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Abstract. In this paper, we propose a novel method for color propaga-
tion that is used to recolor gray-scale videos (e.g. historic movies). Our
energy-based model combines deep learning with a variational formu-
lation. At its core, the method optimizes over a set of plausible color
proposals that are extracted from motion and semantic feature matches,
together with a learned regularizer that resolves color ambiguities by
enforcing spatial color smoothness. Our approach allows interpreting
intermediate results and to incorporate extensions like using multiple
reference frames even after training. We achieve state-of-the-art results
on a number of standard benchmark datasets with multiple metrics and
also provide convincing results on real historical videos – even though
such types of video are not present during training. Moreover, a user eval-
uation shows that our method propagates initial colors more faithfully
and temporally consistent.

Keywords: Video color propagation · Learned variational refinement

1 Introduction

Interestingly, adding color to monochromatic images is as old as photography
itself [18]. Lately, even entire movies have been meticulously colorized [20],
e.g. They Shall Not Grow Old – Peter Jackson, to make historic movies more
accessible to audiences used to the high-quality imagery of today’s cinema. An
enormous manual effort has been spent to get the color of, for instance, gear or
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Fig. 1. Method overview: Video color propagation using color proposals from motion
and semantic feature matching (to reference and prev. frame) are fused and then refined
using a learned variational refinement. For details see page 516. Best viewed on screen.

uniforms correct from a historical perspective [31], which goes far beyond rough
color guesses from pure fully automatic colorization.

One way of still keeping the colorization effort low is to avoid manual col-
orization of each frame but instead propagating the color from a single high
quality manually colorized reference frame to subsequent frames. However, this
also comes along with its own challenges, as can be seen at the top of Fig. 2.
Here, a tree occludes parts of a car and simply propagating the color, as tradi-
tionally done using optical flow, leads to color artifacts at non-matched regions.
Therefore, refinement is needed to keep results faithful over multiple frames.

Classical methods propose to solve this problem by setting up energy-based
optimization problems [32] which assume that similar gray regions exhibit the
same color, while at the same time enforcing color smoothness by using hand-
crafted edge-aware regularizers [43]. Iteratively solving these optimization prob-
lems leads to smooth results with inpainted occlusions. Recent works demon-
strate that a deep learning inspired total deep variation (TDV) regularizer R can
outperform hand-crafted regularizers on various image restoration tasks [26,44].
Indeed, a TDV regularizer can be taught to inpaint color in an edge-aware fash-
ion, as shown in a proof of concept in Fig. 2 (second row). Recently, deep learning-
based approaches were proposed that transfer colors without optimization but
rather use CNNs to regress colors based on color proposals from deep feature
matches to the reference [38,60], or use CNNs for temporal smoothing [30].

In this work, we therefore propose a novel method that combines the bene-
fits of deep learning and optimization based methods. We use colors warped by
motion together with alternative plausible color proposals. These are generated
via deep feature matches to the global reference frame and to the previous col-
orized frame, which is more local in time and therefore more similar. All these
estimates are subsequently fused in a data-driven manner and further refined
in an unrolled optimization scheme using a learned modified TDV regularizer.
Moreover, the whole optimization process is steered by image-dependent data-
driven weights, which are independently estimated for each image by a CNN
termed WeightNet. Thus, our energy-based model learns to refine the color esti-
mates and to resolve color ambiguities among the different color proposals. In
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Fig. 2. Top: Propagating color from a color reference to a gray image according to the
object motion (optical flow) leads to artifacts. These need to be detected and filled.
Bottom: Proof of concept. A learned TDV is able to restore missing colors edge-aware.
(Color figure online)

particular, the mathematical structure leads to interpretable and user override-
able intermediate results. Overall, the main contributions are as follows:

– Generation of multiple plausible color proposals of different types
(global/local) by a sophisticated feature-matching process as well as motion.

– Learned color proposal fusion and guiding of the subsequently learned varia-
tional refinement to resolve ambiguities among numerous color proposals.

– Variational structure improves mathematical controllability and interpretable
intermediate results allowing extensions to the method even after training.

– State-of-the-art results on several video color propagation datasets, metrics
and promising qualitative results also validated by a user evaluation.

