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Abstract. The main question we address in this paper is how to scale
up visual recognition of unseen classes, also known as zero-shot learning,
to tens of thousands of categories as in the ImageNet-21K benchmark.
At this scale, especially with many fine-grained categories included in
ImageNet-21K, it is critical to learn quality visual semantic represen-
tations that are discriminative enough to recognize unseen classes and
distinguish them from seen ones. We propose a H ierarchical Graphical
knowledge Representation framework for the confidence-based classifica-
tion method, dubbed as HGR-Net. Our experimental results demonstrate
that HGR-Net can grasp class inheritance relations by utilizing hierar-
chical conceptual knowledge. Our method significantly outperformed all
existing techniques, boosting the performance by 7% compared to the
runner-up approach on the ImageNet-21K benchmark. We show that
HGR-Net is learning-efficient in few-shot scenarios. We also analyzed our
method on smaller datasets like ImageNet-21K-P, 2-hops and 3-hops,
demonstrating its generalization ability. Our benchmark and code are
available at https://kaiyi.me/p/hgrnet.html.

Keywords: Zero-shot learning · Semantic hierarchical graph ·
Large-scale knowledge transfer · Vision and language

1 Introduction

Zero-Shot Learning (ZSL) is the task of recognizing images from unseen cat-
egories with the model trained only on seen classes. Nowadays, ZSL relies on
semantic information to classify images of unseen categories and can be formu-
lated as a visual semantic understanding problem. In other words, given candi-
date text descriptions of a class that has not been seen during training, the goal

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-20044-1 7.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Avidan et al. (Eds.): ECCV 2022, LNCS 13680, pp. 116–132, 2022.
https://doi.org/10.1007/978-3-031-20044-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20044-1_7&domain=pdf
http://orcid.org/0000-0003-0415-3584
http://orcid.org/0000-0001-6284-520X
http://orcid.org/0000-0002-1352-794X
http://orcid.org/0000-0001-9659-1551
https://kaiyi.me/p/hgrnet.html
https://doi.org/10.1007/978-3-031-20044-1_7
https://doi.org/10.1007/978-3-031-20044-1_7


HGR-Net 117

is to identify images of that unseen class and distinguish them from seen ones
and other unseen classes based on their text descriptions.

In general, current datasets contain two commonly used semantic information
including attribute descriptions (e.g., AWA2 [35], SUN [22], and CUB [34]),
and more challenging unstructured text descriptions (e.g., CUB-wiki[5], NAB-
wiki [6]). However, these datasets are all small or medium-size with up to a few
hundred classes, leaving a significant gap to study generalization at a realistic
scale. In this paper, we focus on large-scale zero-shot image classification. More
specifically, we explore the learning limits of a model trained from 1K seen
classes and transfer it to recognize more than 10 million images from 21K unseen
candidate categories from ImageNet-21K [4], which is the largest available image
classification dataset to the best of our knowledge.

Fig. 1. Intuitive illustration of our proposed HGR-Net. Suppose the ground truth is
Hunting Dog, then we can find the real-label path Root → Animal → Domestic Animal

→ Dog → Hunting Dog. Our goal is to efficiently leverage semantic hierarchical infor-
mation to help better understand the visual-language pairs.

A few works of literature explored zero-shot image classification on ImageNet-
21K. However, the performance has plateaued to a few percent Hit@1 perfor-
mances on ImageNet-21K zero-shot classification benchmark ( [7,13,20,32]). We
believe the key challenge is distinguishing among 21K highly fine-grained classes.
These methods represents class information by GloVe [23] or Skip-Gram [17] to
align the vision-language relationships. However, these lower-dimensional fea-
tures from GloVe or Skip-Gram are not representative enough to distinguish
among 21K classes, especially since they may collapse for fine-grained classes.
Besides, most existing works train a held-out classifier to categorize images of
unseen classes with different initialization schemes. One used strategy is to ini-
tialize the classifier weights with semantic attributes [12,27,36,38], while another
is to conduct fully-supervised training with generated unseen images. However,
the trained MLP-like classifier is not representative enough to capture fine-
grained differences to classify the image into a class with high confidence.
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To resolve the challenge of large-scale zero-shot image classification, we pro-
posed a novel H ierarchical Graph knowledge Representation network (denoted
as HGR-Net). We explore the conceptual knowledge among classes to prompt the
distinguishability. In Fig. 1, we state the intuition of our proposed method. Sup-
pose the annotated image class label is Hunting Dog. The most straightforward
way is to extract the semantic feature and train the classifier with cross-entropy.
However, our experiments find that better leveraging hierarchical conceptual
knowledge is important to learn discriminative text representation. We know
the label as Hunting Dog, but all the labels from the root can also be regarded
as the real label. We incorporate conceptual semantic knowledge to enhance the
network representation.

