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Abstract. Visual localization, i.e., the problem of camera pose estima-
tion, is a central component of applications such as autonomous robots
and augmented reality systems. A dominant approach in the literature,
shown to scale to large scenes and to handle complex illumination and
seasonal changes, is based on local features extracted from images. The
scene representation is a sparse Structure-from-Motion point cloud that
is tied to a specific local feature. Switching to another feature type
requires an expensive feature matching step between the database images
used to construct the point cloud. In this work, we thus explore a more
flexible alternative based on dense 3D meshes that does not require fea-
tures matching between database images to build the scene representa-
tion. We show that this approach can achieve state-of-the-art results. We
further show that surprisingly competitive results can be obtained when
extracting features on renderings of these meshes, without any neural
rendering stage, and even when rendering raw scene geometry without
color or texture. Our results show that dense 3D model-based represen-
tations are a promising alternative to existing representations and point
to interesting and challenging directions for future research.
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1 Introduction

Visual localization is the problem of estimating the position and orientation,
i.e., the camera pose, from which the image was taken. Visual localization is
a core component of intelligent systems such as self-driving cars [27] and other
autonomous robots [40], augmented and virtual reality systems [42,45], as well
as of applications such as human performance capture [26].

In terms of pose accuracy, most of the current state-of-the-art in visual local-
ization is structure-based [11–14,16,28,59,61,65,69,74,79,92]. These approaches
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Fig. 1. Modern learned features such as Patch2Pix [94] are not only able to establish
correspondences between real images (top-left), but are surprisingly good at match-
ing between a real images and non-photo-realistic synthetic views (top-right: textured
mesh, bottom-left: colored mesh, bottom-right: raw surface rendering). This observa-
tion motivates our investigation into using dense 3D meshes, rather than the Structure-
from-Motion point clouds predominantly used in the literature

establish 2D-3D correspondences between pixels in a query image and 3D points
in the scene. The resulting 2D-3D matches can in turn be used to estimate
the camera pose, e.g., by applying a minimal solver for the absolute pose prob-
lem [24,53] inside a modern RANSAC implementation [4–6,18,24,37]. The scene
is either explicitly represented via a 3D model [28,29,38,39,59,62,63,65,79,92]
or implicitly via the weights of a machine learning model [9–12,14–16,44,74,86].

Methods that explicitly represent the scene via a 3D model have been shown
to scale to city-scale [63,79,92] and beyond [38], while being robust to illumi-
nation, weather, and seasonal changes [28,61,62,83]. These approaches typically
use local features to establish the 2D-3D matches. The dominant 3D scene rep-
resentation is a Structure-from-Motion (SfM) [1,70,76] model. Each 3D point in
these sparse point clouds was triangulated from local features found in two or
more database images. To enable 2D-3D matching between the query image and
the 3D model, each 3D point is associated with its corresponding local features.
While such approaches achieve state-of-the-art results, they are rather inflexi-
ble. Whenever a better type of local features becomes available, it is necessary
to recompute the point cloud. Since the intrinsic calibrations and camera poses
of the database images are available, it is sufficient to re-triangulate the scene
rather than running SfM from scratch. Still, computing the necessary feature
matches between database images can be highly time-consuming.

Often, it is possible to obtain a dense 3D model of the scene, e.g., in the
form of a mesh obtained via multi-view stereo [32,71], from depth data, from
LiDAR, or from other sources such as digital elevation models [13,84]. Using a
dense model instead of a sparse SfM point cloud offers more flexibility: rather
than having to match features between database images to triangulate 3D scene
points, one can simply obtain the corresponding 3D point from depth maps ren-
dered from the model. Due to decades of progress in computer graphics research
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and development, even large 3D models can be rendered in less than a millisec-
ond. Thus, feature matching and depth map rendering can both be done online
without the need to pre-extract and store local features. This leads to the ques-
tion whether one needs to store images at all or could render views of the model
on demand. This in turn leads to the question how realistic these renderings
need to be and thus which level of detail is required from the 3D models.

This paper investigates using dense 3D models instead of sparse SfM point
clouds for feature-based visual localization. Concretely, the paper makes the
following contributions: (1) we discuss how to design a dense 3D model-based
localization pipeline and contrast this system to standard hierarchical local-
ization systems. (2) we show that a very simple version of the pipeline can
already achieve state-of-the-art results when using the original images and a
3D model that accurately aligns with these images. Our mesh-based framework
reduces overhead in testing local features and feature matchers for visual local-
ization tasks compared to SfM point cloud-based methods. (3) we show inter-
esting and promising results when using non-photo-realistic renderings of the
meshes instead of real images in our pipeline. In particular, we show that exist-
ing features, applied out-of-the-box without fine-tuning or re-training, perform
surprisingly well when applied on renderings of the raw 3D scene geometry with-
out any colors or textures (cf. Fig. 1). We believe that this result is interesting
as it shows that standard local features can be used to match images and purely
geometric 3D models, e.g., laser or LiDAR scans. (4) our code and data are
publicly available at https://github.com/tsattler/meshloc release.

Related Work. One main family of state-of-the-art visual localization algo-
rithms is based on local features [13,28,38,59,61,63,65,69,79–81,92]. These
approaches commonly represent the scene as a sparse SfM point cloud, where
each 3D point was triangulated from features extracted from the database
images. At test time, they establish 2D-3D matches between pixels in a query
image and 3D points in the scene model using descriptor matching. In order to
scale to large scenes and handle complex illumination and seasonal changes, a
hybrid approach is often used [28,29,60,67,80,81]: an image retrieval stage [2,85]
is used to identify a small set of potentially relevant database images. Descriptor
matching is then restricted to the 3D points visible in these images. We show that
it is possible to achieve similar results using a mesh-based scene representation
that allows researchers to more easily experiment with new types of features.