2 Related Work

Video color propagation is closely related to image colorization. While clas-
sic image colorization propagates color information spatially within one image,
video color propagation additionally has to incorporate multiple frames. In lit-
erature, diverse colorization approaches exist that can be roughly classified into
interactive [32,59,63], reference or exemplar-based [17,23,25,38,40,53,57], and
fully automatic methods [11,22,48,61]. Our method is reference-based.

Interactive methods rely on some kind of user input, e.g. scribbles, defin-
ing the color for selected image pixels. Classically, the color of the remaining
pixels is determined by diffusing color over the image or between frames using
a locally adaptive distance, based on handcrafted similarity measures such as
luminance [4,32], geodesic distance [59], or texture features [1,35,46]. Later, the
amount of required user interaction was reduced by learning image-specific simi-
larity measures using, for instance, local linear embeddings [10], iterative feature
discrimination [58], or CNNs [14]. Motivated by the success of deep learning [29]
and the availability of large-scale image datasets [34,49], Zhang et al. [63] learned
a deep CNN that colorizes an image given either scribbles or a color histogram.

In contrast to the aforementioned approaches, reference-based methods uti-
lize a reference image to transfer its colors to similar regions within a destination
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frame. Initial approaches transferred the color from the reference image solely
based on luminance [47] and texture similarity [57], which often lead to spa-
tially varying colors within an image region. Thus, optimization-based spatial
regularization techniques were introduced to refine a coarse colorization based
on correspondences [5,9,23,40,43]. Charpiat et al. [9] rephrased the coloriza-
tion problem as a discrete labeling problem and resolved local ambiguities by
minimizing a Markov random field (MRF) energy, which resulted in a spatially
consistent image with discrete colors with a final variational refinement. Pierre
et al. [40,43] advocated a variational method utilizing a hand-crafted regular-
izer favoring spatially consistent colors, and a dataterm for plausible pixel color
proposals. They further extended this explicitly to video [41] by integrating
motion-based color proposals from PatchMatch [3] and TV-�1 optical flow [7].
Soon after, VPN [25] used a completely different deep learning-based approach
using learnable bilateral filters to propagate color in videos. Other deep learn-
ing approaches tailored to videos followed [21,38,60]. These methods computed
correspondences based on deep features [16,51] of the gray-scale images. Interest-
ingly, Vondrick et al. [56] showed that networks learned tracking when trained on
color propagation. DeepRemaster [21] utilized a temporal attention mechanism
to colorize historic videos for a given example image. Deep image analogy [33]
developed a PatchMatch for deep features, bridging larger domain gaps. He et
al. [17] extended this approach for exemplar-based image colorization, filling
non-matched regions using a CNN trained on a large database. The video exten-
sion DEB [60] focused on automatic exemplar-based video colorization by using
not necessarily related exemplar images as references, allowing color deviations
from the reference. In contrast, DVCP [38] payed close attention to staying close
to the reference by combining motion estimation and feature-based matching
to the global reference frame to avoid color drifts. Our method also focuses on
staying faithful to the colors from a provided high quality reference.

Fully automatic colorization approaches predict reasonable colors without
user input by learning on large-scale image datasets [34,49]. While classical
methods are based on, e.g., conditional Gaussian random fields [13], more recent
approaches [28,48,52,61] proposed different CNN architectures to address the
multi-modality of colorization and introduced semantics from different perspec-
tives. These colorization techniques relied on, e.g. semantic features [22], the
prediction of a color histogram for each pixel of a gray-scale image [28,61], vari-
ational refinement [39], autoregressive neural networks [48], conditional varia-
tional autoencoders [12], conditional GANs [6,24], a color diversity loss [30], or
conditional autoregressive transformers [27]. In contrast to automatic coloriza-
tion, we focus on faithful propagation of high-quality references.

