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Abstract. Predicting diverse human motions given a sequence of his-
torical poses has received increasing attention. Despite rapid progress,
existing work captures the multi-modal nature of human motions pri-
marily through likelihood-based sampling, where the mode collapse has
been widely observed. In this paper, we propose a simple yet effective
approach that disentangles randomly sampled codes with a determinis-
tic learnable component named anchors to promote sample precision and
diversity. Anchors are further factorized into spatial anchors and tempo-
ral anchors, which provide attractively interpretable control over spatial-
temporal disparity. In principle, our spatial-temporal anchor-based sam-
pling (STARS) can be applied to different motion predictors. Here we
propose an interaction-enhanced spatial-temporal graph convolutional
network (IE-STGCN) that encodes prior knowledge of human motions
(e.g., spatial locality), and incorporate the anchors into it. Extensive
experiments demonstrate that our approach outperforms state of the art
in both stochastic and deterministic prediction, suggesting it as a uni-
fied framework for modeling human motions. Our code and pretrained
models are available at https://github.com/Sirui-Xu/STARS.

Keywords: Stochastic human motion prediction · Generative models ·
Graph neural networks

1 Introduction

Predicting the evolution of the surrounding physical world over time is an essen-
tial aspect of human intelligence. For example, in a seamless interaction, a robot
is supposed to have some notion of how people move or act in the near future,
conditioned on a series of historical movements. Human motion prediction has
thus been widely used in computer vision and robotics, such as autonomous driv-
ing [54], character animation [62], robot navigation [59], motion tracking [48],
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Fig. 1. Our Spatial-Temporal AnchoR-based Sampling (STARS) is able to capture
multiple modes, thus facilitating diverse human motion prediction. Left: with the tra-
ditional generative models such as conditional variational autoencoders (CVAEs), the
predicted motions are often concentrated in the major mode with less diversity (illus-
trated with 8 samples). Right: STARS is able to cover more modes, where motions in
the same mode have similar characteristics but vary widely across modes. Here, we use
4 anchors to pinpoint different modes. With each anchor, we sample noise and generate
2 similar motions with slight variation in each mode

and human-robot interaction [7,34,35,38]. Owing to deep learning techniques,
there has been significant progress over the past few years in modeling and
predicting motions. Despite notable successes, forecasting human motions, espe-
cially over longer time horizons (i.e., up to several seconds), is fundamentally
challenging, because of the difficulty of modeling multi-modal motion dynamics
and uncertainty of human conscious movements. Learning such uncertainty can,
for example, help reduce the search space in motion tracking problems.

As a powerful tool, deep generative models are thus introduced for this pur-
pose, where random codes from a prior distribution are employed to capture the
multi-modal distribution of future human motions. However, current motion cap-
ture datasets are typically constructed in a way that there is only a single ground
truth future sequence for each single historical sequence [30,60], which makes it
difficult for generators to model the underlying multi-modal densities of future
motion distribution. Indeed, in practice, generators tend to ignore differences in
random codes and simply produce similar predictions. This is known as mode
collapse – the samples are concentrated in the major mode, as depicted with a
representative example in Fig. 1, which has been widely observed [72]. Recent
work has alleviated this problem by explicitly promoting diversity in sampling
using post-hoc diversity mappings [72], or through sequentially generating differ-
ent body parts [51] to achieve combinatorial diversity. These techniques, however,
induce additional modeling complexity, without guaranteeing that the diversity
modeling accurately covers multiple plausible modes of human motions.

To this end, we propose a simple yet effective strategy – Multi-Level Spatial-
Temporal AnchoR-Based Sampling (STARS) – with the key insight that future
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motions are not completely random or independent of each other; they share
some deterministic properties in line with physical laws and human body con-
straints, and continue trends of historical movements. For example, we may
expect changes in velocity or direction to be shared deterministically among
some future motions, whereas they might differ in the magnitude stochastically.
Based on this observation, we disentangle latent codes in the generative model
into a stochastic component (noise) and a deterministic learnable component
named anchors. With this disentanglement, the diversity of predictions is jointly
affected by random noise as well as anchors that are learned to be specialized for
certain modes of future motion. In contrast, the diversity from traditional gen-
erative models is determined by solely independent noise, as depicted in Fig. 1.
Now, on the one hand, random noise only accounts for modeling the uncertainty
within the mode identified by the anchor, which reduces the burden of having to
model the entire future diversity. On the other hand, the model can better cap-
ture deterministic states of multiple modes by directly optimizing the anchors,
thereby reducing the modeling complexity.

