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Preface

This volume contains the papers presented at the 20th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2022). ATVA intends to
promote research in theoretical and practical aspects of automated analysis, verifica-
tion, and synthesis by providing a forum for interaction between regional and inter-
national research communities and industry in related areas.

ATVA 2022 was planned to be hosted in Beijing, China, in late October 2022.
However, due to the COVID-19 pandemic and travel restrictions, the Steering Com-
mittee decided to host the conference virtually. ATVA 2022 received 81 submissions
covering theory and applications in automated verification and analysis techniques.
Each paper was reviewed by at least three reviewers, and the Program Committee
accepted 21 regular papers and five tool papers, leading to a high-quality and attractive
scientific program.

This edition of ATVA was blessed by the presence of five prestigious keynote
speakers, who gave talks covering current hot research topics and revealing many new
and interesting research directions:

– Mohamed Faouzi Atig from Uppsala University, Sweden, spoke about string
constraint solving by flattening regular constraints,

– Xinyu Feng from Nanjing University, China, addressed compositional reasoning
about concurrent randomized programs,

– Shaz Qadeer from Meta, USA, gave a talk on the Civl verifier, a new approach to
the construction of verified concurrent programs and their proofs by layered
refinement,

– Jean-François Raskin from Université Libre de Bruxelles, Belgium, spoke about the
subgame perfect equilibrium for games of infinite duration played on graphs, and

– Sanjit A. Seshia from the University of California at Berkeley, USA, addressed
runtime assurance for verified AI-based autonomy. Sanijit A. Seisha also con-
tributed an invited paper.

The conference was preceded by tutorials on important topics given by two
renowned experts:

– Constantin Enea from Ecole Polytechnique, France, gave a tutorial on verifying the
consistency of large-scale storage systems and applications.

– Mahesh Viswanathan from the University of Illinois at Urbana-Champaign, USA,
gave a tutorial on verifying the privacy and accuracy of algorithms for differential
privacy.

ATVA 2022 would not have been successful without the involvement of the Pro-
gram Committee members and the external reviewers who contributed to the review
process (with 254 reviews) and the selection of the best papers. This event would not
exist if authors and contributors did not submit their work. We address our thanks to



every person, reviewer, author, Program Committee member, and organizer involved in
the success of ATVA 2022. The EasyChair system was set up for the management of
ATVA 2022, supporting the submission, review, and volume preparation processes. It
proved to be a powerful framework.

Although ATVA 2022 was hosted virtually, the local host and sponsor, the Institute
of Software, Chinese Academy of Sciences, provided financial support and tremendous
help with registration and online facilities. The other sponsors, Springer, contributed in
different forms to help the conference run smoothly. Many thanks to all the local
organizers and sponsors.

We wish to express our special thanks to the General Chair, Huimin Lin, and
steering committee members, particularly Yu-Fang Chen, for their valuable support.

October 2022 Ahmed Bouajjani
Lukáš Holík
Zhilin Wu
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Compositional Reasoning about Concurrent
Randomized Programs
(Extended Abstract)

Xinyu Feng

State Key Laboratory for Novel Software Technology
Nanjing University, Nanjing, Jiangsu, China

xyfeng@nju.edu.cn

It is challenging to reason about concurrent randomized programs because there are
two sources of non-determinism—one comes from the coin-flip operations introduced
for randomization, and the other from the scheduling and the corresponding interfer-
ence between concurrent threads. Moreover, instead of considering properties of every
individual program state or execution trace (e.g. the value of x at the end must be
greater than 0), we now care about the probabilistic properties of all the possible
behaviors of the program (e.g. the expectation of the value of x at the end of the
program is 0:5, or the probability that different threads see different values of x must be
smaller than certain value). As a result, the properties can be very sensitive to the
scheduling policy.

Algorithm designers do introduce adversary models to describe scheduling poli-
cies. From the currently running thread's point of view, an adversary decides which
thread to run next. A strong adversary can make the decision based on the full
knowledge of the program execution, including the current machine configuration and
all the historical steps, while an oblivious adversary has no knowledge and must fix the
schedule before the program execution. There have been algorithms proposed to take
advantage of the oblivious adversary model for better results that cannot be easily
achieved in the strong adversary model. On the other hand, correctness of these
algorithms can be sensitive to the program structure and the number of execution steps
since they rely on the prefixed schedules. This poses great challenges for compositional
reasoning using Hoare-style program logics.

This talk introduces a program logic for concurrent randomized programs under the
oblivious adversary model. We consider programs in the form of C1 . . .k kCn. Each
thread Ci is a sequential program and may contain the probabilistic choice statement
hC1i �p hC2i, which executes the atomic statement hC1i with probability p, and hC2i
with probability 1� p. The atomic statement hCi executes C atomically, which cannot
be interrupted by other threads. The execution of the multi-threaded program is

Work reported in this talk is done jointly with Weijie Fan and Hongjin Liang from Nanjing University,
and Hanru Jiang from Yanqi Lake Beijing Institute of Mathematical Sciences and Applications
(BIMSA).



parameterized with a schedule u, which is chosen non-deterministically at the begin-
ning of the execution.

To see the challenges for reasoning about concurrent randomized programs under
the oblivious adversary model, we consider the following two programs:

C1 ¼def if c ¼ 0ð Þ then s :¼ 0 else s :¼ 2

C2 ¼def if c ¼ 0ð Þ then skip; s :¼ 0ð Þ else s :¼ 2

Suppose the value of c is assigned in a probabilistic choice, which is either 0 or 1,
each with probability 0:5. In the oblivious adversary model, the concurrent programs
C1 s :¼ 1k and C2 s :¼ 1k actually generate different results.

For C1 s :¼ 1k , the expectation of s at the end must be 1. This is because the right
thread either executes at the end of C1, or executes before the execution of the then and
else branches of C1. In the oblivious adversary model, it is impossible for the two
threads to have different interleaving in the then and else branches. However, for
C2 s :¼ 1k , since the then-branch has two statements, it is possible to execute s :¼ 1
before s :¼ 0 (if then-branch is taken) but after s :¼ 2 (if else-branch is taken). The
expectation of s at the end is no longer 1.

This example shows that the behavior of programs in the oblivious adversary model
may depend on the program structures and the number of execution steps. Also, to
reason about probabilistic properties, we may need to consider the execution of dif-
ferent branches altogether. More specifically, we need to consider the correspondence
of different statements in different branches according to the number of steps taken to
reach them. This is almost impossible when we consider while-loops that may execute
different rounds (thus different number of steps) with different probability. These
problems pose great challenges to design structural logic rules for Hoare-style com-
positional reasoning.

To address this problem, we focus on proving closed properties of programs. An
assertion is closed if, to prove it holds over a distribution, it is sufficient to prove there
exists a partition of the distribution such that the assertion holds over every partition.
We observe the correctness of many algorithms designed for the oblivious adversary
model can be expressed as closed properties. To prove them, we do not need to prove
they hold over the whole state distribution, which contains states resulting from dif-
ferent branches. Instead, we can split the state distribution according to the branches
and prove the properties hold over every partition.

Based on this intuition, we propose a novel proof technique called split for
compositional reasoning. By splitting the state distribution into smaller ones, we can
reason about each branch of the program independently. We provide a light instru-
mentation mechanism so that the user can insert auxiliary split statements at proper
positions of the program to guide the proof. We then develop the first program logic for
compositional reasoning under the oblivious adversary model. With the split technique,
the structural logic rules for sequential composition, if-statements and while-loops can
be viewed as natural extensions of their classical (non-probabilistic) counterparts. We
also show how typical algorithms designed in the oblivious adversary model can be
verified using the program logic.

xiv X. Feng



Flattening String Constraints

Mohamed Faouzi Atig

Uppsala University, Uppsala, Sweden
mohamed_faouzi.atig@it.uu.se

Abstract. String data type is present in all modern programming and is a part
of the core semantics of programming languages such as JavaScript and Python.
The testing and verification of such programs require a decision procedure for
string constraints. The types of constraints include: 1ð Þ equality constraints
of the form t1 ¼ t2 where t1 and t2 consist of a sequence of string variables and
constants, 2ð Þ regular constraints of the form x 2 R where x is a string variable
and R is a regular language, and 3ð Þ integer constraints which are linear
arithmetic formulas over the length of the string variables. In this keynote talk,
we will present our recent decision procedure for string constraints. We will
focus on the decision procedure that uses the Counter-Example Guided
Abstraction Refinement (CEGAR) framework which contains both an under-
and an over-approximation module running in an alternating manner. The flow
of information between these modules is used to increase their precision in an
automatic manner.
This talk will be based on join work with Parosh Aziz Abdulla, Yu-Fang

Chen, Bui Phi Diep, Julian Dolby, Lukáš Holík, Denghang Hu, Petr Janku,
Hsin-Hung Lin, Ahmed Rezine, Philipp Rümmer, Wei-Lun Tsai, Wei-Cheng
Wu, Zhillin Wu and Di-De Yen.

1 Summary

The string data type is very present in almost all modern programming languages. This
is especially the case with scripting languages (e.g., JavaScript and Python) where
strings are part of their core semantics. The testing and verification of programs
manipulating strings are important and challenging problems. In fact, many security
vulnerabilities such as injection and cross-site scripting attacks can be the result of
malicious string inputs. Software (bounded) model checking (e.g., [7, 8, 11–13, 16]),
symbolic execution techniques [6, 9, 15] and concolic testing (e.g., [14, 17]) are the
most used techniques to test and verify programs manipulating strings. Such techniques
are usually based on symbolic encodings of executions into a formula, and use con-
straint solvers for computing on such encodings. The types of constraints to be solved
depend on the manipulated data types. These constraints include at least the following
basic string operations:

– regular membership constraints (e.g., x 2 ½0; 9�þ , that says that x is in the regular
language ½0; 9�þ ),



– integer constraints (e.g., xj j ¼ yj j � 1, that says the length of the string variable x is
equal to the length of the string variable y minus one),

– equality constraints (e.g., x ¼ y � z which states that the string vairable x is equal to
the concatenation of the string variables y and z), and

– transduction (e.g., y ¼ T xð Þ, that means that the string variable y is the output of the
transducer T when the input is the string variable x).