For further details on colorization and color propagation, we recommend the
surveys [2,15,42], for (learnable) variational refinement [8,26].
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3 Method

Overview. As shown in detail in Fig 1, our method propagates color from a
given color reference frame sequentially to the following gray-scale frames. To
avoid the aforementioned motion artifacts, our model fuses and refines diverse
color proposals of various sources to a final color estimate. In detail, we extract
multiple color proposals with confidences, for each pixel of a frame based on
semantic matches to the Global reference frame and the already colorized previ-
ous (Local) frame. Further, we also use the Motion-compensated previous frame
as color proposal. All these different color proposals are fused into an initial
color estimate via a learned WeightNet W. Then, this estimate is refined by
unrolling an energy-based optimization algorithm that facilitates the learned
edge-aware total deep variation (TDV [26]) regularizer R. The optimization is
further guided by pixel-wise weights, provided by W for each frame. Further
details on proposal generation, fusion, and refinement are given in Sects. 3.1, 3.2
and 3.3, respectively.

Setup and Notation. We primarily operate in the CIE-Lab color space Ωlabas
it mimicks the human color perception. Color images like the ground truth y,
the color estimate x, or the color proposals c always refer to ab channels, if
no other channel subscript is given like in yg (original gray-scale), yl (CIE-Lab
luminance) or ylab. The numbers of pixels is denoted by NP , pyramid levels by
NJ , color proposals by NM/NG/NL and training frame augmentations by NA

and we frequently use corresponding subscripts (p, j, . . .) as indices. Further, to
index the color proposal types (Motion, Global, Local) we use γ ∈ {M,G,L},
i.e. cM denotes a motion color proposal, while cγ is a generic placeholder for
any color proposal type. In addition, we indicate the pixel-wise product using
broadcasting over color channels by �. To ease notation, we frequently omit the
frame superscript t if clear from the context.

3.1 Color Proposal Generation and Matching

In this section, we describe, how we generate our three color proposal types (see
Fig. 1). In a nutshell, we bilinearly interpolate colors from matched positions in
either the global reference t=0 (G), or the previously colorized frame t−1 (L,M).
On the previous (Local) frame we extract proposals via feature matching CL and
via Motion CM . We also use feature matching to the Global reference CG. Each
feature matching yields multiple proposals per pixel along with a confidence.
The following paragraphs elaborate on the details.

For our color proposals based on motion CM , we use RAFT [54] to estimate
motion mM between the current frame yt

g and its previous frame yt−1
g . We further

compute the forward-backward motion difference δM for occlusion reasoning
(following [19, suppl. Equation 10]), and also use it as a confidence, as motion
provides wrong colors for occluded areas. To provide plausible colors for such
areas, we use semantic feature matching, described next.
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Fig. 3. Left: Global matching procedure for gray-scale images yt
g and y0

g using a feature

pyramid {f̃ t
j }NJ

j=1 with NJ -levels of features f̃ t
j . Right: Results of colorizing multiple

frames with a single color proposal type (noisy) vs. our learned fusion W and TDV
refinement; Mind the errors on the fast moving background. (Color figure online)

Our global semantic matching to the reference y0
g , finds and refines NG best

matches using a CNN feature encoder F . In detail, we convert each gray frame to
a pyramid of semantic features {f t

j}NJ
j=1 = F(yt

g) with different spatial resolutions
on NJ levels, as seen on the left in Fig. 3. Ablation experiments (see suppl.)
revealed that VGG16 with batchnorm pre-trained for classification works best.
We use instance normalization [55] yielding features f̃ of similar magnitude. For
each pixel location p within f̃ t

j , we search in locations q around a neighborhood
N (p) in the corresponding features f̃0

j of the reference image y0
g , i.e.

k̂t
Gjp = max

q∈N (p)

{
ReLU

(〈
f̃ t

jp

‖f̃ t
jp‖2

,
f̃ 0

jq

‖f̃ 0
jq‖2

〉)}
. (1)

Here, k̂Gjp is the best global confidence for each pixel p of the current level j,
using a truncated normalized cross correlation. We define mGjp as the according
match (2D offset: q − p) that maximized k̂Gjp. The search process is repeated
on the next finer level, centered around the position indicated by the upsampled
mGjp. We use nearest neighbor upsampling and rescale to compensate the larger
pixel spacing. Repeating this for all pixels and levels leads to a field of dense
matches mG on the final level. While we use the whole image as the search neigh-
borhood N (p) on the coarsest level, we restrict N (p) to ±2 pixels for refinement
on the finer levels (see Fig 3). On the finest level we compute a final confidence
by multiplying all confidences, using nearest neighbor upsampling (↑), i.e.

kG =
Nj∏
j=1

Nj

↑ (k̂Gj). (2)