Moreover, inspired by the recent success of pre-trained models from large
vision-language pairs such as CLIP [24] and ALIGN [9], we adopt a dynamic
confidence-based classification scheme, which means we multiply a particular
image feature with candidate text features and then select the most confi-
dent one as the predicted label. Unlike traditional softmax-based classifier,
this setting is dynamic, and no need to train a particular classifier for each
task. Besides, the confidence-based scheme can help truly evaluate the vision-
language relationship understanding ability. For better semantic representation,
we adopt Transformer [29] as the feature extractor, and follow-up experiments
show Transformer-based text encoder can significantly boost the classification
performance.

Contributions. We consider the most challenging large-scale zero-shot image
classification task on ImageNet-21K and proposed a novel hierarchical graph
representation network, HGR-Net, to model the visual-semantic relationship
between seen and unseen classes. Incorporated with a confidence-based learn-
ing scheme and a Transformers to represent class semantic information, we show
that HGR-Net achieved new state-of-the-art performance with significantly bet-
ter results than baselines. We also conducted few-shot evaluations of HGR, and
we found our method can learn very efficiently by accessing only one example
per class. We also conducted extensive experiments on the variants of ImageNet-
21K, and the results demonstrate the effectiveness of our HGR-Net. To better
align with our problem, we also proposed novel matrices to reflect the conceptual
learning ability of different models.

2 Related Work

2.1 Zero-/Few-Shot Learning

Zero-Shot Learning (ZSL) is recognizing images of unseen categories. Our work
is more related to semantic-based methods, which learn an alignment between
different modalities (i.e., visual and semantic modalities) to facilitate classifica-
tion [12,27,36,38]. CNZSL [27] proposed to map attributes into the visual space
by normalization over classes. In contrast to [27], we map both the semantic text
and the images into a common space and calculate the confidence. Experimen-
tal studies are conducted to show that mapping to a common space achieves
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higher accuracy. We also explore the Few-Shot Learning (FSL) task, which
focuses on classification with only accessing a few testing examples during train-
ing [28,37,39]. Unlike [33] which defines the FSL task as extracting few training
data from all classes, we took all images from seen classes and selected only a few
samples from unseen classes during training. Our main goal here is to analyze
how the performance differs from zero to one-shot.

2.2 Large-Scale Graphical Zero-Shot Learning

Graphical Neural Networks [11] are widely applied to formulate zero-shot learn-
ing, where each class is associated with a graph node, and a graph edge repre-
sents each inter-class relationship. For example, [32] trains a GNN based on the
WordNet knowledge to generate classifiers for unseen classes. Similarly, [10] uses
fewer convolutional layers but one additional dense connection layer to propagate
features towards distant nodes for the same graph. More recently, [19] adopts a
transformer graph convolutional network (TrGCN) for generating class represen-
tations. [31] leverages additional neighbor information in the graph with a con-
trastive objective. Unlike these methods, our method utilizes fruitful information
of a hierarchical structure based on class confidence and thus grasps hierarchical
relationships among classes to distinguish hard negatives. Besides, some works
exploit graphical knowledge without explicitly training a GNN. For example,
[15] employs semantic vectors of the class names using multidimensional scaling
(MDS) [3] on the WordNet to learn a joint visual-semantic embedding for clas-
sification; [12] learns similarity between the image representation and the class
representations in the hyperbolic space.

