
Chapter 7
Statistical Treatment

This chapter contains a detailed description of the statistical procedures implemented
in the analysis to extract the final results. The likelihood function and the statistical
procedures used to test the fit results are described. In addition this chapter illustrates
the tools used to scrutinize and validate the fit results.

7.1 General Statistical Treatment

7.1.1 The Likelihood Function

To measure the signal yield, a binned maximum likelihood fit is performed. The
observable used in the fit as final discriminant is the large-R jet mass mJ . The fit
is done simultaneously to all the analysis regions and the three lepton channels
extracting the V H and V Z contributions. The likelihood is defined as the product
over all bins of the Poisson probability to observe ni events when mi events are
expected in a certain bin i :

LPois(μμμ,ααα,γγγ ,τττ ) =
∏

i∈bins
Pois(ni |mi (μμμ,ααα,γγγ ,τττ ))

=
∏

i∈bins
Pois(ni |μV Hsi (ααα) + μV Zb

V Z
i (ααα,γγγ ,τττ ) + bothi (ααα,γγγ ,τττ ))

=
∏

i∈bins

(μV Hsi + μV ZbV Z
i + bothi )ni

ni ! e−(μV H si+μV Z bV Z
i +bothi )

(7.1)
where μμμ = (μV H , μV Z ) and the number of expected events mi in bin i is obtained
summing the expected signal si and background events bi . The contribution of the
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expected background is split in contribution of the V Z background bV Z
i and con-

tribution of the remaining backgrounds bothi (bi = μV ZbV Z
i + bothi ). The expected

signal si and V Z background bV Z
i events are multiplied by the parameters μV H and

μV Z , respectively. The parameter μV H (μV Z ) is referred to as signal strength and it
is defined as the ratio of the measured cross-section time branching ratios σ×BR for
the V H (V Z ) process divided by its SM expectation. The signal strength parameters
are also called Parameter of Interests (PoIs). In the analysis presented in this thesis,
a multi-PoIs fit is performed since the values of μV H and μV Z signal strengths are
extracted simultaneously. In particular this convention is used: the (x+y) PoIs fit
indicates a simultaneous fit in which x is the number of V H PoIs and y the number
of V Z PoIs. This means that the multi-PoIs fit described in the following is a (1+1)
PoIs fit.

In addition to the parameters μV H and μV Z , the likelihood depends on other
parameters ααα,γγγ ,τττ called Nuisance Parameters (NPs). The NPs encode the depen-
dence of the prediction on the systematic uncertainties into continuous parameter
in the likelihood. The NPs can be categorized into three classes: ααα = (α1, α2, ..),
γγγ = (γ1, γ2, ..) and τττ = (τ1, τ2, ..). The τττ NPs are unconstrained parameters con-
trolling the normalisation of the backgrounds and they are called free-floatingbecause
they are free to float in the fit. Theγγγ NPs represent the statistical uncertainties caused
by the limited size of simulated background samples. The signal process is usually
chosen to not be affected by theγγγ NPs as the statistical uncertainties on the predicted
signal simulation are small with respect to the backgrounds. A γ NP is applied in
each bin of the analysis on the sum of all the backgrounds. The modelling and the
experimental uncertainties enter in the fit through the ααα NPs and they affect both
signal and background events.

Theααα NPs are estimated from data or auxiliary measurements which provide both
central values and uncertainties. For each ααα NP, the likelihood function is multiplied
by an auxiliary term that constrains the value of the systematic uncertainty around its
estimate, within the uncertainty on such estimate. The auxiliary terms are Gaussian
functions with mean equal to zero and variance equal to one:

Laux (ααα) =
∏

α∈ααα

Gauss(ααα|0, 1) =
∏

α∈ααα

1√
2π

e−α2/2 (7.2)

where the product is extended over all the systematic uncertainties considered in
the analysis. The NPs are defined such that for α j = 0 the nominal predictions are
obtained and for α j = ±1 two modified templates, called up/down template, for the
±1σ variation are obtained. The NPs are expressed in unit of their uncertainties σα .1