The corresponding Global color proposal cG for each match and pixel is com-
puted by sampling from the color reference y0 using the matched positions mG.
The global matching and refinement process is repeated NG times, using the NG

most confident matches on the coarsest level. This yields a set of CG = {cn
G}NG

n=1

color proposal images, with a corresponding set of final confidences KG.
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The Local matching process closely follows the global matching. In contrast,
we match against the previous gray frame yt−1

g and sample from the last color
estimate xt−1 to get CL. Moreover, we do not search over the whole image on
the coarsest level, as motions are smaller, but around a small neighborhood
N (p) = ±8 pixels around the positions indicated by the motion estimate mM .

To summarize, our color proposal generation process yields a set of diverse
proposal types C = {CM ,CG,CL}, containing all one or more color proposals.
The best proposal per type ĉγ , is either the single proposal for motion ĉM , or
the best via the pixel-wise confidence, yielding ĉG or ĉL. To compare the differ-
ences of the proposal types, we propagate colors using each type’s best proposal
separately over many frames, see Fig. 3. While motion color proposals bleed into
occluded areas, local proposals have less accumulated errors. Global proposals
allow fixing objects that were occluded for multiple frames, like the leaves on the
right, but at the cost of higher base noise. Fusing the color proposals in each step
together with our learned refinement yields the best result as described next.

3.2 Initial Fusion with Weight Network

Since the color proposal types have very different properties (see Fig. 3), we use
a CNN based UNet termed WeightNet W (details in suppl.) to fuse the initial
best color proposals (ĉM ,ĉL,ĉG) using pixel-wise weights U = {uM ,uG,uL,u0}.
Moreover, we use W to predict an additional set of pixel-wise weights V =
{vM , vG, vL, v0, vR} to locally guide the subsequent variational refinement. To
enable a propagation of weights across multiple frames, we also feed the (motion
compensated) U t−1 and V t−1 from the previous frame into W, i.e.

(Ut,Vt) = Wθ(yt
l , Ẑ

t,Ut−1,Vt−1). (3)

Here, yt
l is the current frame’s luminance, Ẑt concatenates the best color proposal

per pixel for each proposal type, together with its associated confidence or motion
delta δM and absolute luminance difference. All weights Ut and Vt have a pixel
value in [0, 1]. Using the fusion weights Ut, the initial color estimate reads as

xt,0 =
∑

γ∈{M,G,L} ut
γ � ĉt

γ , (4)

which essentially implements a pixel-wise soft-selection of the best type of color
proposals ĉt

γ or no proposal at all, since we enforce for each pixel that∑
γ∈{M,G,L} ut

γ,p ≤ 1,
∑

γ∈{M,G,L} vt
γ,p ≤ 1. (5)

This is implemented via a pixelwise softmax using u0 and v0 allowing inequality.
Hence, W can blend colors or fade them out if all matches seem implausible.

Recall that the best color proposal of each type ĉt
γ is defined as the one whose

associated pixel-wise confidence is maximal. Since only the best color proposal
of each type ĉt

γ is fed into the WeightNet, we can adapt the number of proposal
per pixel individually for each type without any retraining. This also holds true
for the subsequent learned variational refinement, which even uses the full set of
proposals C, allowing it to undo initial wrong choices, as we will elaborate next.
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3.3 Learned Variational Refinement

This section describes the details of our learned variational refinement, which
we perform independently for each frame. In a nutshell, our model uses an
unrolled optimization algorithm, to decrease an energy E consisting of a dataterm
energy D that models coherence to the color proposals, and a total deep vari-
ation regularizer (TDV [26]) R that learns to model spatial color smoothness.
The whole process is steered by pixel-wise weights provided by WeightNet W,
and automatically picks the best reference, as we will explain in the following.