Naturally, human motions exhibit variation in the spatial and temporal
domains, and these two types of variation are comparatively independent.
Inspired by this, we propose a further decomposition to factorize anchors into
spatial and temporal anchors. Specifically, our designed spatial anchors cap-
ture future motion variation at the spatial level, but remain constant at the
temporal level, and vice versa. Another appealing property of our approach
is that, by introducing straightforward linear interpolation of spatial-temporal
anchors, we achieve flexible and seamless control over the predictions (Fig. 6
and Fig. 7). Unlike low-level controls that combine motions of different body
parts [51,72], our work enables manipulation of future motions in the native
space and time, which is an under-explored problem. Additionally, we propose a
multi-level mechanism for spatial-temporal anchors to capture multi-scale modes
of future motions.

As a key advantage, spatial-temporal anchors are compatible with any motion
predictor. Here, we introduce an Interaction-Enhanced Spatial-Temporal Graph
Covolutional Network (IE-STGCN). This model encodes the spatial locality of
human motion and achieves state-of-the-art performance as a motion predictor.

Our contributions can be summarized as follows. (1) We propose a novel
anchor-based generative model that formulates sampling as learning determin-
istic anchors with likelihood sampling to better capture the multiple modes of
human motions. (2) We propose a multi-level spatial-temporal decomposition of
anchors for interpretable control over future motions. (3) We develop a spatial-
temporal graph neural network with interaction enhancement to incorporate
our anchor-based sampling. (4) We demonstrate that our approach, as a unified
framework for modeling human motions, significantly outperforms state-of-the-
art models in both diverse and deterministic human motion prediction.
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2 Related Work

Deterministic Motion Prediction. Existing work on deterministic human
motion forecasting predicts a single future motion based on a sequence of past
poses [1,6,15,42,49], or video frames [11,71,74], or under the constraints of the
scene context [8,12,25], by using recurrent neural networks (RNNs) [63], tempo-
ral convolutional networks (TCNs) [3], and graph neural networks (GNNs) [33]
for sequence modeling. Common early trends involve the use of RNNs [20–
22,31,65], which are limited in long-term temporal encoding due to error accu-
mulation [18,53] and training difficulty [55]. Some recent attempts exploit
GNNs [16,50] to encode poses from the spatial level, but such work still relies on
RNNs [41], CNNs [14,39,40], or feed-forward networks [52] for temporal mod-
eling. Recently, spatial-temporal graph convolutional networks (STGCNs) [61,
67,69] are proposed to jointly encode the spatial and temporal correlations with
spatial-temporal graphs. Continuing this effort, we propose IE-STGCN, which
additionally encodes inductive biases such as spatial locality into STGCNs.

Stochastic Motion Prediction. Stochastic human motion prediction is an
emerging trend with the development of deep generative models such as varia-
tional autoencoders (VAEs) [32], generative adversarial networks (GANs) [19],
and normalizing flows (NFs) [58]. Most existing work [2,4,26,37,43,64,66,73]
produces various predictions from a set of codes independently sampled from
a given distribution. As depicted in DLow [72], such likelihood-based sampling
cannot produce enough diversity, as many samples are merely perturbations in
the major mode. To overcome the issue, DLow employs a two-stage framework,
using post-hoc mappings to shape the latent samples to improve the diversity.
GSPS [51] generates different body parts in a sequential manner to achieve com-
binatorial diversity. Nevertheless, their explicit promotion of diversity induces
additional complexity but does not directly enhance multi-mode capture. We
introduce anchors that are comparatively easy to optimize, to locate determin-
istic components of motion modes and impose sample diversity.

Controllable Motion Prediction. Controllable motion prediction has been
explored in computer graphics for virtual character generation [27,28,44]. In
the prediction task, DLow [72] and GSPS [51] propose to control the predicted
motion by separating upper and lower body parts, fixing one part while control-
ling the diversity of the other. In this paper, through the use of spatial-temporal
anchors, we propose different but more natural controllability in native space
and time. By varying and interpolating the spatial and temporal anchors, we
achieve high-level control over the spatial and temporal variation, respectively.

Learnable Anchors. Our anchor-based sampling, i.e., sampling with determin-
istic learnable codes, is inspired by work on leveraging predefined primitives and
learnable codes for applications such as trajectory prediction [10,13,36,46,57],
object detection [9,45], human pose estimation [68], and video representation
learning [24]. Anchors usually refer to the hypothesis of predictions, such as box
candidates with different shapes and locations in object detection [45]. In a sim-



Diverse Human Motion Prediction Guided by Spatial-Temporal Anchors 255

ilar spirit, anchors in the context of human motion prediction indicate assump-
tions about future movements. The difference is that the anchors here are not
hand-crafted or predefined primitives; instead, they are latent codes learned from
the data. In the meantime, we endow anchors with explainability i.e., to describe
the multi-level spatial-temporal variation of future motions.

