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Abstract. Modeling the dynamics of people walking is a problem of
long-standing interest in computer vision. Many previous works involv-
ing pedestrian trajectory prediction define a particular set of individual
actions to implicitly model group actions. In this paper, we present a
novel architecture named GP-Graph which has collective group repre-
sentations for effective pedestrian trajectory prediction in crowded envi-
ronments, and is compatible with all types of existing approaches. A key
idea of GP-Graph is to model both individual-wise and group-wise rela-
tions as graph representations. To do this, GP-Graph first learns to assign
each pedestrian into the most likely behavior group. Using this assign-
ment information, GP-Graph then forms both intra- and inter-group
interactions as graphs, accounting for human-human relations within a
group and group-group relations, respectively. To be specific, for the
intra-group interaction, we mask pedestrian graph edges out of an asso-
ciated group. We also propose group pooling&unpooling operations to
represent a group with multiple pedestrians as one graph node. Lastly,
GP-Graph infers a probability map for socially-acceptable future trajec-
tories from the integrated features of both group interactions. Moreover,
we introduce a group-level latent vector sampling to ensure collective
inferences over a set of possible future trajectories. Extensive experi-
ments are conducted to validate the effectiveness of our architec ture,
which demonstrates consistent performance improvements with publicly
available benchmarks. Code is publicly available at https://github.com/
inhwanbae/GPGraph.
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1 Introduction

Pedestrian trajectory prediction attempts to forecast the socially-acceptable
future paths of people based on their past movement patterns. These behavior
patterns often depend on each pedestrian’s surrounding environments, as well as
collaborative movement, mimicking a group leader, or collision avoidance. Col-
laborative movement, one of the most frequent patterns, occurs when several
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Fig. 1. Comparison of existing agent-agent interaction graphs and the proposed group-
aware GP-Graph. To capture social interactions, (a) existing pedestrian trajectory
prediction models each pedestrian on a graph node. Since the pedestrian graph is a
complete graph, it is difficult to capture the group’s movement because it becomes
overly complex in a crowded scene. (b) GP-Graph is directly able to learn an intra-
/inter-group interaction while keeping the agent-wise structure.

colleagues form a group and move together. Computational social scientists esti-
mate that up to 70% of the people in a crowd will form groups [40,48]. They also
gather surrounding information and have the same destination [40]. Such groups
have characteristics that are distinguishable from those of individuals, maintain
rather stable formations, and even provide important cues that can be used for
future trajectory prediction [48,78].

Pioneering works in human trajectory forecasting model the group move-
ment by assigning additional hand-crafted terms as energy potentials [41,47,66].
These works account for the presence of other group members and physics-based
attractive forces, which are only valid between the same group members. In
recent works, convolutional neural networks (CNNs) and graph neural networks
(GNNs) show impressive progress modeling the social interactions, including trav-
eling together and collision avoidance [1,2,17,39,54]. Nevertheless, trajectory
prediction is still a challenging problem because of the complexity of implicitly
learning individual and group behavior at once.

There are several attempts that explicitly encode the group coherence behav-
iors by assigning hidden states of LSTM with a summation of other agents’
states, multiplied by a binary group indicator function [6]. However, existing
studies have a critical problem when it comes to capturing the group interaction.
Since their forecasting models focus more on individuals, the group features
are shared at the individual node as illustrated in Fig. 1(a). Although this app-
roach can conceptually capture group movement behavior, it is difficult for the
learning-based methods to represent it because of the overwhelming number of
edges for the individual interactions. And, this problem is increasingly difficult
in crowded environments.

To address this issue, we propose a novel general architecture for pedestrian
trajectory prediction: GrouP-Graph (GP-Graph). As illustrated in Fig. 1(b), our
GP-Graph captures intra-(members in a group) and inter-group interactions by
disentangling input pedestrian graphs. Specifically, our GP-Graph first learns to
assign each pedestrian into the most likely behavior group. The group indices
of each pedestrian are generated using a pairwise distance matrix. To make the
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indexing process end-to-end trainable, we introduce a straight-through group
back-propagation trick inspired by the Straight-Through estimator [5,21,35].
Using the group information, GP-graph then transforms the input pedestrian
graph into both intra- and inter-group interaction graphs. We construct the intra-
group graph by masking out edges of the input pedestrian graph for unassociated
group members. For the inter-group graph, we propose group pooling&unpooling
operations to represent a group with multiple members as one graph node. By
applying these processes, GP-Graph architecture has three advantages: (1) It
reduces the complexity of trajectory prediction which is caused by the different
social behaviors of individuals, by modeling group interactions. (2) It alleviates
inherent scene bias by considering the huge number of unseen pedestrian graph
nodes between the training and test environments, as discussed in [8]. (3) It
offers a graph augmentation effect with pedestrian node grouping.

Next, through weight sharing with baseline trajectory predictors, we force
a hierarchy representation from both the input pedestrian graph and the disen-
tangled interactions. This representation is used to infer a probability map for
socially-acceptable future trajectories after passing through our group integra-
tion module. In addition, we introduce a group-level latent vector sampling to
ensure collective inferences over a set of plausible future trajectories.