An alternative to explicitly representing the 3D scene geometry via a 3D
model is to implicitly store information about the scene in the weights of a
machine learning model. Examples include scene coordinate regression tech-
niques [9,10,12,14–16,74,86], which regress 2D-3D matches rather than com-
puting them via explicit descriptor matching, and absolute [33,34,47,73,89] and
relative pose [3,22,36] regressors. Scene coordinate regressors achieve state-of-
the-art results for small scenes [8], but have not yet shown strong performance
in more challenging scenes. In contrast, absolute and relative pose regressors

https://github.com/tsattler/meshloc_release
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are currently not (yet) competitive to feature-based methods [68,95], even when
using additional training images obtained via view synthesis [47,50,51].

Ours is not the first work to use a dense scene representation. Prior work
has used dense Multi-View Stereo [72] and laser [50,51,75,80,81] point clouds
as well as textured or colored meshes [13,48,93]. [48,50,51,72,75] render novel
views of the scene to enable localization of images taken from viewpoints that dif-
fer strongly from the database images. Synthetic views of a scene, rendered from
an estimated pose, can also be used for pose verification [80,81]. [47,48,93] rely
on neural rendering techniques such as Neural Radiance Fields (NeRFs) [46,49]
or image-to-image translation [96] while [50,72,75,93] rely on classical rendering
techniques. Most related to our work are [13,93] as both use meshes for localiza-
tion: given a rather accurate prior pose, provided manually, [93] render the scene
from the estimated pose and match features between the real image and the ren-
dering. This results in a set of 2D-3D matches used to refine the pose. While [93]
start with poses close to the ground truth, we show that meshes can be used to
localize images from scratch and describe a full pipeline for this task. While the
city scene considered in [93] was captured by images, [13] consider localization
in mountainous terrain, where only few database images are available. As it is
impossible to compute an SfM point cloud from the sparsely distributed database
images, they instead use a textured digital elevation model as their scene repre-
sentation. They train local features to match images and this coarsely textured
mesh, whereas we use learned features without re-training or fine-tuning. While
[13] focus on coarse localization (on the level of hundreds of meters or even kilo-
meters), we show that meshes can be used for centimeter-accurate localization.
Compared to these prior works, we provide a detailed ablation study investigat-
ing how model and rendering quality impact the localization accuracy.

2 Feature-Based Localization via SfM Models

This section first reviews the general outline of state-of-the-art hierarchical
structure-based localization pipelines. Section 3 then describes how such a
pipeline can be adapted when using a dense instead of a sparse scene repre-
sentation.

Stage 1: Image Retrieval. Given a set of database images, this stage identifies
a few relevant reference views for a given query. This is commonly done via
nearest neighbor search with image-level descriptors [2,25,55,85].

Stage 2: 2D-2D Feature Matching. This stage establishes feature matches
between the query image and the top-k retrieved database images, which will be
upgraded to 2D-3D correspondences in the next stage. It is common to use state-
of-the-art learned local features [21,23,56,61,78,94]. Matches are established
either by (exhaustive) feature matching, potentially followed by outlier filters
such as Lowe’s ratio test [41], or using learned matching strategies [57,58,61,94].
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There are two representation choices for this stage: pre-compute the features
for the database images or only store the photos and extract the features on-
the-fly. The latter requires less storage at the price of run-time overhead. E.g.,
storing SuperPoint [21] features for the Aachen Day-Night v1.1 dataset [66,67,
93] requires more than 25 GB while the images themselves take up only 7.5 GB
(2.5 GB when reducing the image resolution to at most 800 pixels).

Stage 3: Lifting 2D-2D to 2D-3D Matches. For the i-th 3D scene point
pi ∈ R

3, each SfM point cloud stores a set {(Ii1 , fi1), · · · (Iin , fin)} of (image,
feature) pairs. Here, a pair (Iij , fij ) denotes that feature fij in image Iij was used
to triangulate the 3D point position pi. If a feature in the query image matches
fij in database image Iij , it thus also matches pi. Thus, 2D-3D matches are
obtained by looking up 3D points corresponding to matching database features.

Stage 4: Pose Estimation. The last stage uses the resulting 2D-3D matches
for camera pose estimation. It is common practice to use LO-RANSAC [17,24,37]
for robust pose estimation. In each iteration, a P3P solver [53] generates pose
hypotheses from a minimal set of three 2D-3D matches. Non-linear refinement
over all inliers is used to optimize the pose, both inside and after LO-RANSAC.

Covisibility Filtering. Not all matching 3D points might be visible together.
It is thus common to use a covisibility filter [38,39,60,64]: a SfM reconstruction
defines the so-called visibility graph G = ((I, P ), E) [39], a bipartite graph where
one set of nodes I corresponds to the database images and the other set P to the
3D points. G contains an edge between an image node and a point node if the 3D
point has a corresponding feature in the image. A set M = {(fi,pi)} of 2D-3D
matches defines a subgraph G(M) of G. Each connected component of G(M)
contains 3D points that are potentially visible together. Thus, pose estimation
is done per connected component rather than over all matches [60,63].

3 Feature-Based Localization Without SfM Models

This paper aims to explore dense 3D scene models as an alternative to the
sparse Structure-from-Motion (SfM) point clouds typically used in state-of-the-
art feature-based visual localization approaches. Our motivation is three-fold:

(1) dense scene models are more flexible than SfM-based representations: SfM
point clouds are specifically build for a given type of feature. If we want to use
another type, e.g., when evaluating the latest local feature from the literature, a
new SfM point cloud needs to be build. Feature matches between the database
images are required to triangulate SfM points. For medium-sized scenes, this
matching process can take hours, for large scenes days or weeks. In contrast,
once a dense 3D scene model is build, it can be used to directly provide the
corresponding 3D point for (most of) the pixels in a database image by simply
rendering a depth map. In turn, depth maps can be rendered highly efficiently
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when using 3D meshes, i.e., in a millisecond or less. Thus, there is only very
little overhead when evaluating a new type of local features.

