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Abstract. Neural Architecture Search (NAS) aims to automatically
produce network architectures suitable to specific tasks on given datasets.
Unlike previous NAS strategies based on reinforcement learning, genetic
algorithm, Bayesian optimization, and differential programming, we for-
mulate the NAS task as a Max-Flow problem on search space consisting
of Directed Acyclic Graph (DAG) and thus propose a novel NAS app-
roach, called MF-NAS, which defines the search space and designs the
search strategy in a fully graphic manner. In MF-NAS, parallel edges
with capacities are induced by combining different operations, including
skip connection, convolutions and pooling, and the weights and capacities
of the parallel edges are updated iteratively during the search process.
Moreover, we interpret MF-NAS from the perspective of non-parametric
density estimation and show the relationship between the flow of a graph
and the corresponding classification accuracy of a neural network archi-
tecture. We evaluate the competitive efficacy of our proposed MF-NAS
across different datasets with different search spaces that are used in
DARTS/ENAS and NAS-Bench-201.

1 Introduction

Recent advances in deep neural networks result in growing interests in automated
machine learning (AutoML), whose goal is to optimize hyper-parameters and to
identify network architectures suitable to specific datasets without much human
intervention. The target of AutoML can be generally formalized as follows:

x∗ ∈ arg min
x∈X

f(x), (1)

where f : X → R is a function defined over a search space X .
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In the past few years, white-box-based and black-box-based approaches have
been dedicated to developing algorithms for AutoML. In a white-box formulation
[27,47], the form of function f is explicitly known, so that x ∈ X can be optimized
in a differential programming manner. In comparison, in a black-box assumption
[8,37], the function f can only be evaluated at x ∈ X , yielding noisy observations.

One important factor for AutoML is the definition and construction of search
space X . Different search spaces X give rise to different settings for AutoML,
and thus promote a variety of search strategies. Given a convex set X ⊂ R

d,
then Eq. (1) can be viewed as a hyper-parameter optimization (HPO) problem.
And Bayesian Optimization (BO) [6,37,39] can provide an elegant compromise
in terms of capturing a surrogate model to indicate the likelihood of function f
and maximizing an acquisition function to trade off exploration and exploitation.
Given a tree-based search space X ⊂ T , which is often used for either building
the hyper-parameters’ dependency or searching for a macro neural architecture
where the layers are stacked sequentially, some works [38,40] manage to capture
the dependency among layers and to decide a proper exploration-exploitation
balance by using Monte Carlo Tree Search (MCTS) strategy. Moreover, if the
searching space is extended to a Directed Acyclic Graph (DAG), i.e. X ⊂ G,
where G is a DAG search space, then the multi-branch and the skip relationship of
hyper-parameters can be established. This elastic expression leads to the research
direction called Neural Architecture Search (NAS). In [12,15,27,43,49] the archi-
tecture is represented as a super-net, and a white-box approach (i.e., differential
programming based approach) is used to update architecture’s importance and
network’s weight. However, due to the approximation in bi-level optimization,
the differential based methods (both one-shot and single-path approach) suffer
instability, i.e.during the search process, the architecture collapsing occurs and
thus the skip-layer tends to dominate [10,41]. On the contrary, some black-box
BO methods are also introduced to design NAS strategy. Nevertheless, because
of the inconsistency between the vector space R

d and the DAG space G, BO
solutions need extra efforts for encoding the neural architecture [19,30,35,45].

Another important factor for AutoML is search strategy, which has been
explored by most of the existing methods for NAS based on reinforcement learn-
ing, genetic algorithm, Bayesian optimization, and differential programming.
These methods decouple the search space and search strategy, leading to lower
efficiency due to ignorance on graph property. To bridge the gap, we focus on
designing an efficient and stable search strategy on a DAG search space in a
fully graphic manner, which is akin to using MCTS in a tree-based search space
or adopting Gaussian process (GP) in an Euclidean space. A few prior works
[21,46] have pioneered to perform NAS using graph theory. However, [21] is lim-
ited to linear search space and lacks evaluation results on real datasets; whereas
[46] lacks feedback reward, making it an open-loop strategy—rather than a NAS
method it is virtually a method to define search space. Recently, GFlowNet [4,5]
views a Markov Decision Processes (MDP) as a flow network, and connects the
flow-matching (conservation) conditions to the generated policy with the target
reward function. Though GFlowNet targets at sampling a diverse set of candi-
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dates, which may be not the case of NAS, GFlowNet builds a solid foundation
for achieving the black-box optimization with the flow network.