2.3 Visual Representation Learning from Semantic Supervision

Visual representation learning is a challenging task and has been widely studied
with supervised or self-supervised methods. Considering semantic supervision
from large-scale unlabeled data, learning visual representation from text repre-
sentation [24] is a promising research topic with the benefit of large-scale visual
and linguistic pairs collected from the Internet. These methods train a separate
encoder for each modality (i.e., visual and language), allowing for extended to
unseen classes for zero-shot learning. Upon these methods, [2] improves the data
efficiency during training, [9] enables learning from larger-scale noisy image-text
pairs, [40] optimizes the language prompts for better classifier generation. Our
work adopts the pre-trained encoders of [24] but tackles the problem of large-
scale zero-shot classification from a candidate set of 22K classes instead of at
most 1K as in [24].

3 Method

3.1 Problem Definition

Zero-Shot Learning. Let C denote the set of all classes. Cs and Cu to be the
unseen and seen classes, respectively, where Cs ∩ Cu = ∅, and C = Cs ∪ Cu. For
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each class ci ∈ C, a d-dimensional semantic representation vector t(ci) ∈ R
d is

provided. We denote the training set Dtr = {(xi, ci, t(ci))}Ni=1, where xi is the i-
th training image. In ZSL setting, given testing images xte, we aim at learning a
mapping function xte → Cu. In a more challenging setting, dubbed as generalized
ZSL, we not only aim at classifying images from unseen categories but also seen
categories, where we learn xte → Cu ∪ Cs covering the entire prediction space.

Fig. 2. HGR-Net: Suppose the annotated single label is D and we can find the tracked
label path R · · · → A → B → D from the semantic graph extended from WordNet.
We first set D as the positive anchor and contrast with negatives which are sampled
siblings of its ancestors (i.e., {E, C, G}) layer by layer. Then we iterate to set the positive
anchor to be controlled depth as B, A, which has layer-by-layer negatives {C, G} and G,
respectively. Finally, we use a memory-efficient adaptive re-weighting strategy to fuse
knowledge from different conceptual level.

Semantic Hierarchical Structure. We assume access to a semantic Directed
Acyclic Graph (DAG), G = (V, E), where V = C ∪ {R} and E ⊆{
(x, y) | (x, y) ∈ C2 , x �= y}. Here the two-tuple (x, y) represents an parenting

relationship between x and y, which means y is a more abstract concept than x.
Here we manually add a root node R with a in-degree of 0 into G. For simplicity,
given any node ci, we denote the ordered set of all its ancestors obtained by
shortest path search from R to ci as Aci = {a(ci)j}N

a
i

j=1 ⊆ C. Similarly, we denote

the set of all siblings of ci as Sci = {s(ci)j}N
s
i

j=1 ⊆ C. Finally, d(ci) � |Aci | is
defined as depth of node ci.

3.2 HGR-Net: Large-Scale ZSL with Hierarchical Graph
Representation Learning

We mainly focus on zero-shot learning on the variants of ImageNet-21K, the
current largest image classification dataset to our knowledge. Previous strate-
gies [7,13,20,32] adopt a N -way classification as the training task on all the N
seen classes. However, we argue that this is problematic, especially in using
a Transformer as the text encoder to obtain class semantic representations.
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First, when conducting N -way classification, all the classes except the single
ground-truth are regarded as negative ones. Even though this helps build a well-
performing classifier in a fully-supervised learning scenario, we argue that this
is harmful to knowledge transfer from seen to unseen classes in ZSL. Second, a
batch of N samples is fed to the text Transformer [29] to obtain their correspond-
ing text representations and to compute the class logits afterward. This strategy
can be acceptable for datasets with a small number of classes. However, when
the number of classes scales to tens of thousands, as in our case, it becomes
formidable to implement the operations mentioned above. Therefore, we pro-
pose a memory-efficient hierarchical contrastive objective to learn transferable
and discriminative representations for ZSL.