3 Methodology

Problem Formulation. We denote the input motion sequence of length Th as
X = [x1,x2, . . . ,xTh

]T , where the 3D coordinates of V joints are used to describe
each pose xi ∈ R

V ×C(0)
. Here, we have C(0) = 3. The K output sequences of

length Tp are denoted as ̂Y1, ̂Y2, . . . , ̂YK . We have access to a single ground
truth future motion of length Tp as Y. Our objectives are: (1) one of the K
predictions is as close to the ground truth as possible; and (2) the K sequences
are as diverse as possible, yet representing realistic future motions.

In this section, we first briefly review deep generative models, describe
how they draw samples to generate multiple futures, and discuss their limi-
tations (Sect. 3.1). We then detail our insights on STARS including anchor-
based sampling and multi-level spatial-temporal anchors (Sect. 3.1 and Fig. 2).
To model the human motion, we design an IE-STGCN and incorporate our
spatial-temporal anchors into it (Sect. 3.2), as illustrated in Fig. 3.

zkXzkX zkX zkX

(a) (b) (c) (d)

GG G G(1) G(2)

A
AsAt A(1)

sA(1)
t A(2)

sA(2)
t

+ + +

Fig. 2. Comparison of generative models without and with anchor-based
sampling. Anchors and network parameters are jointly optimized. (a) Conventional
generative model with only stochastic noise; (b) Generative model with determinis-
tic anchor process: an anchor with Gaussian noise corresponds to a prediction; (c)
Spatial-temporal compositional anchors: any pair of combined spatial and temporal
anchors corresponds to a prediction; (d) Multi-level spatial-temporal anchors: anchors
at different levels are combined for encoding multi-scale modes

3.1 Multi-level Spatial-Temporal Anchor-Based Sampling

Preliminaries: Deep Generative Models. There is a large body of work
on the generation of multiple hypotheses with deep generative models, most of
which learn a parametric probability distribution function explicitly or implicitly.
Let p(Y|X) denote the distribution of the future human motion Y conditioned
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on the past sequence X. With a latent variable z ∈ Z, the distribution can be
reparameterized as p(Y|X) =

∫

p(Y|X, z)p(z)dz, where p(z) is often a Gaussian
prior distribution. To generate a future motion sequence ̂Y, z is drawn from the
given distribution p(z), and then a deterministic generator G : Z × X → Y is
used for mapping, as illustrated in Fig. 2(a):

z ∼ p(z), ̂Y = G(z,X), (1)

where G is a deep neural network parameterized by θ. The goal of generative
modeling is to make the distribution pθ( ̂Y|X) derived from the generator G close
to the actual distribution p(Y|X).

To generate K diverse motion predictions, traditional approaches first inde-
pendently sample a set of latent codes Z = {z1, . . . , zK} from a prior distribution
p(z). Although in theory, generative models are capable of covering different
modes, they are not guaranteed to locate all the modes precisely, and mode
collapse has been widely observed [70,72].

Anchor-Based Sampling. To address this problem, we propose a simple yet
effective sampling strategy. Our intuition is that the diversity in future motions
could be characterized by: (1) deterministic component – across different actions
performed by different subjects, there exist correlated or shareable changes in
velocity, direction, movement patterns, etc., which naturally emerge and can
be directly learned from data; and (2) stochastic component – given an action
carried out by a subject, the magnitude of the changes exists which is stochastic.

Therefore, we disentangle the code in the latent space of the generative model
into a stochastic component sampled from p(z), and a deterministic component
represented by a set of K learnable parameters called anchors A = {ak}K

k=1.
Deterministic anchors are expected to identify as many modes as possible, which
is achieved through a carefully designed optimization, while stochastic noise
further specifies motion variation within certain modes. With this latent code
disentanglement, we denote the new multi-modal distribution as

pθ( ̂Y|X,A) =
1
K

K
∑

k=1

∫

pθ( ̂Y|X, z,ak)p(z)dz. (2)

Consequently, as illustrated in Fig. 2(b), suppose we select the k-th learned
anchor ak ∈ A, along with the randomly sampled noise z ∈ Z, we can generate
the prediction ̂Yk as,

z ∼ p(z), ̂Yk = G(ak, z,X). (3)

We can produce a total of K predictions if using each anchor once, though all
anchors are not limited to being used or used only once. To incorporate anchors
into the network, we find it effective to make simple additions between selected
anchors and latent features, as shown in Fig. 3.