In this paper, by introducing the maximum-flow calculation in a flow network,
we formulate the NAS task as a multi-graph maximum-flow problem directly
defined on a DAG search space with edge capacity indicating the contribution
of the corresponding operation to the model performance. To be specific, our
contributions are three-fold:

1. We propose a Max-Flow based NAS approach, called MF-NAS, which defines
the search space and the search strategy both in a fully graphic manner.

2. To our best knowledge, we make the first attempt to address the NAS task
from a multi-graph maximum-flow perspective.

3. We conduct extensive experiments to evaluate the proposed search strategy
across multiple datasets on multiple search spaces and show competitive per-
formance.

2 Preliminaries

2.1 Multi-graph Flow in Graph Theory

Consider a directed graph G := (V,E), where V is the vertex set and E is the
edge set. A multi-graph is defined as a graph with multiple edges (i.e., parallel
edges) between two vertices. A flow graph is a directed graph where each edge
has a capacity and receives a flow that is limited by the edge capacity. The
formal definition of the problem for finding a feasible and maximal flow on a
multi-graph is given as follows.

Definition 1 (Maximum-Flow on Multi-Graph). Given a directed graph
G = (V,E) with a source node s ∈ V , a sink node t ∈ V , edge set E = {ek

u,v|u, v ∈
V, k ∈ K}, edge capacity function c : V ×V ×K → R, where K := {0, 1, . . . ,K−1}
and K is number of parallel edges, then the max-flow on the multi-graph G is
defined as a feasible s-t-flow function f : V × V × K → R that maximizes the
flow value |f | :=

∑
u∈V,k∈K f(ek

u,t) on G, where f(ek
u,t) denotes the flow on the

k-th edge from node u to node t.

Flow graph [2,44] has been a useful tool for modeling network traffic, circu-
lation, and etc. In this paper, we demonstrate that NAS can be modeled as a
maximum-flow selection problem on a multi-graph.

2.2 Hyperband and ENAS

Both Hyperband [24] and ENAS [32] are black-box methods. Hyperband [24]
speeds up random search by using an early-stopping strategy to allocate
resources adaptively. NAS and ENAS [32,52] both involve training a RNN con-
troller in a loop, where the controller samples a child model (i.e., candidate
architecture) for training and its achieved performance is fed back to the con-
troller as a reward to train the LSTM controller. Specifically, in NAS, the child
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models are trained from scratch to convergence, whereas in ENAS, the child
models share their weights to reduces the cost of architecture search. Our pro-
posed MF-NAS applies to the pipeline of NAS: the controller is responsible for
generating candidate architectures (i.e., child models), then the parameters of
the controller and the weights of child models are updated alternately. Unlike
NAS and ENAS, our MF-NAS adopts a max-flow-based controller.

Fig. 1. Illustration of NAS as a max-flow problem. a) A cell-based search space used in
DARTS and NAS-Bench-201. b) Connections within a cell in NAS-Bench-201, where
bold lines indicate a group of parallel edges (i.e., candidate operations). c) The flow
moves through a node following the conservation law, where ihe input flows are first
collected by a gather function (e.g., summation function) and then the converged flow
is split into output flows. d) Parallel edges with limited capacities between the node
pair. In each search step, only one path is selected to construct a child model, and the
capacity of the selected edge may be updated with respect to validation accuracy.

3 Methodology

In this section, we formulate the NAS task as a max-flow problem on a multi-
graph at first, and then show that MF-NAS can be interpreted from a non-
parametric density estimation perspective. Finally, we integrate MF-NAS into
the classical AutoML pipelines, demonstrating that MF-NAS enjoys wide appli-
cability.