In this keynote talk, we will present a framework that efficiently handles different
combination of string constrains [1, 2, 3, 4, 5]. Since the satisfiability problem of string
constraints is undecidable in general [10], our framework uses the Counter-Example
Guided Refinement (CEGAR) schema which combines an under- and an
over-approximation module in an alternating manner: the under- approximation
module is used to establish the satisfiability of the given set of constraints; and the
over-approximation module is used to show the unsatisfiability of the set of constraints.
Moreover, these two modules will be refined on demand by letting information flow
between them. More precisely, if the under-approximation module fails to find a
solution in a search space predefined using a set of patterns, then this information will
be used to exclude this search space when running the over-approximation module
during the next phase. Furthermore, if the over-approximation module finds a solution
then it can be used to adjust the search space of the under-approximation module
(which should also cover the found solution). Observe that running the
under-approximation module on this new predefined search space will also check if the
solution returned by the over-approximation module is a spurious or genuine solution.
In the framework presented in [1, 2, 3, 4, 5], we restrict the search space of each string
variable to strings belonging to flat languages (i.e., languages consisting of the set of
strings of the form w�

1w
�
2 � � �w�

n, where w1;w2; . . .;wn are finite words). This has
resulted in an effective decision procedure for solving string constraints. This procedure
has been implemented in our string solver Trau [4], which is among the most efficient
string solvers. Our framework covers most of commonly used string constraints such as
equality constrains, integer constrains, transduction, context-free membership,
string-number conversion constraints, and not-substring constraints.
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Runtime Assurance for Verified AI-Based
Autonomy

Sanjit A. Seshia
University of California at Berkeley, USA

Abstract. Verified artificial intelligence (AI) is the goal of designing AI-based
systems that have strong, verified assurances of correctness with respect to
mathematically-specified requirements. This goal is particularly important for
autonomous and semi-autonomous systems. In this talk, I will review the pro-
gress towards Verified AI from the perspective of formal methods with a special
focus on autonomy. The talk will focus mainly on the use of formal methods for
run-time assurance, which is especially important as many AI-based autono-
mous systems are designed to operate in unknown and uncertain environments.
The presented research will be illustrated with examples from the domain of
intelligent cyber-physical systems, with a particular focus on deep neural net-
work-based autonomy in transportation systems.



The Civl Verifier

Shaz Qadeer

Meta, USA
shaz.qadeer@gmail.com

Abstract. The Civl verifier introduces layered refinement, a new approach to the
construction of verified concurrent programs and their proofs. This approach
simplifies and scales (human and automated) reasoning by enabling a concurrent
program to be represented and manipulated at multiple layers of abstraction.
These abstraction layers are chained together via simple program transforma-
tions; each transformation is justified by a collection of automatically-checked
verification conditions. Civl proofs are maintainable and reusable, specifically
eliminating the need to write complex invariants on the low-level encoding
of the concurrent program as a flat transition system. Civl has been used to
construct verified low-level implementations of complex systems such as a
concurrent garbage collector, a consensus protocol, and shared-memory data
structures.

Civl is jointly developed with Bernhard Kragl and publicly available at https://civl-verifier.github.io/.

https://civl-verifier.github.io/


Subgame Perfect Equilibrium
with an Algorithmic Perspective

Jean-François Raskin

Université Libre de Bruxelles, Brussels, Belgium
jraskin@ulb.ac.be

Abstract. In this invited talk, we will recall the notion of subgame perfect
equilibrium (SPE) for games of infinite duration played on graph. We will
introduce new algorithmic ideas in this context. In particular, we will provide an
effective characterization of all the SPEs in infinite duration games played on
finite graphs for the case of parity objectives and for the case of mean-payoff
objectives. To this end, we will introduce the notion of requirement and the
notion of negotiation function. We will establish that the set of plays that are
supported by SPEs are exactly those that are consistent with the least fixed point
of the negotiation function. By studying the properties of the least fixed point
of the negotiation function, we will provide provably optimal algorithms to
solve relevant decision problems related to SPEs. This talk will be based on the
following publications [1–3].
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Abstract. AI-based autonomous systems are increasingly relying on
machine learning (ML) components to perform a variety of complex tasks
in perception, prediction, and control. The use of ML components is pro-
jected to grow and with it the concern of using these components in
systems that operate in safety-critical settings. To guarantee a safe oper-
ation of autonomous systems, it is important to run an ML component
in its operational design domain (ODD), i.e., the conditions under which
using the component does not endanger the safety of the system. Building
safe and reliable autonomous systems which may use machine-learning-
based components, calls therefore for automated techniques that allow
to systematically capture the ODD of systems.

In this paper, we present a framework for learning runtime monitors
that capture the ODDs of black-box systems. A runtime monitor of an
ODD predicts based on a sequence of monitorable observations whether
the system is about to exit the ODD. We particularly investigate the
learning of optimal monitors based on counterexample-guided refinement
and conformance testing. We evaluate the applicability of our approach
on a case study from the domain of autonomous driving.

Keywords: AI-based autonomy · Runtime assurance · Operational
design domains · Black-box models

1 Introduction

In recent years, there has been an increase in using autonomous systems in var-
ious safety-critical applications such as in transport, medicine, manufacturing,
and space. Considering the complexity of the environments these systems are
being deployed in, autonomous systems rely on machine learning (ML) tech-
niques to solve complex tasks in perception, prediction and control. The use of
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complex, black-box ML components raises concerns regarding the safe opera-
tion of ML-based systems [2,10,40]. ML models such as deep neural networks
are unpredictable; unanticipated changes in the environment may cause a neu-
ral network to produce faulty outcomes that could endanger the safety of the
system [1,14,22]. To raise the level of assurance in autonomous systems, it is
therefore crucial to provide designers with the necessary tools that help them
understand and further capture the operational design domain (ODD) of such
systems. In autonomous driving, the SAE J3016 standard for driving automation
systems, [36], defines an ODD as the

operating conditions under which a given driving automation system or fea-
ture thereof is specifically designed to function, including, but not limited
to, environmental, geographical, and time-of-day restrictions, and/or the
requisite presence or absence of certain traffic or roadway characteristics.

In general, from a user or authority perspective, the ODD can be seen as the
operating environment in which a system should operate safely. To assure the
safety of the system, the boundaries defined by an ODD must be monitored
during system operation and the system should only operate (autonomously)
when these boundaries are met.

However, not every ODD can be monitored at run time. First and foremost,
some aspects of the ODD may not be reliably observable or are too expensive
to observe. A monitor relying on these aspects is not (efficiently) implementable.
Furthermore, we are interested in obtaining monitors that are predictive – we
optimally want to raise an alarm before the system leaves its ODD. Lastly, we
emphasize that a powerful ODD needs to be specified over runs of the system,
as the history of observable features allows us to approximate hidden system
states.

In this paper, we introduce a framework for learning monitorable operational
design domains of black-box systems, in particular for systems with critical ML
components. We define a monitorable ODD to be one that is defined over an
observable feature space and that can be implemented as a runtime monitor that
predicts whether the system will exit the ODD. This stands in contrast to general
definitions of ODDs [26,36] that do not assume their executability. A monitorable
ODD in our framework is learned in terms of a system-level specification that
defines a general ODD over a possible non-observable abstract feature space,
and a desired class of programs defined over the observable feature space. For
a system-level specification, our framework can be used to learn a monitorable
ODD from the class of programs that predicts whether the system will violate
the specification.

We are particularly interested in learning monitorable ODDs for temporal
system-level specifications, i.e., where the safe operation conditions bounded by
an ODD are defined in terms of timed sequences of observations. Compared to
conditions that only rely on non-temporal features such as the type of a road,
the state of the system, the weather conditions, or the current traffic situation,
the ODDs in our setting incorporate the change of features over time. Consider
a perception module in an autonomous vehicle used for lane keeping. While the
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perception module accurately computes the distance from the edge of a lane,
continuous interruptions of the side markings, for example, due to a line of
parking cars or obstacles, may cause the module to produce values triggering a
faulty steering behavior by the controller of the vehicle. In general, this should
not endanger the vehicle if it happens at a low frequency. An occurrence over a
large period of time, may, however, lead to steering the vehicle away from the
lane. A runtime monitor learned by our framework may decide to switch to a
more safe controller (or manual control) if the latter scenario is detected, and
may issue a switch back to using the neural network when the line of obstacles
is passed.

Our framework is based on a quantitative approach for learning monitors.
Since monitors for ODDs are constricted to a specific class of programs and
to an observable feature space possibly different from that of the system-level
feature space, finding a monitor that exactly captures the ODD of a system may
not be feasible: First, the program class may not include enough programs that
can cover the entire concept class of functions defined over the observable feature
space. Furthermore, a sequence of observations over the observable feature space
may correspond to several executions over the system-level feature space. Some
of these executions may satisfy the system-level specification and some may
violate it. Depending on whether the corresponding sequence of observation is
to be classified as part or not included in the ODD will result in a mismatch
between the monitorable ODD and the system-level specification. In this case,
given a quantitative measure over the system level executions, our approach
will learn the optimal monitor over the observable feature space from the class
of programs with respect to the given optimality objective. Particularly, our
optimality objective is defined in terms of the quantitative measure and the
rates of false positives and negatives.

The framework follows a data-driven counterexample-guided refinement app-
roach for learning monitors. Data used for learning are generated via simulation-
based runtime verification techniques. Specifically, we use VerifAI, an open-
source toolkit for the formal design and analysis of systems that include AI
or ML components [13]. VerifAI allows us to analyze ML-based components
using system-level specifications. To scale to complex high-dimensional feature
spaces, VerifAI operates on an abstract semantic feature space. This space is
typically represented using Scenic, a probabilistic programming language for
modeling environments [19]. Using Scenic, we can define scenarios, distribu-
tions over spatial and temporal configurations of objects and agents, in which
we want to deploy and analyze a system. Once the training data has been gen-
erated, it is forwarded to an algorithm for learning monitors from the class
of interest (e.g., neural networks, decision trees, automata, etc.). The learned
monitor is then checked by a conformance tester. The conformance tester relies
again on the simulation-based testing techniques provided by VerifAI to check
whether a monitor satisfies a given quantitative objective. If this is the case, a
monitor is returned. Otherwise, counterexamples found during testing are used
in the next learning cycle. We demonstrate the applicability of our framework
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using a case study from the domain of autonomous driving. We show that our
counterexample-guided approach can be used to learn a monitorable ODD for
an image-based neural network used for lane keeping. Our example is inspired by
several real case studies VerifAI has been applied in including with industrial
partners (e.g., see [18,21,46]).

