
Multi-Version Concurrency Control
to Reduce the Electric Energy

Consumption of Servers

Tomoya Enokido1(B), Dilawaer Duolikun2, and Makoto Takizawa3

1 Faculty of Business Administration, Rissho University, 4-2-16, Osaki,
Shinagawa-ku, Tokyo 141-8602, Japan

eno@ris.ac.jp
2 Department of Advanced Sciences, Faculty of Science and Engineering,
Hosei University, 3-7-2, Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan

3 Research Center for Computing and Multimedia Studies, Hosei University,
3-7-2, Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan

makoto.takizawa@computer.org

Abstract. The MVCC (Multi-Version Concurrency Control) is so far
proposed to increase the concurrency of multiple conflicting transactions
and the scalability of a distributed system. However, the larger num-
ber of transactions are concurrently performed, the larger amount of
electric energy is consumed by servers in a system. In our previous stud-
ies, the EEMVTO (Energy-Efficient Multi-Version Timestamp Ordering)
algorithm is proposed to not only reduce the total electric energy con-
sumption of servers but also increase the throughput of a system by not
performing meaningless write methods on each object. In this paper, the
IEEMVTO (Improved EEMVTO) algorithm is newly proposed to fur-
thermore reduce the total electric energy consumption of servers by not
performing meaningless read methods in addition to meaningless write
methods. The evaluation results show the total electric energy consump-
tion of servers can be more reduced in the IEEMVTO algorithm than
the EEMVTO algorithm.

Keywords: Multi-version concurrency control · Energy-Efficient
Multi-Version Timestamp Ordering (EEMVTO) · Improved EEMVTO
(IEEMVTO) algorithm · Object-based system · Transaction

1 Introduction

In current information systems, a huge number of IoT (Internet of Things)
devices [1,2] are deployed in a system and each IoT device collects various types
of data like temperature and humidity which are required by an application.
A huge volume of data is gathered from these IoT devices in order to realize
applications and the data gathered from IoT devices is encapsulated along with
methods to manipulate data as an object [3] like database systems. An applica-
tion is composed of multiple objects distributed to multiple physical servers in an
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Barolli (Ed.): BWCCA 2022, LNNS 570, pp. 180–191, 2023.
https://doi.org/10.1007/978-3-031-20029-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20029-8_18&domain=pdf
https://doi.org/10.1007/978-3-031-20029-8_18

IEEMVTO Protocol 181

object-based system [3,4,6]. A transaction [7,8] is an atomic sequence of methods
to manipulate objects. In order to utilize an application service, a transaction
is created on a client and issues methods supported by each target object. Mul-
tiple conflicting transactions have to be serialized [4,6–11] to keep every object
mutually consistent. The MVCC (Multi-Version Concurrency Control) [9,10] is
proposed to not only serialize conflicting transactions but also increase the con-
currency of transactions and scalability of a system. In the MVCC, each read
method is ensured to read the latest committed version of each object. In addi-
tion, each read method is not blocked by the other methods. As a result, the
MVCC can increase the concurrency of transactions and the throughput of a
system. In order to realize the MVCC, the MVTO (Multi-Version Timestamp
Ordering) algorithm [9,10] is proposed. However, the more number of transac-
tions are issued in a system, the larger amount of electric energy is consumed by
servers since every method issued to each target object is surely performed on
each object. Hence, it is critical to discuss how to not only increase the concur-
rency of transactions and the throughput of a system but also reduce the total
electric energy consumption of servers as discussed in Green computing systems
[5,6,12–15].

In our previous studies, meaningless write methods [16] which are not required
to be performed on each object are defined based on the precedent relation
among transactions and the semantics of methods. Then, the EEMVTO (Energy-
Efficient Multi-Version Timestamp Ordering) algorithm [16] is proposed to not
only reduce the total electric energy consumption of servers but also increase
the throughput of a system by not performing meaningless write methods on
each object. In this paper, we newly introduce meaningless read methods which
are not required to be performed on each object. Then, the Improved EEMVTO
(IEEMVTO) algorithm is newly proposed to furthermore reduce the total electric
energy consumption of servers and the execution time of each transaction by not
performing both meaningless read and write methods. The IEEMVTO algorithm
is evaluated in terms of the total electric energy consumption of servers and the
average execution time of each transaction compared with the EEMVTO algo-
rithm. Evaluation results show the total electric energy consumption of servers
and the average execution time of each transaction in the IEEMVTO algorithm
can be more reduced than the EEMVTO algorithm.