We regard the architecture as a directed acyclic graph (DAG) referring to
NAS [52], ENAS [32], DARTS [27] and its subsequent works [7,16,41]. For clarity,
we give a sketch of the search space in DARTS and NAS-Bench-201 in a multi-
graph perspective in Fig. 1. Specifically, operations are regarded as parallel edges
between a pair nodes with learned capacities indicating the importance of the
architecture, and the moving flow across nodes follows the conservation law [4].
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3.1 Neural Architecture Search with Maximum-Flow

Given a training dataset D for a certain task, NAS aims to find an architecture
m ∈ A that maximizes a posterior probability, i.e.,

m∗ = arg min
m∈A

p(m|D). (2)

To formulate the task of NAS, we use a directed multi-graph to represent the
cell-based search space, where parallel edges are the operations, including con-
volutions, skip connection, pooling, and no connection.

Instead of finding the optimal solution with maximum posterior probability
as in Eq. (2), in this paper, we consider the flow value on the operation-induced
multi-graph to be the candidate architecture’s fitness, which will be further inter-
preted in Sect. 3.2. Consequently, we convert the task of searching for the best
architecture to a task of finding a feasible s-t-flow function f that achieves the
maximum-flow value, that is:

f∗ := arg min
f

∑

u∈V,k∈K
f(ek

u,t). (3)

Then, the optimal architecture m∗ is selected as a set of edges whose flows are
nonzero according to the optimal s-t-flow function f :

m∗ := {ek
u,v|u, v ∈ V and k ∈ K, where f∗(ek

u,v) > 0}. (4)

In this way, the optimization problem in (2) can be solved by addressing the
optimal s-t-flow problem in (3) and (4).

Next, we give a proposition to show that the maximum-flow of the flow
network in Fig. 1 (a) can be obtained by calculating the maximum-flow of the
normal cell and the reduce cell, separately.

Proposition 1. Suppose that the architecture is formed by connecting the nor-
mal cells mnormal and the reduce cells mreduce in a chain manner. Then, the set
of edges m∗ that maximize the flow value |f | as defined in Definition 1 can be
achieved by calculating the union set of that maximizes the flow value of the nor-
mal cell m∗

normal and that maximizes the flow value of the reduce cell m∗
reduce,

i.e., m∗ = m∗
normal ∪ m∗

reduce
1.

Proof. This can be proved by mathematical induction. Base case: if the layer
of architecture is only one (formed by one cell), obviously, the statement holds.
Inductive step: assume the statement holds for n-layers architecture (i.e.,
m∗

n = m∗
normal ∪m∗

reduce)—this is the induction hypothesis (IH), then the state-
ment will be proved to hold for n + 1-layers architecture as shown in Fig. 2(c).
Without loss of generality, we consider the n+1-th cell as a normal cell. Denote
|fnormal|, |fn| and |fn+1| as the flow value of the normal cell in Fig. 2(a), the

1 If there are only the normal cells in the architecture, as NAS-Bench-201, then m∗ =
m∗

normal.
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flow of the n-layers and n + 1-layer network in Fig. 2(c), respectively. Accord-
ing to Max-Flow Min-Cut Theorem [44], the flow of the n + 1-layer network in
the chain can be represented as max |fn+1| = min{max |fn|, max |fnormal|}.
If max |fn| >= max |fnormal|, then maximizing the flow of n + 1-layer net-
work is equivalent to maximize that of the normal cell, and thus m∗

n+1 =

m∗
n ∪ m∗

normal
IH= m∗

normal ∪ m∗
reduce. If max |fn| < max |fnormal|, then the

maximum flow problem of n + 1-layers network is equivalent to maximize the
flow of n-layers network. Any mnormal that satisfies max |fnormal| > max |fn|
will not affect the result, hence m∗

normal can be chosen as the optimal solution

m∗
n+1 = m∗

n ∪ m∗
normal

IH= m∗
normal ∪ m∗

reduce. This completes the proof.

Fig. 2. Illustration of mathematical induction for flow network analysis (see Proposi-
tion 1): a) base case for normal cell; b) base case for reduce cell; c) inductive step.