To the best of our knowledge, this is the first model that literally pools
pedestrian colleagues into one group node to efficiently capture group motion
behaviors, and learns pedestrian grouping in an end-to-end manner. Further-
more, GP-Graph has the best performance on various datasets among existing
methods when unifying with GNN-based models, and it can be integrated with
all types of trajectory prediction models, achieving consistent improvements. We
also provide extensive ablation studies to analyze and evaluate our GP-Graph.

2 Related Works

2.1 Trajectory Prediction

Earlier works [18,38,42,66] model human motions in crowds using hand-crafted
functions to describe attractive and repulsive forces. Since then, pedestrian tra-
jectory prediction has been advanced by research interest in computer vision.
Such research leverages the impressive capacity of CNNs which can capture
social interactions between surrounding pedestrians. One pioneering work is
Social-LSTM [1], which introduces a social pooling mechanism considering a
neighbor’s hidden state information inside a spatial grid. Much of the emphasis
in subsequent research has been to add human-environment interactions from
a surveillance view perspective [11,23,33,37,49,52,58,59,61,75]. Instead of tak-
ing environmental information into account, some methods directly share hidden
states of agents between other interactive agents [17,50,64]. In particular, Social-
GAN [17] takes the interactions via max-pooling in all neighborhood features
in the scene, and Social-Attention [64] introduces an attention mechanism to
impose a relative importance on neighbors and performs a weighted aggregation
for the features.
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In terms of graph notations, each pedestrian and their social relations can
be represented as a node and an edge, respectively. When predicting pedes-
trian trajectories, graph representation is used to model social interactions
with graph convolutional networks (GCNs) [2,22,39,59], graph attention net-
works (GATs) [3,19,23,32,54,63], and transformers [16,69,70]. Usually, these
approaches infer future paths through recurrent estimations [1,9,16,17,26,50,74]
or extrapolations [2,31,39,54]. Other types of relevant research are based on prob-
abilistic inferences for multi-modal trajectory prediction using Gaussian mod-
eling [1,2,30,39,54,55,65,69], generative models [11,17,19,23,49,58,75], and a
conditional variational autoencoder [9,20,26,27,29,36,50,60]. We note that these
approaches focus only on learning implicit representations for group behaviors
from agent-agent interactions.

2.2 Group-Aware Representation

Contextual and spatial information can be derived from group-aware representa-
tions of agent dynamics. To accomplish this, one of the group-aware approaches
is social grouping, which describes agents in groups that move differently than
independent agents.

In early approaches [24,76,77], pedestrians can be divided into several groups
based on behavior patterns. To represent the collective activities of agents in a
supervised manner, a work in [41] exploits conditional random fields (CRF) to
jointly predict the future trajectories of pedestrians and their group membership.
Yamaguchi et al. [66] harness distance, speed, and overlap time to train a linear
SVM to classify whether two pedestrians are in the same group or not. In con-
trast, a work in [14] proposes automatic detection for small groups of individuals
using a bottom-up hierarchical clustering with speed and proximity features.

Group-aware predictors recognize the affiliations and relations of individual
agents, and encode their proper reactions to moving groups. Several physics-
based techniques represent group relations by adding attractive forces among
group members [40,41,44,46,51,56,66]. Although a dominant learning paradigm
[1,4,43,62,73] implicitly learns intra- and inter-group coherency, only two works
in [6,12] explicitly define group information. To be specific, one [6] identi-
fies pedestrians walking together in the crowd using a coherent filtering algo-
rithm [77], and utilizes the group information in a social pooling layer to
share their hidden states. Another work [12] proposes a generative adversarial
model (GAN)-based trajectory model, jointly learning informative latent fea-
tures for simultaneous pedestrian trajectory forecasting and group detection.
These approaches only learn individual-level interactions within a group, but do
not encode their affiliated groups and future paths at the same time. Unlike them,
our GP-Graph aggregates a group-group relation via a novel group pooling in
the proposed end-to-end trainable architecture without any supervision.
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Fig. 2. An overview of our GP-Graph architecture. Starting with graph-structured
trajectories for N pedestrians, we first estimate grouping information with the Group
Assignment Module. We then generate both intra-/inter-group interaction graphs by
masking out unrelated nodes and by performing pedestrian group pooling. The weight-
shared trajectory prediction model takes the three types of graphs and capture group-
aware social interactions. Group pooling operators are then applied to encode agent-
wise features from group-wise features, and then fed into the Group Integration Module
to estimate the probability distribution for future trajectory prediction.

2.3 Graph Node Pooling

Pooling operations are used for features extracted from grid data, like images,
as well as graph-structured data. However, there is no geographic proximity or
order information in the graph nodes that existing pooling operations require. As
alternative methods, three types of graph pooling are introduced: topology-based
pooling [10,45], global pooling [15,72], and hierarchical pooling [7,13,68]. These
approaches are designed for general graph structures. However, since human
behavior prediction has time-variant and generative properties, it is no possible
to leverage the advantages of these pooling operations for this task.