We summarize our contributions as follows:

– We formalize the notion of operational design domains by introducing the
problem of finding monitorable operational design domains of systems with
respect to system-level specifications.

– We present a framework for learning monitorable operational designs domains
based on a quantitative counterexample-guided refinement approach.

– We present a case study that demonstrates the applicability of our framework
and that points out the challenges in learning monitorable ODDs for black-
box (ML) models.

2 Motivating Example: Autonomous Lane Keeping

Fig. 1. Example input images to the neural network, rendered in CARLA, showing a
variety of orientation, weather, and road conditions.

Consider a scenario of an autonomous vehicle driving through a city. The car is
equipped with a camera-based perception module using a convolutional neural
network that based on images captured by a camera (cf. Fig. 1) estimates the
cross-track error (CTE), i.e., the lateral offset of the car from the centerline of
the road. The estimated values are forwarded to a controller that adjusts the
steering angle of the car. The perception module is a black box. In particular,
we do not have access to (any statistics of) the images used to train the network
nor any knowledge about potential gaps in the training set.
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Our goal is to learn a monitor that captures the conditions under which using
the neural network does not result in large CTE values that endanger the safety
of the car. The monitor should alert in time, to refrain from using the network
and maybe switch to a more trustworthy safe controller, e.g. to human control
or one that is less optimal but uses more trustworthy sensors.

The behavior of the neural network may be influenced by many factors, some
of that may not have been sufficiently covered during training. For example, while
the network was trained on images, its behavior may depend on other parameters
not accounted for in the input to the network such as weather conditions (like
precipitation or cloudiness), the sun angle, thus, determining the time of day
and shadowing effects, the position and heading on the road, its velocity, and
other objects on the road. We refer to these factors as semantic features. For our
goal, these features must be observable and monitorable at run time.

Once we fix the observable semantic features, which we intend to use to
monitor the system, the next step is to establish a connection between the values
of these semantic features and a general system-level safety specification (e.g.,
leaving the lane). A monitor that implements this connection is one that captures
the ODD of the neural network with respect to the above-mentioned semantic
features and predicts whether the system will leave the ODD. For example, under
rainy weather conditions, at certain turns, or after observing certain landmarks
on the road, the monitor might predict that the system will likely deviate too
far from the centerline or even exits its lane.

We present a systematic approach to capturing the connection between the
system-level specification and the sequences of values of observable features. Our
approach is based on exploring the diverse set of scenarios possible under dif-
ferent instantiations of the aforementioned semantic features and analyzing the
executions of the system with respect to a system-level specification. Based on
data generated by the exploration and analysis processes, our approach learns a
monitor that predicts a faulty behavior of the system, or in other words, leaving
the ODD of the neural network.

3 Optimal Monitors for Operational Design Domains

In this section, we introduce the problem of learning a monitorable operational
design domain of a system. We first establish some key definitions. We then define
the learning problem, and finally state some of the challenges in constructing
matching monitors for operational design domains.

3.1 Learning Monitors for ODDs

Notation. For an (possibly infinite) alphabet Σ, we define the set of traces over
Σ by the set of finite words Σ∗. We define the set of traces of a fixed-length
d ∈ N over Σ by the set Σd. A language over Σ is any set L ⊆ Σ∗. A language
of d-length traces is any set L ⊆ Σd.



8 H. Torfah et al.

For a (discrete-time) black-box system with inputs I and outputs O, we
capture its behavior as a discrete sequence of input-output pairs. Formally, we
use Σsys = (I × O). The system behavior is then a language C ⊆ Σ∗

sys . We
make no further assumptions over the system, in particular, we allow for the
system to be nondeterministic, i.e., the system may provide different outputs for
the same sequence of inputs. The system-level specification, encoding a correct
system behavior, can be captured as set of traces over input-output pairs that the
system’s behavior should not deviate from. Formally, a system-level specification
is a language ϕ ⊆ Σ∗

sys . A system C ⊆ Σ∗
sys satisfies a specification ϕ ⊆ Σ∗

sys

if C ⊆ ϕ. We denote the satisfaction relation of systems and specifications by
C |= ϕ.

For a specification ϕ and a system C, the operational design domain of C
with respect to ϕ, captures the set of ”behavioral conditions” where the system C
is guaranteed to satisfy the specification ϕ. In a discrete-time model, we define a
behavioral condition as a sequence of observations that can be observed off the
system. Formally, we define the operational design domain D of C and ϕ as the
tuple DC,ϕ = (Σobs , obs, d), where Σobs defines a set of observable inputs and
actions, obs : Σ∗

sys → Σ∗
obs defines the relation between the system-level inputs

and actions and the observations of interest, and d ∈ R
+ is the prediction horizon.

An operational design domain D defines a set �D� = {σ | ∀τ ∈ Σ∗
sys . obs(τ) =

σ → ∀τ ′ ∈ Σd
sys . τ · τ ′ �∈ ϕ}. Intuitively, �D� defines the set of sequences of

observations that cannot be mapped to a trace of the system C that violates the
specification ϕ in d steps. We highlight that our definition of ODDs allows us to
distinguish temporal interactions of the system with its environment, e.g. that
driving over road marks for a short time is not problematic, but that driving
over such an area for a prolonged time is problematic.

Our goal is synthesize a runtime monitor that captures the ODD of a system
and a specification with respect to a set of observations. A runtime monitor M
for an ODD D over observations Σobs is a program that implements a function
fM : Σ∗

obs → B, such that, for every trace τ ∈ Σ∗
obs , fM (τ) if and only if τ ∈ �D�1.

In the rest of the paper will use fM to also denote the set of traces τ for which
fM (τ) = true. We formalize the monitor synthesis problem for ODD as follows.

Problem 1 (Synthesizing Monitors for ODDs) For an operational
design domain DC,ϕ = (Σobs , obs, d) and a class of monitors M over Σobs ,
find a monitor M ∈ M, such that fM = �D�, or report that there does not
exist such monitor.

The ODD definition and the monitor extraction problem described above is
idealized. In the following, we give some details on why this idealized problem
statement is not well suited in practice and present a quantitative more practical
version of the problem.

1 We choose a Boolean codomain for monitors for simplicity reasons. Our approach
can be extended easily to quantitative domains, i.e., monitors with a robustness
semantics [9,11].
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3.2 Challenges in Learning Monitorable ODDs

The problem statement above yields monitors that are too conservative. In par-
ticular, it assumes the possibility of absolute safety: An observation trace is
excluded from the ODD if any system-level traces that violates the specification
may yield this observation trace. In line with safety standards, a practical for-
mulation of the problem relaxes the safety requirements to a more quantitative
setting. We observe that the occurrence of system-level traces which match a par-
ticular observation trace may be rare. In this case, including their corresponding
observations in the operational design domain may be admissible, even in safety-
critical domains. Furthermore, the class of monitors may not always include
a monitor for the exact ODD. Semantically speaking, the monitors within a
class typically cover only a subset of monitors over Σobs . In this case, our goal
would be to search for an optimal monitor, e.g., one with the lowest misclassifi-
cation rate. The optimality of a monitor can be defined in terms of a measure
ν : P(Σ∗

obs) → R
+ over sets of observation traces. In this case, the monitor learn-

ing problem is converted to the following optimization problem. For a system C,
a specification ϕ, and a class of monitors M, find a monitor M ∈ M, such that,

M ∈ argmin
M ′∈M

ν(fM ′ � �D�),

where � denotes the symmetric difference.
While the latter formulation overcomes the mismatch in Problem 1, by search-

ing for the optimal monitor, practically solving the problem is still faced with
some issues. First, the usage of a symmetric difference treats false positives and
false negatives equivalently. False positives are given as the set of traces of C
that satisfy ϕ, but that are mistakenly identified by the monitor to be executions
that lead to a violation of the ODD. False negatives are traces of C that violate
ϕ but are not captured by the monitor as erroneous. In safety-critical settings,
this is inadequate, and in general, we want the ability to find monitors that
favor false positives over false negatives whenever possible. Another shortcom-
ing of the formulation above is that it requires defining correctness/optimality
on sets of traces over Σobs , which is often troublesome, as correctness/optimality
is defined in our setting as a system-level specification, i.e., on traces over Σsys .

To address these challenges, in the next section, we present a quantitative
variant of the monitor learning problem for ODDs. It is based on a correctness
definition with respect to the traces over Σsys , and thus transforms the problem
to minimizing a measure μ on languages over Σsys . This variant allows us to
search for optimal monitors within a given class of monitors and with respect to
given quantitative measure on the sets of system-level traces.
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3.3 Quantitative Monitor Learning

Considering the challenges discussed above, a practical definition of the problem
of learning optimal monitorable ODDs needs to define optimality with respect
to

1. system-level traces, i.e., traces over Σsys

2. the rates of and biases towards false positives and negatives

One consequence of transforming the definition to measures over system-level
traces is the matter of predictiveness. To remind the reader, an ODD is defined
in terms of a prediction horizon d. The value of a monitor fM for a trace τobs ,
depends the value of ϕ on system-level trace τsys of length |τobs |+d. The problem
definition should take this prediction horizon into account when defining the
measure over system-level traces. To accommodate for this difference in length,
we cut off all suffixes of length d of all traces in (C ∩ ϕ) and (C ∩ ϕ). In the
problem definition, we will make use of the following notation: for a language
L, we let L−d, for d ∈ N, denote L−d = {α0α1 . . . αk−d | α0α1 . . . αk ∈ L, k ∈
N s.t. k − d ≥ 0}.