Intuitively, as illustrated in Fig. 2, suppose we have an image sample with
annotated ground-truth label D according to ImageNet-21K. Then, we could
find a shortest path R − · · · → A → B → D to be the tracked true-label path TE.
With our definition of the hierarchical structure, the true labels for the image
sample are defined by all the nodes along this path through different levels of
conceptions, from abstract to concrete in our case. Therefore, to better leverage
this hierarchical semantic knowledge, we propose a hierarchical contrastive loss
that conducts two levels of pre-defined degrees of bottom-up contrasting.

Specifically, for node D with a depth of d(D). In the outer-level loop, we iterate
ground-truth labels of different levels, along the ancestor path AD, we traverse
from itself bottom-up D − · · · → B → A until reaching one of its ancestors of
a depth of Kd(D), where K is the outer ratio. In the inner-level loop, fixing
the ground-truth label, we conduct InfoNCE loss [21] layer by layer in a similar
bottom-up strategy with an inner ratio M (e.g., when fixing current ground
truth node as B in Fig. 2, for inner loop we consider 〈B, C〉 , 〈B, G〉). We provide
more details in Algorthim 1.

Formally, given an image of x from class ci, we define its loss as:

Lcont =
ke∑

j=ks

g(j,Lj), Lj =
1

me − ms + 1

me∑

l=ms

Lj,l, (1)

where g(·, ·) is an adaptive attention layer to dynamically re-weight the impor-
tance of labels given different levels j, j ∈ [ks, ke] and l ∈ [ms,me] are the
outer-level and inner-level loop respectively. ks, ke represents the start layer and
the end layer for outer loop while ms,me are the start layer and the end layer
for the inner loop.

Lj,l = − log
posj

posj + negj,l
, (2)

where
posj = exp

(
sim

(
T (c+j ), V (x)

)
/τ

)
(3)

negj,l =
nl∑

q=1

exp
(
sim

(
T (c−

j,l,q), V (x)
)

/τ
)

(4)
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where, sim(·) is the measure of similarity, τ is the temperature value. V (·) and
T (·) are the visual and image encoders, c+j = a(ci)j is the selected positive
label on the tracked lable path at layer l. c−

j,l,q is the q-th sibling of the j-th
ground-truth at level l; see Agorithm 1.

Algorithm 1. Hierarchical Graph Representation Net (HGR-Net)
Require: Training set Dtr, text encoder T , visual encoder V , inner ratio M , outer

ratio K, per layer sampling number threshold ε, training label set C, hierarchical
graph G
Sample a batch of data X from class ci
Obtain its ancestor path Aci

Set the outer loop range ks = Kd(ci), ke = d(ci)
for j = ks, ks + 1, . . . , ke do

Set the current ground-truth label c+j = a(ci)j

Prepare posj according to Eq. 3
Set the inner-loop ranges ms = Md(c+), me = d(c+)
for l = ms, ms + 1, . . . , me do

Prepare sibling set Scj

nl = max(ε, |Scj |)
Sample nl negative sibling set

{
c−j,l,q

}nl

q=1

Prepare negj,l according to Eq. 4
Compute Lj,l according to Eq. 2

end for
Compute Lj according to Eq. 1 right part

end for
Compute Lcont according to Eq. 1 left part

4 Experiments

4.1 Datasets and the Hierarchical Structure

ImageNet [4] is a widely used large-scale benchmark for ZSL organized according
to the WordNet hierarchy [18], which can lead our model to learn the hierarchical
relationship among classes. However, the original hierarchical structure is not
a DAG (Directed Acyclic Graph), thus not suitable when implementing our
method. Therefore, to make all of the classes fit into an appropriate location
in the hierarchical DAG, we reconstruct the hierarchical structure by removing
some classes from the original dataset, which contains seen classes from the
ImageNet-1K and unseen classes from the ImageNet-21K (winter-2021 release),
resulting a modified dataset ImageNet-21K-D (D for Directed Acyclic Graph).

