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Abstract. Detecting out-of-distribution (OOD) inputs is a central chal-
lenge for safely deploying machine learning models in the real world.
Previous methods commonly rely on an OOD score derived from the
overparameterized weight space, while largely overlooking the role of
sparsification. In this paper, we reveal important insights that reliance on
unimportant weights and units can directly attribute to the brittleness of
OOD detection. To mitigate the issue, we propose a sparsification-based
OOD detection framework termed DICE. Our key idea is to rank weights
based on a measure of contribution, and selectively use the most salient
weights to derive the output for OOD detection. We provide both empiri-
cal and theoretical insights, characterizing and explaining the mechanism
by which DICE improves OOD detection. By pruning away noisy signals,
DICE provably reduces the output variance for OOD data, resulting in
a sharper output distribution and stronger separability from ID data.
We demonstrate the effectiveness of sparsification-based OOD detection
on several benchmarks and establish competitive performance. Code is
available at: https://github.com/deeplearning-wisc/dice.git.

Keywords: Out-of-distribution detection · Sparsification

1 Introduction

Deep neural networks deployed in real-world systems often encounter out-of-
distribution (OOD) inputs—samples from unknown classes that the network
has not been exposed to during training, and therefore should not be predicted
by the model in testing. Being able to estimate and mitigate OOD uncertainty
is paramount for safety-critical applications such as medical diagnosis [47,59]
and autonomous driving [10]. For example, an autonomous vehicle may fail to
recognize objects on the road that do not appear in its detection model’s training
set, potentially leading to a crash. This gives rise to the importance of OOD
detection, which allows the learner to express ignorance and take precautions in
the presence of OOD data.

The main challenge in OOD detection stems from the fact that modern deep
neural networks can easily produce overconfident predictions on OOD inputs,
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Fig. 1. Illustration of unit contribution (i.e., weight × activation) to the class output.
For class c, the output fc(x) is the summation of unit contribution from the penultimate
feature layer of a neural network. Units are sorted in the same order, based on the
expectation of ID data’s contribution (averaged over many CIFAR-10 samples) on the
x-axis. Shades indicate the variance for each unit. Left: For in-distribution data
(CIFAR-10, airplane), only a subset of units contributes to the model output. Right:
In contrast, out-of-distribution (OOD) data can trigger a non-negligible fraction of
units with noisy signals, as indicated by the variances.

making the separation between in-distribution (ID) and OOD data a non-trivial
task. The vulnerability of machine learning to OOD data can be hard-wired
in high-capacity models used in practice. In particular, modern deep neural
networks can overfit observed patterns in the training data [66], and worse,
activate features on unfamiliar inputs [45]. To date, existing OOD detection
methods commonly derive OOD scores using overparameterized weights, while
largely overlooking the role of sparsification. This paper aims to bridge the gap.

In this paper, we start by revealing key insights that reliance on unimportant
units and weights can directly attribute to the brittleness of OOD detection.
Empirically on a network trained with CIFAR-10, we show that an OOD image
can activate a non-negligible fraction of units in the penultimate layer (see Fig. 1,
right). Each point on the horizontal axis corresponds to a single unit. The y-axis
measures the unit contribution (i.e., weight × activation) to the output of
class airplane, with the solid line and the shaded area indicating the mean
and variance, respectively. Noticeably, for OOD data (gray), we observe a non-
negligible fraction of “noisy” units that display high variances of contribution,
which is then aggregated to the model’s output through summation. As a result,
such noisy signals can undesirably manifest in model output—increasing the
variance of output distribution and reducing the separability from ID data.

The above observation motivates a simple and effective method, Directed
Sparisification (DICE), for OOD detection. DICE leverages the observation
that a model’s prediction for an ID class depends on only a subset of important
units (and corresponding weights), as evidenced in Fig. 1 (left). To exploit this,
our novel idea is to rank weights based on the measure of contribution, and
selectively use the most contributing weights to derive the output for OOD
detection. As a result of the weight sparsification, we show that the model’s
output becomes more separable between ID and OOD data. Importantly, DICE
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can be conveniently used by post hoc weight masking on a pre-trained network
and therefore can preserve the ID classification accuracy. Orthogonal to existing
works on sparsification for accelerating computation, our primary goal is to
explore the sparsification approach for improved OOD detection performance.

We provide both empirical and theoretical insights characterizing and
explaining the mechanism by which DICE improves OOD detection. We per-
form extensive evaluations and establish competitive performance on common
OOD detection benchmarks, including CIFAR-10, CIFAR-100 [28], and a large-
scale ImageNet benchmark [24]. Compared to the competitive post hoc method
ReAct [50], DICE reduces the FPR95 by up to 12.55%. Moreover, we perform
ablation using various sparsification techniques and demonstrate the benefit of
directed sparsification for OOD detection. Theoretically, by pruning away noisy
signals from unimportant units and weights, DICE provably reduces the output
variance and results in a sharper output distribution (see Sect. 6). The sharper
distributions lead to a stronger separability between ID and OOD data and over-
all improved OOD detection performance (c.f. Fig. 2). Our key results and
contributions are:

– (Methodology) We introduce DICE, a simple and effective approach for OOD
detection utilizing post hoc weight sparsification. To the best of our knowl-
edge, DICE is the first to explore and demonstrate the effectiveness of spar-
sification for OOD detection.