The uncertainties on the background predictions due to the limited number of
simulated events are also accounted in the likelihood function considering Poisson
terms:

1 This means, for example, that moving the parameter α of the jet energy scale by 1 corresponds in
shifting the energy calibration of the jet by 1σ .
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LStat (γγγ ) =
∏

i∈bins

(γi bi )
bi e−(γi bi )

�(bi + i)
(7.3)

where

�(x) =
∫

dt t x−1e−t (7.4)

For each bin i of the histograms a γi NP is considered and it represents the uncertainty
on the sum of all the background processes in that bin. Dedicated studies have shown
that, while the statistical uncertainty of the V H sample is small, the one of V Z is
much more in-line with the other backgrounds. Consequently, in the multi-PoIs fit
the V Z is treated like all the other backgrounds for the γ parameters.

The full likelihood used in the final fit can be schematically written as:

L(μ,ααα,γγγ ,τττ ) = LPois(μ,ααα,γγγ ,τττ ) · Laux (ααα) · LStat (γγγ ) (7.5)

A binned likelihood fit is performed to determine the PoIs and their uncertain-
ties. The measured signal strengths and the NPs are obtained as the values of the
parameters thatmaximize the likelihood functionL(μ,ααα,γγγ ,τττ ) = L(μ,θθθ) or, equiv-
alently, minimize − lnL(μ,θθθ), where θθθ represents the set of NPs introduced pre-
viously, θθθ = (ααα,γγγ ,τττ ). The likelihood maximization without fixing the values of
signal strengths is called unconditional fit. Instead, the conditional fit is performed
maximising the likelihood for particular values of the signal strengths.

The uncertainties on the signal strengths is determined evaluating μ+/− = μ̂
+σ+

μ

−σ−
μ

as the value that satisfies this equation:

− 2 ln
L(μ+/−,

ˆ̂
θθθ)

L(μ̂, θ̂θθ)
= 1 (7.6)

where μ̂ and θ̂θθ are the parameters that maximise the overall likelihood and ˆ̂
θθθ are the

NP values that maximise the likelihood for a particular value of μ.

7.1.2 Profile Likelihood Ratio and Test Statistic

The Profile Likelihood Ratio (PLR) λ(μ) is defined as the ratio of two Likelihood
functions:

λ(μ) = L(μ,
ˆ̂
θθθ(μ))

L(μ̂, θ̂θθ)
(7.7)

where μ̂ and θ̂θθ are the parameters that maximise the overall likelihood and ˆ̂
θθθ(μ)

are the NP values that maximise the likelihood for a particular value of μ as men-
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tioned previously. The PLR is used to construct the test statistic qμ = −2 ln λ(μ),
which differentiates the background-only hypothesis with μ = 0 from the alterna-
tive hypothesis withμ > 0. The PLR takes values 0 ≤ λ(μ) ≤ 1, where large values
close to unity imply good agreement between the hypothesised signal strengths μ

and the observed data.
A test statistic used in the V H(bb̄) analysis is the one for the discovery of a

positive signal in which the background-only hypothesis with μ = 0 is tested. The
compatibility of the data with the background-only hypothesis is evaluated from the

test statistic q0 = −2 ln λ(μ = 0) = −2 ln L(μ=0, ˆ̂θθθ(μ=0))
L(μ̂,θ̂θθ)

. If the data are compatible

with the background-only hypothesis, the nominator and the denominator of the
test statistic are similar and q0 is close to 0. Differently, if the event yield is larger
than the expectation, the test statistics q0 assumes larger values indicating higher
incompatibility between the data and the tested hypothesis. The incompatibility can
be expressed with the p-value, in this case named p0, defined as:

p0 =
∫ ∞

qo,obs

f (q0|0)dq0 (7.8)

where qo,obs is the value of the test statistic measured from the observed data and
f (q0|0) is the probability density function of the test statistic q0 under the μ = 0
assumption. The hypothesis of a test can be considered excluded if its p-value is
observed below a specific threshold. The p-value can be expressed in terms of the
significance Z which is defined such that a Gaussian distributed variable found Z
standard deviations above its mean has an upper-tail probability equal to p0 (Fig.
7.1). In a more formal way, the significance is the quantile (inverse of the cumulative
distribution) of the standard Gaussian, computed for (1 − p0):

Z = 
−1(1 − p0) (7.9)

The rejection of the background hypothesis with a significance of at least Z = 5
(which correspond to p0 = 2.87 × 10−7) is considered as an appropriate level to
quote a discovery.