In Sect. 2, we present the system model and the MVTO algorithm. In Sect. 3,
we propose the IEEMVTO algorithm. In Sect. 4, we evaluate the IEEMVTO
algorithm compared with the EEMVTO algorithm.

2 System Model

2.1 Object-Based Systems

A system is composed of a cluster S of multiple servers s1, ..., sn (n ≥ 1) and
clients interconnected in reliable networks. Let O be a set of objects o1, ...,
om (m ≥ 1) in the system. An object [3] is an unit of computation resource
like a database. Each object oh is an encapsulation of data dh and methods to

182 T. Enokido et al.

manipulate data dh in the object oh. Each object oh is allocated to a server st

in the cluster S. Methods are classified into read (r) and write (w) methods
in this paper. Write methods are furthermore classified into full write (fw) and
partial write (pw) methods, i.e. w ∈ {fw, pw}. A full write method fully writes
a whole data dh in an object oh. A partial write method writes only a part of
data dh in an object oh.

2.2 Multi-Version Timestamp Ordering (MVTO) Algorithm

A transaction is an atomic sequence of methods [8]. A transaction T i issues
read (r) and write (w) methods to manipulate objects in the set O. Let T be a
set {T 1, ..., T k} (k ≥ 1) of transactions issued in a system. Multiple conflicting
transactions are required to be serializable [7,8] to keep all the objects mutually
consistent. The MVCC (Multi-Version Concurrency Control) [9] is proposed to
increase the concurrency of transactions and the throughput of a system. Let H
be a schedule [9] of the transaction set T. Each object oh has a totally ordered set
Dh of multiple versions d1h, ..., dl

h (l ≥ 1) of data dh. A totally ordered relation
�h (⊆ D2

h) shows an order of versions of data dh of an object oh written in a
schedule H. di

h �h dj
h means di

h is written before dj
h in an object oh. Let �

be an union of version orders �h for every data dh in a schedule H, i.e. �h

=
⋃

oh∈O�h. A transaction T j reads data from another transaction T i (T i →H

T j) in a schedule H iff the transaction T j reads a version di
h of an object oh

written by the transaction T i. T i ‖H T j iff neither T i →H T j nor T j →H T i.
A schedule H is 〈T, →H〉 (⊆ T2).

[One-Copy Serial]. A schedule H = 〈T, →H〉 is one-copy serial [9] iff (if and
only if) for every pair of different transactions T i and T j in T, either T i →H

T j , T j →H T i, or T i ‖H T j .
In an one-copy serial schedule OH = 〈T, →OH〉 (⊆ T2), if T i →H T j , T i

→OH T j , and the relation, →OH is acyclic.
Let ri

t(d
j
h) be a read method issued by a transaction T i to read a version dj

h,
which is written by a transaction T j , of an object oh on a server st. Let wi

t(d
i
h)

be a write method issued by a transaction T i to write a version di
h in an object

oh on a server st.
A multi-version schedule MV S is 〈T, →MV S〉 (⊆ T2) where for every pair

of transactions T i and T j in T, the following conditions hold:

(1) If T i →OH T j , T i →MV S T j .
(2) If T i writes a version di

h, T j reads a version dk
h, and T i →MV S T j , di

h �h

dk
h or di

h = dk
h.

[One-Copy Serializability]. A multi-version schedule MV S = 〈T, →MV S〉 is
one-copy serializable [9] iff for every pair of transactions T i and T j in T, either
T i →MV S T j , T j →MV S T i, or T i ‖MV S T j .