– (Experiments) We extensively evaluate DICE on common benchmarks and
establish competitive performance among post hoc OOD detection baselines.
DICE outperforms the strong baseline [50] by reducing the FPR95 by up to
12.55%. We show DICE can effectively improve OOD detection while pre-
serving the classification accuracy on ID data.

– (Theory and ablations) We provide ablation and theoretical analysis that
improves understanding of a sparsification-based method for OOD detec-
tion. Our analysis reveals an important variance reduction effect, which prov-
ably explains the effectiveness of DICE. We hope our insights inspire future
research on weight sparsification for OOD detection.

2 Preliminaries

We start by recalling the general setting of the supervised learning problem. We
denote by X = R

d the input space and Y = {1, 2, ..., C} the output space. A
learner is given access to a set of training data D = {(xi, yi)}N

i=1 drawn from
an unknown joint data distribution P defined on X × Y. Furthermore, let Pin

denote the marginal probability distribution on X .

Out-of-Distribution Detection. When deploying a model in the real world,
a reliable classifier should not only accurately classify known in-distribution
(ID) samples, but also identify any OOD input as “unknown”. This can be
achieved through having dual objectives: ID/OOD classification and multi-class
classification of ID data [3].
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Fig. 2. Illustration of out-of-distribution detection using Directed Sparsification
(DICE). We consider a pre-trained neural network, which encodes an input x to a
feature vector h(x) ∈ R

m. Left: The logit output fc(x) of class c is a linear combi-
nation of activation from all units in the preceding layer, weighted by wi. The full
connection results in a high variance for OOD data’s output, as depicted in the gray.
Right: Our proposed approach leverages a selective subset of weights, which effectively
reduces the output variance for OOD data, resulting in a sharper score distribution and
stronger separability from ID data. The output distributions are based on CIFAR-10
trained network, with ID class label “frog” and SVHN as OOD.

OOD detection can be formulated as a binary classification problem. At test
time, the goal of OOD detection is to decide whether a sample x ∈ X is from
Pin (ID) or not (OOD). In literature, OOD distribution Pout often simulates
unknowns encountered during deployment time, such as samples from an irrele-
vant distribution whose label set has no intersection with Y and therefore should
not be predicted by the model. The decision can be made via a thresholding com-
parison:

gλ(x) =

{
in S(x) ≥ λ

out S(x) < λ
,

where samples with higher scores S(x) are classified as ID and vice versa, and
λ is the threshold.

3 Method

Method Overview. Our novel idea is to selectively use a subset of important
weights to derive the output for OOD detection. By utilizing sparsification, the
network prevents adding irrelevant information to the output. We illustrate our
idea in Fig. 2. Without DICE (left), the final output is a summation of weighted
activations across all units, which can have a high variance for OOD data (col-
ored in gray). In contrast, with DICE (right), the variance of output can be
significantly reduced, which improves separability from ID data. We proceed
with describing our method in details, and provide the theoretical explanation
later in Sect. 6.
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3.1 DICE: Directed Sparsification

We consider a deep neural network parameterized by θ, which encodes an input
x ∈ R

d to a feature space with dimension m. We denote by h(x) ∈ R
m the feature

vector from the penultimate layer of the network. A weight matrix W ∈ R
m×C

connects the feature h(x) to the output f(x).

Contribution Matrix. We perform a directed sparsification based on a measure
of contribution, and preserve the most important weights in W. To measure the
contribution, we define a contribution matrix V ∈ R

m×C , where each column
vc ∈ R

m is given by:

vc = Ex∈D[wc � h(x)], (1)

where � indicates the element-wise multiplication, and wc indicates weight vec-
tor for class c. Each element in vc ∈ R

m intuitively measures the corresponding
unit’s average contribution to class c, estimated empirically on in-distribution
data D. A larger value indicates a higher contribution to the output fc(x) of
class c. The vector vc is derived for all classes c ∈ {1, 2, ..., C}, forming the con-
tribution matrix V. Each element vi

c ∈ V measures the average contribution
(weight × activation) from a unit i to the output class c ∈ {1, 2, ..., C}.

We can now select the top-k weights based on the k-largest elements in V.
In particular, we define a masking matrix M ∈ R

m×C , which returns a matrix
by setting 1 for entries corresponding to the k largest elements in V and setting
other elements to 0. The model output under contribution-directed sparsification
is given by

fDICE(x; θ) = (M � W)�h(x) + b, (2)

where b ∈ R
C is the bias vector. The procedure described above essentially

accounts for information from the most relevant units in the penultimate layer.
Importantly, the sparsification can be conveniently imposed by post hoc weight
masking on the final layer of a pre-trained network, without changing any param-
eterizing of the neural network. Therefore one can improve OOD detection while
preserving the ID classification accuracy.