Hence, Eq. (3) can be solved in a greedy manner by separately optimizing
inside each cell:

argmax
f

∑

u∈Vcell,k∈K
f(ek

u,t)

s.t. f(ek
u,v) ≤ c(ek

u,v), ∀u, v ∈ Vcell, ∀k ∈ K
∑

u∈Vcell

∑

k �=K−1

I(ek
u,v) = M, ∀v ∈ Vcell

I(eK−1
u,v ) =

∏

k �=K−1

(1 − I(ek
u,v)), ∀u, v ∈ Vcell, (5)

where Vcell is the node set of a normal cell or a reduce cell, t is the sink node of
the cell, the index of the sink node is related to the number of nodes N inside
the cell, M is the input degree of node, K and f(ek

u,v) are defined in Definition
1, and the operation whose index is K − 1 denotes no connection2, and I(ek

u,v)
is an indicator which is 0 if f(ek

u,v) = 0 and otherwise 1. The capacities c(·) of

2 For the search space in ENAS and DARTS, we set N = 4, M = 2, K = 8; for the
search space in NAS-Bench-201, we set N = 3 and K = 5 without constraining M .
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the parallel edges in the multi-graph flow network are updated by the candidate
model’s reward (i.e., validation accuracy) as follows:

c(ek
u,v) =

{
e−(1−r)2 if ek

u,v ∈ m∗&e−(1−r)2 > c(ek
u,v)

c(ek
u,v) otherwise,

(6)

where m∗ is the edge set defined in Eq. (4), r is the accuracy on validation set
for image classification, thus the capacity c(·) will be scaled in [0, 1].

MF-NAS benefits from the update rule in two aspects. On one hand, removing
less important operations has little influence on final prediction accuracy, while
deleting some important operations can lead to a significant drop [3]. We use
Eq. (6) to update the capacities, making important operations less prone to be
removed. On the other hand, the update formula of Eq. (6) can be viewed as a
contraction mapping of the accuracy, which promotes the exploration capability.

We can use dynamic programming (DP) to solve Eq. (5). Take the DARTS
search space as an example. In the DARTS search space, we assume that there
are two previous nodes of each cell whose initial flow value can be set to one (i.e.,
the upper-bound of the accuracy), and the feature maps of different nodes in
one cell are concatenated as the output. As shown in Fig. 3, there are two states
in each node within the cell of the search space: 1) there exists a link between
the (n − 1)-th node and the n-th node 2) there does not exist a link between
the (n − 1)-th node and the n-th node. Denote V n

cell as the sub-cell which is
terminated by the n-th node (i.e., the nodes in the sub-cell are 1, 2, ..., n), whose
max-flow value can be defined as:

F ∗
n := max

f

∑

u∈V n−1
cell ,k∈K

f(ek
u,n). (7)

We initialize F ∗
−1 = 1 and F ∗

0 = 1, and then recursively compute the flow value
as follows:

F ∗
n = max{F (1)

n , F (2)
n }, (8)

where

F (1)
n = 2F ∗

n−1 − F ∗
n−2 + max

u∈V n−2
cell ,k∈K

c(ek
u,n), (9)

F (2)
n = F ∗

n−1 + max
u∈V n−2

cell ,k∈K
c(ek

u,n) + max
u∈V n−2

cell \{u∗},k∈K\{k∗}
c(ek

u,n), (10)

in which (u∗, k∗) := arg maxu∈V n−2
cell ,k∈K c(ek

u,n). We can see that updating the

two states corresponds to computing F
(1)
n and F

(2)
n , respectively. By using the DP

algorithm as in Eq. (8) and the selection method in Eq. (4), we get the candidates
architecture m∗ for the next running. There is an equivalent representation of
Eq. (8), where the flow value is normalized before moving to the next nodes,
making the factors slightly different. If the hypothesis space in Eq. (5) is small
enough, random search can be a practical alternative to solve Eq. (5).
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Fig. 3. Illustration for the dynamic programming (DP) to solve Eq. (5).

3.2 MF-NAS: A Probabilistic Perspective

We now describe the motivation for the maximum-flow formulation as well as the
relationship between the flow of a graph and the performance (i.e., classification
accuracy) of a network architecture.