(2) dense scene models can be rather compact: at first glance, it seems that
storing a dense model will be much less memory efficient than storing a sparse
point cloud. However, our experiments show that we can achieve state-of-the-art
results on the Aachen v1.1 dataset [66,67,93] using depth maps generated by a
model that requires only 47 MB. This compares favorably to the 87 MB required
to store the 2.3M 3D points and 15.9M corresponding database indices (for co-
visibility filtering) for the SIFT-based SfM model provided by the dataset.

(3) as mentioned in Sect. 2, storing the original images and extracting features
on demand requires less memory compared to directly storing the features. One
intriguing possibility of dense scene representations is thus to not store images
at all but to use rendered views for feature matching. Since dense representa-
tions such as meshes can be rendered in a millisecond or less, this rendering
step introduces little run-time overhead. It can also help to further reduce mem-
ory requirements: E.g., a textured model of the Aachen v1.1 [66,67,93] dataset
requires around 837 MB compared to the more than 7 GB needed for storing the
original database images (2.5 GB at reduced resolution). While synthetic images
can also be rendered from sparse SfM point clouds [54,77], these approaches are
in our experience orders of magnitude slower than rendering a 3D mesh.

The following describes the design choices one has when adapting the hier-
archical localization pipeline from Sect. 2 to using dense scene representations.

Stage 1: Image Retrieval. We focus on exploring using dense representations
for obtaining 2D-3D matches and do not make any changes to the retrieval stage.
Naturally, use additional rendered views can be used to improve the retrieval per-
formance [29,48,75]. As we are interested in comparing classical SfM-based and
dense representations, we do not investigate this direction of research though.

Stage 2: 2D-2D Feature Matching. Algorithmically, there is no difference
between matching features between real images and a real query image and a
rendered view. Both cases result in a set of 2D-2D matches that can be upgraded
to 2D-3D matches in the next stage. As such, we do not modify this stage. We
employ state-of-the-art learned local features [21,23,56,61,78,94] and matching
strategies [61]. We do not re-train any of the local features. Rather, we are
interested in determining how well these features work out-of-the-box for non-
photo-realistic images for different degrees of non-photo-realism, i.e., textured
3D meshes, colored meshes where each vertex has a corresponding RGB color,
and raw geometry without any color.

Stage 3: Lifting 2D-2D to 2D-3D Matches. In an SfM point cloud, each 3D
point pi has multiple corresponding features fi1 , · · · , fin from database images
Ii1 , · · · , Iin . Since the 2D feature positions are subject to noise, pi will not pre-
cisely project to any of its corresponding features. pi is computed such that it
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minimizes the sum of squared reprojection errors to these features, thus aver-
aging out the noise in the 2D feature positions. If a query feature q matches to
features fij and fik belonging to pi, we obtain a single 2D-3D match (q,pi).

When using a depth map obtained by rendering a dense model, each database
feature fij with a valid depth will have a corresponding 3D point pij . Each
pij will project precisely onto its corresponding feature, i.e., the noise in the
database feature positions is directly propagated to the 3D points. This implies
that even though fi1 , · · · , fin are all noisy measurements of the same physical 3D
point, the corresponding model points pi1 , · · · ,pin will all be (slightly) different.
If a query feature q matches to features fij and fik , we thus obtain multiple
(slightly) different 2D-3D matches (q,pij ) and (q,pik).

There are two options to handle the resulting multi-matches: (1) we sim-
ply use all individual matches. This strategy is extremely simple to imple-
ment, but can also produce a large number of matches. For example, when using
the top-50 retrieved images, each query feature q can produce up to 50 2D-3D
correspondences. This in turn slows down RANSAC-based pose estimation. In
addition, it can bias the pose estimation process towards finding poses that are
consistent with features that produce more matches.

(2) we merge multiple 2D-3D matches into a single 2D-3D match:
given a set M(q) = {(q,pi)} of 2D-3D matches obtained for a query feature
q, we estimate a single 3D point p, resulting in a single 2D-3D correspondence
(q,p). Since the set M(q) can contain wrong matches, we first try to find a
consensus set using the database features {fi} corresponding to the matching
points. For each matching 3D point pi, we measure the reprojection error w.r.t.
to the database features and count the number of features for which the error
is within a given threshold. The point with the largest number of such inliers1

is then refined by optimizing its sum of squared reprojection errors w.r.t. the
inliers. If there is no point pi with at least two inliers, we keep all matches
from M(q). This approach thus aims at averaging out the noise in the database
feature detections to obtain more precise 3D point locations.

Stage 4: Pose Estimation. Given a set of 2D-3D matches, we follow the same
approach as in Sect. 2 for camera pose estimation. However, we need to adapt
covisibility filtering and introduce a simple position averaging approach as a
post-processing step after RANSAC-based pose estimation.

Covisibility Filtering. Dense scene representations do not directly provide
the co-visibility relations encoded in the visibility graph G and we want to avoid
computing matches between database images. Naturally, one could compute vis-
ibility relations between views using their depth maps. However, this approach is
computationally expensive. A more efficient alternative is to define the visibility
graph on-the-fly via shared matches with query features: the 3D points visible in
views Ii and Ij are deemed co-visible if there exists at least one pair of matches

1 We actually optimize a robust MSAC-like cost function [37] not the number of inliers.
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Fig. 2. Examples of colored/textured renderings from the Aachen Day-Night
v1.1 dataset [66,67,93]. We use meshes of different levels of detail (from coarsest to
finest: AC13-C, AC13, AC14, and AC15 ) and different rendering styles: a textured 3D
model (only for AC13-C ) and meshes with per-vertex colors (colored). For reference,
the leftmost column shows the corresponding original database image.