It is worth noticing that although there are 12 layers in the reconstructed
hierarchical tree in total, most nodes reside between 2nd and 6th layers. Our
class-wise dataset split is based on GBU [35], which provides new dataset splits
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for ImageNet-21K with 1K seen classes for training and the remaining 20, 841
classes as test split. Moreover, GBU [35] splits the unseen classes into three
different levels, including “2-hop”, “3-hops” and “All” based on WordNet hier-
archy [18]. More specifically, the “2-hops” unseen concepts are within 2-hops
from the known concepts. After the modification above, the training is then con-
ducted on the processed ImageNet-1K with seen 983 classes, while 17,295 unseen
classes from the processed ImageNet-21K are for ZSL testing, and 1533 and 6898
classes for “2-hops” and “3-hops” respectively. Please note that there is no over-
lap between the seen and unseen classes. The remaining 983 seen classes make our
training setting more difficult because our model gets exposed to fewer images
than the original 1k seen classes. Please refer to the supplementary materials for
more detailed descriptions of the dataset split and reconstruction procedure.

4.2 Implementation Details

We use a modified ResNet-50 [8] from [24] as the image encoder, which replaces
the global average pooling layer with an attention mechanism, to obtain visual
representation with feature dimensions of 1024. Text descriptions are encoded
into tokens and bracketed with start tokens and end tokens based on byte pair
encoding (BPE) [26] with the max length of 77. For text embedding, we use
CLIP [24] Transformer to extract semantic vectors with the same dimensions
as feature representation. We obtain the logits with L2-normalized image and
text features and calculate InfoNCE loss [21] layer by layer with an adaptive re-
weighting strategy. More specifically, a learnable parameter with a size equivalent
to the depth of the hierarchical tree is used to adjust the weights adaptively.

Training Details. We use the AdamW optimizer [14] applied to all weights
except the adaptive attention layer with a learning rate 3e-7. We use the SGD
optimizer for the adaptive layer with a learning rate of 1e-4. When computing the
matmul product of visual and text features, a learnable temperature parameter
τ is initialized as 0.07 from [30] to scale the logits and clips gradient norm of
the parameters to prevent training instability. To accelerate training and avoid
additional memory, mixed-precision [16] is used, and the weights of the model
are only transformed into float32 for optimization. Our proposed HGR model
is implemented in PyTorch, and training and testing are conducted on a Tesla
V100 GPU with a batch size of 256 and 512, respectively.

4.3 Large-Scale ZSL Performance

Comparison Approaches. We compare with the following approaches:
– DeViSE [7] linearly maps visual information to the semantic word-embedding
space. The transformation is learned using a hinge ranking loss.
– HZSL [12] learns similarity between the image representation and the class
representations in the hyperbolic space.
– SGCN [10] uses an asymmetrical normalized graph Laplacian to learn the
class representations.
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– DGP [10] separates adjacency matrix into ancestors and descendants and
propagates knowledge in two phases with one additional dense connection layer
based on the same graph as in GCNZ [32].
– CNZSL [27] utilizes a simple but effective class normalization strategy to
preserve variance during a forward pass.
– FREE [1] incorporates semantic-visual mapping into a unified generative
model to address cross-dataset bias.

Evaluation Protocols. We use the typical Top@K criterion, but we also intro-
duce additional metrics. Since it could be more desirable to have a relatively
general but correct prediction rather than a more specific but wrong predic-
tion, the following three metrics evaluate a given model’s ability to learn the
hierarchical relationship between the ground truth and its general classes.

– Top-Overlap Ratio (TOR). In this metric, we take a further step to also
cover all the ancestor nodes of the ground truth class. More concretely, for
an image xj from class ci of depth qci , TOR is defined as:

TOR(xj) =
|pxj

∩ {Aci , ci}|
qci

(5)

where ci is the corresponding class to image xj . Aci is the union of all the
ancestors of class ci and pxj

is the predicted class of xj . In other words, this
metric consider the predicted class correct if it is an ancestor of the ground
truth.

– Point-Overlap Ratio (POR). In this setting, we let the model predict
labels layer by layer. POR is defined as:

POR(xj) =
|Pxj

∩ Pci |
qci

, (6)

where Pci = {ci1 , ci2 , ci3 , · · · , ciqci−1 , ci} is the union of classes from the root
to the ground truth through all the ancestors, and Pxj

is the union of classes
predicted by our model layer by layer. qci is count of all the ancestors including
the ground truth label, which is tantamount to the depth of node ci. The
intersection calculates the overlap between correct and predicted points for
image xj .