Spatial-Temporal Compositional Anchors. We observe that the diversity of
future motions can be roughly divided into two types, namely spatial variation
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Fig. 3. Overview of our STARS w/ IE-STGCN framework. We combine the
multi-level spatial-temporal anchors, the sampled noise, with the backbone IE-STGCN.
To generate one of the predictions given a past motion, we draw noise zk, and add the
selected spatial-temporal anchors to the latent feature at each level

and temporal variation, which are relatively independent. This sheds light on
a feasible further decomposition of the K anchors into two types of learnable
codes: spatial anchors As = {as

i }Ks
i=1 and temporal anchors At = {at

j}Kt
j=1, where

K = Ks × Kt. With this decomposition, we still can yield a total of Ks × Kt

compositional anchors through each pair of spatial-temporal anchors. Note that
the temporal anchors here, in fact, control the frequency variation of future
motion sequences, since our temporal features are in the frequency domain, as
we will demonstrate in Sect. 3.2. To be more specific, conceptually, all spatial
anchors are set to be identical in the temporal dimension but characterize the
variation of motion in the spatial dimension, taking control of the movement
trends and directions. Meanwhile, all temporal anchors remain unchanged in the
spatial dimension but differ in the temporal dimension, producing disparities in
frequency to affect the movement speed.

To produce ̂Yk, as depicted in Fig. 2(c), we sample z and select i-th spatial
anchor as

i and j-th temporal anchor at
j ,

z ∼ p(z), ̂Yk = G(as
i + at

j , z,X), (4)

where as
i + at

j is a spatial-temporal compositional anchor corresponding to an
original anchor ak. Furthermore, motion control over spatial and temporal vari-
ation can be customized through these spatial-temporal anchors. For example,
we can produce future motions with similar trends by fixing the spatial anchors
while varying or interpolating the temporal anchors, as shown in Sect. 4.3.

Multi-level Spatial-Temporal Anchors. To further learn and capture multi-
scale modes of future motions, we propose a multi-level mechanism to extend the
spatial-temporal anchors. As an illustration, Fig. 2(d) shows a simple two-level
case for this design. We introduce two different spatial-temporal anchor sets,
{A(1)

t ,A(1)
s } and {A(2)

t ,A(2)
s }, and assign them sequentially to different network

parts G(1),G(2). Suppose (i, j) is a spatial-temporal index corresponding to the
1D index k, we can generate ̂Yk through a two-level process as

z ∼ p(z), ̂Yk = G(2)(as2
i + at2

j , z,G(1)(as1
i + at1

j ,X)), (5)
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where as1
i ∈ A(1)

s , at1
j ∈ A(1)

t , as2
i ∈ A(2)

s , at2
j ∈ A(2)

t . As a principled way, anchors
can be applied at more levels to encode richer assumptions about future motions.
Training. During training, the model uses each spatial-temporal anchor explic-
itly to generate K future motions for each past motion sequence. The loss func-
tions are mostly adopted as proposed in [51], which we summarize into three cat-
egories: (1) reconstruction losses that, which optimize the best predictions under
different definitions among K generated motions, and thus optimize anchors to
their own nearest modes; (2) a diversity-promoting loss that explicitly promotes
pairwise distances in predictions, avoiding that anchors collapse to the same; and
(3) motion constraint losses that encourage output movements to be realistic. All
anchors are directly learned from the data via gradient descent. In the forward
pass, we explicitly take every anchor ai ∈ A = {ak}K

k=1 as an additional input to
the network and produce a total of K outputs. In the backward pass, each anchor
is optimized separately based on its corresponding outputs and losses, while the
backbone network is updated based on the fused losses from all outputs. This
separate backward pass is automatically done via PyTorch [56]. Please refer to
the supplementary material for more details.