Fig. 7.1 Relationship
between a p-value and a
significance of Z sigma [3]
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To compute the p-value, the distribution of f (q0|0) is required. This can be
achieved by sampling the distribution exploiting the Monte Carlo method [1]. How-
ever, the procedure is computationally expensive and approximate solutions are
adopted. Assuming the null hypothesis to be true, the Wilk’s theorem [2] ensures
that q0 is asymptotically distributed as a χ2 with one degree of freedom. This means
that the value of q0 can be easily compared to the χ2 value. With few steps it can be
shown that the significance can be Z = √

q0. In the following, all the statistical tests
are done using the asymptotic approximation ensured by the Wilk’s theorem.

7.2 Fit Input

The signal and control regions used in the fit have been summarised in Table 5.5.
The following processes are considered in the fit, either as signal or backgrounds:

• signal V H, H → bb̄ (summed over all the production modes);
• Z+jets and W+jets. The V+jets backgrounds are split into three different com-
ponents depending the flavour composition of the two jets used to reconstruct the
Higgs boson decay, V+HF, V + cl, V + ll;

• t t̄ ;
• single-top: s-, t- and Wt-channels. The s- and t-channels are treated as one com-
ponent, while the Wt-channel is treated independently;

• diboson:WW , Z Z ,WZ . TheWZ and Z Z processes are treated as one component
and they have an associated PoI in the fit;

• multi-jet in 1-lepton channel. The multi-jet contribution in 0- and 2-lepton channel
is negligible.

Signal and background mJ templates are determined from the MC simulation in
all the cases except fot the multi-jet background in the 1-lepton channel, whose
contribution is extracted from the data.

The likelihood is built from the mJ histograms for each process listed above. The
choice of using different binnings and ranges for the mJ distribution has been made
to maximise the resolution taking into account the following aspects:

• avoid empty bins in the templates;
• minimise empty bins in the data distributions;
• have a statistical uncertainty in each bins lower than 20% to avoid potential biases
on μ.

7.3 Nuisance Parameters

The impact of all the experimental and modelling uncertainties affecting the mJ

templates is quantified using histograms that correspond to ±1σ variation of each
specific NP. The up (+1σ ) and down (−1σ ) variations are calculated relative to the
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Fig. 7.2 Effect of the smoothing procedure on the mJ distribution for the signal sample in LP SR,
pVT ≥ 400 GeV in 1-lepton channel

nominal template. There are few cases where the systematic variation lead only to
+(−)1σ effect. The jet resolution uncertainty, for example, is a one-sided uncertainty
and consequently its effect is symmetrised with respect to the nominal histogram in
order to have also the variation in the other direction. In all these cases the effect of
the systematic is symmetrized with respect to the nominal histogram to obtained the
variation also in the other direction.

Smoothing and Pruning of the Systematic Uncertainties
Certain systematic uncertainties such as the large-R jet energy scale uncertainties
can cause binmigrations of events in themJ distribution. Thismigration of the events
causes large statistical fluctuations which are not physical. To prevent these effects,
the smoothing procedure is adopted to all the systematic variation across all regions.
In the first step, bins are merged until there is one maximum in the varied distribution
relative to the nominal distribution. In the second step, bins are furthermore grouped
until the statistical uncertainty in each bin is below 5%. Figure 7.2 shows the effect of
the smoothing on a Emiss

T systematic for the signal V H sample. The red and blue lines
show the shifts of the variation of the systematic with respect to the nominal (referred
to the left y-label). The dotted lines represents the variations of the systematic before
the smoothing while the continuous lines the variations of the systematic after the
smoothing procedure. The points with the error bars show the mJ distribution of the
signal sample, referring to the right y-label.