3 Proposed Method

In this work, we focus on how group awareness in crowds is formed for pedes-
trian trajectory prediction. We start with a definition of a pedestrian graph and
trajectory prediction in Sect. 3.1. We then introduce our end-to-end learnable
pedestrian group assignment technique in Sect. 3.2. Using group index informa-
tion and our novel pedestrian group pooling&unpooling operations, we construct
a group hierarchy representation of pedestrian graphs in Sect. 3.3. The overall
architecture of our GP-Graph is illustrated in Fig. 2.

3.1 Problem Definition

Pedestrian trajectory prediction can be defined as a sequential inference task
made observations for all agents in a scene. Suppose that N is the number of
pedestrians in a scene, the history trajectory of each pedestrian n ∈ [1, ..., N ]
can be represented as X n ={(xt

n, yt
n) | t∈ [1, ..., Tobs]}, where the (xt

n, yt
n) is the

2D spatial coordinate of a pedestrian n at specific time t. Similarly, the ground
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truth future trajectory of pedestrian n can be defined as Y n = {(xt
n, yt

n) | t ∈
[Tobs+1, ..., Tpred]}.

The social interactions are modeled from the past trajectories of other pedes-
trians. In general, the pedestrian graph Gped = (Vped, Eped) refers to a set of
pedestrian nodes Vped = {X n |n∈ [1, ..., N ]} and edges on their pairwise social
interaction Eped = {ei,j | i, j ∈ [1, ..., N ]}. The trajectory prediction process fore-
casts their future sequences based on their past trajectory and the social inter-
action as:

̂Y = Fθ (X, Gped) (1)

where ̂Y = {̂Y n |n∈ [1, ..., N ]} denotes the estimated future trajectories of all
pedestrians in a scene, and Fθ( · ) is the trajectory generation network.

3.2 Learning the Trajectory Grouping Network

Our goal in this work is to encode powerful group-wise features beyond exist-
ing agent-wise social interaction aggregation models to achieve highly accurate
human trajectory prediction. The group-wise features represent group members
in input scenes as single nodes, making pedestrian graphs simpler. We use a
U-Net architecture with pooling layers to encode the features on graphs. By
reducing the number of nodes through the pooling layers in the U-Net, higher-
level group-wise features can be obtained. After that, agent-wise features are
recovered through unpooling operations.

Unlike conventional pooling&unpooling operators working on grid-structured
data, like images, it is not feasible to apply them to graph-structured data.
Some earlier works to handle this issue [7,13]. The works focus on capturing
global information by removing relatively redundant nodes using a graph pool-
ing, and restoring the original shapes by adding dummy nodes from a graph
unpooling if needed. However, in pedestrian trajectory prediction, each node
must keep its identity index information and describe the dynamic property of
the group behavior in scenes. For that, we present pedestrian graph-oriented
group pooling&unpooling methods. We note that it is the first work to exploit
the pedestrian index itself as a group representation.

Learning Pedestrian Grouping. First of all, we estimate grouping infor-
mation to which the pedestrian belongs using a Group Assignment Module.
Using the history trajectory of each pedestrian, we measure the feature simi-
larity among all pedestrian pairs based on their L2 distance. With this pairwise
distance, we pick out all pairs of pedestrians that are likely to be a colleague (affil-
iated with same group). The pairwise distance matrix D and a set of colleagues
indices Υ are defined as:

D i,j = ‖Fφ(X i) − Fφ(X j)‖ for i, j ∈ [1, ..., N ], (2)

Υ = {pair(i, j) | i, j ∈ [1, ..., N ], i �= j, D i,j ≤ π}, (3)

where Fφ( · ) is a learnable convolutional layer and π is a learnable thresholding
parameter.
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Next, using the pairwise colleague set Υ , we arrange the colleague members
in associated groups and assign their group index. We make a group index set
G, which is formulated as follows:

G =
{

Gk |Gk =
⋃

(i,j)∈Υ

{i, j}, Ga∩ Gb = ∅ for a �= b
}

(4)

where Gk denotes the k-th group and is the union of each pair set (i, j). This
information is used as important prior knowledge in the subsequent pedestrian
group pooling and unpooling operators.

Pedestrian Group Pooling. Based on the group behavior property that
group members gather surrounding information and share behavioral patterns,
we group the pedestrian nodes, where the corresponding node’s features are
aggregated into one node. The aggregated group features are then stacked for
subsequent social interaction capturing modules (i.e.GNNs). Here, the most rep-
resentative feature for each pedestrian node is selected via an average pooling.
With the feature, we can model the group-wise graph structures, which have
much fewer number of nodes than the input pedestrian graph, as will be demon-
strated in Sec. 4.3. We define the pooled group-wise trajectory feature Z as
follows:

Z = {Z k | k ∈ [1, ...,K]}, Z k =
1

|Gk|
∑

i∈Gk

X i, (5)

where K is the total group numbers in G.