Sparsity Parameter p. To align with the convention in literature, we use
the sparsity parameter p = 1 − k

m·C in the remainder paper. A higher p indi-
cates a larger fraction of weights dropped. When p = 0, the output becomes
equivalent to the original output f(x; θ) using dense transformation, where
f(x; θ) = W�h(x) + b. We provide ablations on the sparsity parameter later in
Sect. 5.
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3.2 OOD Detection with DICE

Our method DICE in Sect. 3.1 can be flexibly leveraged by the downstream OOD
scoring function:

gλ(x) =

{
in Sθ(x) ≥ λ

out Sθ(x) < λ
, (3)

where a thresholding mechanism is exercised to distinguish between ID and OOD
during test time. The threshold λ is typically chosen so that a high fraction of ID
data (e.g., 95%) is correctly classified. Following recent work by Liu et. al [35],
we derive an energy score using the logit output fDICE(x; θ) with contribution-
directed sparsification. The function maps the logit outputs fDICE(x; θ) to a
scalar Eθ(x) ∈ R, which is relatively lower for ID data:

Sθ(x) = −Eθ(x) = log
C∑

c=1

exp(fDICE
c (x; θ)). (4)

The energy score can be viewed as the log of the denominator in softmax func-
tion:

p(y|x) =
p(x, y)
p(x)

=
exp(fy(x; θ))∑C
c=1 exp(fc(x; θ))

, (5)

and enjoys better theoretical interpretation than using posterior probability
p(y|x). Note that DICE can also be compatible with an alternative scoring func-
tion such as maximum softmax probability (MSP) [19], though the performance
of MSP is less competitive (see Appendix F). Later in Sect. 6, we formally char-
acterize and explain why DICE improves the separability of the scores between
ID and OOD data.

4 Experiments

In this section, we evaluate our method on a suite of OOD detection tasks.
We begin with the CIFAR benchmarks that are routinely used in literature
(Sect. 4.1). In Sect. 4.2, we continue with a large-scale OOD detection task based
on ImageNet.

4.1 Evaluation on Common Benchmarks

Experimental Details. We use CIFAR-10 [28], and CIFAR-100 [28] datasets
as in-distribution data. We use the standard split with 50,000 training images
and 10,000 test images. We evaluate the model on six common OOD bench-
mark datasets: Textures [6], SVHN [44], Places365 [67], LSUN-Crop [65],
LSUN-Resize [65], and iSUN [63]. We use DenseNet-101 architecture [22] and
train on in-distribution datasets. The feature dimension of the penultimate layer
is 342. For both CIFAR-10 and CIFAR-100, the model is trained for 100 epochs



DICE: Leveraging Sparsification for Out-of-Distribution Detection 697

Table 1. Comparison with competitive post hoc out-of-distribution detection method
on CIFAR benchmarks. All values are percentages and are averaged over 6 OOD test
datasets. The full results for each evaluation dataset are provided in Appendix G.
We report standard deviations estimated across 5 independent runs. §indicates an
exception, where model retraining using a different loss function is required.

Method CIFAR-10 CIFAR-100

FPR95 AUROC FPR95 AUROC

↓ ↑ ↓ ↑
MSP [19] 48.73 92.46 80.13 74.36

ODIN [33] 24.57 93.71 58.14 84.49

GODIN§ [21] 34.25 90.61 52.87 85.24

Mahalanobis [31] 31.42 89.15 55.37 82.73

Energy [35] 26.55 94.57 68.45 81.19

ReAct [50] 26.45 94.95 62.27 84.47

DICE (ours) 20.83±1.58 95.24±0.24 49.72±1.69 87.23±0.73

with batch size 64, weight decay 0.0001 and momentum 0.9. The start learning
rate is 0.1 and decays by a factor of 10 at epochs 50, 75, and 90. We use the
validation strategy in Appendix C to select p.

DICE vs. Competitive Baselines. We show the results in Table 1, where
DICE outperforms competitive baselines. In particular, we compare with Max-
imum Softmax Probability [19], ODIN [33], Mahalanobis distance [31], Gener-
alized ODIN [21], Energy score [35], and ReAct [50]. For a fair comparison, all
the methods derive the OOD score post hoc from the same pre-trained model,
except for G-ODIN which requires model re-training. For readers’ convenience, a
brief introduction of baselines and hyperparameters is provided in Appendix B.

On CIFAR-100, we show that DICE reduces the average FPR95 by 18.73%
compared to the vanilla energy score [35] without sparsification. Moreover, our
method also outperforms a competitive method ReAct [50] by 12.55%. While
ReAct only considers activation space, DICE examines both the weights and
activation values together—the multiplication of which directly determines the
network’s logit output. Overall our method is more generally applicable, and can
be implemented through a simple post hoc weight masking.

ID Classification Accuracy. Given the post hoc nature of DICE, once the
input image is marked as ID, one can always use the original fc layer, which is
guaranteed to give identical classification accuracy. This incurs minimal over-
head and results in optimal performance for both classification and OOD detec-
tion. We also measure the classification accuracy under different sparsification
parameter p. Due to the space limit, the full results are available in Table 6 in
Appendix.
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Table 2. Main results. Comparison with competitive post hoc out-of-distribution
detection methods. All methods are based on a discriminative model trained on Ima-
geNet. ↑ indicates larger values are better and ↓ indicates smaller values are better.
All values are percentages. Bold numbers are superior results.