3.2 Interaction-Enhanced Spatial-Temporal Graph Convolutional
Network

In principle, our proposed anchor-based sampling permits flexible network archi-
tecture. Here, to incorporate our multi-level spatial-temporal anchors, we nat-
urally represent motion sequences as spatial-temporal graphs (to be precise,
spatial-frequency graphs), instead of the widely used spatial graphs [51,52]. Our
approach builds upon the Discrete Cosine Transform (DCT) [51,52] to trans-
form the motion into the frequency domain. Specifically, given a past motion
X1:Th

∈ R
Th×V ×C(0)

, where each pose has V joints, we first replicate the last
pose Tp times to get X1:Th+Tp

= [x1,x2, . . . ,xTh
,xTh

, . . . ,xTh
]T . With prede-

fined M basis C ∈ R
M×(Th+Tp) for DCT, the motion is transformed as

˜X = CX1:Th+Tp
. (6)

We formulate ˜X ∈ R
M×V ×C(0)

in the 0-th layer and latent features in any
l-th graph layer as spatial-temporal graphs (V(l), E(l)) with M × V nodes. We
specify the node i by 2D index (fi, vi) for joint vi with frequency fi component.
The edge (i, j) ∈ E(l) associated with the interaction between node i and node
j is represented by Adj(l)[i][j], where the adjacency matrix Adj(l) ∈ R

MV ×MV

is learnable. We bottleneck spatial-temporal interactions as [61], by factorizing
the adjacency matrix into the product of low-rank spatial and temporal matrices
Adj(l) = Adj(l)s Adj(l)f . The spatial adjacency matrix Adj(l)s ∈ R

MV ×MV con-
nects only nodes with the same frequency. And the frequency adjacency matrix
Adj(l)f ∈ R

MV ×MV is merely responsible for the interplay between the nodes
representing the same joint.

The spatial-temporal graph can be conveniently encoded by a graph convolu-
tional network (GCN). Given a set of trainable weights W(l) ∈ R

C(l)×C(l+1)
and
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activation function σ(·), such as ReLU, a spatial-temporal graph convolutional
layer projects the input from C(l) to C(l+1) dimensions by

H(l+1)
k = σ(Adj(l)H(l)

k W(l)) = σ(Adj(l)s Adj(l)f H(l)
k W(l)), (7)

where H(l)
k ∈ R

MV ×C(l)
denotes the latent feature of the prediction ̂Yk at l-

th layer. The backbone consists of multiple graph convolutional layers. After
generating predicted DCT coefficients ˜Yk ∈ R

M×V ×C(L)
reshaped from H(L)

k ,
where C(L) = 3, we recover ̂Yk via Inverse DCT (IDCT) as

̂Yk = (CT
˜Yk)Th+1:Th+Tp

, (8)

where the last Tp frames of the recovered sequence represent future poses.
Conceptually, interactions between spatial-temporal nodes should be rela-

tively invariant across layers, and different interactions should not be equally
important. For example, we would expect constraints and dependencies between
“left arm” and “left forearm,” while the movements of “head” and “left forearm”
are relatively independent. We consider it redundant to construct a complete
spatial-temporal graph for each layer independently. Therefore, we introduce
cross-layer interaction sharing to share parameters between graphs in different
layers, and spatial interaction pruning to prune the complete graph.

Cross-Layer Interaction Sharing. Much care has been taken into employing
learnable interactions between spatial nodes across all graph layers [52,61,67].
We consider the spatial relationship to be relatively unchanged. Empirically, we
find that sharing the adjacency matrix at intervals of one layer is effective. As
shown in Fig. 3, we set Adj(4)s = Adj(6)s = Adj(8)s and Adj(5)s = Adj(7)s .

Spatial Interaction Pruning. To emphasize the physical relationships and

constraints between spatial joints, we prune the spatial connections ̂Adj
(l)

s =
Ms � Adj(l)s in every graph layer l using a predefined mask Ms, where � is an
element-wise product. Inspired by [47], we emphasize spatial locality based on
skeletal connections and mirror symmetry tendencies. We denote our proposed
predefined mask matrix as

Ms[i][j] =

⎧

⎪

⎨

⎪

⎩

1, vi and vj are physically connected, fi = fj

1, vi and vj are mirror-symmetric, fi = fj

0, otherwise.
(9)

Finally, our architecture consists of four original STGCNs without spatial
pruning and four Pruned STGCNs, as illustrated in Fig. 3. Please refer to the
supplementary material for more information of the architecture.

4 Experiments

4.1 Experimental Setup for Diverse Prediction

Datasets. We perform evaluation on two motion capture datasets, Human3.6M
[30] and HumanEva-I [60]. Human3.6M consists of 11 subjects and 3.6 million
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frames 50 Hz. Following [51,72], we use a 17-joint skeleton representation and
train our model to predict 100 future frames given 25 past frames without global
translation. We train on five subjects (S1, S5, S6, S7, and S8) and test on two
subjects (S9 and S11). HumanEva-I contains 3 subjects recorded 60 Hz. Follow-
ing [51,72], the pose is represented by 15 joints. We use the official train/test
split [60]. The model forecasts 60 future frames given 15 past frames.