Problem 2 (Optimal Monitor Synthesis for ODDs) Given an oper-
ational design domain D = (Σobs , obs , d)C,ϕ of a system C and a spec-
ification ϕ over Σ∗

sys , a class of monitors M over Σobs , and a measure
μ : P(Σ∗

sys) → R
+, find a monitor M ∈ M, such that,

M ∈ argmin
M ′∈M

μ(Tp \ obs−1(fM ′)) + wfn · μ(Tn ∩ obs−1(fM ′))

for fixed values wfn ∈ R
+ and where Tp = (C ∩ ϕ)−d and Tn = (C ∩ ϕ)−d.

The problem statement above defines a monitor as optimizing a kind of loss
function with respect to system-level traces. The left side of the sum in the
objective function defines a measure over the false positives. The false-negatives
side of the objective function is weighted by wfn , that allows us to bias the search
towards false positives or false negatives.

Example 1. A system C we are interested in capturing its ODD, could be the
image-based neural network from our motivating example. A monitor for the
ODD in this case can be defined over values of the weather, time of the day,
location, and road properties, representing a projection of general system-level
values, such as the state of the car, or the images received by the neural network
as well as its output. On top of system-level traces we define a measure μ that
for a set Γ returns the ratio of Γ to the entire set of system-level traces.

Remark 1 (Relation between Problem 1 and Problem 2). In cases where the
ODD can be captured by a monitor in a given class and where absolute safety
is realizable, a solution to Problem 2 will indeed solve Problem 1.
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Fig. 2. Extension of VerifAI with the monitor learning framework

3.4 Black-Box vs. White-Box Settings

Problem 2 defines the optimality with respect to a system C, i.e., a set of traces.
In a white-box setting, one can assume access to a model defining the entire set
of traces and thus extract models for the sets Tp and Tn by evaluating ϕ over
C. In a black-box setting, this is in general infeasible. Obtaining an exhaustive
set of samples from a black-box model is not practical, considering the large
(potentially infinite) inputs domains autonomous systems are defined over. The
question that we need to raise at this point is how to sample from the black
box and how large this sample set must be to obtain monitors that do not
overfit the set of samples. Depending on the class of monitors at hand, we can
rely on theories from the field of probably approximate correct learning (PAC)
[42] to construct monitors that are closest to optimal with high confidence. In
practice this requires a large number of samples, considering that the class of
monitors needed to obtain good monitors is usually very large. In this paper,
we suggest a different approach based on conformance testing Here we rely on
learning monitor from a small set of samples performing a conformance test to
check the quality of the monitor (A testing PAC guarantee using theories such
as the Hoeffding’s inequality [24]). Relating this to Problem 2, the sets Tp and
Tn are then defined with respect to the sample set and the monitors learned
are optimal with respect to these sets. Conformance testing is done with respect
to the measure μ and the sample sets are extended based on counterexamples
obtained during testing. A framework implementing this workflow is given next.

4 Framework

We present of counterexample-guided learning framework. We sketch the overall
architecture given in Fig. 2 and give details on the individual components in
separate sections.
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4.1 Main Workflow

We integrate three major components into a joint framework: simulation-based
analysis, data generation and learning, and conformance testing. Given an exe-
cutable model of the system with the black-box (ML) component, a model of the
environment in which the system is to be executed, we use VerifAI [13] to run
simulations and evaluate them according to a provided system-level specification,
cf. Sect. 4.2. The evaluated simulations are then forwarded to another component
for data generation. The data generation component performs several operations
on top of the simulation traces, applying certain filters, transformations, and slic-
ing, cf. Sect. 4.3. Once the data has been prepared for learning, a learner of our
choice runs on top of the data. The outcome is an (optimal) monitor implement-
ing the ODD of the black-box component. Finally, a conformance tester checks
the quality of the monitor, cf. Sect. 4.4. Here, the conformance tester may use
further simulation runs, using VerifAI, to search for any counterexamples. If
conformance testing succeeds, the framework terminates and returns the so-far
learned monitor. Otherwise, counterexamples found during testing are passed
to the data generating process to compute a new set of data over which a new
monitor is learned.

4.2 Simulation-Based Analysis Using VerifAI and Scenic

VerifAI is an open-source toolkit for the formal design and analysis of systems
that include AI or ML components [13]. VerifAI follows a paradigm of formally-
driven simulation, using formal models of a system, its environment, and its
requirements to guide the generation of testing and training data. The high-level
architecture of VerifAI is shown in Fig. 2. To use VerifAI, one first provides
an environment model which defines the space of environments that the system
should be tested or trained against. Environment models can be specified using
the Scenic probabilistic modeling language [19]. A Scenic program defines
a distribution over configurations of physical objects and their behaviors over
time. For example, Fig. 3 shows a Scenic program for the lane keeping scenario
used in our case study. This program specifies a variety of semantic features
including time of day, weather, and the position and orientation of the car, giving
distributions for all of them. Scenic also supports modeling dynamic behaviors
of objects, with syntax for specifying temporal relationships between events and
composing individual scenarios into more complex ones [20]. Finally, Scenic is
also simulator- and application-agnostic, being successfully used in a variety of
CPS domains including autonomous driving [21], aviation [18], robotics [19], and
reinforcement learning agents for simulated sports [3]. In all these applications,
the formal semantics of Scenic programs allow them to serve as precise models
of a system’s environment. For more examples we refer the reader to [19].

Once the abstract feature space has been defined, VerifAI can search the
space using a variety of sampling algorithms suited to different applications (e.g.,
these include passive samplers which seek to evenly cover the space, such as low-
discrepancy (Halton) sampling, as well as active samplers which use the history
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Fig. 3. A Scenic program specifying the environment for the lane keeping scenario

of past tests to identify parts of the space more likely to yield counterexamples).
Each point sampled from the abstract feature space defines a concrete test case
which we can execute in the simulator. During the simulation, VerifAI moni-
tors whether the system has satisfied or violated its specification, which can be
provided as a black-box monitor function or in a more structured representation
such as a formula of Metric Temporal Logic [31,34]. VerifAI uses the quan-
titative semantics of MTL [9,11], allowing the search algorithms to distinguish
between safe traces which are closer or farther from violating the specification.
The results of each test can be used to guide future tests as mentioned above,
and are also saved in a table for offline analysis, including monitor generation.

4.3 Data Generation

In this section, we discuss the training data generation process. Training data
is generated from the execution runs of several simulations through a process
consisting of two phases, mapping and segmentation.

Mapping. The role of the mapper is to establish the connection between the
sequence of events collected during a simulation and the inputs to the monitor.
In general, the mapper consists of a projection and a filtering phase.

Projection involves mapping a sequence of simulation events to a (sub)set
of events that can be reliably observed at runtime. A monitor must be defined
over inputs that are observable by the system during runtime. Properties of
other entities in the environment may be known during simulation, but not
during runtime. Thus, the data collected at simulation must be projected to a
stream of observable data. We especially want to project the data onto reliable
and trustable data. Some data may be observable, but should not be used by
a monitor. For example, a monitor for validating the confidence in using the
camera-based neural network, can be based on the data of the weather condition
and the time of day, radar values, whereas it might be better to refrain from using
the images captured by the camera.
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Filtering involve mapping traces to other traces using transformation func-
tions that may have an internal state (based on the history of events). Beyond
projecting, we may use the data available at runtime to estimate an unobserv-
able system or environment state by means of filtering approaches and then use
this system state (or statistics of this state) as an additional observable entity.
For example, to validate the conditions for our neural network, we may want to
use data computed based on an aggregate model that evaluates the change in
the heading of the car.

At all times, mappers should preserve the order of events as received from
the evaluator and maintain the valuations of the system-level specification on
the original system-level trace.

Segmentation. Rather than considering traces from the initial (simulation)
state, a sliding window approach can be used to generate traces σ of fixed length
starting in any state encountered during the simulation. This approach is impor-
tant to avoid generating monitors that overly depend on the initial situation or
monitors that (artificially) depend on outdated events For example, the behavior
of the car in our lane keeping example, may depend on the frequency of obsta-
cles along the side of the road. Short-period occurrences may not cause major
errors in the CTE values or perhaps only for a short recoverable period of time.
Frequent occurrences may however cause a series of errors that could lead the
car to exit the lane. Therefore, the monitor does not need the entire history of
data, as the car will recover from small patches, but the monitor should switch
from using the neural network-based controller to manual control when the a
long series of obstacles on the side of the road is observed. In general, the length
of segments needs to be tuned based on the application at hand and the fre-
quency in which data is received. We remark that the loss of information due
to ignoring events earlier in the history can be partially alleviated by adding a
state estimate to the trace using an appropriate filter in the mapping phase.

After the table of training data is created by the segmentation process it
can be forwarded to any learning algorithm that generates a suitable artifact for
the monitor. We feed the traces that we obtain in a trace warehouse. From that
warehouse, we select traces to feed into the learner.

4.4 Conformance Testing

The goal of conformance testing is to test the quality of our learned monitors.
This is done by testing the monitor on new independent simulation runs using
VerifAI and checking whether a hypothesis with respect to the optimality
objective is met. If we pass the hypothesis, we have found a monitor. If not,
we augment our warehouse with the counterexamples found during testing. We
particularly look for cases, where the monitor failed to issue an alert, and the
specification was violated d steps later, where d is the prediction horizon, i.e.,
false negatives. We also look for cases, where the monitor issued false alerts,
triggering unnecessary switches to manual control, i.e., false positives.
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The result of the conformance tester is given relative to the set of sampled
traces in VerifAI. For high confidence in the result of the conformance tester,
we need to make sure to test the monitor on a sufficient number of simulations.
For example, assuming that we sampled the simulation traces i.i.d. from the
actual distribution, and assuming that we are using a quantitative measure over
a σ-algebra over traces, then using Hoeffding’s inequality, we can determine the
number of samples for given error and confidence measures. For more details on
this we refer the reader to [24].

5 Experiments

We used our framework in an experiment for learning a monitor for the ODD
of the system with the image-based perception module used for lane keeping as
described in Sect. 2. The perception module is a convolutional neural network
(CNN) that for a given snapshot taken by a camera mounted at the front of
the car returns the estimated cross-track error to the centerline of the road. We
are interested in learning a monitor that based on features such as precipitation,
cloudiness, the sun angle, and location determines whether the system will be
safe in the presence of these conditions. In our experiment, we evaluate the latter
based on whether the car exits its lane. In the following, we provide some details
on the experimental setup and results.

