT: methods based on adversarial training; ST: methods based on
self-training.

SYNTHIA → Cityscapes

Methods Type Road Side. Build. Wall* Fence* Pole* Light Sign Veg. Sky Person Rider Car Bus Motor Bike mIoU mIoU*

Source-only AT 53.4 23.4 73.0 5.5 0.0 25.7 6.6 7.0 77.9 55.3 52.9 21.0 60.9 6.6 21.8 33.7 32.5 37.6

AdaptSeg [43] AT 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7

CBST [58] ST 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 38.9 42.6

CRST [59] ST 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1

CAG UDA [53] ST 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 44.5 51.5

FDA [51] ST 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5

PLCA [20] - 82.6 29.0 81.0 11.2 0.2 33.6 24.9 18.3 82.8 82.3 62.1 26.5 85.6 48.9 26.8 52.2 46.8 54.0

TPLD [37] ST 80.9 44.3 82.2 19.9 0.3 40.6 20.5 30.1 77.2 80.9 60.6 25.5 84.8 41.1 24.7 43.7 47.3 53.5

CorDA [47] ST 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 90.4 69.7 41.8 85.6 38.4 32.6 53.9 55.0 62.8

ProDA [52] ST 87.3 45.1 84.2 36.5 0.0 43.3 54.7 36.0 88.3 83.1 71.5 24.4 88.4 50.1 40.1 45.6 55.1 61.3

Ours ST 83.8 42.2 85.3 16.4 5.7 43.1 48.3 30.2 89.3 92.1 68.2 43.1 89.7 47.2 42.2 54.2 55.6 62.9

Training. We adopt the DeepLab-V2 [1] architecture with ResNet-101 [14] as
a backbone network pretrained for ImageNet classification [7]. We first train
DeepLab-V2 with a source dataset, and use it as an initial segmentation model
for UDASS. We train the model for 100k iterations with a batch size of 4, using
stochastic gradient descent (SGD) [21] of a momentum of 0.9 and weight decay
of 5 × 10−4. We use a poly learning rate scheduling with an initial learning rate
of 7.5 × 10−5. We update static pseudo labels yF every 10k iterations. We resize
a shorter side of images to 850, and crop them into a patch of size 730 × 730.
For data augmentation, we use horizontal flipping and random scaling with the
factor of [0.8, 1.2]. We use a weighted sampling strategy to select source images
containing objects that rarely appear in a source domain, mitigating low co-
occurrence rates for the rare object categories. Following [11,52], we additionally
apply a self-distillation technique to our final model. Detailed descriptions for the
weighted sampling and hyperparameter settings are available in the supplement.
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(a) Target images. (b) Baseline. (c) Ours. (d) GT labels.

Fig. 4. Qualitative comparisons on GTA5 → Cityscapes. Our model gives better results
than the baseline. (Best viewed in color).

(a) Baseline. (b) Ours.

Fig. 5. t-SNE visualization of a base-
line (a) and our model (b). (Best viewed
in color).

Table 3. Quantitative results for variants
of our model. We report mIoU scores for 19
and 16 classes on GTA5 → Cityscapes and
SYNTHIA → Cityscapes, respectively.

Lbase LFC LBC +yD

(w/o cal.)
+yD

(w/ cal.)
Source dataset

GTA5 SYNTHIA

� 49.5 45.1

� � 51.2 48.8

� � � 53.5 51.3

� � � � 55.3 53.5

� � � � 57.1 55.6

4.2 Results

Quantitative Results. We compare our method with the state-of-the-art
methods on GTA5 → Cityscapes and SYNTHIA → Cityscapes in Tables 1 and 2,
respectively. Note that all methods in the tables are based on the DeepLab-V2 [1]
architecture with ResNet-101, except for CAG-UDA [53]. For a fair comparison,
we report the results of ProDA [52] using the same network architecture as other
methods, reproduced using an official source code. CBST [58] uses a self-training-
based method to perform a class-aware alignment. This method is similar to our
baseline, but it uses a limited number of pseudo labels, being outperformed
by our approach on both benchmarks. PLCA [20] uses a pixel-wise associa-
tion method to align source and target domains in a pixel-level. This method,
however, fails to obtain compact feature representations, and it is hence outper-
formed by our approach on both benchmarks. CorDA [47] uses depth maps of
source and target domains to transfer the knowledge of a source domain to a
target one. Our method outperforms CorDA [47] on both benchmarks even with-
out using the depth information, indicating that our contrastive learning frame-
work effectively transfers the knowledge across domains using pseudo labels.
ProDA [52] focuses on removing false-positives of pseudo labels [58] and uses
sparse labels. Different from ProDA [52], we are interested in generating addi-
tional labels based upon the ones obtained by the approach of [58]. That is, our
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method focuses on obtaining more true-positives and generating denser labels
using pixel-prototype correspondences. Other than ProDA [52], we addition-
ally use the bi-directional contrastive loss to minimize intra-class variations and
maximize inter-class variations of pixel-level features. We achieve mIoU gains of
0.6% and 1.6% for GTA5 → Cityscapes and SYNTHIA → Cityscapes, respec-
tively, compared to ProDA [52]. The results imply that our method effectively
learns domain-invariant and discriminative representations with denser pseudo
labels, improving the mIoU performance of semantic segmentation. Additional
comparisons with ProDA [52] are available in the supplement. We also report
mIoU scores for the test split of Cityscapes, obtained from an official evalu-
ation server, which has been ignored by most previous works. We use official
source codes provided by the authors to obtain the results of state-of-the-art
methods. We achieve non-trivial mIoU gains over CorDA [47] and ProDA [52]
for the test split of Cityscapes, demonstrating that ours can generalize better
than them. Considering the performance gains of recent UDASS methods, the
results are significant. For example, FDA [51] achieves a mIoU gain of 0.3% over
CAG UDA [53], and TPLD [37] gets the gain of 0.7% over FDA [51]. CorDA [47]
and ProDA [52] provide large mIoU gains compared to other methods, but the
improvements mainly come from exploiting additional depth maps and applying
post-processing method, respectively.