In detail, we combine and extend the approaches [26,43] and let

E(x) = D(x,C) + Rθ(x, yl) (6)

be our learnable energy, which is a function of the current color estimate x. Here,
yl is the current frames luminance, and C = {CM ,CG,CL} the set of all color
proposal types. For example, CG = {cn

G}NG
n=1 denotes the global color proposal,

which already provides NG different proposals per pixel. The regularizer

Rθ(x, yl) =
NP∑
p=1

vR,p · rθ(x, yl)p. (7)

is weighted per pixel p with a scalar weight vR,p ∈ [0, 1] generated by Weight-
Net W. Therefore, W can allow to preserve high frequency textures in regions of
high confidence and rely on the regularizer in uncertain regions. The regularizer
itself, is a special twice differentiable UNet, detailed in TDV [26], with learnable
parameters θ. Similar to the regularizer, the dataterm

D(x,C) =
∑

γ∈{M,L,G}
λγ

NP∑
p=1

vγ,p · d(xp,Cγ,p) (8)

also consists of a weighted combination of the pixel-wise dataterms d of each pro-
posal type (M,L,G). The learned scalars λγ ∈ R

+ balance the different dataterm
types based on dataset statistics, and the scalar fields vγ are again predicted by
WeightNet W. This allows W to shift attention between the dataterms of the
proposal types, focusing on the most trusted type for each pixel.

While a standard �2 dataterm uses a single fixed reference, we use a multi-well
dataterm which automatically chooses the best reference from the Nγ proposals
per pixel. This means for each pixel p we use the dataterm

d(xp, {cn
γ,p}Nγ

n=1) = min
c̃p∈{cn

γ,p}Nγ
n=1

‖xp − c̃p‖22. (9)

Hence, although the color proposal fusion only used the best proposal based
on confidences, this multi-well dataterm can still choose from all proposals per
pixel and type. Therefore, the optimization scheme does not only refine x but
also cleans the dataterm reference from initial color noise as illustrated in Fig. 4.
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Fig. 4. Auto-selection of closest dataterm reference: Left shows how initial noisy ref.
updates to a better option per pixel, easing TDV refinement of x. Right, details on the
marked pixel’s iterative update: Multi-well dataterm energy e is a simplification of (9)
for single pixel xp. A step on ∇R improves colors of estimate xi

p→x̄i
p, away from wrong

blue ref. cn=1
γ,p . The dataterm energy e2 of proposal cn=2

γ,p is now lower than e1, leading
to the reference update. Hence, proxτe now uses the better orange ref. cn=2

γ,p for c̃i
γ .

Given the overall energy (6), our model refines the initial fused x0 using NI

unrolled iterations of a proximal gradient scheme [8]. A step on ∇R for spatial
color smoothness, is followed by a proximal dataterm step, updating xi to

xi+1 = proxτD
(
x̄i

)
= proxτD

(
xi − τ∇1Rθ(xi, yl)

)
(10)

in each iteration i. We use the proximal map

proxτD
(
x̄i

)
=

x̄i + τ
∑

γ∈{M,G,L} λγvγ � c̃i
γ

1 + τ
∑

γ∈{M,G,L} λγvγ
, (11)

where proxτD is basically a convex combination of the intermediate estimate x̄i

and its currently closest color proposal per proposal type c̃i
γ , with � being the

pixel-wise product with broadcasting along color channels (derivation in suppl.).
To summarize, our iterative approach refines the initial fused most confident

color proposals, and enables an automatic adaption of the dataterm references in
each iteration. Hence, if a regularizer update changes noisy pixels to favor color
smoothness, the dataterms can change their pixel-wise color references ĉγ,p from
an initial most confident but noisy value to the best in the set of all proposals
per type Cγ,p for each pixel p. Finally, the interplay of all parts is shown in
Fig. 5, where M̃ t

O indicates occluded regions as explained in the supplementary.

3.4 Training

For training, we use an MSE loss in the ab space, in combination with online-
hard-example-mining (OHEM [50]) to focus on the 25% most difficult pixels
per image, as most regions soon work very well. We train on a batch of frame
pairs. In addition, we use the estimated result as augmented input (gradient-
stopped) for the next frame and repeat this NA times to simulate realistic artifact
accumulation. Although this teaches our model real artifacts, extreme cases can
occur in the initial training phase, which would require a heuristic increase of the
number of propagated frames with training duration. To avoid this, we rescale
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Fig. 5. Color refinement example; The backside of the train is initially occluded (M̃ t
O);

W fuses the initially most confident color proposals, which can contain noise; An
unrolled optimization (I= 12) with learned TDV further refines results for smooth
colors.