Pedestrian Group Unpooling. Next, we upscale the group-wise graph struc-
tures back to their original size by using an unpooling operation. This enables
each pedestrian trajectory to be forecast with output agent-wise feature fusion
information. In existing methods [7,13], zero vector nodes are appended into the
group features during unpooling. The output of the convolution process on the
zero vector nodes fails to exhibit the group properties. To alleviate this issue,
we duplicate the group features and then assign them into nodes for all the rel-
evant group members so that they have identical group behavior information.
The pedestrian group unpooling operator can be formulated as follows:

X = {X n |n ∈ [1, ..., N ]}, X n = Z k where n ∈ Gk, (6)

where X is the agent-wise trajectory feature reconstructed from Z, having the
same order of pedestrian indices as in X .

Straight-Through Group Estimator. A major hurdle, when training the
group assignment module in Eq. (4) which is a sampling function, is that index
information is not treated as learnable parameters. Accordingly, the group index
cannot be trained using standard backpropagation algorithms. The reason is
why the existing methods utilize separate training steps from main trajectory
prediction networks for the group detection task.

We tackle this problem by introducing a Straight-through (ST) trick, inspired
by the biased path derivative estimators in [5,21,35]. Instead of making the
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Fig. 3. An illustration of our pedestrian group assignment method using a pairwise
group probability matrix A. With a group index set G, a pedestrian group hierarchy
is constructed based on three types of interaction graphs.

discrete index set Gk differentiable, we separate the forward pass and backward
pass of the group assignment module in the training process. Our intuition for
constructing the backward pass is that group members have similar features with
closer pairwise distance between colleagues.

In the forward pass, we perform our group pooling over both pedestrian
features and the group index from the input trajectory and estimated group
assignment information, respectively. For the backward pass, we propose group-
wise continuous relaxed features to approximate the group indexing process. We
compute the probability that a pair of pedestrians belongs to the same group
using the proposed differentiable binary thresholding function 1

1+exp(x−π) , and
apply it on the pairwise distance matrix D . We then measure the normalized
probability A of the summation of all neighbors’ probability. Lastly, we compute
a new pedestrian trajectory feature X ′ by aggregating features between group
members through the matrix multiplication of X and A as follows:

A i,j =

1

1+exp
(

D i,j−π

τ

)

∑N
i=1

(

1

1+exp
(

D i,j−π

τ

)

) for i, j ∈ [1, ..., N ], (7)

X ′ = 〈X − XA 〉 + XA, (8)

where τ is the temperature of the sigmoid function and 〈 · 〉 is the detach (in
PyTorch) or stop gradient (in Tensorflow) function which prevents the back-
propagation.

For further explanation of Eq. (8), we replace the input of pedestrian group
pooling module X with a new pedestrian trajectory feature X ′ in implemen-
tation. To be specific, we can remove XA in the forward pass, allowing us to
compute a loss for the trajectory feature X . In contrast, due to the stop gradi-
ent 〈 · 〉, the loss is only backpropagated to XA in the backward pass. To this
end, we can train both the convolutional layer Fφ and the learnable threshold
parameter π which are used for the computation of the pairwise distance matrix
D and the construction of group index set G, respectively.
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3.3 Pedestrian Group Hierarchy Architecture

Using the estimated pedestrian grouping information, we reconstruct the initial
social interaction graph Gped in an efficient form for pedestrian trajectory pre-
diction. Instead of the existing complex and complete pedestrian graph, intra-
and inter-group interaction graphs capture the group-ware social relation, as
illustrated in Fig. 3.

Intra-group Interaction Graph. We design a pedestrian interaction graph
that captures relations between members affiliated with the same group. The
intra-group interaction graph Gmember = (Vped, Emember) consists of a set of
pedestrian nodes Vped and edges on their pairwise social interaction of group
members Emember = {ei,j | i, j ∈ [1, ..., N ], k∈ [1, ...,K], {i, j}⊂Gk}. Through this
graph representation, pedestrian nodes can learn social norms of internal colli-
sion avoidance between group members while maintaining their own formations
and on-going directions.

Inter-group Interaction Graph. Inter-group interactions (group-group rela-
tion) are indispensable to learn social norms between groups as well. To
take various group behaviors such as following a leading group, avoiding
collisions and joining a new group, we create an inter-group interaction
graph Ggroup = (Vgroup, Egroup). Here, nodes refer to each group’s features
Vgroup = {X k | k∈ [1, ...,K]} generated with our pedestrian group pooling opera-
tion, and edges mean the pairwise group-group interactions Egroup = {ēp,q | p, q∈
[1, ...,K]}.