The MVTO (Multi-Version Timestamp Ordering) algorithm [9,10] is pro-
posed to make transactions one-copy serialize. Each transaction T i is given an

IEEMVTO Protocol 183

unique timestamp TS(T i) which shows time when the transaction T i is created.
Suppose a transaction T i issues a method op to manipulate an object oh in a
server st. In the MVTO algorithm, a method op issued by a transaction T i is
performed by the following procedure [9,10]:

1. If a method op is a read method ri
t(d

k
h), the read method op reads a version

dk
h written by a transaction T k whose timestamp TS(T k) is the maximum in

TS(T k) < TS(T i).
2. If a method op is a write method wi

t(d
i
h), the write method op is rejected

if a read method rj
t (dk

h) is performed on the object oh such that TS(T k) <
TS(T i) < TS(T j). Otherwise, the write method wi

t(d
i
h) is performed.

By using the MVTO algorithm, each read method reads the latest committed
version of an object oh. In addition, each read method is not blocked by the other
methods.

2.3 Data Access Model

Methods which are being performed and already terminate are current and
previous at time τ , respectively. Let RPt(τ) and WPt(τ) be sets of current read
(r) and write (w) methods on a server st at time τ , respectively. A notation Pt(τ)
shows a set of current read and write methods on a server st at time τ , i.e. Pt(τ)
= RPt(τ) ∪ WPt(τ). Each read method ri

t(d
j
h) in a set RPt(τ) reads a version dj

h

in an object oh at rate RRi
t(τ) [Byte/sec (B/sec)] at time τ . Each write method

wi
t(d

i
h) in a set WPt(τ) writes a version di

h in an object oh at rate WRi
t(τ)

[B/sec] at time τ . Let maxRRt and maxWRt be the maximum read and write
rates [B/sec] of read and write methods on a server st, respectively. The read rate
RRi

t(τ) (≤ maxRRt) and write rate WRi
t(τ) (≤ maxWRt) are drt(τ) · maxRRt

and dwt(τ) · maxWRt, respectively. Here, drt(τ) and dwt(τ) are degradation
ratios. 1 / (|RPt(τ)| + rwt · |WPt(τ)|) and 1 / (wrt · |RPt(τ)| + |WPt(τ)|),
respectively, where 0 ≤ rwt ≤ 1 and 0 ≤ wrt ≤ 1. 0 ≤ drt(τ) ≤ 1 and 0 ≤
dwt(τ) ≤ 1.

The read laxity rlit(τ) [B] and write laxity wlit(τ) [B] of methods ri
t(d

j
h) and

wi
t(d

i
h) show the amount of data to be read and written in an object oh by the

methods ri
t(d

j
h) and wi

t(d
i
h) at time τ , respectively. Suppose that methods ri

t(d
j
h)

and wi
t(d

i
h) start on a server st at time stit. At time stit, the read laxity rlit(τ)

= rbj
h [B] where rbj

h is the size of the version dj
h in an object oh. The write

laxity wlit(τ) = wbi
h [B] where wbi

h is the size of the version to be written in
an object oh. The read laxity rlit(τ) and write laxity wlit(τ) at time τ are rbj

h -
Στ

τ=stit
RRi

t(τ) and wbi
h - Στ

τ=stit
WRi

t(τ), respectively.

2.4 Power Consumption Model of a Server

In our previous studies, the PCS model (Power Consumption model for a Storage
server) [17] to perform storage and computation processes are proposed. Let

184 T. Enokido et al.

Et(τ) be the electric power [W] of a server st at time τ . maxEt and minEt show
the maximum and minimum electric power [W] of the server st, respectively. In
this paper, we assume only read and write methods are performed on a server
st. According to the PCS model [17], the electric power Et(τ) [W] of a server st

to perform multiple read and write methods at time τ is given as follows:

Et(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WEt if |WPt(τ)| ≥ 1 and |RPt(τ)| = 0.

WREt(α) if |WPt(τ)| ≥ 1 and |RPt(τ)| ≥ 1.

REt if |WPt(τ)| = 0 and |RPt(τ)| ≥ 1.

minEt if |WPt(τ)| = |RPt(τ)| = 0.