Let Ω1 be the set of available operations, Ω2 be the set of feasible edges in
a search space, Ω = Ω1 × Ω2, and A be a class (i.e., set of sets). Then each
element A ∈ A represents a feasible architecture in the search space, and it is a
subset of Ω, i.e., A ⊂ ω. Let φ : A → R be a set function, indicating the reward
of an architecture. We define a probability measure of an architecture3 that can
achieve the best reward, i.e.,

p(A) := p(φ(A) = r∗), (11)

where r∗ = maxA′∈A φ(A′). Furthermore, the conditional probability over an
architecture given a specific edge in it can be derived by p(A|a) := p(A|a ∈ A) =
p(φ(A) = r∗|a ∈ A). Here, a is the same denotation as ek

u,v in Definition 1.
To make less assumptions about the conditional distribution, we use a non-

parametric approach to estimate the density. Choosing a Gaussian kernel func-
tion gives rise to the following kernel density estimation model (KDE):

p(φ(A) = r∗|a ∈ A) =
1
N

N∑

i=1
a∈Ai

exp {− ||r∗−φ(Ai)||2
2σ2 }√

2πσ
, (12)

where N architectures containing edge a are sampled. For a small enough σ, in
the exponential term the one for which ‖r∗ − φ(Ai)‖2 is the smallest term will
approach zero most slowly, and hence the sample architectures with the best
reward—A∗

s = arg maxAi
φ(Ai) will dominate the density. That is, Eq. (12) can

be approximated by:

p(φ(A) = r∗|a ∈ A) ∝ exp {−(r∗ − φ(A∗
s))

2}. (13)

3 Many architectures can get the same best reward.
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For image classification tasks, the reward is measured by the accuracy on vali-
dation set, and the upper bound of the reward can be set as r∗ = 1. Obviously,
Eq. (13) holds the same form as the equation of capacity update in Eq. (6). As
a consequence, the information flow on edge can be interpreted by an approxi-
mated conditional probability as shown in Eq. (13), which reveals the preference
for different architectures that can achieve the best performance given the con-
tained edge. We further show that the propagation of the conditional probability
can be viewed as a flow moving from the input edges to the output edges. In
Fig. 4, three basic types of the network topology are illustrated: a) one-input/one-
output, where an architecture A containing the output edge has only one input
edge, and thus the conditional probabilities conditioned on the output and input
are identical; b) many-input/one-output, where an architecture containing any
input edge will flow through the output edge, and thus the probability condi-
tioned on the output edge is the summation of the probabilities conditioned on
the input edges; c) one-input/many-output, where an architecture containing the
input edge spreads to multiple outputs which are chosen uniformly as a priori,
and thus the probability is divided equally by the number of output edges. Note
that all the network topology including residual or multi-branches graphs can be
derived from the three basic types of topology mentioned above. In a nutshell,
the probability defined in Eq. (11) can be propagated as a flow, therefore find-
ing an architecture with the highest validation accuracy is equivalent to finding
an architecture with the maximum conditional probability on the output edge,
which is also equivalent to finding a maximum flow on the DAG graph with the
capacity defined in Eq. (6).

Fig. 4. Three types of network topology. a) one-to-one; b) many-to-one; c) one-to-many.

3.3 MF-NAS Pipeline

The proposed MF-NAS provides a candidate architecture generation method
in a single-path NAS solution. To demonstrate the efficiency and the stability,
we apply MF-NAS to a multi-fidelity pipeline. For example, Hyperband [24]
selects top-k from its candidate pool; whereas MF-NAS dynamically generates
new promising candidates as the search progresses by maximizing the network
flow. The reason is that the maximum-flow controller involves the edge capacity
constraint; and the flow value on one edge can be different for the same net
flow value of a cell. In other words, multiple architectures may result in the
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Algorithm 1 Max-Flow based Neural Architecture Search (MF-NAS)
Input:
1: Search space S, Capacity matrix with zeros initialization, and the fixed hyper-

parameters H, e.g., the learning rate and its decay policy, scale of the chain cell
structure, input degree of node in the cell, N search rounds, ni candidates, each
candidate trains ri steps in round i;

2: Initialization: ε-greedy factor ε;
Output:
3: The optimal architecture m∗;
4: for i ∈ {0, 1, ..., N − 1} do
5: if i = 0 then
6: Generate n0 architectures m0

0, ..., m
n0−1
0 randomly;

7: end if
8: Train m0

i , . . . , m
ni−1
i with ri steps;

9: Evaluate validation accuracy, update network capacity c by Eq. 6;
10: for j ∈ {0, 1, ..., ni+1 − 1} do
11: if random() < ε then
12: mj

i+1 ← an architecture generated randomly;
13: else
14: mj

i+1 ← an architecture with the maximum-flow calculated by Eq. 5 and
Eq. 4;