5.1 Experimental Setup

Our setup uses VerifAI’s interface to the CARLA simulator [12]. The percep-
tion module was executed as part of a closed-loop system whose computations
were sent to a client running inside CARLA. These are named values that rep-
resent the simulator state, such as the position of the car, its velocity, heading,
weather conditions, other objects on the road, etc.

The environment is modelled by the Scenic program depicted in Fig. 3. The
sampler was able to choose simulations in different weather conditions, different
roads and initial positions on the road, and different sun angle, thus sampling
different times of the day and their shadowing effects. The behavior of the ego
car was implemented as a call to an external function OncCarAction, which
depending on the setting either used the perception-based controller for steering
or switched between perception-based control and a safe controller (mimicking
manual control) if we were testing a learned monitor.

To evaluate simulation runs we used a built-in CARLA specification for
detecting lane invasions. Initially, we started with 100 simulations. In each con-
formance testing round, we used ca. 160 i.i.d sampled scenes from Scenic. The
number of samples were computed using Hoeffding’s inequality [24] for confidence
value α = 0.05 and error-margin ε = 0.07. Lastly, we fixed the class of decision
trees as the class of our monitors and used a decision-tree learning procedure
provided by the sci-kit learning library2.
2 https://scikit-learn.org/.

https://scikit-learn.org/
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Fig. 4. Results using only static features

5.2 Results

We perform two experiments. The first is solely on static features, such as weather
and time of the day (using the sun angle attribute of CARLA), The second addi-
tionally considers dynamic features such as the location and road information.
The results show the importance of dynamic features in capturing adequate and
monitorable ODDs.

We executed our framework for several iterations. In the initial iteration,
referred to by No Mon in Fig. 4 and Fig. 5, referring to one where we did not
use a monitor (or using a monitor that does not issue alerts), we evaluated
the performance of the network by calculating the rate of lane invasions over
the number of steps performed in 163 simulation runs. Each run included 250
simulation steps. We use the value as a reference for later iterations to determine
how the learned monitors in each iteration increase the safety of the system. The
initial lane invasion rate was 21%.

In each iteration that follows, a new monitor is learned (indicated by Mon
1 to Mon 4). For each monitor, we calculated the false negatives rate and the
false positives rate. The false negatives rate determines the lane invasion rate
in the presence of the monitor. We compare this value to the initial reference
rate to determine the increase in safety after using the monitor. To determine
the quality of the monitor we also looked at the false positives cases where the
monitor issued an unnecessary switch to the safe controller.

Results for Static Features. In this first experiment, we only use values of the
static features of precipitation, cloudiness, and sun angle to train the monitor.

In the first iteration, while the monitor can reduce to rate of lane invasions
by 8%, the false positives rate of that monitor is very high. We apply another
round of learning, this time amending the warehouse with counterexamples, both
false positives, and negatives examples, collected during conformance testing. In
the second iteration, the process managed to learn a monitor with a lower false
positives rate, at the cost of increasing the false negatives rate. With further
iterations, the misclassification rate increased, due to an increase in the false
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Fig. 5. Results using static and dynamic features

positives rate. From then on, the rates kept fluctuating aggressively. In Fig. 4 we
present the first five iterations.

The aggressive fluctuation is an indication that we have exhausted the role of
the given semantic features in learning an optimal monitor with respect to these
features. This in turn means that we need to extend the set of features with ones
that allow us to construct monitors that can distinguish more cases than with
the smaller set of features. For example, we noticed in some cases, that while
the monitors constructed in the above experiments captured well the weather
conditions where the CNN will mostly keep the system safe, in some corner
cases such as entering a junction or a sharp turn, a lane invasion was occurring
even when adequate weather conditions were present. In the next experiment,
we show that we can improve on this, by adding location information, which will
allow our framework to distinguish these cases from the general weather cases
and return better quality monitors.

Results for Dynamic Features. In this experiment, in addition to the features
of precipitation, cloudiness, and sun angle, we used features defining the road
id and the location of the car on this road. The latter two indirectly capture
dynamic features such as being at the end of the road or passing by certain
landmarks. Using the new additional features we were able to learn monitors
with lower false negatives and false positives rates than monitors solely based on
static features. While the rates fluctuate at the beginning, they start to stabilize
after the third iteration.

By looking at simulations using some of the monitors above, we did indeed
encounter situations where the monitor triggered an alert shortly before arriving
at a junction or sharp turn. These scenarios would not have been able to be
detected using the monitors from the previous experiment. Scenarios that could
still be not handled by the new monitors, were cases where driveways had a
similar texture and curvature as the roads. This emphasizes the importance of
feature engineering in the learning process of monitors. In the future, we plan
to build on our findings to further investigate this problem.
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6 Related Work

Operational Design Domains. A key aspect in assuring the safety of AI-based
autonomous systems is to clearly understand their capabilities and limitations.
It is therefore important to establish the operational design domains of the sys-
tem and its components and to communicate this information to the different
stakeholders [5,29,30]. Several works have been dedicated to investigating ways
of describing ODDs. Some of them are textual and follow a structured natural
language format for describing ODDs [36,47]. Others include a tabular descrip-
tion defining a checklist of rules and functional requirements that need to be
checked to guarantee a safe operation of the system [44]. A generic taxonomy
of the different ODD representation formats is presented in BSI PAS 1883 stan-
dard [25].

While the approaches above concentrate on the design of languages for
describing ODDs, many works have concluded that there also is a necessity
for ODDs to be executable, e.g., to enable the construction of monitors that
can be used at runtime [7]. To this end, there has been a focus on developing
machine-readable domain-specific languages for implementing ODD, to enable
specification, verification, and validation of the ODD, both at design and runtime
[26]. In contrast to previous work, we go one step further and present a frame-
work for the automated construction of ODDs, i.e., for a given system component
we learn the ODD which is initially unknown. We especially introduce a formal
definition of monitorable ODD. Based on this definition we present a new quanti-
tative formalization of the problem learning optimal ODDs for black-box models
and solve the problem using a counterexample-guided learning approach.

Runtime Verification. Runtime verification and assurance techniques aim to
ensure that a system meets its (safety) specification at runtime [8,15,38]. A large
body of work in the runtime verification community has been dedicated to the
development of specification languages for monitoring and investigating efficient
monitoring algorithms for these languages. Most of the work on formal runtime
monitoring is based on temporal logics [17,32,37]. The approaches vary between
inline methods that realize a formal specification as assertions added to the code
to be monitored [37], and outline approaches that separate the implementation of
the monitor from the system under investigation [17]. Based on these approaches
and with the rise of real-time temporal logics such as MTL [31] and STL [34],
a series of works introduced new algorithms and tools for the monitoring of
real-time properties [4,9,16,45]. Neural networks themselves may be used as
monitors [6]. All these monitoring can be adopted in our framework and can
be used as monitoring tools for evaluating runtime properties during simulation.
Runtime monitoring techniques can also be applied to investigate whether the
input to a known neural network is within its support [33].

Furthermore, the literature also includes a list of frameworks for designing
systems with integrated runtime assurance modules that are guaranteed to sat-
isfy these criteria. An example of such a framework is Soter [8,43], a runtime
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assurance framework for building safe distributed mobile robots. A Soter pro-
gram is a collection of asynchronous processes that interact with each other using
a publish-subscribe model of communication. A runtime assurance module in
Soter is based on the famous Simplex architecture [41] and consists of a safe
controller, an advanced controller, and a decision module. A key advantage of
Soter is that it also allows for straightforward integration of many monitoring
frameworks. Another approach based on Simplex is the ModelPlex framework
[35]. ModelPlex combines design-time verification of CPS models with runtime
validation of system executions for compliance with the model to build correct
by construction runtime monitors which validate at runtime any assumption on
the model collected at design time, i.e., whether or not the behavior of the sys-
tem complies with the verified model and its assumptions. In case an error is
detected, a fail-safe fallback procedure is initiated.

Counterexample-Guided Synthesis. Our learning and conformance testing loop is
a quantitative extension of the general line of work of inductive synthesis [27,28].
We particularly use a quantitative extension of counterexample-guided synthesis
to learn a monitorable ODD by querying an oracle, in our case the conformance
tester. Inductive synthesis is heavily used in the context of programming lan-
guages but can also be used for perception modules and control [23]. Rather
than learning a program, we learn a monitor. The main idea here is that rather
than learning a complete monitor, we have a skeleton of the monitor that may
be extracted from domain-specific knowledge or learned.

Another direction for monitor synthesis is the paradigm of introspective en-
vironment modeling (IEM) [39,40]. In IEM, one considers the situation where
the agents and objects in the environment are substantially unknown, and thus
the environment variables are not all known. In such cases, we cannot easily
define a Scenic program for the environment. The only information one has is
that the environment is sensed through a specified sensor interface. One seeks
to synthesize an assumption on the environment, monitorable on this interface,
under which the desired specification is satisfied. While very preliminary steps on
IEM have been taken [39], significant work remains to be done to make this prac-
tical, including efficient algorithms for monitor synthesis and the development
of realistic sensor models that capture the monitorable interface.

7 Conclusion

We presented a formal definition of monitorable operational design domains and
a formalization of the problem of learning monitors for the operational design
domains of black-box (ML) components. We discussed the need for a quantita-
tive version of the problem and presented a quantitative counterexample-guided
learning framework for solving the problem. Our experiments show, how the
introduced framework can be used to learn monitors on a monitorable feature
space that prevent the system from using a critical component when the system
exits its ODD. Learning monitors of high quality requires a lot of effort on the
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feature engineering side. Furthermore, learning monitors may be subject to differ-
ent objectives, e.g., accuracy vs efficiency. In the future we plan on investigating
the latter problems further with the goal of providing the user with adequate
feedback that helps in the selection process of monitors.
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Abstract. It is challenging to use reinforcement learning (RL) in cyber-
physical systems due to the lack of safety guarantees during learning.
Although there have been various proposals to reduce undesired behaviors
during learning, most of these techniques require prior system knowledge,
and their applicability is limited. This paper aims to reduce undesired
behaviors during learning without requiring any prior system knowledge.
We propose dynamic shielding : an extension of a model-based safe RL
technique called shielding using automata learning. The dynamic shield-
ing technique constructs an approximate system model in parallel with
RL using a variant of the RPNI algorithm and suppresses undesired explo-
rations due to the shield constructed from the learned model. Through this
combination, potentially unsafe actions can be foreseen before the agent
experiences them. Experiments show that our dynamic shield significantly
decreases the number of undesired events during training.