the loss of each frame pair based on an oracle estimating the best currently
possible initial proposal ĉt,0

o from all proposals via

ĉt,0
p,o = argmin

c∈{ct
M ,ct

G1,...,ct
GNk

,ct
L1,...,ct

LNk
}
‖cp − yt

p‖2, (12)

Lo(x, y) =
NA∑
t=1

L(xt, yt)

εo + L
(
ĉt,0
o , yt

) , (13)

where we set εo to roughly 1% of the loss the model generates without loss
rescaling and use NA = 5 as default. To speed-up training, we pre-compute the
gray-scale matches and train only W and R. However, our method allows for
full end-to-end training. Further details on training can be found in the supple-
mentary material.

Multimodel Training. Using more proposal types for W typically provides better
initial estimates. However, this also means that fewer errors remain for the TDV
regularizer to train on. Hence, we propose to train a shared regularizer R with
W using different color proposal types e.g. WM,G and WM,G,L at the same time.
This allows to train R with a much wider variety of hard and easy cases.

4 Experiments

In this section, we show various quantitative and qualitative experimental results.
Further ablation results, interactive experiments, and a discussion of limitations
can be found in the supplementary material. The source code is on github.

Baselines and datasets. As baselines we use three color propagation methods
VPN [25], DeepRemaster [21] and DVCP [38], as well as the exemplar-based
colorization method DEB [60]. As DeepRemaster and DEB require image sizes
to be a multiple of 32, we zero-pad the inputs and crop the results for them.

https://github.com/VLOGroup/LVVCP
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We report results on multiple datasets. For training and evaluation, we use the
splits of DAVIS 2017 [45] as defined in the VPN [25] codebase. It consists of 35
training and 15 evaluation sequences of 25 consecutive frames each. For testing
we use the 27 sequences from DAVIS-2017-test that are at least 45 frames long.
We resample the original high-resolution sources to remove JPG artifacts and
get highest quality ground-truth. Furthermore, we report results on NDVCP, the
non-DAVIS subset from the test-set of [38] (55 videos of 45+ frames; Fig. 7) to
avoid overlaps. We received the DVCP results and data from the authors1 , and
re-ran all open source methods. For datasets where we did not receive DVCP
results (e.g. DAVIS-2017-test), we picked the next best open source method.

Metrics. In literature, metrics are computed quite differently, e.g. PSNR with dif-
ferent color spaces and normalizations [25,38], or showing averages over the first
t frames [38] vs. reporting each step t [60], which prevents direct comparisons.
Hence, to ensure fairness, we identically compute all metrics on the results of all
methods. We compute PSNR over the CIE-Lab ab color channels (PSNRab), as
the luminance is fixed (details in suppl.). Furthermore, we report CIDE2000 [36]
in the supplementary. Finally, we compute the open source LPIPS metric [62],
which corresponds well to human perception on patch level.

Comparison on DAVIS. Fig. 6 shows our results and ablations on DAVIS-2017-
val [25]. Using our fused proposal generation (NG = NL = 8) alone already
outperforms some baselines such as VPN or Levin. From the color proposals,
ĉt,0
L works best up to roughly 11 frames, when global color proposals perform

better as they do not accumulate errors. Fusing motion and global color proposals
(WM,G) already outperforms all baselines, and adding regularization (WM,G +
R) yields further improvement. Adding local color proposals further enhances
results on initial frames. Training with frame propagation augmentation over 9
frames (WM,G,L +R+NA = 9) improves the long-range quality, without adding
additional inference time. Using NG = NL = 3 (‘fast’) reduces inference time
at similar performance. Performance improves further with multimodel training
‘mm’. Hence, we use these two models for all further comparisons.

Comparison on NDVCP and DAVIS-2017-test Dataset.
Using the previously best methods, we computed results also on larger and longer
datasets. Figure 7 shows results for PSNRab (higher is better) of all pixels as well
as on occluded areas for both datasets separately. The occlusions are estimated
using the heuristic from [37] (see supplementary for details). Even though we
train only on the 35 DAVIS sequences, we greatly outperform the baselines on
both datasets also in occlusions. In addition, we compute the perceptual metric
LPIPS (v0.1 VGG) [62], and also there our method outperformes the baselines
by a clear margin (Fig. 8).