From the total list of NPs, only some of them have a sizeable impact on the fit
templates. To reduce the number of NPs in order to obtain a more solid fit model, a
pruning procedure is applied. The procedure removes systematics uncertainties that
have a negligible impact on the final result. Normalisation and shape uncertainties are
dropped if the variation of the corresponding template is below 0.5% in all the bins.
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Additional pruning criteria are applied in all the analysis regions where the signal
contribution is less than 2% of the total background and the systematic variation
impact of the total background is less than 0.5%.

7.4 Tool for the Validation of the Fit Results

All the tools described in the following are used to understand the statistical analysis
and to identify potential problems and errors in the fit.

7.4.1 Pull Plots

The information of the fit results can be visualised using plots. The pull plots shows
the pull of the nuisance parameters which is the comparison of the central value and
uncertainty of the nuisance parameters before and after the fit [3]. The pull of the NP
θ , with an expectation value θ0 and standard deviation σθ , is defined as:

pull(θ) = θ̂ − θ0

σθ

(7.10)

where θ̂ is theNPvalue obtained from themaximum likelihood fit. The pull quantifies
how far from its expected value the NP is “pulled” by the fit in number of σθ . A
healthy situation is when the pull is zero, if this is not the case, further investigation
is required. If the pull is not zero, the NP value extracted from the fit is different from
the expected NP value.

In the pull plots the parameters corresponding to the floating normalisations are
also shown but following a different convention. The value shown in the plot is not
the pull since the floating normalisations do not have any prior, but it is the absolute
value of the normalisation with its uncertainty.

A possible estimate of the error of the NP can be performed studying the PLR
as function of the parameter θ around θ̂ . The estimate is done applying the same
method used to evaluate the μ uncertainty. For the NPs with a Gaussian constraint in
the likelihood, the expected interval of the pull is [−1,+1]. If the interval is smaller
than the expected one, the performed measurement is more accurate with respect to
the auxiliary measurement. In this case, the systematic uncertainty is “constrained”
by the data and it needs to be understood.

Once all the systematics are considered inside the fit, the first fit is performed using
the Asimov dataset. The Asimov dataset [2] has as data the expected yields predicted
from the simulation and they are used in replacement of the real data to test the fit
performance and to quantify the expected sensitivity. By definition, the value of the
pull from the fit to the Asimov dataset will not change, it can be only constrained.
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Fig. 7.3 Example of pull plot obtained from an unconditional fit to Asimov (red dots) and real
dataset (black dots)

The pulls of NPs with a Gaussian constraints are set to zero, while the values of the
floating normalisations are equal to 1. The use of the Asimov dataset is important
to spot suspicious behaviours and to predict the expected precision of the floating
normalisation factors. Figure 7.3 shows an example of pull plot in which there is a
comparison of the pulls obtained from the unconditional fit applied to Asimov (red
dots) and to real dataset (black dots).

Another way to study the stability of the fit without using the information of the
PoIs is to perform a conditional fit with μ = 1. With this fit the value of the PoIs is
fixed but it is possible to extract information on the pulled NPs.

7.4.2 Correlation Matrix

Another tool used for the validation of the fit model is the correlation matrix. The
correlation between θi and θ j NPs or PoIs is obtained from the covariance matrix
of the estimator of all the parameters, Vi j = cov[θ̂i , θ̂ j ]. In the large sample limit,
the covariance matrix is defined as the inverse of the second derivative of the log-
likelihood function evaluated at μ̂ and θ̂ [2]:

cov[θi , θ j ] =
[
−∂2 lnL(θ)

∂θi∂θ j

]−1

(7.11)
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Fig. 7.4 Correlation matrix obtained from a fit to the Asimov dataset

The value of the correlation coefficients can vary from −1 to +1. If two variables
are not related, their correlation is zero. Figure 7.4 shows an example of correlation
matrix obtained from a fit to the Asimov dataset. The correlation matrix contains
also the correlation coefficients between the PoIs (highlighted in magenta) and the
NPs. Since some NPs are correlated, the correlation matrix helps to understand why
some NPs are constrained or pulled. To simplify a bit the plot, only NPs that have
the absolute value of the correlation of magnitude 0.25 or higher with an other NP
are shown. In general the NPs have a small correlation with the exception of few
cases as the correlation among the normalisation factors and the correlation among
the large-R jet systematics (see Fig. 7.4).