Results Analysis. Table 1 demonstrates the performance of different models
on ImageNet-21K ZSL setting on Top@K and above-mentioned three hierarchi-
cal evaluation. Our proposed model outperforms SoTA methods in all metrics,
including hierarchical measures, proving the ability to learn the hierarchical rela-
tionship between the ground truth and its ancestor classes. We also attach the
performance on 2-hops and 3-hops in the supplementary.



HGR-Net 125

4.4 Ablation Studies

Different Attributes. Conventional attribute-based ZSL methods use GloVe
[23] or Skip-Gram [17] as text models, while CLIP [24] utilizes prompts (i.e.,
text description) template: “a photo of a [CLASS]”, and take advantage of Trans-
former to extract text feature. Blindly addingTransformer to some attribute-based
methods like HZSL [12] which utilizes unique techniques to improve their per-
formance in the attribute setting result in unreliable results. Therefore, we con-
ducted experiments comparing three selected methods with different attributes.
The result in Table 2 shows that methods based on text embedding extracted
by CLIP transformer outperform traditional attribute-based ones since the low
dimension representations (500-D) from w2v [17] is not discriminative enough to
distinguish unseen classes, while higher dimension (1024-D) text representations
significantly boost classification performance. Our HGR-Net gained significant
improvement by utilizing Transformer compared to the low dimension represen-
tation from w2v [17].

Table 1. Top@k accuracy, Top-Overlap Ratio (TOR), and Point-Overlap Ratio (POR)
for different models on the ImageNet-21K-D only testing on unseen classes. Tr means
text encoder is CLIP Transformer.

Method Hit@ k(%) TOR POR

1 2 5 10 20

Devise [7] 1.0 1.8 3.0 15 23.8 – –

HZSL [12] 3.7 5.9 10.3 13.0 16.4 – –

SGCN(w2v) [10] 2.79 4.49 8.26 13.05 19.49 4.97 10.01

SGCN(Tr) [10] 4.83 8.17 14.61 21.23 29.42 8.33 14.69

DGP(w2v) [10] 3.00 5.12 9.49 14.28 20.55 7.07 11.71

DGP(Tr) [10] 5.78 9.57 16.89 24.09 32.62 12.39 15.50

CNZSL(w2v) [27] 1.94 3.17 5.88 9.12 13.73 3.93 4.03

CNZSL(Tr) [27] 5.77 9.48 16.49 23.25 31.00 8.32 7.22

FREE(w2v) [1] 2.87 4.91 9.54 13.28 20.36 4.89 5.37

FREE(Tr) [1] 5.76 9.54 16.71 23.65 31.81 8.59 9.68

CLIP [24] 15.22 22.54 33.43 42.13 50.93 18.55 14.68

HGR-Net(Ours) 16.39 24.19 35.66 44.68 53.71 18.90 16.19

Different Outer and Inner Ratio. Fig. 3 demonstrate the Top1, Top-Overlap
Ratio (TOR) and Point-Overlap Ratio (POR) metrics of different K and M, where
K and M ∈ [0, 1]. K and M are outer and inner ratio that determine how many sam-
ples is considered in the inner and outer loop respectively as earlier illustrated.

We explore different K and M in this setting and observe how performance
differs under three evaluations. Please note that when K or M is 0.0, it means
only the current node is involved in a loop. As K increases, the model is prone to
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Table 2. Different attributes. DGP(w/o) means without separating adjacency matrix
into ancestors and descendants, CN and INIT in CNZSL means class normalization and
proper initialization respectively.