Qualitative Results. We show in Fig. 4 segmentation results on the GTA5
→ Cityscapes task. Compared to the baseline model, our model provides more
accurate segmentation results (e.g., the bus in the first row, and the road and
the rider in the second row). We show in Fig. 5 the t-SNE plot of feature rep-
resentations of our model and the baseline. We visualize features of source and
target images for each method by red and blue circles, respectively. The results
show that our method successfully aligns the features for the same object cat-
egory and separates them for different ones. That is, it minimizes intra-class
variations, and maximizes inter-class variations, regardless of domains.

Ablation Study. We present in Table 3 an ablation analysis for each component
of our framework on GTA5 → Cityscapes and SYNTHIA → Cityscapes. We
show mIoU scores for variants of our model on the validation split of Cityscapes.
As a baseline in the first row, we use static pseudo labels, obtained by the
method of [58], to perform a class-aware alignment between source and target
domains. We can see from the second row that FCL gives better mIoU scores,
demonstrating the effectiveness of our approach to aligning prototypes and pixel-
level features across domains. From the first and third rows, we can clearly see
that jointly optimizing two contrastive terms is effective to UDASS. The fourth
row demonstrates that leveraging additional dynamic pseudo labels provides
better results than exploiting the static ones alone in terms of the mIoU score,
even without the calibration (w/o cal.). We can observe from the fifth row that
the calibration (w/ cal.) reduces domain discrepancies, and further improves the
performance significantly.
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Fig. 6. Visualization of dynamic pseudo labels. (a–
b) Pseudo labels obtained without and with cali-
brating prototypes of a source domain; (c) Target
labels.

Table 4. Quantitative results for
various pseudo labels of a target
domain. We report the densities
of static, dynamic, and hybrid
pseudo labels and corresponding
label accuracies.

Pseudo labels Density (%) Accuracy (%)

Static [58] 20.1 98.5

Dyn. (w/o cal.) 22.2 98.6

Dyn. (w/ cal.) 34.3 98.6

Hybrid 42.3 98.8

Fig. 7. Pseudo labels at 30k and 60k iterations using ρS (a) and μS (b), respectively.

Comparison of Pseudo Labels. We measure the densities of various pseudo
labels and corresponding label accuracies, and report the results in Table 4. We
can see that the densities of dynamic pseudo labels are slightly higher than
that of a static one, even without calibrating domain biases, while maintain-
ing the label accuracies. Using pixel-prototype correspondences between target
and source domains leads to obtaining denser labels than [58]. The calibration
process largely densifies dynamic pseudo labels. We can establish more correct
correspondences between source and target domains by using the calibration
process. The approach of [58] neglects the biases between source and target
domains. Different from [58], ours compensate for the class-wise domain biases
and generate more accurate and denser labels than [58]. Hybrid pseudo labels
that combine static and dynamic ones provide the best result in terms of the
label density and accuracy. When obtaining hybrid pseudo labels, we can reduce
the number of incorrect static labels [58] by comparing them with dynamic ones.
We show in Fig. 6 examples of dynamic pseudo labels obtained with and without
the class-wise calibration. The results show that calibrating class-wise domain
biases for source prototypes leads to establishing more correct pixel-prototype
correspondences, providing denser and more accurate pseudo labels.

In Fig. 7, we compare generated pseudo labels using instance-wise proto-
types ρS and momentum-based ones μS. We can see that using instance-wise
prototypes ρS provides more diverse pseudo labels. They are more various than
the other ones μS slowly moving with momentum, and lead our model to estab-
lish diverse pixel-prototype correspondences.
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5 Conclusion

We have introduced a novel contrastive learning framework for UDASS. Our key
idea is to use cross-domain pixel-prototype correspondences to learn domain-
invariant and discriminative representations. We have introduced a bi-directional
contrastive loss to align the features for the same object category and seperate
them for different ones. We have also introduced an approach to generating
pseudo labels dynamically in a nonparametric way using pixel-prototype corre-
spondences, while compensating class-wise domain biases between source and
target domains. Experimental results show the effectiveness of our framework,
setting a new state of the art on standard benchmarks.
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