(q, fi), (q, fj) between a query feature q and features fi ∈ Ii and fj ∈ Ij . In
other words, the 3D points from two images are considered co-visible if at least
one feature in the query image matches to a 3D point from each image.

Naturally, the 2D-2D matches (and the corresponding 2D-3D matches) define
a set of connected components and we can perform pose estimation per compo-
nent. However, the visibility relations computed on the fly are an approximation
to the visibility relations encoded in G: images Ii and Ij might not share 3D
points, but can observe the same 3D points as image Ik. In G(M), the 2D-3D
matches found for images Ii and Ij thus belong to a single connected compo-
nent. In the on-the-fly approximation, this connection might be missed, e.g.,
if image Ik is not among the top-retrieved images. Covisibility filtering using
the on-the-fly approximation might thus be too aggressive, resulting in an over-
segmentation of the set of matches and a drop in localization performance.

Position Averaging. The output of pose estimation approach is a camera pose
R, c and the 2D-3D matches that are inliers to that pose. Here, R ∈ R

3×3 is the
rotation from global model coordinates to camera coordinates while c ∈ R

3 is
the position of the camera in global coordinates. In our experience, the estimated
rotation is often more accurate than the estimated position. We thus use a simple
scheme to refine the position c: we center a volume of side length 2 · dvol around
the position c. Inside the volume, we regularly sample new positions with a step
size dstep in each direction. For each such position ci, we count the number Ii of
inliers to the pose R, ci and obtain a new position estimate c′ as the weighted
average c′ = 1∑

i Ii

∑
i Ii · ci. Intuitively, this approach is a simple but efficient

way to handle poses with larger position uncertainty: for these poses, there will
be multiple positions with a similar number of inliers and the resulting position
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Fig. 3. Example of raw geometry renderings for the Aachen Day-Night v1.1
dataset [66,67,93]. We use different rendering styles to generate synthetic views of the
raw scene geometry : ambient occlusion [97] (AO) and illumination from three colored
lights (tricolor). The leftmost column shows the corresponding original database image.

Fig. 4. Example renderings for the 12 scenes dataset [86].

c′ will be closer to their average rather than the position with the largest number
of inliers (which might be affected by noise in the features and 3D points). Note
that this averaging strategy is not tied to using a dense scene representations.

4 Experimental Evaluation

We evaluate the localization pipeline described in Sect. 3 on two publicly avail-
able datasets commonly used to evaluate visual localization algorithms, Aachen
Day-Night v1.1 [66,67,93] and 12 Scenes [86]. We use the Aachen Day-Night
dataset to study the importance (or lack thereof) of the different components
in the pipeline described Sect. 3. Using the original database images, we evalu-
ate the approach using multiple learned local features [56,61,78,91,94] and 3D
models of different levels of detail. We show that the proposed approach can
reach state-of-the-art performance compared to the commonly used SfM-based
scene representations. We further study using renderings instead of real images
to obtain the 2D-2D matches in Stage 2 of the pipeline, using 3D meshes of dif-
ferent levels of quality and renderings of different levels of detail. A main result
is that modern features are robust enough to match real photos against non-
photo-realistic renderings of raw scene geometry, even though they were never
trained for such a scenario, resulting in surprisingly accurate pose estimates.

Datasets. The Aachen Day-Night v1.1 dataset [66,67,93] contains 6,697
database images captured in the inner city of Aachen, Germany. All database
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Table 1. Statistics for the 3D meshes used for experimental evaluation as well as
rendering times for different rendering styles and resolutions

Render time [µs]

Model Style Size [MB] Vertices Triangles 800 px full res.

A
a
ch

e
n

v
1
.1

AC13-C textured 645 1.4 · 106 2.4 · 106 1143 1187

AC13-C tricolor 47 1.4 · 106 2.4 · 106 115 219

AC13 colored 617 14.8 · 106 29.3 · 106 92 140

AC13 tricolor 558 14.8 · 106 29.3 · 106 97 152

AC14 colored 1234 29.4 · 106 58.7 · 106 100 139

AC14 tricolor 1116 29.4 · 106 58.7 · 106 93 205

AC15 colored 2805 66.8 · 106 133.5 · 106 98 137

AC15 tricolor 2538 66.8 · 106 133.5 · 106 97 160

images were taken under daytime conditions over multiple months. The dataset
also containts 824 daytime and 191 nighttime query images captured with mul-
tiple smartphones. We use only the more challenging night subset for evaluation.

To create dense 3D models for the Aachen Day-Night dataset, we use
Screened Poisson Surface Reconstruction (SPSR) [32] to create 3D meshes from
Multi-View Stereo [71] point clouds. We generate meshes of different levels of
quality by varying the depth parameter of SPSR, controlling the maximum reso-
lution of the Octree that is used to generate the final mesh. Each of the resulting
meshes, AC13, AC14, and AC15 (corresponding to depths 13, 14, and 15, with
larger depth values corresponding to more detailed models), has an RGB color
associated to each of its vertices. We further generate a compressed version of
AC13, denoted as AC13-C, using [31] and texture it using [88]. Figure 2 shows
examples.