Group Integration Network. We incorporate the social interactions as a
form of group hierarchy into well-designed existing trajectory prediction baseline
models in Fig. 3(b). Meaningful features can be extracted by feeding a different
type of graph-structured data into the same baseline model. Here, the baseline
models share their weights to reduce the amount of parameters while enriching
the augmentation effect. Afterward, the output features from the baseline models
are aggregated agent-wise, and are then used to predict the probability map of
future trajectories using our group integration module. The generated output
trajectory ̂Y with the group integration network Fψ is formulated as:

̂Y = Fψ

(

Fθ(X,Gped)
︸ ︷︷ ︸

Agent-wise GNN

, Fθ(X,Gmember)
︸ ︷︷ ︸

Intra-group GNN

, Fθ(X, Ggroup)
︸ ︷︷ ︸

Inter-group GNN

)

. (9)

Group-Level Latent Vector Sampling. To infer the multi-modal future
paths of pedestrians, an additional random latent vector is introduced with an
input observation path. This latent vector becomes a factor, determining a per-
son’s choice of behavior patterns, such as acceleration/deceleration and turning
to right/left. There are two ways to adopt this latent vector in trajectory gen-
eration: (1) Scene-level sampling [17] where everyone in the scene shares one
latent vector, unifying the behavior patterns of all pedestrians in a scene (e.g.,
all pedestrians are slow down); (2) Pedestrian-level sampling [50] that allocates
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the different latent vectors for each pedestrian, but forces the pedestrians to have
different patterns, where the group behavior property is lost.

We propose a group-level latent vector sampling method as a compromise of
the two ways. We use the group information estimated from the GP-Graph to
share the latent vector between groups. If two people are not associated with the
same group, an independent random noise is assigned as a latent vector. In this
way, it is possible to sample a multi-modal trajectory, which is independent of
other groups members and follows associated group behaviors. The effectiveness
of the group-level sampling is visualized in Sect. 4.3.

3.4 Implementation Details

To validate the generality of our GP-Graph, we incorporate it into four state-
of-the-art baselines: three different GNN-based baseline methods including
STGCNN (GCN-based) [39], SGCN (GAT-based) [54] and STAR (Transformer-
based) [69], and one non-GNN model, PECNet [36]. We simply replace their
trajectory prediction parts with ours. We additionally embed our agent/intra-
/inter-graphs on the baseline networks, and compute integrated output trajecto-
ries to obtain the group-aware prediction.

For our proposed modules, we initialize the learnable parameter π as one,
which cut the total number of nodes moderately down by half, with the group
pooling in the initial training step. Other learnable parameters such as Fθ, Fφ

and Fψ are randomly initialized. We set the hyperparameter τ to 0.1 to give the
binary thresholding function a steep slope.

To train the GP-Graph architecture, we use the same training hyperparam-
eters (e.g., batch size, train epochs, learning rate, learning rate decay), loss
functions, and optimizers of the baseline models. We note that we do not use
additional group labels for an apple-to-apple comparison with the baseline mod-
els. Our group assignment module is trained to estimate effective groups for tra-
jectory prediction in an unsupervised manner. Thanks to our powerful Straight-
Through Group Estimator, it accomplish promising results over other supervised
group detection networks [7] that require additional group labels.

4 Experiments

In this section, we conduct comprehensive experiments to verify how the group-
ing strategy contributes to pedestrian trajectory prediction. We first briefly
describe our experimental setup (Sect. 4.1). We then provide comparison results
with various baseline models for both group detection and trajectory predic-
tion (Sect. 4.3 and Sect. 4.2). We lastly conduct an extensive ablation study to
demonstrate the effect of each component of our method (Sect. 4.4).

4.1 Experimental Setup

Datasets. We evaluate the effectiveness of our GP-Graph by incorporating it
into several baseline models and check the performance improvement on pub-
lic datasets: ETH [42], UCY [28], Stanford Drone Dataset (SDD) [47], and the
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Table 1. Comparison between GP-Graph architecture and the vanilla agent-wise inter-
action graph for four state-of-the-art multi-modal trajectory prediction models, Social-
STGCNN [39], SGCN [54], STAR [69] and PECNet [36]. The models are evaluated on
the ETH [42], UCY [28], SDD [47] and GCS [67] datasets. Gain: performance improve-
ment w.r.t FDE over the baseline models, Unit for ADE and FDE: meter, Bold: Best.

STGCNN GP-Graph - STGCNN SGCN GP-Graph - SGCN

ADE↓ FDE↓ COL↓ TCC↑ ADE↓ FDE↓ COL↓ TCC↑ Gain↑ ADE↓ FDE↓ COL↓ TCC↑ ADE↓ FDE↓ COL↓ TCC↑ Gain↑
ETH 0.73 1.21 1.80 0.47 0.48 0.77 1.15 0.63 36.4% 0.63 1.03 1.69 0.55 0.43 0.63 1.35 0.65 38.8%