Methods OOD Datasets Average

iNaturalist SUN Places Textures

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑
MSP [19] 54.99 87.74 70.83 80.86 73.99 79.76 68.00 79.61 66.95 81.99

ODIN [33] 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41

GODIN [21] 61.91 85.40 60.83 85.60 63.70 83.81 77.85 73.27 66.07 82.02

Mahalanobis [31] 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.47

Energy [35] 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17

ReAct [50] 20.38 96.22 24.20 94.20 33.85 91.58 47.30 89.80 31.43 92.95

DICE (ours) 25.63 94.49 35.15 90.83 46.49 87.48 31.72 90.30 34.75 90.77

DICE + ReAct (ours) 18.64 96.24 25.45 93.94 36.86 90.67 28.07 92.74 27.25 93.40

4.2 Evaluation on ImageNet

Dataset. We then evaluate DICE on a large-scale ImageNet classification
model. Following MOS [24], we use four OOD test datasets from (subsets
of) Places365 [67], Textures [6], iNaturalist [56], and SUN [62] with non-
overlapping categories w.r.t. ImageNet. The evaluations span a diverse range of
domains including fine-grained images, scene images, and textural images. OOD
detection for the ImageNet model is more challenging due to both a larger fea-
ture space (m = 2, 048) as well as a larger label space (C = 1, 000). In particular,
the large-scale evaluation can be relevant to real-world applications, where the
deployed models often operate on images that have high resolution and con-
tain many class labels. Moreover, as the number of feature dimensions increases,
noisy signals may increase accordingly, which can make OOD detection more
challenging.

Experimental Details. We use a pre-trained ResNet-50 model [16] for
ImageNet-1k provided by Pytorch. At test time, all images are resized to 224 ×
224. We use the entire training dataset to estimate the contribution matrix and
masking matrix M. We use the validation strategy in Appendix C to select p.
The hardware used for experiments is specified in Appendix A.

Comparison with Baselines. In Table 2, we compare DICE with competitive
post hoc OOD detection methods. We report performance for each OOD test
dataset, as well as the average of the four. We first contrast DICE with energy
score [35], which allows us to see the direct benefit of using sparsification under
the same scoring function. DICE reduces the FPR95 drastically from 58.41% to
34.75%, a 23.66% improvement using sparsification. Second, we contrast with a
recent method ReAct [50], which demonstrates strong performance on this chal-
lenging task using activation truncation. With the truncated activation proposed
in ReAct [50], we show that DICE can further reduce the FPR95 by 5.78% with
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Fig. 3. Effect of varying sparsity parameter p during inference time. Model is trained
on CIFAR-100 using DenseNet101 [22].

weight sparsification. Since the comparison is conducted on the same scoring
function and feature activation, the performance improvement from ReAct to
DICE+ReAct precisely highlights the benefit of using weight sparsification as
opposed to the full weights. Lastly, Mahalanobis displays limiting performance on
ImageNet, while being computationally expensive due to estimating the inverse
of the covariance matrix. In contrast, DICE is easy to use in practice, and can
be implemented through simple post hoc weight masking.

5 Discussion and Ablations

Ablation on Sparsity Parameter p. We now characterize the effect of spar-
sity parameter p. In Fig. 3, we summarize the OOD detection performance for
DenseNet trained on CIFAR-100, where we vary p = {0.1, 0.3, 0.5, 0.7, 0.9, 0.99}.
Interestingly, we observe the performance improves with mild sparsity parame-
ter p. A significant improvement can be observed from p = 0 (no sparsity) to
p = 0.1. As we will theoretically later in Sect. 6, this is because the leftmost part
of units being pruned has larger variances for OOD data (gray shade). Units in
the middle part have small variances and contributions for both ID and OOD,
therefore leading to similar performance as p increases mildly. This ablation
confirms that over-parameterization does compromise the OOD detection abil-
ity, and DICE can effectively alleviate the problem. In the extreme case when p
is too large (e.g., p = 0.99), the OOD performance starts to degrade as expected.

Effect of Variance Reduction for Output Distribution. Figure 2 shows
that DICE has an interesting variance reduction effect on the output distribu-
tion for OOD data, and at the same time preserves the information for the ID
data (CIFAR-10, class “frog”). The output distribution without any sparsity
(p = 0) appears to have a larger variance, resulting in less separability from
ID data (see left of Fig. 2). In contrast, sparsification with DICE results in a
sharper distribution, which benefits OOD detection. In Fig. 3, we also measure
the standard deviation of energy score for OOD data (normalized by the mean
of ID data’s OOD scores in each setting). By way of sparsification, DICE can
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Table 3. Ablation results. Effect of different post hoc sparsification methods for
OOD detection with ImageNet as ID dataset. All sparsification methods are based on
the same OOD scoring function [35], with sparsity parameter p = 0.7. All values are
percentages and are averaged over multiple OOD test datasets.