7.4.3 Ranking Plot

An important information of the fit is how much the PoI value varies when changing
the value of an NP. The impact of a NP θ on the fitted PoI is defined as [3]:

impact = μ± = ˆ̂μθ0±σθ
− μ̂ (7.12)

where μ̂ is the value maximising the likelihood and ˆ̂μθ0±σθ
is the value of the PoI

extracted from a fit where all the NPs are allowed to vary except for θ which is
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fixed to the values at the edge of the intervals of the pulls, θ0 ± σθ . Each NP has
its impact and not all the NPs are equally important. The ranking plot is used to
sort the NPs with the largest impact. Figure 7.5 shows an example of ranking plot
obtained from a fit to the Asimov dataset, in which all the uncertainties are listed
in a decreasing order of their impact. The plot shows only 15 NPs with the highest
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Fig. 7.5 Impact of the uncertainties on the VH signal strength μV H parameter obtained from a
fit to the Asimov dataset. The uncertainties are sorted in a decreasing order. The boxes show the
variation of μ̂V H , referring to the top x-axis, when fixing the corresponding NP. The impact of
the up- and down-variations can be distinguished via the dashed and plane box fillings. The yellow
boxes show the pre-fit impact, referring to the top x-axis, by varying each NP by ±1σ . The filled
black points with the corresponding error bars show the pull of each NP, referring to the bottom
x-axis. The open red circles with the error bars show the fitted values and the uncertainties of the
normalisation factors which are freely floating in the fit. The dotted vertical are placed at ±1 and
are referred to the bottom x-axis
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impact. The boxes show the impact of the NP on μ̂V H , referring to the top x-axis.
The hatched and plane boxes represent the up- and down-variation, respectively. The
yellow band shows the pre-fit impact, referring to the top x-axis, by varying each
nuisance parameter by ±1σ . The filled black circles with the error bars show the
pulls of the NPs and their uncertainties, referring to the bottom x-axis. The open
red circles with the error bars show the fitted values and uncertainties of the floating
normalisations. By definition of fit to Asimov dataset, all the black points are set to
zero and all the red points are set to one. The dotted vertical lines are referred to the
bottom x-axis and placed at ±1. In the ranking plot shown in Fig. 7.5 the highest
ranked parameters are the parameters that shows the largest correlation to the signal
strength.

7.4.4 Breakdown of the Uncertainties

The uncertainties with similar origin can be grouped together to study the uncertainty
impact of the group on the fitted signal strength. In this way it is possible to find
which systematics have a big impact on the measurement precision. The uncertainty
impact of a group of uncertainties is the result of the comparison of the uncertainties
on the signal strengths:

uncertainty impact =
√

σ 2
μ̂

− σ 2
μ̂′ (7.13)

where σ 2
μ̂
is the uncertainty on the signal strength obtained from the nominal fit2 and

σ 2
μ̂′ is the uncertainty on the signal strength running a fit with all the NPs belonging to

a group fixed to their best fit values.When testing the impact of the systematic on one
PoI, the understudy PoI is fixed to the value extracted from the nominal fit while the
other PoI is left floating in the fit. The “total statical” impact is evaluated comparing
the result of the nominal fit with the result of the fit with all the NPs fixed to their
best fit values except for the floating normalisations. The “data stat only” impact is
defined as the comparison between the nominal fit and the fit with all the NPs fixed
to their nominal expectation values. The “floating normalisation” contribution is the
quadratic difference between the total error and the error from the fit with only the
normalisation factors fixed to the best fit values. The “total systematic” impact is the
quadratic difference between the total error and the “total statistical” error. The sum
in quadrature of the individual contributions of the systematic uncertainties differs
from the total systematic contribution due to correlations between the NPs.

2 The nominal fit indicates themaximum likelihood fit in which all the NPs and PoIs are left floating.
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