HOTEL 0.41 0.68 3.94 0.28 0.24 0.40 2.00 0.32 41.2% 0.32 0.55 2.52 0.29 0.18 0.30 0.66 0.35 45.5%

UNIV 0.49 0.91 9.69 0.63 0.29 0.47 7.54 0.77 48.4% 0.37 0.70 6.85 0.69 0.24 0.42 5.52 0.80 40.0%

ZARA1 0.33 0.52 2.54 0.71 0.24 0.40 2.13 0.82 23.1% 0.29 0.53 0.79 0.74 0.17 0.31 0.62 0.86 41.5%

ZARA2 0.30 0.48 7.15 0.39 0.23 0.40 3.80 0.49 16.7% 0.25 0.45 2.23 0.49 0.15 0.29 1.44 0.56 35.6%

AVG 0.45 0.76 5.02 0.50 0.29 0.49 3.32 0.60 35.5% 0.37 0.65 2.82 0.55 0.23 0.39 1.92 0.64 40.0%

SDD 20.8 33.2 6.79 0.47 10.6 20.5 4.36 0.67 38.3% 25.0 41.5 4.45 0.57 15.7 32.5 2.59 0.60 21.7%

GCS 14.7 23.9 3.92 0.70 11.5 19.3 1.24 0.73 19.2% 11.2 20.7 1.45 0.78 7.8 13.7 0.67 0.79 33.8%

STAR GP-Graph - STAR PECNet GP-Graph -PECNet

ADE↓ FDE↓ COL↓ TCC↑ ADE↓ FDE↓ COL↓ TCC↑ Gain↑ ADE↓ FDE↓ COL↓ TCC↑ ADE↓ FDE↓ COL↓ TCC↑ Gain↑
ETH 0.36 0.65 1.46 0.72 0.37 0.58 0.88 0.77 11.0% 0.64 1.13 3.08 0.58 0.56 0.82 2.38 0.59 27.3%

HOTEL 0.17 0.36 1.51 0.32 0.16 0.24 1.46 0.31 32.2% 0.22 0.38 5.69 0.33 0.18 0.26 3.45 0.34 32.1%

UNIV 0.31 0.62 1.95 0.69 0.31 0.57 1.65 0.73 7.4% 0.35 0.57 3.80 0.75 0.31 0.46 2.89 0.77 19.5%

ZARA1 0.26 0.55 1.55 0.73 0.24 0.44 1.39 0.82 20.3% 0.25 0.45 2.99 0.80 0.23 0.40 2.57 0.82 11.7%

ZARA2 0.22 0.46 1.46 0.50 0.21 0.39 1.27 0.46 14.3% 0.18 0.31 4.91 0.55 0.17 0.27 2.92 0.58 13.0%

AVG 0.26 0.53 1.59 0.59 0.26 0.44 1.33 0.62 15.7% 0.33 0.60 4.09 0.61 0.29 0.44 2.84 0.62 26.4%

SDD 14.9 28.2 0.72 0.59 13.7 25.2 0.35 0.61 10.4% 10.0 15.8 0.22 0.64 9.1 13.8 0.23 0.65 12.7%

GCS 15.6 31.8 1.79 0.80 14.9 30.3 0.81 0.80 4.8% 17.1 29.3 0.20 0.71 14.2 23.9 0.19 0.72 18.4%

Grand Central Station (GCS) [67] datasets. The ETH & UCY datasets contain
five unique scenes (ETH, Hotel, Univ, Zara1 and Zara2) with 1,536 pedestri-
ans, and the official leave-one-out strategy is used to train and to validate the
models. SDD consists of various types of objects with a birds-eye view, and
GCS shows highly congested pedestrian walking scenes. We use the standard
training and evaluation protocol [17,19,36,39,50,54] in which the first 3.2 s (8
frames) are observed and next 4.8 s (12 frames) are used for a ground truth
trajectory. Additionally, two scenes (Seq-eth, Seq-hotel) of the ETH datasets
provide ground-truth group labels. We use them to evaluate how accurately our
GP-Graph groups individual pedestrians.

Evaluation Protocols. For multi-modal human trajectory prediction, we fol-
low a standard evaluation manner, in Social-GAN [17], generating 20 samples
based on predicted probabilistic distributions, and then choosing the best sample
to measure the evaluation metrics. We use same evaluation metrics of previous
works [1,17,34,61] for future trajectory prediction. Average Displacement Error
(ADE) computes the Euclidean distance between a prediction and ground-truth
trajectory, while Final Displacement Error (FDE) computes the Euclidean dis-
tance between an end-point of prediction and ground-truth. Collision rate (COL)
checks the percentage of test cases where the predicted trajectories of different
agents run into collisions, and Temporal Correlation Coefficient (TCC) measures
the Pearson correlation coefficient of motion patterns between a predicted and
ground-truth trajectory. We use both ADE and FDE as accuracy measures, and
both COL and TCC as reliability measures in our group-wise prediction. For the
COL metric, we average a set of collision ratios over the 20 multi-modal samples.
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Table 2. Comparison of GP-Graph on SGCN with other state-of-the-art group detec-
tion models (Precision/Recall). For fair comparison, the evaluation results are directly
referred from [6,12]. S: Use a loss for supervision, Bold: Best, Underline: Second best.