Method FPR95↓ AUROC↑
Weight-Droput 76.28 76.55

Unit-Droput 83.91 64.98

Weight-Pruning 52.81 87.08

Unit-Pruning 90.80 49.15

DICE (Ours) 34.75 90.77

reduce the output variance. In Sect. 6, we formally characterize this and provide
a theoretical explanation.

Ablation on Pruning Methods. In this ablation, we evaluate OOD detection
performance under the most common post hoc sparsification methods. Here we
primarily consider post hoc sparsification strategy which operates conveniently
on a pre-trained network, instead of training with sparse regularization or archi-
tecture modification. The property is especially desirable for the adoption of
OOD detection methods in real-world production environments, where the over-
head cost of retraining can be sometimes prohibitive. Orthogonal to existing
works on sparsification, our primary goal is to explore the role of sparsification
for improved OOD detection performance, rather than establishing a generic
sparsification algorithm. We consider the most common strategies, covering both
unit-based and weight-based sparsification methods: (1) unit dropout [49] which
randomly drops a fraction of units, (2) unit pruning [32] which drops units with
the smallest L2 norm of the corresponding weight vectors, (3) weight dropout [57]
which randomly drops weights in the fully connected layer, and (4) weight prun-
ing [15] drops weights with the smallest entries under the L1 norm. For consis-
tency, we use the same OOD scoring function and the same sparsity parameter
for all.

Our ablation reveals several important insights shown in Table 3. First, in
contrasting weight dropout vs. DICE, a salient performance gap of 41.53%
(FPR95) is observed under the same sparsity. This suggests the importance of
dropping weights directedly rather than randomly. Second, DICE outperforms a
popular L1-norm-based pruning method [15] by up to 18.06% (FPR95). While it
prunes weights with low magnitude, negative weights with large L1-norm can be
kept. The negative weights can undesirably corrupt the output with noisy signals
(as shown in Fig. 1). The performance gain of DICE over [15] attributes to our
contribution-directed sparsification, which is better suited for OOD detection.

Ablation on Unit Selection. We have shown that choosing a subset of weights
(with top-k unit contribution) significantly improves the OOD detection perfor-
mance. In this ablation, we also analyze those “lower contribution units” for
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Table 4. Ablation on different strategies of choosing a subset of units. Values are
FPR95 (averaged over multiple test datasets).

Method CIFAR-10↓ CIFAR-100 ↓
Bottom-k 91.87 99.70

(Top+Bottom)-k 24.25 59.93

Random-k 62.12 77.48

Top-k (DICE) 20.83±1.58 49.72±1.69

OOD detection. Specifically, we consider: (1) Bottom-k which only includes k
unit contribution with least contribution values, (2) top+bottom-k which includes
k unit contribution with largest and smallest contribution values, (3) random-k
which randomly includes k unit contribution and (4) top-k which is equivalent
to DICE method. In Table 4, we show that DICE outperforms these variants.

6 Why Does DICE Improve OOD Detection?

In this section, we formally explain the mechanism by which reliance on irrele-
vant units hurts OOD detection and how DICE effectively mitigates the issue.
Our analysis highlights that DICE reduces the output variance for both ID and
OOD data. Below we provide details.

Setup. For a class c, we consider the unit contribution vector v, the element-
wise multiplication between the feature vector h(x) and corresponding weight
vector w. We contrast the two outputs with and without sparsity:

fc =
m∑

i=1

vi (w.o sparsity),

fDICE
c =

∑
i∈top units

vi (w. sparsity),

where fc is the output using the summation of all units’ contribution, and fDICE
c

takes the input from the top units (ranked based on the average contribution on
ID data, see bottom of Fig. 4).

DICE Reduces the Output Variance. We consider the unit contribution
vector for OOD data v ∈ R

m, where each element is a random variable vi

with mean E[vi] = μi and variance Var[vi] = σ2
i . For simplicity, we assume

each component is independent, but our theory can be extended to correlated
variables (see Remark 1). Importantly, indices in v are sorted based on the same
order of unit contribution on ID data. By using units on the rightmost side, we
now show the key result that DICE reduces the output variance.



702 Y. Sun and Y. Li

i=t

i=1
i=m f fDICE
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f fDICE
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(Units are sorted in the same order)

vi

Fig. 4. Units in the penultimate layer are sorted based on the average contribution to a
CIFAR-10 class (“airplane”). OOD data (SVHN) can trigger a non-negligible fraction
of units with noisy signals on the CIFAR-10 trained model.

Proposition 1. Let vi and vj be two independent random variables. Denote the
summation r = vi+vj, we have E[r] = E[vi]+E[vj ] and Var[r] = Var[vi]+Var[vj ].

Lemma 1. When taking the top m − t units, the output variable fDICE
c under

sparsification has reduced variance:

Var[fc] − Var[fDICE
c ] =

t∑
i=1

σ2
i

Proof. The proof directly follows Proposition 1.

Remark 1 (Extension to Correlated Variables). We can show in a more
general case with correlated variables, the variance reduction is:

t∑
i=1

σ2
i + 2

∑
1≤i<j≤m

Cov(vi, vj) − 2
∑

t<i<j≤m

Cov(vi, vj),

where Cov(·, ·) is the covariance. Our analysis shows that the covariance matrix
primarily consists of 0, which indicates the independence of variables. Moreover,
the summation of non-zero entries in the full matrix (i.e., the second term) is
greater than that of the submatrix with top units (i.e., the third term), resulting
in a larger variance reduction than in Lemma 1. See complete proof in Appendix
E.