Keywords: Reinforcement learning · Shielding · Automata learning

1 Introduction

Reinforcement learning (RL) [27] is a powerful tool for learning optimal (or
near-optimal) controllers, where the performance of controllers is measured by
their long-term cumulative rewards. An agent in RL explores the environment by
taking actions at each visited state, each of which yields a corresponding reward:
RL aims for an efficient exploration by prioritizing actions that maximize the
subsequent cumulative reward. RL is particularly advantageous when the system
model is unavailable [20] or too large for an exhaustive search [26].

Since an RL agent learns a controller through trial and error, the exploration
can lead to undesired behavior. For instance, when the learning is conducted
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Fig. 1. Comparison of the conventional shielding and our dynamic shielding.

on a cyber-physical system, such undesired behaviors can be harmful because
they can damage the hardware, e. g., by crashing into a wall. Shielding [1]1 is
actively studied to address this problem. A shield is an external component that
suggests a set of safe actions to an RL agent so that the agent can explore the
environment with fewer encounters with undesired behaviors (Fig. 1a).

Example 1 (WaterTank). Consider a 100 liter water tank with valves to con-
trol the water inflow. The controller opens and closes the valve, and tries to
prevent the water tank from becoming empty or full. The exact inflow cannot
be controlled but can be observed, s.t. inflow P {0, 1, 2}. The tank also has a
random outflow, s.t. outflow P {0, 1}. A good shield prevents opening (resp. clos-
ing) the valve when the water tank is almost full (resp. empty). Moreover, there
must be at least three time steps between two consecutive valve position changes
to prevent hardware failure. Hence, the shield should also prevent changing the
valve position when the last change was too recent.

Most of the existing shielding techniques [1,2,8,12,14] for RL assume that the
system model is at least partially available, and its formal analysis is feasible.
Thus, with few exceptions (e. g., [11]), black-box systems have been beyond exist-
ing techniques. However, this assumption of conventional shielding techniques lim-
its the high applicability of RL, which is one of the major strengths of RL.

Dynamic Shielding. To improve the applicability of shielding for RL, we propose
the dynamic shielding scheme (Fig. 1b). Our goal is to prevent actions similar
to those ones that led to undesired behavior in previous explorations. In our
dynamic shielding scheme, the shield is constructed and regularly updated using
an approximate system model learned by a variant of the RPNI algorithm [21]
for passive automata learning [17]. Since the RPNI algorithm generates a sys-
tem model consistent with the agent’s experience, a dynamic shield can prevent
previously experienced undesired actions. Moreover, since the RPNI algorithm
can deem some of the actions similar, a dynamic shield can prevent undesired
actions even without experiencing if the action is deemed unsafe.
1 The shield we use in this paper is the variant called preemptive shield in [1]. It is

straightforward to apply our framework to the classic shield called post-posed shield.
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It is, however, not straightforward to use a system model constructed by
the original RPNI algorithm for shielding. At the beginning of the learning,
our knowledge of the system is limited, and the RPNI algorithm often deems
a safe action as unsafe, which prevents necessary exploration for RL. To infer
the (un)safety of unexplored actions with higher accuracy, we introduce a novel
variant of the RPNI algorithm tailored for our purpose. Intuitively, our algo-
rithm deems two actions in the training data similar only if there is a long
example supporting it, while the original RPNI algorithm deems two actions
similar unless there is an explicit counter example. We also modified the shield
construction to optimistically enable not previously seen actions, as otherwise,
necessary explorations are also prevented.

We implemented our dynamic shielding scheme in Python and conducted
experiments to evaluate its performance compared to two baselines: the plain
RL without shielding and safe padding [11], one of the shielding techniques
applicable to black-box systems. Our experiments suggest that dynamic shielding
prevents undesired exploration during training and often improves the quality
of the resulting controller. Although the construction and the use of dynamic
shielding require some extra time, it is not prohibitive.

Contributions. The following list summarizes our contributions.

– We introduce the dynamic shielding scheme (Fig. 1b) using a variant of the
RPNI algorithm for passive automata learning.

– We modify the RPNI algorithm and the shield construction so that the shield
does not prevent necessary exploration, even if our prior system knowledge is
limited.

– We experimentally show that our dynamic shielding scheme significantly
reduces the number of undesired explorations during training.

1.1 Related Works

The notion of shield is originally proposed in [5] as an approach for runtime
enforcement. In this line of research [3,4,28], a shield takes the role of an enforcer
that overwrites the output of the system when the specification is violated at
runtime. Shielding in this context is fundamentally different from ours, where
shields are used to block system inputs that incur unsafe outputs of the system.

Shielding for RL (or simply shielding) is categorized as a technique of safe RL.
Using the taxonomy of [10], shielding is an instance of “teacher provides advice”;
i.e., a shield as a teacher giving additional information to the learning agent to
prevent unsafe exploration. Such a use of a shield is first proposed in [1], and sev-
eral probabilistic variants are also proposed [2,6,14]; they assure that the learning
is safely done with high probability (but not necessarily with full certainty). In
these works, a system model is necessary to construct a shield. Some works pro-
pose shielding for inaccurate models [8,12,23], but they still require some prior
knowledge of the system (e. g., the nominal dynamics of the system).

To the best of our knowledge, the existing work closest to ours is cautious
RL [11]: it is also a shielding-based safe RL that does not require a system model
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Fig. 2. Shield construction schema. Our main contribution is the system abstraction’s
inference through automata learning techniques.

(but can perform better with a system model). To avoid unsafe events under
uncertainty, cautious RL learns an MDP in parallel with the RL process, and its
safe padding blocks actions that let the agent come too close to an area where
an action may lead to undesired behavior according to the learned MDP. That
strong blocking policy works as a safety buffer against unexpected transitions.

A major difference between our technique and safe padding is in the approx-
imate model learning: in safe padding, the observation space is directly used as
the state space of the learned MDP, while we merge some of them based on sim-
ilarity of the suffixes to generalize observations. In experiments, we demonstrate
that generalization by automata learning effectively reduces safety violations.

2 Preliminaries

For a set X, we denote the set of probability functions over X by DX. For a set
Σ, let Σ˚ be the set of finite sequences over Σ. We denote the empty sequence
by ε. For any w P Σ˚, the length is denoted by |w|.

We use Mealy machines to formalize an abstract system model and a shield.

Definition 2 (Mealy machine). A Mealy machine is a 6-tuple M “
(S, s0, Σin, Σout, E, Λ), where: S is a finite set of states, s0 P S is the initial
state, Σin and Σout are finite alphabets for inputs and outputs, E : S ˆ Σin � S
is a partial transition function, and Λ : S ˆ Σin � Σout is a partial output
function such that Λ(s, a) is defined if and only if E(s, a) is defined.

Definition 3 (path, run, output). Let M “ (S, s0, Σin, Σout, E, Λ) be a
Mealy machine and let win “ a1, a2, . . . an P Σi̊n be an input word. For a state
s P S of M, the path ρ of M from s over win is the alternating sequence
ρ “ s, a1, s1, a2, . . . , an, sn of states si P S and input actions ai P Σin satisfying
E(s, a1) “ s1 and E(si´1, ai) “ si for each i P {2, . . . , n}. A run of a Mealy
machine M is a path of M from the initial state s0. For a state s P S of M, we
write E(win, s) to denote the last state sn of the path ρ “ s, a1, s1, a2, . . . , an, sn
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of M from s over win. The output M(win, s) P Σout of a Mealy machine M
is defined by M(win, s) “ Λ(sn´1, an), where sn´1 “ E(win

1, s) and win
1 “

a1, a2, . . . , an´1. We write E(win) “ E(win, s0) and M(win) “ M(win, s0).

2.1 Automata and Games for System Modeling

As shown in Fig. 2, we assume that the system is representable as a Markov
decision process (MDP), and we use finite-state reactive systems (FSRSs) [1] to
abstract the MDP. More precisely, an FSRS is a two-player deterministic game
of the controller (Cont) and the environment (Env), where MDP’s probabilistic
transitions are represented by Env transitions. Note that MDPs are only used
for the theoretical discussion in this paper.

Definition 4 (Markov decision process (MDP)). An MDP is a 5-tuple
(S, s0, Σin, Σout,Δ) such that: S is a finite set of states, s0 P S is the initial
state, Σin and Σout are the finite set of input and output alphabets, respectively,
and Δ : S ˆ Σin � D(S ˆ Σout) is the probabilistic transition function.

Definition 5 (finite-state reactive system (FSRS)). An FSRS is a Mealy
machine M “ (S, s0, Σin, Σout, E, Λ) that satisfies the following: Σin “ Σ1

inˆΣ2
in,

where Σ1
in(resp.Σ2

in) is the set of actions of Cont (resp. Env); for each s P S and
a1 P Σ1

in, there is a2 P Σ2
in for which E(s, (a1, a2)) is defined.

Definition 6 (strategy). For an FSRS M “ (S, s0, Σ
1
in ˆ Σ2

in, Σout, E, Λ),
strategies of Cont and Env are functions σ : ΠM → DΣ1

in and τ : ΠM ˆ Σ1
in →

DΣ2
in, respectively, where ΠM is the set of runs of M. For strategies τ of Env,

we also require that τ(ρ, a1)({a2}) ą 0 holds only if E(ρlast, (a1, a2)) is defined,
where ρlast is the last state of ρ. A strategy is memoryless if it is independent of
the run except for the last state.

We use an FSRS as an abstraction of an MDP because for an FSRS M
and a memoryless strategy τ of Env, there is a canonical MDP Mτ , where the
actions of Env are chosen by τ . Formally, for M “ (S, s0, Σ

1
in ˆ Σ2

in, Σout, E, Λ)
and τ , Mτ is Mτ “ (S, s0, Σ

1
in, Σout,Δ), where for each s, s1 P S, a1 P Σ1

in, and
b P Σout, Δ(s, a1) is such that

(Δ(s, a1))(s1, b) “ (τ(s, a1))({a2 P Σ2
in | E(s, (a1, a2)) “ s1 ∧ Λ(s, (a1, a2)) “ b}).