Metrics. For a fair comparison, we measure the diversity and accuracy of the
predictions according to the evaluation metrics in [2,51,70,72]. (1) Average
Pairwise Distance (APD): average �2 distance between all prediction pairs,
defined as 1

K(K−1)

∑K
i=1

∑K
j �=i ‖ ̂Yi − ̂Yj‖2. (2) Average Displacement Error

(ADE): average �2 distance over the time between the ground truth and the
closest prediction, computed as 1

Tp
mink ‖ ̂Yk − Y‖2. (3) Final Displacement

Error (FDE): �2 distance of the last frame between the ground truth and the
closest prediction, defined as mink ‖ ̂Yk[Tp] −Y[Tp]‖2. To measure the ability to
produce multi-modal predictions, we also report multi-modal versions of ADE
and FDE. We define the multi-modal ground truth [70] as {Yn}N

n=1, which is
clustered based on historical pose distances, representing possible multi-modal
future motions. The detail of multi-modal ground truth is in the supplemen-
tary material. (4) Multi-Modal ADE (MMADE): the average displacement
error between the predictions and the multi-modal ground truth, denoted as

1
NTp

∑N
n=1 mink ‖ ̂Yk − Yn‖2. (5) Multi-Modal FDE (MMFDE): the final

displacement error between the predictions and the multi-modal ground truth,
denoted as 1

N

∑N
n=1 mink ‖ ̂Yk[Tp] − Yn[Tp]‖2. All metrics here are in meters.

Baselines. To evaluate our stochastic motion prediction method, we consider
two types of baselines: (1) Stochastic methods, including CVAE-based meth-
ods, Pose-Knows [64] and MT-VAE [66], as well as CGAN-based methods,
HP-GAN [4]; (2) Diversity promoting methods, including Best-of-Many [5],
GMVAE [17], DeLiGAN [23], DSF [70], DLow [72], MOJO [75], and
GSPS [51].

Implementation Details. The backbone consists of 8 GCN layers. We perform
spatial pruning on 4 GCN layers (denoted as ‘Pruned’). The remaining 4 layers
are not pruned. In each layer, we use batch normalization [29] and residual
connections. We add K spatial-temporal compositional anchors at layers 4 and
6, and perform random sampling at the layer 5. Here, K = 50 unless otherwise
specified. For Human3.6M, the model is trained for 500 epochs, with a batch
size of 16 and 5000 training instances per epoch. For HumanEva-I, the model
is trained for 500 epochs, with a batch size of 16 and 2000 training instances
per epoch. Additional implementation details are provided in the supplementary
material.

4.2 Quantitative Results and Ablation of Diverse Prediction

We compare our method with the baselines in Table 1 on Human3.6M and
HumanEva-I. We produce one prediction using each spatial-temporal anchor for
a total of 50 predictions, which is consistent with the literature [51,72]. For all
metrics, our method consistently outperforms all baselines on both datasets.
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Table 1. Quantitative results on Human3.6M and HumanEva-I for K = 50. Our
model significantly outperforms all stochastic prediction baselines on all metrics. The
results of baselines are reported from [51,72,75]

Method Human3.6M [30] HumanEva-I [60]

APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓
Pose-Knows [64] 6.723 0.461 0.560 0.522 0.569 2.308 0.269 0.296 0.384 0.375

MT-VAE [66] 0.403 0.457 0.595 0.716 0.883 0.021 0.345 0.403 0.518 0.577

HP-GAN [4] 7.214 0.858 0.867 0.847 0.858 1.139 0.772 0.749 0.776 0.769

BoM [5] 6.265 0.448 0.533 0.514 0.544 2.846 0.271 0.279 0.373 0.351

GMVAE [17] 6.769 0.461 0.555 0.524 0.566 2.443 0.305 0.345 0.408 0.410

DeLiGAN [23] 6.509 0.483 0.534 0.520 0.545 2.177 0.306 0.322 0.385 0.371

DSF [70] 9.330 0.493 0.592 0.550 0.599 4.538 0.273 0.290 0.364 0.340

DLow [72] 11.741 0.425 0.518 0.495 0.531 4.855 0.251 0.268 0.362 0.339

MOJO [75] 12.579 0.412 0.514 0.497 0.538 4.181 0.234 0.244 0.369 0.347

GSPS [51] 14.757 0.389 0.496 0.476 0.525 5.825 0.233 0.244 0.343 0.331

STARS (Ours) 15.884 0.358 0.445 0.442 0.471 6.031 0.217 0.241 0.328 0.321

Table 2. Ablation study on Human3.6M and HumanEva-I for K = 50. We compare
the following 4 cases: (I) 50 original anchors; (II) 2 temporal anchors and 25 spatial
anchors; (III) 50 spatial-temporal compositional anchors from 5 temporal anchors and
10 spatial anchors; (IV) 50 spatial-temporal compositional anchors for both levels