Remark 2. Energy score is compatible with DICE since it directly operates
in the logit space. Our theoretical analysis above shows that DICE reduces the
variance of each logit fc(x). This means that for detection scores such as energy
score, the gap between OOD and ID score will be enlarged after applying DICE,
which makes thresholding more capable of separating OOD and ID inputs and
benefit OOD detection.



DICE: Leveraging Sparsification for Out-of-Distribution Detection 703

Table 5. Difference between the mean of ID’s output and OOD’s output. Here we use
CIFAR-100 as ID data and Δ=Ein[maxc fDICE

c ] - Eout[maxc fDICE
c ] is averaged over six

common OOD benchmark datasets described in Sect. 4.

Sparsity p = 0.9 p = 0.7 p = 0.5 p = 0.3 p = 0.1 p = 0

Δ 7.92 7.28 7.99 8.04 7.36 6.67

Remark 3 (Mean of output). Beyond variance, we further show in
Table 5 the effect of sparsity on the mean of output: Ein[maxc fDICE

c ] and
Eout[maxc fDICE

c ]. The gap between the two directly translates into the OOD
score separability. We show that DICE maintains similar (or even enlarges) dif-
ferences in terms of mean as sparsity p increases. Therefore, DICE overall benefits
OOD detection due to both reduced output variances and increased differences
of mean—the combination of both effects leads to stronger separability between
ID and OOD.

Remark 4 (Variance reduction on ID data). Note that we can also show the
effect of variance reduction for ID data in a similar way. Importantly, DICE effec-
tively preserves the most important information akin to the ID data, while reduc-
ing noisy signals that are harmful to OOD detection. Overall the variance reduc-
tion effect on both ID and OOD data leads to stronger separability.

7 Related Work

Out-of-distribution detection has attracted growing research attention in
recent years. We highlight two major lines of work:

(1) One line of work perform OOD detection by devising scoring functions, includ-
ing confidence-based methods [3,19,24,33], energy-based score [34,35,43,50,
58], distance-based approaches [31,48,51,54], gradient-based score [23], and
Bayesian approaches [11,29,37–39]. However, none of the previous methods
considered weight sparsification for OOD detection. The closest work to ours
is ReAct [50], which proposed truncating the high activations during test
time for OOD detection. While ReAct only considers activation space, DICE
examines both the weights and activation values together—the multiplication
of which directly determines the unit contributions to the output. Our work
is also related to [7], which pointed out that modern OOD detection methods
succeed by detecting the existence of familiar features. DICE strengthens the
familiarity hypothesis by keeping the dominating weights corresponding to
the “major features”.

(2) A separate line of methods addressed OOD detection by training-time regular-
ization [4,5,12,17,20,25,26,30,35,38,40–42,55,60,64]. For example, models
are encouraged to give predictions with uniform distribution [20,30] or higher
energies [8,9,26,35,41] for outlier data. The scope of this paper focuses on
post hoc methods, which have the advantages of being easy to use and general
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applicability without modifying the training objective. The latter property is
especially desirable for the adoption of OOD detection methods in real-world
production environments, when the overhead cost of retraining can be pro-
hibitive.

Pruning and Sparsification. A great number of effort has been put into
improving post hoc pruning and training time regularization for deep neural
networks [1,2,13–15,32,36]. Many works obtain a sparse model by training with
sparse regularization [1,2,14,36,52] or architecture modification [13,32], while
our work primarily considers post hoc sparsification strategy which operates con-
veniently on a pre-trained network. On this line, two popular Bernoulli dropout
techniques include unit dropout and weight dropout [49]. Post hoc pruning
strategies truncate weights with low magnitude [15], or drop units with low
weight norms [32]. In [61], they use a sparse linear layer to help identify spu-
rious correlations and explain misclassifications. Orthogonal to existing works,
our goal is to improve the OOD detection performance rather than accelerate
computation and network debugging. In this paper, we first demonstrate that
sparsification can be useful for OOD detection. An in-depth discussion and com-
parison of these methods are presented in Sect. 5.

Distributional Shifts. Distributional shifts have attracted increasing research
interest. It is important to recognize and differentiate various types of distribu-
tional shift problems. Literature in OOD detection is commonly concerned about
model reliability and detection of semantic shifts, where the OOD inputs have
disjoint labels w.r.t. ID data and therefore should not be predicted by the model.
This is different from the OOD generalization task whose goal is to provide accu-
rate predictions on OOD images under the same label space. For example, some
works considered covariate shifts in the input space [18,27,46,53,68], where the
model is expected to generalize to the OOD data.