(1)

A server st consumes the minimum electric power minEt [W] if no method is
performed on the server st, i.e. the electric power in the idle state of the server
st. The server st consumes the electric power REt [W] if at least one r method is
performed on the server st. The server st consumes the electric power WEt [W]
if at least one w method is performed on the server st. The server st consumes
the electric power WREt(α) [W] = α · REt + (1 - α) · WEt [W] where α =
|RPt(τ)| / (|RPt(τ)| + |WPt(τ)|) if both at least one r method and at least one
w method are concurrently performed. Here, minEt ≤ REt ≤ WREt(α) ≤ WEt

≤ maxEt. The total electric energy TEEt(τ1, τ2) [J] of a server st from time τ1
to τ2 is Στ2

τ=τ1 Et(τ). The processing electric power PEPt(τ) [W] of a server st

at time τ is Et(τ) - minEt. The total processing electric energy TPEEt(τ1, τ2)
of a server st from time τ1 to τ2 is given as TPEEt(τ1, τ2) = Στ2

τ=τ1PEPt(τ).

3 Improved EEMVTO (IEEMVTO) Algorithm

3.1 Meaningless Methods

Let MHh be a local schedule of methods which are performed on an object
oh in a multi-version schedule MH. A method op1 of a transaction T 1 locally
precedes another method op2 of a transaction T 2 in a local schedule MHh (op1

→MHh
op2) iff T 1 →MH T 2 and op1 is performed before op2 on an object

oh. Suppose a partial write method pwi(di
h) issued by a transaction T i locally

precedes another full write method fwj(dj
h) issued by a transaction T j in a local

schedule MHh (pwi(di
h) →MHh

fwj(dj
h)) on an object oh. Here, the partial write

method pwi(di
h) is not required to be performed on the object oh if the full write

method fwj(dj
h) is surely performed on the object oh just after the partial write

method pwi(di
h), i.e. the full write method fwj(dj

h) can absorb the partial write
method pwi(di

h).

[Absorption of Write Methods]. A full write method op1 absorbs another
partial or full write method op2 in a local subschedule MHh on an object oh iff
one of the following conditions is hold:

1. op2 →MHh
op1 and there is no read method op′ such that op2 →MHh

op′

→MHh
op1.

2. op1 absorbs op3 and op3 absorbs op2 for some method op3.

IEEMVTO Protocol 185

[Absorption of Read Methods]. A read method op1 absorbs another read
method op2 in a local subschedule Hh of an object oh iff one of the following
conditions is hold:

1. op1 →Hh
op2 and there is no write method op′ such that op1 →Hh

op′ →Hh

op2.
2. op1 absorbs op3 and op3 absorbs op2 for some method op3.

[Meaningless Methods]. A method op is meaningless iff the method op is
absorbed by another method op′ in the local subschedule MHh on an object oh.

3.2 IEEMVTO Algorithm

In this paper, the IEEMVTO (Improved EEMVTO) algorithm is newly proposed
to furthermore reduce not only the total electric energy consumption of a cluster
of servers but also the average execution time of each transaction by not per-
forming meaningless read and write methods on each object. In this paper, we
assume transactions are serialized based on the MVTO algorithm [9,10].

Suppose a read method ri
t(d

k
h) issued by a transaction T i is performed on

the object oh as shown in Fig. 1. A transaction T j issues a read method rj
t (ok

h)
to the object oh while the read method ri

t(d
k
h) is being performed on the object

oh. In the MVTO algorithm, the read method rj
t (ok

h) is performed on the object
oh as soon as the object oh receives the read method rj

t (ok
h). In the IEEMVTO

algorithm, the read method rj
t (ok

h) is meaningless since the read method ri
t(o

k
h)

issued by the transaction T i is being performed on the object oh and the read
method ri

t(o
k
h) absorbs the read method rj

t (ok
h). Hence, the read method rj

t (ok
h)

is not performed on the object oh and a result obtained by performing the read
method ri

t(o
k
h) is sent to a pair of transactions T i and T j .

result

ohT i

r i
t (d

k
h)

time

T j

r j
t (d

 k
h)

result

the read method issues by
the transaction T j is not
performed.

Fig. 1. A meaningless read method.

Suppose a transaction T i issues a partial write method pwi
t(d

i
h) to an object

oh allocated to a server st as shown in Fig. 2. In the MVTO algorithm, the
partial write method pwi

t(d
i
h) is performed on the object oh as soon as the object

oh receives the partial write method pwi
t(d

i
h). In the EEMVTO algorithm, the

186 T. Enokido et al.

object oh sends a termination notification of the partial write method pwi
t(d

i
h)

to the transaction T i as soon as the object oh receives the partial write method
pwi

t(d
i
h). However, the partial write method pwi

t(d
i
h) is not performed until the

object oh receives a method op which is performed just after the partial write
method pwi

t(d
i
h) on the object oh, i.e. the partial write method pwi

t(d
i
h) is delayed.