15: end if
16: end for
17: end for
18: Model selection: return the best architecture m∗ with the maximum validation

accuracy seen so far.

same net flow value. To enhance the exploration capability of MF-NAS, we
choose the candidate architecture using an ε-greedy strategy [28]. With this
strategy, a random architecture is taken with probability ε, and the max-flow
architecture is chosen with probability 1−ε. We anneal ε from 1 to 0 such that the
controller begins from an exploration phase and slowly starts to moving towards
the exploitation phase. We also keep a small portion of top architectures during
different rounds to stabilize the searching process. We refer to Algorithm 1 for
giving an implementation for MF-NAS, which aims at finding an architecture
whose classification accuracy on validation set is maximized on the operation-
induced DAG search space.

4 Experiments

To evaluate the effectiveness of our proposed MF-NAS approach, we conduct
experiments with different DAG search space on several benchmark datasets,
including CIFAR-10 [20], CIFAR-100 [20], STL-10 [13], FRUITS [29], FLOWER-
102 [31], Caltech-256 [17] and ImageNet [34].

Settings in Experiments. Specifically, we evaluate the efficiency and stability
of MF-NAS in three settings: a) the micro search space used in ENAS [32] and



A Max-Flow Based Approach for NAS 695

DARTS [27], b) search space of NAS-Bench-201 [16], and c) performance on
ImageNet classification. Furthermore, we set the initial learning rate as 0.025
with a cosine scheduler, use SGD with a momentum 0.9. The maximal search
round is N = 4, and there are n = [30, 20, 10, 5] candidates that are trained r
= [30, 60, 70, 80] epochs in different rounds. ε = [1.0, 0.6, 0.5, 0.25] indicates
it decays for every search round. Experiments are conducted on RTX 3090 and
NVIDIA V100 GPUs.

Table 1. Comparison with classification architectures on CIFAR-10. Similar to other
NAS algorithms, the search cost of MF-NAS does not include the final evaluation cost.

Methods Test error % Params (M) FLOPs (M) Search cost GPU-days Search Method

AmoebaNet-B [33] 2.55 ± 0.05 2.8 506 3150 Evolution

Hierarchical Evo [26] 3.75 ± 0.12 15.7 – 300 Evolution

PNAS [25] 3.41 ± 0.09 3.2 730 225 SMBO

DARTS (1st order) [27] 3.00 ± 0.14 3.3 519 0.4 Gradient

DARTS (2nd order) [27] 2.76 ± 0.09 3.4 547 1.0 Gradient

SNAS (moderate) [47] 2.85 ± 0.02 2.8 441 1.5 Gradient

P-DARTS [11] 2.50 3.4 551 0.3 Gradient

PC-DARTS (1st order) [48] 2.57 ± 0.07 3.6 576 0.1 Gradient

BayseNAS [51] 2.81 ± 0.04 3.4 – 0.2 Gradient

SGAS [22] 2.66 ± 0.24 3.7 – 0.25 Gradient

DARTS+PT [41] 2.61 ± 0.08 3.0 – 0.8 Gradient

NASNet-A [53] 2.65 3.3 624 1800 RL

ENAS [32] 2.89 4.6 626 0.5 RL

ENAS+ε-greedy 2.82 3.7 578 0.5 RL

Hyperband [24] 2.96 ± 0.19 2.9 476 2.2 Random

BANANAS [45] 2.64 – – 11.8 BO

MF-NAS 2.63 ± 0.16 3.3 529 1.0 Max-Flow

MF-NAS (best) 2.40 4.0 653 1.0 Max-Flow

4.1 Results on Micro Cells Based Search Space in ENAS/DARTS

We evaluate MF-NAS on micro cells-based DAG search space used in ENAS
[32] and DARTS [27]4. The main difference between MF-NAS and other algo-
rithms lies in the selection method for candidate networks. To be specific, MF-
NAS applies optimization algorithms with graph frameworks to choose candi-
dates; whereas others generate candidates by means of Bayesian optimization,
reinforcement learning, evolution or gradient-based methods. For demonstrating
the efficiency of MF-NAS, we implement MF-NAS following the controller-child
pipeline [32], but do not use the weight-sharing. As shown in the Table 1, max-
flow based method gets a 2.63% error rate with 3.3M parameters by taking about
one search days, which is more efficient than RL/Evolution/Random/BO based