8 Conclusion

This paper provides a simple sparsification strategy termed DICE, which ranks
weights based on a contribution measure and then uses the most significant
weights to derive the output for OOD detection. We provide both empirical
and theoretical insights characterizing and explaining the mechanism by which
DICE improves OOD detection. By exploiting the most important weights, DICE
provably reduces the output variance for OOD data, resulting in a sharper output
distribution and stronger separability from ID data. Extensive experiments show
DICE can significantly improve the performance of OOD detection for over-
parameterized networks. We hope our research can raise more attention to the
importance of weight sparsification for OOD detection.
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Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12977, pp. 430–445.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86523-8 26

6. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures
in the wild. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3606–3613 (2014)

7. Dietterich, T.G., Guyer, A.: The familiarity hypothesis: explaining the behavior of
deep open set methods. arXiv preprint. arXiv:2203.02486 (2022)

8. Du, X., Wang, X., Gozum, G., Li, Y.: Unknown-aware object detection: learning
what you don’t know from videos in the wild. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2022)

9. Du, X., Wang, Z., Cai, M., Li, Y.: Vos: learning what you don’t know by vir-
tual outlier synthesis. In: Proceedings of the International Conference on Learning
Representations (2022)

10. Filos, A., Tigkas, P., McAllister, R., Rhinehart, N., Levine, S., Gal, Y.: Can
autonomous vehicles identify, recover from, and adapt to distribution shifts? In:
Proceedings of the International Conference on Machine Learning, pp. 3145–3153.
PMLR (2020)

11. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In: Proceedings of the International Conference
on Machine Learning, pp. 1050–1059 (2016)

12. Geifman, Y., El-Yaniv, R.: Selectivenet: a deep neural network with an integrated
reject option. arXiv preprint. arXiv:1901.09192 (2019)

13. Gomez, A.N., et al.: Learning sparse networks using targeted dropout. arXiv
preprint. arXiv:1905.13678 (2019)

14. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network
with pruning, trained quantization and huffman coding. In: Proceedings of the
International Conference on Learning Representations (2016)

15. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Proceedings of the Advances in Neural Information
Processing Systems. vol. 28, pp. 1135–1143 (2015)

16. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

17. Hein, M., Andriushchenko, M., Bitterwolf, J.: Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the
problem. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 41–50 (2019)

http://arxiv.org/abs/1808.07703
https://doi.org/10.1007/978-3-030-86523-8_26
http://arxiv.org/abs/2203.02486
http://arxiv.org/abs/1901.09192
http://arxiv.org/abs/1905.13678
https://doi.org/10.1007/978-3-319-46493-0_38


706 Y. Sun and Y. Li

18. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint. arXiv:1903.12261 (2019)

19. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In: Proceedings of International Con-
ference on Learning Representations (2017)

20. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier
exposure. arXiv preprint. arXiv:1812.04606 (2018)

21. Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized odin: detecting out-of-
distribution image without learning from out-of-distribution data. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

22. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)

23. Huang, R., Geng, A., Li, Y.: On the importance of gradients for detecting distri-
butional shifts in the wild. In: Proceedings of the Advances in Neural Information
Processing Systems (2021)

24. Huang, R., Li, Y.: Towards scaling out-of-distribution detection for large semantic
space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2021)

25. Jeong, T., Kim, H.: Ood-maml: meta-learning for few-shot out-of-distribution
detection and classification. In: Proceedings of the Advances in Neural Information
Processing Systems (2020)

26. Katz-Samuels, J., Nakhleh, J., Nowak, R., Li, Y.: Training ood detectors in their
natural habitats. In: Proceedings of the International Conference on Machine
Learning. PMLR (2022)

27. Koh, P.W., et al.: Wilds: a benchmark of in-the-wild distribution shifts. In: Pro-
ceedings of the International Conference on Machine Learning, pp. 5637–5664.
PMLR (2021)

28. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

29. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: Advances in Neural Information
Processing Systems, pp. 6402–6413 (2017)

30. Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for
detecting out-of-distribution samples. arXiv preprint. arXiv:1711.09325 (2017)

31. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-
distribution samples and adversarial attacks. In: Advances in Neural Information
Processing Systems, pp. 7167–7177 (2018)

32. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. In: Proceedings of International Conference on Learning Representations
(2017)

33. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image
detection in neural networks. In: Proceedings of International Conference on Learn-
ing Representations (2018)

34. Lin, Z., Roy, S.D., Li, Y.: Mood: multi-level out-of-distribution detection. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 15313–15323 (2021)

35. Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection.
In: Proceedings of the Advances in Neural Information Processing Systems (2020)

36. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through
l0 regularization. In: International Conference on Learning Representations (2018)

http://arxiv.org/abs/1903.12261
http://arxiv.org/abs/1812.04606
http://arxiv.org/abs/1711.09325


DICE: Leveraging Sparsification for Out-of-Distribution Detection 707

37. Maddox, W.J., Izmailov, P., Garipov, T., Vetrov, D.P., Wilson, A.G.: A simple
baseline for bayesian uncertainty in deep learning. In: Advances in Neural Infor-
mation Processing Systems, vol. 32, pp. 13153–13164 (2019)

38. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In:
Advances in Neural Information Processing Systems, pp. 7047–7058 (2018)

39. Malinin, A., Gales, M.: Reverse kl-divergence training of prior networks: improved
uncertainty and adversarial robustness. In: Advances in Neural Information Pro-
cessing Systems (2019)