The 12 Scenes dataset [86] consists of 12 room-scale indoor scenes cap-
tured using RGB-D cameras, with ground truth poses created using RGB-D
SLAM [20]. Each scene provides RGB-D query images, but we only use the
RGB part for evaluation. The dataset further provides the colored meshes recon-
structed using [20], where each vertex is associated with an RGB color, which
we use for our experiments. Compared to the Aachen Day-Night dataset, the
12 Scenes dataset is “easier” in the sense that it only contains images taken
by a single camera that is not too far away from the scene and under constant
illumination conditions. Figure 4 shows example renderings.

For both datasets, we render depth maps and images from the meshes using
an OpenGL-based rendering pipeline [87]. Besides rendering colored and tex-
tured meshes, we also experiment with raw geometry rendering. In the latter
case, no colors or textures are stored, which reduces memory requirements. In
order to be able to extract and match features, we rely on shading cues. We
evaluate two shading strategies for the raw mesh geometry rendering: the first
uses ambient occlusion [97] (AO) pre-computed in MeshLab [19]. The second
one uses three colored light sources (tricolor) (cf. supp. mat. for details). Figs. 3
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and 4 show example renderings. Statistics about the meshes and rendering times
can be found in Table 1 for Aachen and in the supp. mat. for 12 Scenes.

This paper focuses on dense scene representations based on meshes. Hence,
we refer to the pipeline from Sect. 3 as MeshLoc. A more modern dense scene rep-
resentations are NeRFs [7,43,46,82,90]. Preliminary experiments with a recent
NeRF implementation [49] resulted in realistic renderings for the 12 Scenes
dataset [86]. Yet, we were not able to obtain useful depth maps. We attribute
this to the fact that the NeRF representation can compensate for noisy occu-
pancy estimates via the predicted color [52]. We thus leave a more detailed
exploration of neural rendering strategies for future work. At the moment we
use well-matured OpenGL-based rendering on standard 3D meshes, which is
optimized for GPUs and achieves very fast rendering times (see Table 1). See
Sect. 6 in supp. mat. for further discussion on use of NeRFs.

Experimental Setup. We evaluate multiple learned local features and match-
ing strategies: SuperGlue [61] (SG) first extracts and matches SuperPoint [21]
features before applying a learned matching strategy to filter outliers. While SG
is based on explicitly detecting local features, LoFTR [78] and Patch2Pix [94]
(P2P) densely match descriptors between pairs of images and extract matches
from the resulting correlation volumes. Patch2Pix+SuperGlue (P2P+SG) uses
the match refinement scheme from [94] to refine the keypoint coordinates of
SuperGlue matches. For merging 2D-3D matches, we follow [94] and cluster 2D
match positions in the query image to handle the fact that P2P and P2P+SG
do not yield repeatable keypoints. The supp. mat. provides additional results
with R2D2 [56] and CAPS [91] descriptors.

Following [8,30,66,74,83,86], we report the percentage of query images local-
ized within X meters and Y degrees of their respective ground truth poses.

We use the LO-RANSAC [17,37] implementation from PoseLib [35] with a
robust Cauchy loss for non-linear refinement (cf. supp. mat. for details).

Experiments on Aachen Day-Night. We first study the importance of the
individual components of the MeshLoc pipeline. We evaluate the pipeline on
real database images and on rendered views of different level of detail and qual-
ity. For the retrieval stage, we follow the literature [59,61,78,94] and use the
top-50 retrieved database images/renderings based on NetVLAD [2] descriptors
extracted from the real database and query images.

Studying the Individual Components of MeshLoc. Table 2 presents an
ablation study for the individual components of the MeshLoc pipeline from
Sect. 3. Namely, we evaluate combinations of using all available individual 2D-3D
matches (I) or merging 2D-3D matches for each query features (M), using the
approximate covisibility filter (C), and position averaging (PA). We also com-
pare a baseline that triangulates 3D points from 2D-2D matches between the
query image and multiple database images (T) rather than using depth maps.
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Table 2. Ablation study on the Aachen Day-Night v1.1 dataset [66,67,93] using real
images at reduced (max. side length 800 px) and full resolution (res.), and depth maps
rendered using the AC13 model. We evaluate different strategies for obtaining 2D-3D
matches (using all individual matches (I), merging matches (M), or triangulation (T)),
with and without covisibility filtering (C), and with and without position averaging
(PA) for various local features. We report the percentage of nighttime query images
localized within 0.25m and 2◦/0.5 m and 5◦/5 m and 10◦ of the ground truth pose. For
reference, we also report the corresponding results (from visuallocaliztion.net) obtained
using SfM-based representations (last row). Best results per feature are marked in bold

2D- SuperGlue LoFTR Patch2Pix Patch2Pix

res. 3D C PA (SG) [61] [78] [94] + SG [94]