Suppose a transaction T j issues a full write methods fwj
t (d

j
h) to the object oh

after the transaction T i commits. Here, the partial write method pwi
t(d

i
h) issued

by the transaction T i is meaningless since the full write method fwj
t (d

j
h) issued

by the transaction T j absorbs the partial write method pwi
t(d

i
h) on the object oh.

Hence, the full write method fwj
t (d

j
h) can be performed on the object oh without

performing the partial write method pwi
t(d

i
h). This means that the meaningless

write method pwi
t(d

i
h) is not performed on the object oh.

notification

ohT
i

pw
 i
t (d

i
h)

commit
T

j

notificationfw
j

t (d
j

h)

commit

the partial write method is not performed
until the next method is performed.

time

time

Fig. 2. Omission of a meaningless write method.

Suppose a transaction T j issues a read method rj
t (d

i
h) after another transac-

tion T i commits. Here, the partial write method pwi
t(d

i
h) issued by the transac-

tion T i has to be performed before the read method rj
t (di

h) is performed since
the read method rj

t (di
h) has to read a version di

h written by the partial write
method pwi

t(d
i
h).

Let oh.Cr be a read method ri
t(d

k
h) issued by a transaction T i, which is being

performed on a object oh. A notation oh.Dw is a write method wi
t(d

i
h) issued by a

transaction T i to write data di
h of an object oh in a server st, which is waiting for

a method op to be performed on the object oh after wi
t(d

i
h). Suppose a transaction

T i issues a method op to an object oh. In the IEEMVTO algorithm, the method
op is performed on the object oh by the following IEEMVTO procedure:

IEEMVTO(op) {
if op = r, { /* op is a read method. */

if oh.Dw = φ, {
if oh.Cr = φ, {

IEEMVTO Protocol 187

oh.Cr = op(dk
h);

perform(op(dk
h)); /* dk

h is the latest committed data. */

oh.Cr = φ;
}
else a result of oh.Cr is sent to a transaction T i;

}
else {

perform(oh.Dw);
oh.Dw = φ;
oh.Cr = op(dk

h);
perform(op(dk

h)); /* dk
h is the latest committed data. */

oh.Cr = φ;
}

}
else { /* op is a write method. */

if oh.Dw = φ, oh.Dw = op(di
h);

else { /* oh.Dw �= φ */

if op(di
h) absorbs oh.Dw, oh.Dw = op(di

h); /* oh.Dw is not performed. */

else {
perform(oh.Dw);
oh.Dw = op(di

h);
}

}
}

}
In the IEEMVTO algorithm, the total electric energy consumption of a clus-

ter S of servers can be furthermore reduced than the EEMVTO algorithm since
the number of read and write methods performed on each object can be more
reduced. In addition, the computation resources which are used to perform mean-
ingless read and write methods can be used to perform the other methods in
each server st. As a result, the execution time of each transaction can be more
reduced in the IEEMVTO algorithm than the EEMVTO algorithm. This means
that the throughput of a system can increase in the IEEMVTO algorithm than
the EEMVTO algorithm.

4 Evaluation

4.1 Environment

We evaluate the IEEMVTO algorithm in terms of the total processing electric
energy of a cluster S of homogeneous servers and the average execution time
of each transaction compared with the EEMVTO algorithm [16]. The cluster S
of servers is composed of ten homogeneous servers s1, ..., s10 (n = 10), where
every server st (t = 1, ..., 10) follows the same data access model and power
consumption model. Parameters of each server st are shown in Table 1, which

188 T. Enokido et al.

are obtained based on the experimentations [17]. There are thirty objects o1, ...,
o30 in a system. The size of data in each object oh is randomly selected between
50 and 100 [MByte]. Each object oh supports read (r), full write (fw), and
partial write (pw) methods. Each object is randomly allocated to a server st in
the cluster S.