Attributes Methods Hit@ k(%) TOR POR

1 2 5 10 20

w2v SGCN [10] 2.79 4.49 8.26 13.05 19.49 4.97 10.01

DGP(w/o) [10] 2.90 4.86 8.91 13.67 20.18 3.96 11.49

DGP [10] 3.00 5.12 9.49 14.28 20.55 7.07 11.71

CNZSL(w/o CN) [27] 0.83 1.47 3.03 5.08 8.27 1.98 2.05

CNZSL(w/o INIT) [27] 1.84 3.13 6.08 9.47 14.13 3.04 4.05

CNZSL [27] 1.94 3.17 5.88 9.12 13.73 3.93 4.03

FREE [1] 2.87 4.91 9.54 13.28 20.36 4.89 5.37

HGR-Net(Ours) 2.35 3.69 7.03 11.46 18.27 4.38 5.76

Transformer(CLIP) SGCN [10] 4.83 8.17 14.61 21.23 29.42 8.33 14.69

DGP(w/o) [10] 5.42 9.16 16.01 22.92 31.20 7.80 15.29

DGP [10] 5.78 9.57 16.89 24.09 32.62 12.39 15.50

CNZSL(w/o CN) [27] 1.91 3.45 6.74 10.55 15.51 3.19 3.43

CNZSL(w/o INIT) [27] 5.65 9.33 16.24 22.88 30.63 8.32 7.03

CNZSL [27] 5.77 9.48 16.49 23.25 31.00 7.97 7.22

FREE [1] 5.76 9.54 16.71 23.65 31.81 8.59 9.68

HGR-Net(Ours) 16.39 24.19 35.66 44.68 53.71 18.95 16.19

obtain higher performance on hierarchical evaluation. An intuitive explanation
is that more conceptual knowledge about ancestor nodes facilitates hierarchical
learning relationships among classes.

Fig. 3. Different outer ratio (K) and inner ratio (M)

Different Negative Sampling Strategies. We explore various sampling
strategies for choosing negative samples and observe how they differ in perfor-
mance. Random randomly samples classes from all the classes. TopM samples
neighbour nodes from (qci − M) to qci layers, where qci is the depth of inner
anchor ci, and we set M as 1. Similarity calculates the similarity of text features
and chooses the top similar samples with the positive sample as hard negatives.
Sibling samples sibling nodes of the target class. Table 3 indicates that TopM
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Table 3. Analysis of sampling strategies

Strategy Hit@ k(%) TOR POR

1 2 5 10 20

Random 15.72 23.33 34.69 43.68 52.73 16.12 13.04

Sibling 16.25 23.95 35.29 44.16 53.09 17.91 13.46

Similarity 16.35 24.04 35.33 44.17 53.07 18.60 14.78

TopM(default) 16.39 24.19 35.66 44.68 53.71 18.90 16.19

outperforms other sampling strategies. Therefore, we adopt the TopM sampling
strategy in the subsequent ablation studies.

Different Weighting Strategies. Orthogonal to negative sampling methods,
we explore in this ablation the influence of different weighting strategies across
the levels of the semantic hierarchy. The depth of the nodes in the hierarchical
structure is not well-balanced, and the layers are not accessible for all objects.
Therefore, it is necessary to focus on the importance of different layers. In
this case, we experimented with 6 different weighting strategies and observed
how they differ in multiple evaluations. As Table 4 shows, Increasing gives more
weights to deeper layers in a linear way and ↑ non-linear is exponentially increas-
ing weights to deeper layers. To balance the Top@K and hierarchical evaluations,
the adaptive weighting method is proposed to obtain a comprehensive result.
More specifically, Adaptive uses a learnable parameter with a size equivalent to
the depth of the hierarchical tree to adjust the weights adaptively. We attached
the exact formulation of different weighting strategies in the supplementary.

Table 4. Analysis of the weighting strategies when re-weighting in both inner and
outer loop with K=0.25 and M=0.5.

Weighting Hit@ k(%) TOR POR

1 2 5 10 20

Adaptive(default) 16.39 24.19 35.66 44.68 53.71 18.90 16.19

Equal 15.97 23.65 35.02 43.97 52.97 17.82 13.71

Increasing ↑ 15.85 23.50 34.85 43.83 52.83 17.80 13.81

Decreasing ↓ 16.08 23.77 35.16 44.10 53.09 17.84 13.59

↑ (non-linear) 15.58 23.13 34.43 43.44 52.46 17.79 14.12

↓ (non-linear) 16.19 23.89 35.26 44.18 53.13 17.87 13.47
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Experiment on ImageNet-21K-P [25]. ImageNet-21K-P [25] is a pre-proce-
ssed dataset from ImageNet21K by removing infrequent classes, reducing the num-
ber of total numbers by half but only removing only 13% of the original images,
which contains 12,358,688 images from 11,221 classes. We select the intersection
of this dataset with our modified ImageNet21K dataset to ensure DAG structure
consistency. The spit details (class and sample wise) are demonstrated in the sup-
plementary.