# of anchors Human3.6M [30] HumanEva-I [60]

APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓
(I) 50 16.974 0.363 0.447 0.444 0.473 7.786 0.221 0.249 0.327 0.321

(II) 2 × 25 16.303 0.356 0.442 0.440 0.468 5.254 0.224 0.253 0.337 0.331

(III) 5 × 10 13.681 0.355 0.442 0.439 0.467 6.199 0.226 0.255 0.334 0.330

(IV) (5 × 10) × 2 15.884 0.358 0.445 0.442 0.471 6.031 0.217 0.241 0.328 0.321

Methods such as GMVAE [17] and DeLiGAN [23] have relatively low accu-
racy (ADE, FDE, MMADE, and MMFDE) and diversity (APD), since they
still follow a pure random sampling. Methods such as DSF [70], DLow [72] and
GSPS [51] explicitly promote diversity by introducing assumptions in the latent
codes or directly in the generation process. Instead, we propose to use anchors
to locate diverse modes directly learned from the data, which is more effective.

Effectiveness of Multi-level Spatial-Temporal Anchors. As shown in
Table 2, compared with not using spatial-temporal decoupling (I), using it (II and
III) leads to relatively lower diversity, but facilitates mode capture and results
in higher accuracy on Human3.6M. Applying the multi-level mechanism (IV)
improves diversity, but sacrifices a little accuracy on Human3.6M. By contrast,
we observe improvements in both diversity and accuracy on HumanEva-I. The
results suggest that there is an intrinsic trade-off between diversity and accuracy.
Higher diversity indicates that the model has a better chance of covering mul-
tiple modes. However, when the diversity exceeds a certain level, the trade-off
between diversity and accuracy becomes noticeable.

Impact of Number of Anchors and Samples. We investigate the effect of
two important hyperparameters on the model, i.e., the number of anchors and
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Fig. 4. Ablation study on Human3.6M. We report ADE, MMADE, FDE, and
MMFDE, comparing settings with different numbers of anchors and samples

Table 3. Ablation study on Human3.6M for K = 100. We demonstrate the generaliz-
ability of our anchor-based sampling. For a fair comparison, we add single-level anchor-
based sampling to GSPS [51] and IE-STGCN, without changing any other design and
without using spatial-temporal decomposition. We observe that our anchor-based sam-
pling mechanism consistently improves diversity and accuracy for both approaches.
Meanwhile, our backbone is more lightweight but performs better

Backbone Parameter Random sampling Single-level anchor-based sampling (Ours)

APD ↑ADE ↓FDE ↓MMADE ↓MMFDE ↓ APD ↑ADE ↓FDE ↓MMADE ↓MMFDE ↓
GSPS [51] 1.30M 14.751 0.369 0.462 0.455 0.491 19.022 0.364 0.443 0.443 0.465

IE-STGCN

(Ours)

0.29M 11.701 0.352 0.445 0.443 0.476 14.554 0.344 0.411 0.423 0.436

the number of samples. As illustrated in Fig. 4(a), we fix the number of sam-
ples to 50 and compare the results when the number of anchors varies within
0, 5, 10, 25, 50. The results show that more anchors enable the model to bet-
ter capture the major modes (ADE, FDE) and also other modes (MMADE,
MMFDE). In Fig. 4(b), we vary the sample size to be 10, 20, 50, 100 and keep
the number of anchors the same as the number of samples. The results show that
the larger the number of samples is, the easier it is for a sample to approach the
ground truth.

Generalizability of Anchor-Based Sampling. In Table 3, we demonstrate
that our anchor-based sampling is model-agnostic and can be inserted as a
plug-and-play module into different motion predictors. Concretely, we apply our
anchor-based sampling to the baseline method GSPS [51], which also achieves
consistent improvements under every metric, with improvements in terms of
diversity and multi-modal accuracy being particularly evident. For simplicity,
this evaluation uses simple single-level anchors, but the improvements are pro-
nounced. We would also like to emphasize that the total number of parameters
in our IE-STGCN predictor is only 22% of that in GSPS.