Shao et al. [53] Zanotto et al. [71] Yamaguchi et al. [66] Ge et al. [14] Solera et al. [57] Fernando et al. [12] GP-Graph GP-Graph+S
Seq-eth PW↑ 44.5/87.0 79.0/82.0 72.9/78.0 80.7/80.7 91.1/83.4 91.3/83.5 91.7 / 82.1 91.1/84.1

GM↑ 69.3/68.2 – / – 60.6/76.4 87.0/84.2 91.3/94.2 92.5 /94.2 86.9/86.8 92.5 / 91.3

Seq-hotel PW↑ 51.5/90.4 81.0/91.0 83.7/93.9 88.9 /89.3 89.1/91.9 90.2/93.1 91.5 / 80.1 90.4/93.3

GM↑ 67.3/64.1 – / – 84.0/51.2 89.2/90.9 97.3/97.7 97.5 /97.7 84.5/80.0 96.1/96.0

For grouping measures, we use precision and recall values based on two pop-
ular metrics, proposed in prior works [6,12]: A group pair score (PW) measures
the ratio between group pairs that disagree on their cluster membership, and all
possible pairs in a scene. A Group-MITRE score (GM) is a ratio of the minimum
number of links for group members and fake counterparts for pedestrians who
are not affiliated with any group.

4.2 Quantitative Results

Evaluation on Trajectory Prediction. We first compare our GP-Graph
with conventional agent-wise prediction models on the trajectory prediction
benchmarks. As reported in Table 1, our GP-Graph achieves consistent perfor-
mance improvements on all the baseline models. Additionally, our group-aware
prediction also reduces the collision rate between agents, and shows analogous
motion patterns with its ground truth by capturing the group movement behav-
ior well. The results demonstrate that the trajectory prediction models benefit
from the group-awareness cue of our group assignment module.

Evaluation on Group Estimation. We also compare the grouping ability
of our GP-Graph with that of state-of-the-art models in Table 2. Our group
assignment module trained in an unsupervised manner achieves superior results
in the PW precision in both scenes, but shows relatively low recall values over
the baseline models.

There are various group interaction scenarios in both scenes, and we found
that our model sometimes fails to assign pedestrians into one large group when
either a person joins the group or the group splits into both sides to avoid a
collision. In this situation, while forecasting agent-wise trajectories, it is advan-
tageous to divide the group into sub-groups or singletons, letting them have dif-
ferent behavior patterns. Although false-negative group links sometimes occur
during the group estimation because of this, it is not a big issue for trajectory
prediction.

To measure the maximum capability of our group estimator, we additionally
carry out an experiment with a supervision loss to reduce the false-negative group
links. We use a binary cross-entropy loss between the distance matrix and the
ground-truth group label. As shown in Table 2, the performance is comparable
to the state-of-the art group estimation models with respect to the PW and
GM metrics. This indicates that our learning trajectory grouping network can
properly assign groups without needing complex clustering algorithms.
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Fig. 4. (Top): Examples of pedestrian trajectory prediction results. (Bottom): Exam-
ples of group estimation results on ETH/UCY datasets [28,42].

4.3 Qualitative Results

Trajectory Visualization. In Fig. 4, we visualize some prediction results of
GP-Graph and other methods. Since GP-Graph estimates the group-aware rep-
resentations and captures both intra-/inter-group interactions, the predicted
trajectories are closer to socially-acceptable trajectories and forms more stable
behaviors between group members than those of the comparison models. Figure 4
also shows the pedestrians forming a group with our group assignment module.
GP-Graph uses movement patterns and proximity information to properly cre-
ate a group node for pedestrians who will take the same behaviors and walking
directions in the future. This simplifies complex pedestrian graphs and eliminates
potential errors associated with the collision avoidance between colleagues.

Group-Level Latent Vector Sampling. To demonstrate the effectiveness
of the group-level latent vector sampling strategy, we compare ours with two
previous strategies: scene-level and pedestrian-level sampling in Fig. 5. Even
though the probability maps of pedestrians are well predicted with the esti-
mated group information (Fig. 5(a)), its limitation still remains. For example,
all sampled trajectories in the probability distributions lean toward the same
directions (Fig. 5(b)) or are scattered with different patterns even within group
members, which leads to collisions between colleagues (Fig. 5(c)). Our GP-Graph

Fig. 5. (a) Visualization of predicted trajectory distribution in ZARA1 scene. (b–d)
Examples of three sampled trajectories with scene-level, pedestrian-level, and group-
level latent vector sampling strategy.
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Table 3. Ablation study of various pooling&unpooling operations on SGCN [54]
(FDE/COL/TCC). In the case of our Pedestrian Group Pooling&Unpooling, we addi-
tionally provide experimental results using the ground-truth group labels (Oracle).
Bold: Best, Underline: Second best.