800

I 72.8/93.2/99.0 77.0/92.1/99.5 70.7/89.0/95.3 72.3/91.6/100.0

I � 72.3/92.7/99.0 76.4/92.1/99.5 72.3/91.1/97.4 73.3/91.1/99.5

I � 74.3/93.2/99.0 78.5/93.2/99.5 73.8/89.5/95.3 73.8/92.1/99.5

I � � 73.3/92.1/99.0 77.5/92.7/99.5 73.3/91.1/97.4 73.8/91.1/99.5

M � 75.4/92.7/99.5 77.0/92.7/99.5 70.7/89.5/96.3 73.8/92.7/99.5

M � � 75.4/91.6/99.5 75.4/92.1/99.5 69.6/89.0/97.4 72.8/93.2/100.0

T � 72.3/90.1/97.9 73.3/90.6/98.4 63.9/83.8/94.8 70.7/90.6/97.4

T � � 71.7/89.5/97.9 73.8/90.6/98.4 62.8/82.2/94.2 72.3/90.6/97.9

full I � 77.0/92.1/99.0 74.3/90.1/96.3 74.3/92.1/99.5

SfM 77.0/90.6/100.0 78.5/90.6/99.0 72.3/88.5/97.9 78.0/90.6/99.0

As can be seen from the results of using down-scaled images (with maximum
side length of 800 px), using 3D points obtained from the AC13 model depth
maps typically leads to better results than triangulating 3D points. For trian-
gulation, we only use database features that match to the query image. Com-
pared to an SfM model, where features are matched between database images,
this leads to fewer features that are used for triangulation per point and thus
to less accurate points. Preliminary experiments confirmed that, as expected,
the gap between using the 3D mesh and triangulation grows when retrieving
fewer database images. Compared to SfM-based pipelines, which use covisibility
filtering before RANSAC-based pose estimation, we observe that covisibility fil-
tering typically decreases the pose accuracy of the MeshLoc pipeline due to its
approximate nature. Again, preliminary results showed that the effect is more
pronounced when using fewer retrieved database images (as the approximation
becomes coarser). In contrast, position averaging (PA) typically gives a (slight)
accuracy boost. We further observe that the simple baseline that uses all individ-
ual matches (I) often leads to similar or better results compared to merging 2D-
3D matches (M). In the following, we thus focus on a simple version of MeshLoc,
which uses individual matches (I) and PA, but not covisibility filtering.

Comparison with SfM-Based Representations. Table 2 also evaluates the
simple variant of MeshLoc on full-resolution images and compares MeshLoc
against the corresponding SfM-based results from visuallocalization.net. Note

https://www.visuallocalization.net/
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Table 3. Ablation study on the Aachen Day-Night v1.1 dataset [66,67,93] using real
images at reduced resolution (max. 800 px) and full resolution with depth maps ren-
dered from 3D meshes of different levels of detail (cf. Table 1). We use a simple MeshLoc
variant that uses individual matches and position averaging, but no covis. filtering

Feature res. AC13-C AC13 AC14 AC15

SuperGlue [61]

800

74.3/92.7/99.5 74.3/93.2/99.0 71.7/91.6/99.0 72.8/92.7/99.5

LoFTR [78] 77.5/92.7/99.5 78.5/93.2/99.5 76.4/92.1/99.5 78.0/92.7/99.5

Patch2Pix [94] 71.7/88.0/95.3 73.8/89.5/95.3 67.0/85.9/95.8 72.3/89.0/96.3

Patch2Pix+SG [61,94] 74.9/92.1/99.5 73.8/92.1/99.5 73.8/90.1/99.0 75.4/91.1/99.5

SuperGlue [61]

full

77.0/92.1/99.5 77.0/92.1/99.0 75.4/91.1/99.0 76.4/92.1/99.0

Patch2Pix [94] 74.3/90.1/96.9 74.3/90.1/96.3 71.2/86.9/95.3 72.3/88.0/96.9

Patch2Pix+SG [61,94] 73.3/92.1/99.5 74.3/92.1/99.5 73.3/91.1/99.5 74.3/92.7/99.5

that we did not evaluate LoFTR on the full-resolution images due to the mem-
ory constraints of our GPU (NVIDIA GeForce RTX 3060, 12 GB RAM). The
simple MeshLoc variant performs similarly well or slightly better than its SfM-
based counterparts, with the exception of the finest pose threshold (0.25 m, 2◦)
for Patch2Pix+SG. This is despite the fact that SfM-based pipelines are signif-
icantly more complex and use additional information (feature matches between
database images) that are expensive to compute. Moreover, MeshLoc requires
less memory at only a small run-time overhead (see supp. mat.). Given its sim-
plicity and ease of use, we thus believe that MeshLoc will be of interest to the
community as it allows researchers to more easily prototype new features.

Mesh Level of Detail. Table 3 shows results obtained when using 3D meshes
of different levels of detail (cf. Table 1). The gap between using the compact
AC13-C model (47 MB to store the raw geometry) and the larger AC13 model
(558 MB for the raw geometry) is rather small. While AC14 and AC15 offer more
detailed geometry, they also contain artefacts in the form of blobs of geometry
(cf. supp. mat.). Note that we did not optimize these models (besides parameter
adjustments) and leave experiments with more accurate 3D models for future
work. Overall the level of detail does not seem to be critical for MeshLoc.

Using Rendered Instead of Real Images. Next, we evaluate the MeshLoc
pipeline using synthetic images rendered from the poses of the database images
instead of real images. Table 4 shows results for various rendering settings, result-
ing in different levels of realism for the synthetic views. We focus on Super-
Glue [61] and Patch2Pix + SuperGlue [61,94]. LoFTR performed similarly well
or better than both on textured and colored renderings, but worse when render-
ing raw geometry (cf. supp. mat.).

As Table 4 shows, the pose accuracy gap between using real images and tex-
tured/colored renderings is rather small. This shows that advanced neural ren-
dering techniques, e.g., NeRFs [46], have only a limited potential to improve the
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Table 4. Ablation study on the Aachen Day-Night v1.1 dataset [66,67,93] using images
rendered at reduced resolution (max. 800 px) from 3D meshes of different levels of
detail (cf. Tab. 1) and different rendering types (textured/colored, raw geometry with
ambient occlusion (AO), raw geometry with tricolor shading (tricolor)). For reference,
the rightmost column shows results obtained with real images on AC13. MeshLoc uses
individual matches and position averaging, but no covisibility filtering