Table 1. Homogeneous cluster S of servers (t = 1, ..., 10)

Server st maxRRt maxWRt rwt wrt minEt WEt REt

st 80 [MB/sec] 45 [MB/sec] 0.5 0.5 39 [W] 53 [W] 43 [W]

The number nt (0 ≤ nt ≤ 500) of transactions are issued to manipulate
objects. Each transaction issues three methods randomly selected from one-
hundred fifty methods on the fifty objects. The total amount of data of an
object oh is fully written by each full write (fw) method. On the other hand, a
half size of data of an object oh is written and read by each partial write (pw)
and read (r) methods, respectively. The starting time of each transaction T i is
randomly selected in a unit of one second between 1 and 360 [sec].

4.2 Total Processing Electric Energy Consumption

Figure 3 shows the total processing electric energy consumption [KJ] of the clus-
ter S of servers to perform the number nt of transactions in the IEEMVTO and
EEMVTO algorithms. For 0 ≤ nt ≤ 500, the total processing electric energy
consumption of the cluster S of servers can be more reduced in the IEEMVTO
algorithm than the EEMVTO algorithm. In the IEEMVTO algorithm, mean-
ingless read and write methods are not performed on each object. As a result,
the total processing electric energy consumption of the cluster S of servers can
be more reduced in the IEEMVTO algorithm than the EEMVTO algorithm.

4.3 Average Execution Time of Each Transaction

Figure 4 shows the average execution time [sec] of the nt transactions in the
IEEMVTO and EEMVTO algorithms. In the IEEMVTO and EEMVTO algo-
rithms, the average execution time increases as the total number nt of transac-
tions increases since more number of transactions are concurrently performed.
For 0 < nt ≤ 500, the average execution time of each transaction can be more
reduced in the IEEMVTO algorithm than the EEMVTO algorithm. In the
IEEMVTO algorithm, each transaction can commit without waiting for perform-
ing meaningless methods. Hence, the average execution time of each transaction
is shorter in the IEEMVTO algorithm than the EEMVTO algorithm.

Following the evaluation, the total processing electric energy consumption
of a homogeneous cluster S of servers and the average execution time of each

IEEMVTO Protocol 189

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500

T
ot

al
 e

le
ct

ri
c

en
er

gy
 [

K
J]

Number nt of transactions

EEMVTO
IEEMVTO

Fig. 3. Total processing electric energy consumption [KJ] of a cluster S of servers.

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
[s

ec
]

Number nt of transactions

EEMVTO
IEEMVTO

Fig. 4. Average execution time [sec] of each transaction.

transaction can be more reduced in the IEEMVTO algorithm than the EEMVTO
algorithm. Hence, the IEEMVTO algorithm is more useful than the EEMVTO
algorithm.

5 Concluding Remarks

In this paper, we newly proposed the IEEMVTO algorithm to reduce not only
the total processing electric energy consumption of a cluster of servers but also
the average execution time of each transaction by not performing meaningless
read and write methods. We evaluated the IEEMVTO algorithm compared with
the EEMVTO algorithm. The evaluation results showed the total processing
electric energy consumption of a cluster of servers and the average execution
time of each transaction can be more reduced in the IEEMVTO algorithm than

190 T. Enokido et al.

the EEMVTO algorithm. Following the evaluation, the IEEMVTO algorithm is
more useful than the EEMVTO algorithm.

References

1. Nakamura, S., Enokido, T., Takizawa, M.: Implementation and evaluation of the
information flow control for the Internet of Things. Concurr. Comput. Practice
Exp. 33(19), e6311 (2021)

2. Enokido, T., Takizawa, M.: The redundant energy consumption laxity based algo-
rithm to perform computation processes for IoT services. Internet Things 9 (2020).
https://doi.org/10.1016/j.iot.2020.100165

3. Object Management Group Inc.: Common object request broker architecture
(CORBA) specification, version 3.3, Part 1 - interfaces (2012). https://www.omg.
org/spec/CORBA/3.3/Interfaces/PDF

4. Tanaka, K., Hasegawa, K., Takizawa, M.: Quorum-based replication in object-
based systems. J. Inf. Sci. Eng. 16(3), 317–331 (2000)