4.3 Qualitative Results of Diverse Prediction

We visualize the start pose, the end pose of the ground truth future motions,
and the end pose of 10 motion samples in Fig. 5. The qualitative comparisons
support the ADE results in Table 1 that our best predicted samples are closer
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to the ground truth. In Fig. 6 and Fig. 7, we provide the predicted sequences
sampled every ten frames. As mentioned before, our spatial-temporal anchors
provide a new form of control over spatial-temporal aspects. With the same
temporal anchor, the motion frequencies are similar, but the motion patterns are
different. Conversely, if we control the spatial anchors to be the same, the motion
trends are similar, but the speed might be different. We show a smooth control
through the linear interpolation of spatial-temporal anchors in Fig. 7. The new
interpolated anchors produce some interesting and valid pose sequences. And
smooth changes in spatial trend and temporal velocity can be observed.

4.4 Effectiveness on Deterministic Prediction

Our model can be easily extended to deterministic prediction by specifying
K = 1. Without diverse sampling, we retrain two deterministic prediction model
variants: IE-STGCN-Short dedicated to short-term prediction and IE-STGCN-

End Pose of 10 Samples End Pose of 10 SamplesGTStart

Ours GSPS

Fig. 5. Visualization of end poses on Human3.6M. We show the historical poses
in red and black skeletons, and the predicted end poses with purple and green. As
highlighted by the red and blue dashed boxes, the best predictions of our method are
closer to the ground truth than the state-of-the-art baseline GSPS [51]
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Fig. 6. Visualization of controllable motion prediction on Human3.6M and
HumanEva-I. We control different trends and speeds of motions by controlling spa-
tial and temporal anchors. For example, the third and fourth rows have similar motion
trends, but the motion in the third row is faster
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Fig. 7. Linear interpolation of anchors. We seamlessly control different trends
and speeds of future motions by linear interpolation of spatial and temporal anchors.
Specifically, given two anchors a1 and a2 and a coefficient α, we produce predictions
from the interpolated anchor formulated as (1 − α)a1 + αa2

Table 4. Quantitative results on Human3.6M for K = 1. Both our long-term and
short-term deterministic models significantly outperform all deterministic baselines

Method Short-term prediction Long-term prediction

80 160 320 400 560 720 880 1000

LTD [52] 11.2 23.3 47.9 59.3 79.9 94.3 106.1 113.3

STS-GCN [61] 13.5 27.7 54.4 65.8 85.0 98.3 108.9 117.0

MSR-GCN [16] 11.3 24.3 50.8 61.9 80.0 93.8 105.5 112.9

IE-STGCN-Short (Ours) 9.7 21.2 44.5 55.5 77.1 91.1 102.6 110.1

IE-STGCN-Long (Ours) 10.0 21.8 45.7 56.9 75.8 89.3 100.8 108.4

Long for long-term prediction. We use different settings for deterministic pre-
diction, following existing work [16,52,61] and for fair comparisons. Here, we
evaluate on Human3.6M and use the 22-joint skeleton representations. Given
a 400 ms historical motion sequence, the model generates a 400 ms motion for
short-term prediction and a 1000 ms motion for long-term prediction. We use five
subjects (S1, S6, S7, S8 and S9) for training and a subject 5 (S5) for testing. We
compare our two model variants with recent state-of-the-art deterministic pre-
diction baselines: LTD [52], STS-GCN [61], and MSR-GCN [16]. We evaluate
this by reporting Mean Per Joint Position Error (MPJPE) [30] in millimeter at
each time step, defined as 1

V

∑V
i=1 ‖ŷt[i] − yt[i]‖2, where ŷt[i] and yt[i] are pro-

duced and ground truth 3D positions of the i-th joint at time t. Table 4 includes
short-term (80∼400 ms) and long-term (560∼1000 ms) comparisons, showing
that our models outperform the baseline models on both short-term and long-
term horizons. Additional experimental results and implementation details of our
two deterministic prediction models are provided in the supplementary material.
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5 Conclusion

In this paper, we present a simple yet effective approach, STARS, to predict
multiple plausible and diverse future motions. And our spatial-temporal anchors
enable novel controllable motion prediction. To incorporate our spatial-temporal
anchors, we propose a novel motion predictor IE-STGCN. Extensive experiments
on Human3.6M and HumanEva-I show the state-of-the-art performance of our
unified approach for both diverse and deterministic motion predictions. In the
future, we will consider human-scene interaction and investigate the integration
of our predictor into human-robot interaction systems.
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