AC13-C: textured AO tricolor real

SuperGlue [61] 72.3/91.1/99.0 0.5/3.1/24.6 7.3/23.0/53.9 74.3/92.7/99.5

Patch2Pix+SG [61,94] 70.7/90.6/99.5 1.0/4.2/27.7 9.4/25.1/57.6 74.9/92.1/99.5

AC13: colored AO tricolor real

SuperGlue [61] 68.1/90.1/97.4 6.3/19.9/45.5 22.0/50.8/74.3 74.3/93.2/99.0

Patch2Pix+SG [61,94] 71.7/91.1/97.9 6.8/26.2/49.2 23.0/55.0/78.5 73.8/92.1/99.5

AC14: colored AO tricolor real

SuperGlue [61] 70.2/90.1/96.3 23.6/44.5/63.9 33.0/65.4/79.1 71.7/91.6/99.0

Patch2Pix+SG [61,94] 72.3/92.1/96.9 26.7/48.2/68.1 39.3/68.6/80.6 73.8/90.1/99.0

AC15: colored AO tricolor real

SuperGlue [61] 75.4/89.5/98.4 24.1/47.1/63.4 37.2/60.7/77.5 72.8/92.7/99.5

Patch2Pix+SG [61,94] 72.8/92.1/98.4 25.1/51.3/70.2 40.3/66.0/80.1 75.4/91.1/99.5

results. Rendering raw geometry results in significantly reduced performance
since neither SuperGlue nor Patch2Pix+SG were trained on this setting. AO
renderings lead to worse results compared to the tricolor scheme as the lat-
ter produces more sharp details (cf. Fig. 3). Patch2Pix+SuperGlue outperforms
SuperGlue as it refines the keypoint detections used by SuperGlue on a per-
match-basis [94], resulting in more accurate 2D positions and reducing the bias
between positions in real and rendered images. Still, the results for the coarsest
threshold (5 m, 10◦) are surprisingly competitive. This indicates that there is
quite some potential in matching real images against renderings of raw geome-
try, e.g., for using dense models obtained from non-image sources (laser, LiDAR,
depth, etc..) for visual localization. Naturally, having more geometric detail leads
to better results as it produces more fine-grained details in the renderings.

Experiments on 12 Scenes. The meshes provided by the 12 Scenes
dataset [86] come from RGB-D SLAM. Compared to Aachen, where the meshes
were created from the images, the alignment between geometry and image data
is imperfect.

We follow [8], using the top-20 images retrieved using DenseVLAD [85]
descriptors extracted from the original database images and the original pseudo
ground-truth provided by the 12 Scenes dataset. The simple MeshLoc variant
with SuperGlue, applied on real images, is able to localize 94.0% of all query
images within 5 cm and 5◦ threshold on average over all 12 scenes. This is
comparable to state-of-the-art methods such as Active Search [65], DSAC* [12],
and DenseVLAD retrieval with R2D2 [56] features, which on average localize
more than 99.0% of all queries within 5 cm and 5◦. The drop is caused by
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a visible misalignment between the geometry and RGB images in some scenes,
e.g., apt2/living (see supp. mat. for visualizations), resulting in non-compensable
errors in the 3D point positions. Using renderings of colored meshes respectively
the tricolor scheme reduces the average percentages of localized images to 65.8%
respectively 14.1%. Again, the color and geometry misalignment seems the main
reason for the drop when rendering colored meshes, while we did not observed
such a large gap for Aachen dataset (which has 3D meshes that better align
with the images). Still, 99.6%/92.7%/36.0% of the images can be localized when
using real images/colored renderings/tricolor renderings for a threshold of 7 cm
and 7◦. These numbers further increase to 100%/99.1%/54.2% for 10 cm and
10◦. Overall, our results show that using dense 3D models leads to promising
results and that these representations are a meaningful alternative to SfM point
clouds. Please see the supp. mat. for more 12 Scenes results.

5 Conclusion

In this paper, we explored dense 3D model as an alternative scene representation
to the SfM point clouds widely used by feature-based localization algorithms.
We have discussed how to adapt existing hierarchical localization pipelines to
dense 3D models. Extensive experiments show that a very simple version of the
resulting MeshLoc pipeline is able to achieve state-of-the-art results. Compared
to SfM-based representations, using a dense scene model does not require an
extensive matching step between database images when switching to a new type
of local features. Thus, MeshLoc allows researchers to more easily prototype new
types of features. We have further shown that promising results can be obtained
when using synthetic views rendered from the dense models rather than the
original images, even without adapting the used features. This opens up new and
interesting directions of future work, e.g., more compact scene representations
that still preserve geometric details, and training features for the challenging
tasks of matching real images against raw scene geometry. The meshes obtained
via classical approaches and classical, i.e., non-neural, rendering techniques that
are used in this paper thereby create strong baselines for learning-based follow-
up work. The rendering approach also allows to use techniques such as database
expansion and pose refinement, which were not included in this paper due to
limited space. We released our code, meshes, and renderings.
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20. Dai, A., Nießner, M., Zollöfer, M., Izadi, S., Theobalt, C.: BundleFusion: real-time
globally consistent 3D reconstruction using on-the-fly surface re-integration. TOG
36, 1 (2017)

21. DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest
point detection and description. In: CVPR Workshops (2018)

22. Ding, M., Wang, Z., Sun, J., Shi, J., Luo, P.: CamNet: coarse-to-fine retrieval for
camera re-localization. In: ICCV (2019)

23. Dusmanu, M., et al.: D2-Net: a trainable CNN for joint detection and description
of local features. In: CVPR (2019)

24. Fischler, M.A., Bolles, R.C.: Random sampling consensus: a paradigm for model fit-
ting with application to image analysis and automated cartography. CACM (1981)

25. Gordo, A., Almazan, J., Revaud, J., Larlus, D.: End-to-end learning of deep visual
representations for image retrieval. Int. J. Comput. Vision 124(2), 237–254 (2017)