1 We thank DVCP authors for the data. As their results exclude the DAVIS-2017-val
video mallard-water, we also omit it for fair comparison resulting in 14 sequences.
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Fig. 6. PSNRabon DAVIS-2017-val Dataset; Already our weakest model WMG, out-
performs all baselines. Adding refinement (WMG + R), adds further improvements.

Fig. 7. PSNRab(↑) on NDVCP and DAVIS-2017-test datasets. Top of each table = all
pixels; Bottom = occluded regions only; Graph shows results on NDVCP subset. Per-
formance in occluded regions is lower for all methods; We still outperform all baselines.

Fig. 8. LPIPS [62] (↓ lower is better ) on NDVCP (Left) and DAVIS-2017-test (Right);
Both our models with and without multimodel training show lowest perceptual errors.

User Evaluation. To better asses the quality of the models for our task of faithful
video color propagation, we asked 30 users to rate the models on the DAVIS-
2017-val and DAVIS-2017-test sets Fig. 9. Each video was converted to grayscale
and recolored by different methods given the ground-truth colored first frame.
In particular, we asked the users which method propagates the colors from the
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still image reference most faithfully and consistent over time. The users then had
to rank the methods from best to worst for each video sequence independently.
Figure 9 shows how often each method ranked from best (green) to worst (red).
As can be seen the users clearly prefer our method with a consistent large gap.

Fig. 9. User evaluation; Our method ranks best more than twice as the baselines; Left
= DAVIS 2017 val, Right = DAVIS 2017 test; green = best, orange = 2nd , red =
worst. (Color figure online)

Qualitative Comparison. Figure 10 shows a qualitative comparisons to the best
performing baselines DEB [60] and DVCP [38] on a complex scene to reveal error
patterns. While DVCP lost most of the color of the soapbox and the drivers

Fig. 10. Qualitative results on DAVIS soapbox shows we keep realistic colors details
for longer compared to DEB [60] and DVCP [38]. (Best viewed in color on screen)
(Color figure online)

after 30 frames, DEB shows color drifts [60, Fig. 16 arXiv] and oversmoothing
even on the background clearly visible in the reference, and over-saturates the
heads to red. In contrast, our model manages to keep the details – even after
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occlusion (e.g. crowd in frame 30, was occluded in frame 15), while at the same
time keeping the soapbox driver colorized, with some minimal color bleeding
on the shirt, despite the drastic appearance and size changes. More qualitative
results including a discussion on limiting cases can be found in the supplemen-
tary.

Historic Western - 2 References. Figure 11 demonstrates the extensibility of our
method without re-training, on a historic scene from 1925. In frame 15, large

Fig. 11. Colorization of a historic sequence with FilmGrain - out of training domain;
Without re-training our model can be extended to use multiple keyframe references.

portions of the arm and the jacket are occluded and are later visible with very
different and new appearance. Therefore the matching to the global reference
frame can be reduced and local feature matches take over. As a result, close-by
similar textures dominate leading to wrong colorization. However, our flexible
framework allows to add a slightly reworked frame as a second global reference.
With the initial confidences and the multiwell dataterm, our method automat-
ically selects best color proposal from both reference images. Using both also
improves intermediate results, even though our method was never trained to
work with two global references. An example on how to users can override the
fusion of the color proposals can be found in the supplementary.

Historic Theater. Figure 12 compares our method to DEB [60] and DeepRemas-
ter [21] – the best competitors with available source code – on a historic video of
a theater play in 1902, with a manually colorized reference frame. While Deep-
Remaster looses colors, DEB over saturates them like on the floor, and shows a
color drift on the wall. Both fail to keep details intact like the yellow sash.
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Fig. 12. Colorized historic sequence from 1902; Mind details like the yellow sash, face,
or color drift. Our method keeps colors more faithful to the manually colored reference.
(Color figure online)

5 Conclusion

In this work, we proposed a method that successfully combines classical energy-
based methods with deep learning to propagate colors in videos. Our method
advanced the state-of-the-art – both quantitatively and qualitatively on multiple
datasets and metrics as well as user ranking – even with much less training data.
Further, our flexible mathematical structure allows for extensions like integrating
additional references without retraining. Future work includes extension of user
input capabilities and elaboration of loss functions such as adversarial losses.
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