We show experimental results on ImageNet-21K-P comparing our method
to different SoTA variants. Our model performs better in this smaller dataset
compared to the original larger one in Table 1 and outstrips all the previous
ZSL methods. We presented important results in Table 5 and we attached more
results in the supplementary.

4.5 Qualitative Results

Figure 4 shows several retrieved images by implementing our model in the ZSL
setting on ImageNet-21K-D. The task is to retrieve images from an unseen class
with its semantic representation. Each row demonstrates three correct retrieved
images and one incorrect image with its true label. Although our algorithm
retrieves images from the wrong class, they are still visually similar to ground
truth. For instance, the true label hurling and the wrong class American football
belong to sports games, and images from both contain several athletes wearing
helmets against a grass background. We also show some prediction examples in
Fig. 5 to present Point-Overlap results.

Table 5. Result of ImageNet21K-P [25]. DGP(w/o) [10] means without separating
adjacency matrix into ancestors and descendants, CN and INIT in CNZSL [27] means
class normalization and proper initialization respectively, and Tr is Transformer of
CLIP for short.

Models Hit@ k(%) TOR POR

1 2 5 10 20

CNZSL(Tr w/o CN) [27] 3.27 5.59 10.69 16.17 23.33 5.32 7.68

CNZSL(Tr w/o INIT) [27] 7.90 12.77 21.40 29.50 38.63 11.23 12.56

CNZSL(Tr) [27] 7.97 12.81 21.75 29.92 38.97 11.50 12.62

FREE(Tr) [1] 8.15 12.90 21.37 30.29 40.62 11.82 13.34

CLIP [24] 19.33 28.07 41.66 53.77 61.23 20.08 20.27

HGR-Net (Ours) 20.08 29.35 42.49 52.47 62.00 23.43 23.22
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Fig. 4. Zero-shot retrieved images. The first column represents unseen class names and
corresponding confidence, the middle shows correct retrieval, and the last demonstrates
incorrect images and their true labels.

4.6 Low-shot Classification on Large-Scale Dataset

Apart from zero-shot experiments being our primary goal in this paper, we also
explore the effectiveness of our method in the low-shot setting compared to
several baselines. Unlike pure few-shot learning, our support set comprises two
parts. To be consistent with ZSL experiments, all the training samples of 983
seen classes are for low-shot training. For the 17, 295 unseen classes used in the
ZSL setting, k-shots (1,2,3,5,10) images are randomly sampled for training in the
low-shot setting, and the remaining images are used for testing. The main goal
of this experiment is to show how much models could improve from zero to one
shot and whether our proposed hierarchical-based method could generalize well
in the low-shot scenario. Figure 6 illustrated the few-shots results comparing our
model to various SoTA methods. Although our approach gains trivial Top@k
improvements from 1 to 10 shots, the jump from 0 to 1 shot is two times that
from 1 to 10, proving that our model is an efficient learner.
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Fig. 5. Predicted examples to show Point-Overlap. First row of each image is correct
points from root to the ground truth and the second row show predicted points. The
hit points are highlighted in bold.

Fig. 6. Few shots comparison. DGP(w/o) [10] means without separating adjacency
matrix into ancestors and descendants, CN and INIT in CNZSL [27] means class nor-
malization and proper initialization respectively, and Tr is Transformer of CLIP [24]
for short.

5 Conclusions

This paper focuses on scaling-up visual recognition of unseen classes to tens
of thousands of categories. We proposed a novel hierarchical graphic knowl-
edge representation framework for confidence-based classification and demon-
strated significantly better performance than baselines over Image-Net-21K-D
and Image-Net-21K-P benchmarks, achieving new SOTA. We hope our work
help ease future research of zero-shot learning and pave a steady way to under-
stand large-scale visual-language relationships with limited data.
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