26. Guzov, V., Mir, A., Sattler, T., Pons-Moll, G.: Human POSEitioning system
(HPS): 3D human pose estimation and self-localization in large scenes from body-
mounted sensors. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4318–4329 (2021)

27. Heng, L., et al.: Project AutoVision: localization and 3D scene perception for an
autonomous vehicle with a multi-camera system. In: ICRA (2019)

28. Humenberger, M., et al.: Robust image retrieval-based visual localization using
kapture. arXiv:2007.13867 (2020)

29. Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From structure-from-motion point
clouds to fast location recognition. In: CVPR (2009)

30. Jafarzadeh, A., et al.: CrowdDriven: a new challenging dataset for outdoor visual
localization. In: 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 9825–9835 (2021)

31. Jakob, W., Tarini, M., Panozzo, D., Sorkine-Hornung, O.: Instant field-aligned
meshes. ACM Trans. Graph. 34(6), 189–1 (2015)

32. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans.
Graph. 32(3) (2013)

33. Kendall, A., Cipolla, R.: Geometric loss functions for camera pose regression with
deep learning. In: CVPR (2017)

34. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-
time 6-DOF camera relocalization. In: ICCV (2015)

35. Larsson, V.: PoseLib - minimal solvers for camera pose estimation (2020). https://
github.com/vlarsson/PoseLib

36. Laskar, Z., Melekhov, I., Kalia, S., Kannala, J.: Camera relocalization by comput-
ing pairwise relative poses using convolutional neural network. In: ICCV Work-
shops (2017)

37. Lebeda, K., Matas, J.E.S., Chum, O.: Fixing the locally optimized RANSAC. In:
BMVC (2012)

38. Li, Y., Snavely, N., Huttenlocher, D., Fua, P.: Worldwide pose estimation using
3D point clouds. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid,
C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 15–29. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33718-5 2

39. Li, Y., Snavely, N., Huttenlocher, D.P.: Location recognition using prioritized fea-
ture matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010.

http://arxiv.org/abs/2007.13867
https://github.com/vlarsson/PoseLib
https://github.com/vlarsson/PoseLib
https://doi.org/10.1007/978-3-642-33718-5_2


606 V. Panek et al.

LNCS, vol. 6312, pp. 791–804. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15552-9 57

40. Lim, H., Sinha, S.N., Cohen, M.F., Uyttendaele, M.: Real-time image-based 6-DOF
localization in large-scale environments. In: CVPR (2012)

41. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60,
91–110 (2004)

42. Lynen, S., Sattler, T., Bosse, M., Hesch, J., Pollefeys, M., Siegwart, R.: Get out of
my lab: large-scale, real-time visual-inertial localization. In: RSS (2015)

43. Martin-Brualla, R., Radwan, N., Sajjadi, M.S.M., Barron, J.T., Dosovitskiy, A.,
Duckworth, D.: NeRF in the wild: neural radiance fields for unconstrained photo
collections. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7206–7215 (2021)

44. Massiceti, D., Krull, A., Brachmann, E., Rother, C., Torr, P.H.: Random forests
versus neural networks - what’s best for camera relocalization? In: ICRA (2017)

45. Middelberg, S., Sattler, T., Untzelmann, O., Kobbelt, L.: Scalable 6-DOF localiza-
tion on mobile devices. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
ECCV 2014. LNCS, vol. 8690, pp. 268–283. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10605-2 18

46. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: representing scenes as neural radiance fields for view synthesis. In:
Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol.
12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58452-8 24

47. Moreau, A., Piasco, N., Tsishkou, D., Stanciulescu, B., de La Fortelle, A.: LENS:
localization enhanced by neRF synthesis. In: CoRL (2021)

48. Mueller, M.S., Sattler, T., Pollefeys, M., Jutzi, B.: Image-to-image translation for
enhanced feature matching, image retrieval and visual localization. ISPRS Ann.
Photogram. Remote Sens. Spatial Inf. Sci. (2019)

49. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1–102:15
(2022). https://doi.org/10.1145/3528223.3530127

50. Naseer, T., Burgard, W.: Deep regression for monocular camera-based 6-DoF
global localization in outdoor environments. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS) (2017)

51. Ng, T., Rodriguez, A.L., Balntas, V., Mikolajczyk, K.: Reassessing the limitations
of CNN methods for camera pose regression. CoRR abs/2108.07260 (2021)

52. Oechsle, M., Peng, S., Geiger, A.: UNISURF: unifying neural implicit surfaces and
radiance fields for multi-view reconstruction. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2021)

53. Persson, M., Nordberg, K.: Lambda twist: an accurate fast robust perspective three
point (P3P) solver. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11208, pp. 334–349. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01225-0 20

54. Pittaluga, F., Koppal, S.J., Kang, S.B., Sinha, S.N.: Revealing scenes by inverting
structure from motion reconstructions. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2019)

55. Revaud, J., Almazán, J., Rezende, R.S., Souza, C.R.D.: Learning with average
precision: training image retrieval with a listwise loss. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 5107–5116 (2019)

56. Revaud, J., Weinzaepfel, P., de Souza, C.R., Humenberger, M.: R2D2: repeatable
and reliable detector and descriptor. In: NeurIPS (2019)

https://doi.org/10.1007/978-3-642-15552-9_57
https://doi.org/10.1007/978-3-642-15552-9_57
https://doi.org/10.1007/978-3-319-10605-2_18
https://doi.org/10.1007/978-3-319-10605-2_18
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1007/978-3-030-01225-0_20
https://doi.org/10.1007/978-3-030-01225-0_20


MeshLoc: Mesh-Based Visual Localization 607
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