By fixing both Cont and Env strategies σ and τ of an FSRS M, we
obtain a stochastic structure Mσ,τ . We define the language L(Mσ,τ ) Ď
((Σ1

in ˆ Σ2
in) ˆ Σout)

˚ of Mσ,τ as the set of sequences of input/output actions
((a1

i , a
2
i ), bi) P (Σ1

in ˆ Σ2
in) ˆ Σout in the runs of Mσ,τ .

Example 7 (WaterTank FSRS). The Water Tank in Example 1 is formalized
as an FSRS M “ (S, s0, Σ

1
in ˆΣ2

in, Σout, E, Λ), where: S “ {0, 1, . . . , 100}; Σ1
in “

{open, close}; Σ2
in “ inflow ˆ outflow, where inflow “ {0, 1, 2} and outflow “

{0, 1}; Σout “ {low, safe,high}; Δ(s, (a1, (n,m))) is defined if either a1 “ open
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and n P {1, 2} or a1 “ close and n “ 0; Δ(s, (a1, (n,m))) “ max{0,min{s `
n ´ m, 100}}; For any (a1, (n,m)) P Σ1

in ˆ Σ2
in, we have Λ(0, (a1, (n,m))) “

low, Λ(100, (a1, (n,m))) “ high, and Λ(s, (a1, (n,m))) “ safe otherwise.
The probabilistic behavior of the WaterTank environment (i. e., Env) is

such that i) the inflow of water is randomly chosen from {1, 2} when a1 “ open,
and ii) the outflow of the water is randomly chosen from {0, 1}. Such a behavior
is formalized by a Env strategy τ such that: τ(s, open)({(n,m)}) “ 0.25 for each
(n,m) P {1, 2} ˆ {0, 1}, and τ(s, close)({(0,m)}) “ 0.5 for each m P {0, 1}.

2.2 Safety Automata for Specifications

In the shielding methodology, the shield’s specification is given as a safety
automaton. As shown in Fig. 2, typically, this automaton is automatically gen-
erated from a temporal logic formula, e. g., linear temporal logic (LTL). See,
e. g., [15] for the construction of an automaton from an LTL formula.

Definition 8 (Safety Automata). A safety automaton is a 5-tuple A “
(Q, q0, F,Σ,N), where: Q is a finite set of states, q0 P Q is the initial state,
F Ď Q is the set of safe states, Σ is the finite set of alphabet, and N : QˆΣ → Q
is the transition function satisfying N(q, a) P F only if q P F .

A run of a safety automaton is defined similarly to that of a Mealy machine.
For a safety automaton A, the language L(A) Ď Σ˚ of A is the set of words
w “ a1, a2, . . . , an such that the run q0, a1, q1, . . . , an, qn over w satisfies qn P F .
By the definition of N and F , L(A) is prefix-closed. We call ϕ Ď Σ˚ a satefy
specification if there is a safety automaton recognizing it. For an FSRS M over
Σin and Σout, a Cont strategy σ of M, and a specification ϕ Ď (Σin ˆ Σout)

˚,
we say M satisfies ϕ under σ if for any Env strategy τ , we have L(Mσ,τ ) Ď ϕ.

2.3 Shielding for Safe Reinforcement Learning

We use an FSRS and a safety automaton to define a safety game which we use
to create a shield for safe RL. First, we show the formal definition of shields.

Definition 9 ((Preemptive) Shield [1]). Let M be an FSRS as above. A
shield for M is a Mealy machine S “ (SS , s0,S , Σ1

in ˆ Σ2
in, 2

Σ1
in ,ΔS , ΛS) s.t. for

any sS P SS and input actions a, a1 P Σ1
in ˆΣ2

in, we have ΛS(sS , a) “ ΛS(sS , a1).

For any input word win P (Σ1
in ˆ Σ2

in)
˚, the shield S returns ΛS(win) as the set

of safe actions for Cont after win is processed in M. A shield S canonically induces
a strategy σ for an MDP Mτ generated by any τ , namely a strategy σ such that
σ(ŝ0, a1, ŝ1, . . . , ak, ŝk) is the discrete uniform distribution over ΛS(win).

Given an FSRS M and a specification ϕ realized by a safety automaton Aϕ

(i. e., L(Aϕ) “ ϕ), our goal is to construct a shield S such that for any Env
strategy τ , the MDP Mτ satisfies ϕ under any Cont strategy σ compatible with
S. To this end, we consider a safety game constructed by M and Aϕ.
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Definition 10 (Safety Game). A 2-player safety game is an FSRS G “
(G, g0, Σ

1
in ˆ Σ2

in, {0, 1}, EG, FG).

For an FSRS M and a safety automaton Aϕ, the parallel composition
M || Aϕ is the safety game M || Aϕ “ (G, (s, q), Σ1

in ˆ Σ2
in, {0, 1}, EG, FG),

where G “ S ˆ Q, EG((s, q), (a1, a2)) “ (s1, q1), s1 “ E(s, (a1, a2)), q1 “
N(q, (a, Λ(s, (a1, a2)))), and FG is such that FG((s, q), (a1, a2)) “ 1 if and only
if N(q, ((a1, a2), Λ(s, (a1, a2)))) P F .

We say g P G is a safe state if there is a Cont strategy σ such that, for any
Env strategy τ and w “ ((a1

1, a
2
1), b1), ((a

1
2, a

2
2), b2), . . . , ((a

1
n, a2

n), bn) P L(Mσ,τ ),
the unique run g0, (a1

1, a
2
1), g1, . . . , (a

1
n, a2

n), gn of M over w satisfies gn P FG.
Intuitively, a state g is safe if there is a Cont strategy σ such that the run always
remains in safe states, regardless of the Env actions.

We utilize the shield construction algorithm in [1] to the above safety
game G. Namely, the shield generated from G is an FSRS S “ (G, g0, Σ

1
in ˆ

Σ2
in, 2

Σ1
in , EG, ΛS), where for each state s P G, ΛS assigns the set of Cont actions

such that for any Env strategy, we remain in the safe states forever.

2.4 The RPNI Algorithm for Passive Automata Learning

We use a variant of the RPNI algorithm [21] to learn an approximate system
model in parallel with RL. See, e. g., [17] for the detail. Given a finite training
data D Ď Σi̊n ˆ Σout, the RPNI algorithm constructs a Mealy machine M
that is consistent with the training data D, i. e., for any (win, b) P D, we have
M(win) “ b. For simplicity, we assume that the training data is prefix-closed,
i. e., if D contains (win, b), for any prefix w1

in of win and for some b1 P Σout, D
contains (win, b

1). This assumption holds in our dynamic shielding scheme and
does not harm its applicability. Since we learn a Mealy machine, we assume that
the output in the training data is uniquely determined by the input word, i. e.,
for each (win, b), (w1

in, b
1) P D, win “ w1

in implies b “ b1.
The RPNI algorithm creates the prefix tree Mealy machine (PTMM) MD

from the training data D and constructs a Mealy machine M by merging the
states of MD. The PTMM MD is the Mealy machine such that the states are
the input words in the training data, and the transition and output functions
are E(win, a) “ win · a and Λ(win, a) “ b if (win · a, b) P D for some b P Σout, and
otherwise, undefined. When merging states s and s1 of MD, we require them to
be compatible, i. e., the merging of s and s1 must not cause any nondeterminism to
make the learned Mealy machine the consistent with the training data. The RPNI
algorithm greedily merges states s and s1 of MD as far as they are compatible.

3 Dynamic Shielding with Online Automata Inference

Here, we introduce our dynamic shielding scheme in Fig. 1b, where the shield is
constructed from the FSRS inferred in parallel with the RL process. Since our
dynamic shielding scheme does not require the system model, we can apply it
to black-box systems.
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3.1 Dynamic Shielding Scheme

In conventional shielding (Fig. 1a), the shield is constructed from the system
model and provides safe actions to the learning agent. See also Fig. 2 for the shield
creation schema. By shielding, we can ensure the safety of the exploration in RL
if the given system model correctly abstracts the actual system. However, the use
of a predefined system model limits the applicability of shielding. Specifically,
we cannot use the conventional shielding scheme for black-box systems.

In dynamic shielding (Fig. 1b), using the RPNI algorithm, we learn a system
model in parallel with RL, and prevent exploring undesired actions according to
the learned model. More precisely, all the inputs and the outputs in RL are given
to the RPNI algorithm, and we obtain an FSRS M in Fig. 2. From M and the
given specification ϕ, we generate a shield S, and prevent undesired exploration
using S. We continuously reconstruct the shield along with the RL process.
Since we learn FSRS from observations, the learned FSRS may be incomplete
or inconsistent with the actual system, which causes the following challenges.

3.2 Challenge 1: Incompleteness of the Learned FSRS

Since the RPNI algorithm is based on merging of nodes of the prefix tree rep-
resenting the training data, the inferred FSRS M has partial transitions when
there are unexplored actions from some of the states of M. Specifically, there
may be a state s P S of the FSRS M and a Cont action a1 such that E(s, (a1, a2))
is undefined for any Env action a2. If we construct a shield from such an FSRS
by the algorithm in [1], the shield prevents the Cont action a1 because there is
no transition labeled with a1 to stay in the safe states. However, since we have
no evidence of safety violation by the Cont action a1, this interference is against
the “minimum interference” policy of shielding [1]. Moreover, such interference
can harm the performance of the synthesized controller because it limits the
exploration in RL.

To minimize the interference, we modify the safety game construction so
that the undefined destinations in the FSRS are deemed safe. More precisely,
we create a fresh sink state s⊥ that is safe in the safety game, and make it the
destination of the undefined transitions in the FSRS. We remark that the use
of such an additional sink state does not allow any Cont action with evidence
of safety violation because even if a Cont action a1 leads to a safe state for one
Env action a2, the Cont action a1 is prevented if there is another Env action ã2

leading to a violation of the specification ϕ.
The safety game construction is formalized as follows.