5. Enokido, T., Duolikun, D., Takizawa, M.: An energy-efficient quorum-based locking
protocol by omitting meaningless methods on object replicas. J. High Speed Netw.
28(3), 181–203 (2022)

6. Enokido, T., Duolikun, D., Takizawa, M.: Energy-efficient concurrency control by
omitting meaningless write methods in object-based systems. In: Proceedings of the
36th International Conference on Advanced Information Networking and Applica-
tions (AINA-2022), pp. 129–139 (2022)

7. Gray, J.N.: Notes on data base operating systems. In: Bayer, R., Graham, R.M.,
Seegmüller, G. (eds.) Operating Systems. LNCS, vol. 60, pp. 393–481. Springer,
Heidelberg (1978). https://doi.org/10.1007/3-540-08755-9 9

8. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Boston (1987)

9. Bernstein, P.A., Goodman, N.: Multiversion concurrency control - theory and algo-
rithms. ACM Trans. Database Syst. 8(4), 465–483 (1983)

10. Reed, D.: Naming and synchronization in a decentralized computer system. Tech-
nical report, MIT/LCS/TR-205, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology (1978). https://hdl.handle.
net/1721.1/16279

11. Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed system. J.
ACM 32(4), 814–860 (1985)

12. Natural Resources Defense Council (NRDS): Data center efficiency assessment
- scaling up energy efficiency across the data center industry. Evaluating
key drivers and barriers (2014). https://www.nrdc.org/energy/files/data-center-
efficiency-assessment-IP.pdf

13. Enokido, T., Duolikun, D., Takizawa, M.: Energy consumption laxity-based quo-
rum selection for distributed object-based systems. Evol. Intel. 13(1), 71–82 (2018).
https://doi.org/10.1007/s12065-018-0157-1

14. Enokido, T., Duolikun, D., Takizawa, M.: The improved redundant active time-
based (IRATB) algorithm for process replication. In: Barolli, L., Woungang, I.,
Enokido, T. (eds.) AINA 2021. LNNS, vol. 225, pp. 172–180. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-75100-5 16

https://doi.org/10.1016/j.iot.2020.100165
https://www.omg.org/spec/CORBA/3.3/Interfaces/PDF
https://www.omg.org/spec/CORBA/3.3/Interfaces/PDF
https://doi.org/10.1007/3-540-08755-9_9
https://hdl.handle.net/1721.1/16279
https://hdl.handle.net/1721.1/16279
https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
https://doi.org/10.1007/s12065-018-0157-1
https://doi.org/10.1007/978-3-030-75100-5_16

IEEMVTO Protocol 191

15. Enokido, T., Duolikun, D., Takizawa, M.: The redundant active time-based algo-
rithm with forcing meaningless replica to terminate. In: Barolli, L., Yim, K.,
Enokido, T. (eds.) CISIS 2021. LNNS, vol. 278, pp. 206–213. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79725-6 20

16. Enokido, T., Duolikun, D., Takizawa, M.: Energy-efficient multi-version concur-
rency control (EEMVCC) for object-based systems. accepted for publication. In:
Barolli, L., Miwa, H., Enokido, T. (eds.) NBiS 2022. LNNS, vol. 526. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-14314-4 2

17. Sawada, A., Kataoka, H., Duolikun, D., Enokido, T., Takizawa, M.: Energy-aware
clusters of servers for storage and computation applications. In: Proceedings of the
30th IEEE International Conference on Advanced Information Networking and
Applications (AINA-2016), pp. 400–407 (2016)

https://doi.org/10.1007/978-3-030-79725-6_20
https://doi.org/10.1007/978-3-031-14314-4_2

	Multi-Version Concurrency Control to Reduce the Electric Energy Consumption of Servers
	1 Introduction
	2 System Model
	2.1 Object-Based Systems
	2.2 Multi-Version Timestamp Ordering (MVTO) Algorithm
	2.3 Data Access Model
	2.4 Power Consumption Model of a Server

	3 Improved EEMVTO (IEEMVTO) Algorithm
	3.1 Meaningless Methods
	3.2 IEEMVTO Algorithm

	4 Evaluation
	4.1 Environment
	4.2 Total Processing Electric Energy Consumption
	4.3 Average Execution Time of Each Transaction

	5 Concluding Remarks
	References