4 Precisely, MF-NAS uses the search space of DARTS.
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Fig. 5. Stability of DARTS (w/ its amendment versions) and MF-NAS on CIFAR-10.

methods on DAG search space. This comes from the fact that the proposed MF-
NAS are coupled with DAG search space, and thus they can take advantage of
the graph structure, i.e. the relation of the edges and nodes. Also, unlike the
gradient-based methods, MF-NAS does not suffer the skip domination issue or
the discretization problem [41]. To validate the stability of MF-NAS, we evaluate
the performance at different search steps in Fig. 5.

Figure 5 compares the stability of DARTS [27] and its amendment versions
[41,50] with MF-NAS. Note that the search epoch is not related to real search
time. For DARTS+PT [41], we get our results on the super-nets of DARTS pre-
trained from 25 to 250 training epochs. Both vanilla DARTS and DARTS+PT
suffer from the skip layer dominated problem [7,50], i.e. there are about 6 skip
connections in the normal cell at 250 epochs. The ultimate performance of dif-
ferential methods usually decreases over search epochs because they use some
approximations to solve the bi-level optimization. In contrast, thanks to the
maximum-flow solution, MF-NAS can steadily achieve improved performance.

Table 2. Top-1 test set accuracy with one GPU day budget.

NAS method STL-10 (96 × 96) FRUITS (100 × 100) FLOWER-102 (256 × 256) Caltech-256 (256 × 256)

Hyperband 0.79 ± 0.02 0.99 ± 0.0006 0.95 ± 0.002 0.50 ± 0.06

ENAS 0.79 ± 0.02 0.97 ± 0.0012 0.93 ± 0.007 0.49 ± 0.05

DARTS 0.80 ± 0.01 0.99 ± 0.0018 0.94 ± 0.006 0.60 ± 0.03

MF-NAS 0.80 ± 0.02 0.99 ± 0.0009 0.95 ± 0.002 0.65 ± 0.02

Based on this search space, we evaluate MF-NAS’s generalization ability. We
use other four datasets with different image resolutions, including STL-10 [13],
FRUITS [29], FLOWER-102 [31], and Caltech-256 [17]. ENAS [32], DARTS
[27], and Hyperband [24] are evaluated as the baselines whose search protocols
cover reinforcement learning, differential method and closed-loop random search.



A Max-Flow Based Approach for NAS 697

Similar to ENAS, we extend Hyperband to support neural network search in the
same search space of DARTS. The experiments are under the budget constraints
of one GPU day. As shown in Table 2, MF-NAS outperforms other methods
on the last dataset. We analyze that Caltech-256 is a challenging dataset, on
which the early performance of an architecture does not align with its ultimate
performance precisely, and thus Hyperband fails. Additionally, the limited GPU
memory restricts the batch size for DARTS on large-scale images, which can
cause a performance drop [36].

4.2 Results on Search Space of NAS-Bench-201

In NAS-Bench-201, the architectures are stacked by 17 cells with five operations,
and three datasets are evaluated, including CIFAR-10 [20], CIFAR-100 [20], and
ImageNet-16-120 [16]. We follow the training settings and split protocol as the
paper [16]. We search for the architecture based on MF-NAS three times with
different random seeds, and the results are reported in Table 3, showing that our
method achieves competitive results with the state-of-art methods. We observe
that ENAS can also benefit from the ε-greedy strategy, indicating that ENAS
may suffer from the weight-sharing problem: it is hard to figure out whether the
improvement under the weight-sharing strategy is attributed to a better-chosen
architecture or comes from well-trained weights. Thus, there will still be a big
room to improve the weight-sharing strategy in the NAS area.

Table 3. Top-1 accuracy (%) on NAS-Bench-201.