ETH HOTEL UNIV ZARA1 ZARA2 AVG

w/o Pool&Unpool 1.03 / 1.69 / 0.55 0.55 / 2.52 / 0.29 0.70 / 6.85 / 0.69 0.53 / 1.79 / 0.74 0.45 / 2.23 / 0.49 0.65 / 3.02 / 0.55

gPool&gUnpool [13] 0.73 / 1.88 / 0.66 0.44 / 1.78 /0.35 0.44 / 7.67 / 0.78 0.35 / 1.14 / 0.84 0.30 / 2.30 / 0.52 0.45 / 2.96 / 0.63

SAGPool&gUnpool [25] 0.77 /1.15/ 0.63 0.40 / 2.00 / 0.32 0.47 / 7.54 / 0.77 0.40 / 2.13 / 0.82 0.40 / 3.80 / 0.49 0.49 / 3.32 / 0.60

GroupPool&Unpool 0.63 / 1.35 / 0.65 0.30 / 0.66 /0.35 0.42/5.52/0.80 0.31/0.62/0.86 0.29/1.44/0.56 0.39/1.92/0.64

+Oracle group label 0.62/ 1.27 /0.67 0.28/0.61/0.35 – / – / – – / – / – – / – / – — / – / –

with the proposed group-level sampling strategy predicts the collaborative walk-
ing trajectories of associated group members, which is independent of other
groups (Fig. 5(d)).

4.4 Ablation Study

Pooling&Unpooling. To check the effectiveness of the proposed group pool-
ing&unpooling layers, we compare it with different pooling methods including
gPool [13] and SAGPool [25] with respect to FDE, COL and TCC. gPool pro-
poses a top-k pooling by employing a projection vector to compute a rank score
for each node. SAGpool is similar to the gPool method, but encodes topology
information in a self-attention manner. As shown in Table 3, for both gPool and
SAGPool, pedestrian features are lost via the pooling operations on unimpor-
tant nodes. By contrast, our pooling approach focuses on group representations
of the pedestrian graph structure because it is optimized to capture group-related
patterns.

Group Hierarchy Graph. We examine each component of the group hierar-
chy graph in Table 4. Both intra-/inter-group interaction graphs show a notice-
able performance improvement compared to the baseline models, and the inter-
group graph with our group pooling operation has the most important role
in performance improvement (variants 1 to 4). The best performances can be
achieved when all three types of interaction graphs are used with a weight-shared
baseline model, which takes full advantage of graph augmentations (variants 4
and 5).

Grouping Method. We introduce a learnable threshold parameter π on the
group assignment module in Eq. (2) because in practice the total number of
groups in a scene can change according to the trajectory feature of the input
pedestrian node. To highlight the importance of π, we test a fixed ratio group
pooling with a node reduction ratio of 50%. As expected, the learnable threshold
shows lower errors than the fixed ratio of group pooling (variants 5 and 6). This
means that it is effective to guarantee the variability of group numbers, since the
number can vary even when the same number of pedestrians exists in a scene.

Additionally, we report results for the group-level latent vector sampling
strategy (variants 5 and 7). Since the ADE and FDE metrics are based on best-
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Table 4. Ablation study (ADE/FDE). AW, MB, GP, WS, FG and GS respectively
denote agent-wise pedestrian graph, intra-group member graph, inter-group graph,
weight sharing among different interaction graph, fixed ratio node reduction of grouping
and group-level latent vector sampling respectively. All tests are performed on SGCN.
Bold: Best, Underline: Second best.

Varient
ID

Components Performance

AW MB GP WS FG GS ETH HOTEL UNIV ZARA1 ZARA2 AVG

1 – � – – – – 0.45/0.74 0.26/0.48 0.39/0.66 0.28/0.48 0.23/0.41 0.32/0.55

2 – – � – – – 0.47/0.80 0.17 / 0.31 0.26/0.48 0.18/0.34 0.16 /0.29 0.25/0.44

3 – � � � – – 0.43 / 0.69 0.20/0.37 0.25/0.47 0.19/0.35 0.17/0.32 0.25/0.44

4 � � � – – – 0.44/0.75 0.18/0.30 0.23 / 0.43 0.18/0.33 0.16/0.29 0.24/0.42

5 � � � � – – 0.43 /0.63 0.18/0.30 0.24/0.42 0.17 /0.31 0.15 /0.29 0.23 /0.39

6 � � � � � – 0.55/0.87 0.24 /0.31 0.42/0.82 0.30/0.56 0.22/0.35 0.35/0.58

7 � � � � – � 0.43 /0.63 0.18 /0.30 0.24 /0.42 0.17 /0.31 0.15 /0.29 0.23 /0.39

of-many strategies, there is no difference with respect to numerical performance.
However, it allows each group to keep their own behavior patterns, and to rep-
resent independency between groups, as in Fig. 5.

5 Conclusion

In this paper, we present a GP-Graph architecture for learning group-aware
motion representations. We model group behaviors in crowded scenes by propos-
ing a group hierarchy graph using novel pedestrian group pooling&unpooling
operations. We use them for our group assignment module and straight-forward
group estimation trick. Based on the GP-Graph, we introduce a multi-modal tra-
jectory prediction framework that can attend intra-/inter group interaction fea-
tures to capture human-human interactions as well as group-group interactions.
Experiments demonstrate that our method significantly improves performance
on challenging pedestrian trajectory prediction datasets.
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