40. Meinke, A., Hein, M.: Towards neural networks that provably know when they
don’t know. arXiv preprint. arXiv:1909.12180 (2019)

41. Ming, Y., Fan, Y., Li, Y.: Poem: out-of-distribution detection with posterior sam-
pling. In: Proceedings of the International Conference on Machine Learning. PMLR
(2022)

42. Mohseni, S., Pitale, M., Yadawa, J., Wang, Z.: Self-supervised learning for gener-
alizable out-of-distribution detection. In: AAAI, pp. 5216–5223 (2020)

43. Morteza, P., Li, Y.: Provable guarantees for understanding out-of-distribution
detection. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)

44. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning (2011)

45. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high
confidence predictions for unrecognizable images. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)

46. Ovadia, Y. et al.: Can you trust your model’s uncertainty? evaluating predictive
uncertainty under dataset shift. In: Proceedings of the Advances in Neural Infor-
mation Processing Systems, vol. 32, pp. 13991–14002 (2019)

47. Roy, A.G., et al.: Does your dermatology classifier know what it doesn’t know?
detecting the long-tail of unseen conditions. arXiv preprint. arXiv:2104.03829
(2021)

48. Sehwag, V., Chiang, M., Mittal, P.: Ssd: a unified framework for self-supervised
outlier detection. In: International Conference on Learning Representations (2021)

49. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

50. Sun, Y., Guo, C., Li, Y.: React: out-of-distribution detection with rectified activa-
tions. In: Advances in Neural Information Processing Systems (2021)

51. Sun, Y., Ming, Y., Zhu, X., Li, Y.: Out-of-distribution detection with deep nearest
neighbors. In: Proceedings of the International Conference on Machine Learning
(2022)

52. Sun, Y., Ravi, S., Singh, V.: Adaptive activation thresholding: dynamic routing
type behavior for interpretability in convolutional neural networks. In: Proceedings
of the International Conference on Computer Vision (2019)

53. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with
self-supervision for generalization under distribution shifts. In: Proceedings of the
International Conference on Machine Learning. pp. 9229–9248. PMLR (2020)

54. Tack, J., Mo, S., Jeong, J., Shin, J.: Csi: novelty detection via contrastive learning
on distributionally shifted instances. In: Advances in Neural Information Process-
ing Systems (2020)

55. Van Amersfoort, J., Smith, L., Teh, Y.W., Gal, Y.: Uncertainty estimation using
a single deep deterministic neural network. In: Proceedings of the International
Conference on Machine Learning (2020)

http://arxiv.org/abs/1909.12180
http://arxiv.org/abs/2104.03829


708 Y. Sun and Y. Li

56. Van Horn, G., et al.: The inaturalist species classification and detection dataset. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8769–8778 (2018)

57. Wan, L., Zeiler, M.D., Zhang, S., LeCun, Y., Fergus, R.: Regularization of neural
networks using dropconnect. In: Proceedings of the International Conference on
Machine Learning, vol. 28, pp. 1058–1066 (2013)

58. Wang, H., Liu, W., Bocchieri, A., Li, Y.: Can multi-label classification networks
know what they don’t know? Proceedings of the Advances in Neural Information
Processing Systems (2021)

59. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8:
hospital-scale chest x-ray database and benchmarks on weakly-supervised classi-
fication and localization of common thorax diseases. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

60. Wei, H., Xie, R., Cheng, H., Feng, L., An, B., Li, Y.: Mitigating neural network
overconfidence with logit normalization. In: Proceedings of the International Con-
ference on Machine Learning (2022)

61. Wong, E., Santurkar, S., Madry, A.: Leveraging sparse linear layers for debug-
gable deep networks. In: Proceedings of the International Conference on Machine
Learning, pp. 11205–11216. PMLR (2021)

62. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-
scale scene recognition from abbey to zoo. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3485–3492. IEEE Computer
Society (2010)

63. Xu, P., Ehinger, K.A., Zhang, Y., Finkelstein, A., Kulkarni, S.R., Xiao, J.: Turk-
ergaze: crowdsourcing saliency with webcam based eye tracking. arXiv preprint.
arXiv:1504.06755 (2015)

64. Yang, J., et al.: Semantically coherent out-of-distribution detection. In: Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 8301–8309
(2021)

65. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: construction
of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint. arXiv:1506.03365 (2015)

66. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learn-
ing requires rethinking generalization. In: Proceedings of International Conference
on Learning Representations

67. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million
image database for scene recognition. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 40, pp. 1452–1464. IEEE (2017)

68. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey
(2021)

http://arxiv.org/abs/1504.06755
http://arxiv.org/abs/1506.03365

	DICE: Leveraging Sparsification for Out-of-Distribution Detection
	1 Introduction
	2 Preliminaries
	3 Method
	3.1 DICE: Directed Sparsification
	3.2 OOD Detection with DICE

	4 Experiments
	4.1 Evaluation on Common Benchmarks
	4.2 Evaluation on ImageNet

	5 Discussion and Ablations
	6 Why Does DICE Improve OOD Detection?
	7 Related Work
	8 Conclusion
	References