Methods CIFAR-10 CIFAR-100 ImageNet-16-120

Valid Test Valid Test Valid Test

DARTS-V1 [27] 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00

DARTS-V2 [27] 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00

GDAS [15] 89.89 ± 0.08 93.61 ± 0.09 71.34 ± 0.04 70.70 ± 0.30 41.59 ± 1.33 41.71 ± 0.98

SETN [14] 84.04 ± 0.28 87.64 ± 0.00 58.86 ± 0.06 59.05 ± 0.24 33.06 ± 0.02 32.52 ± 0.21

RSPS [23] 82.25 ± 4.90 86.09 ± 4.90 56.56 ± 8.91 56.39 ± 8.70 31.17 ± 6.28 30.27 ± 5.80

DARTS-PT [41] – 88.11 – – – –

DARTS-PT (fix α) [41] – 93.80 – – – –

ENAS [32] 37.55 ± 3.14 53.80 ± 0.71 13.47 ± 2.21 14.00 ± 2.27 14.88 ± 2.19 14.87 ± 2.05

ENAS+ε-greedy 77.37 ± 3.08 84.10 ± 3.16 56.85 ± 4.47 57.31 ± 4.95 32.16 ± 2.95 32.93 ± 3.14

MF-NAS 27437 93.72 ± 0.55 71.23 ± 1.07 71.86 ± 0.64 44.16 ± 0.10 44.33 ± 0.18

ResNet [18] 90.83 93.97 70.42 70.86 44.53 43.63

Optimal 91.61 94.37 73.49 73.51 46.77 47.31

4.3 Results on ImageNet Classification

For ImageNet [34], the one-shot NAS approaches cost too much memory to
build a super-net. Works [9,27,53] directly transfer the architecture searched on
CIFAR-10 to ImageNet with little modification. Specifically, the search phase
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runs on CIFAR-10, while the evaluation phase uses the architecture transferred
from the searched cells with deeper and wider scales as suggested in DARTS [27].
Learning rate decay policy is different between the last two blocks of Table 4.
Table 4 evaluates the performance on ImageNet. In general, MF-NAS can get
competitive results in transfer cases.

Table 4. Study on full ImageNet. The first block represents the direct search case
while the last two blocks show the transfer cases. † and ‡ represent lr decay strategy
as DARTS and P-DARTS/PC-DARTS, respectively.

Methods Params FLOPs GPU (days) Top-1 Acc

NASNet-A 5.3M 620M 1800 0.740

AmoebaNet-A 5.1M 541M 3150 0.745

DARTS† 4.9M 545M 1 0.731

MF-NAS† 4.9M 549M 0.4 0.744

P-DARTS‡ 4.9M 557M 0.3 0.756

PC-DARTS‡ 5.3M 586M 0.1 0.749

MF-NAS‡ 4.9M 549M 0.4 0.753

4.4 Ablation Study on ε-greedy

The proposed MF-NAS follows the reinforcement learning based NAS method
[1] to involve the ε-greedy strategy into the algorithm pipeline. To eliminate the
influence of ε-greedy, we show the ablation study in Table. 5.

Table 5. Test accuracy (%) with different ε-greedy strategies on CIFAR-10. ε ≡ 0
means the ε-greedy strategy has no effect on the corresponding NAS method; Note
that ε ≡ 1 degrades to Random Search.

Methods ε ≡ 0 ε ≡ 1 ε-greedy used in our paper

Hyperband 97.04 96.75 97.06

ENAS 97.11 96.75 97.18

MF-NAS 97.32 96.75 97.40

The results show that MF-NAS and ENAS [32] can benefit from the ε-greedy
strategy. In fact, ε-greedy strategy can enhance the exploration capacity, which
may be more critical in a maximum-flow/RL strategy than a random search solu-
tion. As a consequence, max-flow-based and reinforcement learning-based NAS
methods turn out to be more efficient than random search schemes considering
the pure random search solution only gets 96.75 ± 0.2 % accuracy.
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5 Conclusion and Future Work

We have proposed a multi-graph maximum-flow approach for NAS, called MF-
NAS, which casts the problem of optimal architecture search as finding a path
on DAG. In the search phase, the weights and the capacities of the parallel
edges in the multi-graph are updated alternately. Extensive experiments on the
image classification task demonstrated the effectiveness of our proposal. As the
future work, we will explore for using larger search space, with non-linear gather
functions in a general maximum-flow network, and test for other vision tasks,
e.g., segmentation and detection [42].
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