Definition 11. For an FSRS M “ (S, s0, Σ
1
in ˆ Σ2

in, Σout, E, Λ) and a
safety automaton Aϕ “ (Qϕ, qϕ

0 , F,Σout, N
ϕ), their compositions is the

safety game G “ (G, g0, Σ
1
in ˆ Σ2

in, {0, 1}, EG, FG) such that: G “
(S Y {s⊥}) ˆ Qϕ; g0 “ (s0, q

ϕ
0 ); EG is EG((s, qϕ), (a1, a2)) “

(E(s, (a1, a2)), Nϕ(qϕ, Λ(s, (a1, a2)))) if E(s, (a1, a2)), is defined, and otherwise,
EG((s, qϕ), (a1, a2)) “ (s⊥, Nϕ(qϕ, Λ(s, (a1, a2)))); FG “ (SˆF )Y({s⊥}ˆQϕ).
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3.3 Challenge 2: Precision in Automata Learning

In the RPNI algorithm, the generalization of the training data is realized by the
state merging. Such generalization allows a dynamic shield to foresee potentially
unsafe actions before the learning agent experiences them.

Since the RPNI algorithm aims to construct a minimal FSRS, it greedily
merges the states as long as there is no evidence of inconsistency. However, when
the training data is limited, there may not be evidence of the inconsistency of
states, even if they must be distinguished according to the (black-box) ground
truth. In such a case, the greedy merging in the RPNI algorithm may decrease
the precision of the learned FSRS. This is especially the case at the beginning of
the training because the training data D is small. Moreover, such an imprecise
dynamic shield may even harm the quality of the controller synthesized by RL
because the dynamic shield may prevent necessary exploration when it deems a
safe action to be unsafe.

To prevent such too aggressive merging, we require additional evidence in
the state merging. Namely, we modify the RPNI algorithm so that states s and
s1 can be merged only if there are paths from s and s1 over a common word
w P (Σin ˆ Σout)

˚ longer than a threshold MinDepth. This idea is related to
the evidence-driven state merging (EDSM) [16], where similar evidence is used
in prioritizing the merged states. In our implementation, we adaptively decide
MinDepth so that MinDepth is large when the mean length of the episodes
is short. This typically makes the merging more aggressive through the learning
process. Nevertheless, further investigation of MinDepth is future work.

3.4 Theoretical Validity of Our Dynamic Shielding

We show that our dynamic shielding scheme assures the safety of RL when the
training data is large enough to construct an abstraction of the actual system.

Definition 12 (abstraction). For FSRSs M “ (S, s0, Σ
1
in ˆ Σ2

in, Σout, E, Λ)
and M1 “ (S1, s1

0, Σ
1
in ˆ Σ2

in, Σout, E
1, Λ1), M1 abstracts M if for each w P

(Σ1
in ˆ Σ2

in)
˚ if E(w) is defined, E1(w) is also defined, and Λ(w) “ Λ1(w) holds.

Theorem 13 (safety assurance by a dynamic shield). Let M be an FSRS,
let M1 be its abstraction, let ϕ be a specification realized by Aϕ, and let S be a
shield generated by M1 and Aϕ. For any strategy τ of Env in M, the MDP Mτ

satisfies ϕ under any strategy σ generated by S.
Proof (sketch). Let σ be a Cont strategy of M1 ˆ Aϕ, and let σ1 be a Cont
strategy of M1 obtained by taking the obvious projection of σ. It is well known
that if a state (s, q) of the product game is winning for Cont under σ, in M1, any
path from s satisfies ϕ under σ1. Since M1 is an abstraction of M, if any path
from the initial state s1

0 of M1 satisfies ϕ under σ1, any path from the initial
state s0 of M also satisfies ϕ under σ1. Therefore, for any Env strategy τ , the
MDP Mτ satisfies ϕ under any strategy σ generated by S. ��
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Let Mτ be the MDP representing the actual system in Fig. 2, where M is
an FSRS and τ is a Env strategy in M. By Theorem 13, if the learned FSRS
M1 abstracts M, the dynamic shield S assures the safety of the exploration in
Mτ . When the training data is large and includes a certain set of words called
characteristic set, the RPNI algorithm is guaranteed to learn the abstraction
correctly [17]. However, in our dynamic shielding scheme, the training data may
not be a superset of the characteristic set even in the limit because the dynamic
shield interferes with the exploration. Nevertheless, suppose the learning algo-
rithm eventually explores all available actions, and the maximum length of each
episode in RL is long enough to cover all states of M. In that case, the training
data eventually includes the characteristic set of M restricted to the safe actions
according to the dynamic shield S. Since the dynamic shield constructed from
such training data prohibits all the unsafe actions, our dynamic shielding assures
the safety in the limit.

4 Experimental Evaluation

To show the applicability of dynamic shielding and the viability of our approach,
we conducted a series of experiments. The following research questions guided
our experiments on our dynamic shielding scheme for RL.

RQ1 Does dynamic shielding reduce the number of undesired behaviors?
RQ2 How does dynamic shielding affect the quality of the controller synthesized

by RL?
RQ3 What is the computational overhead of dynamic shielding, and is it pro-

hibitively large?

4.1 Implementation and Experiments

We implemented our dynamic shielding scheme in Python 3 and Java using
LearnLib [13] for the RPNI algorithm2. For deep RL, we used Stable Baselines
3 [24] (for proximal policy optimization algorithm (PPO) [25]) and Keras-RL [22]
(for deep Q learning (DQN) [19]). We used two libraries and learning algorithms
to demonstrate that dynamic shielding is independent of the RL algorithm.

To answer the research questions, we compared the performance of RL with
dynamic shielding (denoted as Shielding) with the standard RL process with-
out shielding (denoted as Plain) and the RL process with safe padding [11]
(denoted as SafePadding).

Learning of each controller consists of the training and the test phases. The
training phase is the main part of the learning, and the testing phase is invoked
once every 10,000 training steps to evaluate the learned controller and choose
the resulting one. We finish the learning when the total number of steps in the
training phase exceeds the predetermined bound, which is one of the commonly
used criteria. See Table 1 for the bounds for each benchmark.
2 The artifact is publicly available at https://doi.org/10.5281/zenodo.6906673.

https://doi.org/10.5281/zenodo.6906673
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Table 1. Summary of the benchmarks we used. MLP and CNN are abbreviations of
“multilayer perceptron” and “convolutional neural network”.

Benchmark’s origin Observation space (size) Network Learning algorithm # of steps

WaterTank Alshiekh et al. [1] Discrete (714) MLP PPO 500,000

GridWorld Our original Discrete (625) MLP PPO 100,000

Taxi OpenAI Gym [7] Discrete (500) MLP PPO 200,000

CliffWalk OpenAI Gym [7] Discrete (48) MLP PPO 200,000

SelfDrivingCar Alshiekh et al. [1] Continuous ([´1, 1]4) MLP DQN 200,000

SideWalk MiniWorld [9] Image (80 ˆ 60 ˆ 3 ˆ 256) CNN PPO 100,000

CarRacing OpenAI Gym [7] Image (96 ˆ 96 ˆ 3 ˆ 256) CNN PPO 200,000

To evaluate the RL training, we measure the total number of training episodes
with undesired behaviors and the total execution time, including both training
and testing phases. To evaluate each controller, we run it for 30 episodes and
measure the mean reward and the safe rate, i. e., the rate of the episodes without
undesired behaviors in the 30 episodes.

We ran experiments on a GPU server with AMD EPYC 7702P, NVIDIA
GeForce RTX 2080 Ti, 125GiB RAM, and Ubuntu 20.04.3 LTS. We used eight
CPUs and one GPU for each execution. We ran each instance of the experiment
30 times, i. e., we trained 7 ˆ 3 ˆ 30 controllers in total. For each metric, we
report the mean of the 30 executions, i. e., we have 7 ˆ 3 reported values.

4.2 Benchmarks

We chose seven benchmarks for our experiments. Table 1 summarizes them. Most
of them are common and openly available. We modified them to fit to dynamic
shielding: randomness except for those observable as Env actions are removed;
the actions are discretized; the observations for the RL agent is not changed,
while the observation for the dynamic shield is discretized. We used CNN for
the benchmarks with graphical observation and MLP for the others.

WaterTank implements the benchmark already used for shielding in [1].
Example 1 and 7 show the details of the system. The undesired behavior used
in the shield construction is: i) to make the water tank empty or full, or ii) to
change the status of the switch too often.

GridWorld is a high-level robot control example of two robots in a 5ˆ5 grid
arena. One of them is the ego robot we control, and the other robot randomly
moves. The objective of the ego robot is to reach the goal area, without touching
the arena walls or the other robot.

Taxi is a benchmark to pick up passengers and drop them off at another
place in a 5 ˆ 5 grid arena. As criteria of a safety violation, we measured the
number of episodes where the taxi is broken, which randomly occurs when it
hits the wall. The undesired behavior used in the shield construction is hitting
the wall, picking up or dropping off the passenger at an inappropriate location.

CliffWalk is a benchmark to move ego to the goal area without stepping
off the cliff in a 3 ˆ 12 grid arena. The undesired behavior used in the shield
construction is to step off the cliff.
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Table 2. Mean of 1) the number of episodes with undesired behavior in training phases
and 2) the execution time (in seconds), including both training and testing phases. The
cells with the best results are highlighted.

Undesired episodes Total time

Plain SafePadding Shielding Plain SafePadding Shielding

WaterTank 1883.67 1892.40 177.13 1860.46 1947.09 6080.89

GridWorld 6996.40 7322.23 5623.43 177.18 1487.10 4548.70

CliffWalk 1493.20 1528.67 478.20 355.18 365.54 839.06

Taxi 8723.13 2057.33 37.77 336.04 349.78 611.87

SelfDrivingCar 6403.07 6454.60 5662.40 865.55 4919.13 10087.18

SideWalk 373.60 427.93 273.37 762.67 1734.66 6395.73

CarRacing 180.13 141.17 41.73 7650.38 16694.63 12532.04

SelfDrivingCar is a benchmark to drive a car in a 480ˆ480 arena around
a blocked area in a clockwise direction without hitting the walls. The undesired
behavior used in the shield construction is to hit the walls in the arena.

SideWalk is a benchmark for 3D robot simulation. Its objective is to reach
the goal area on the sidewalk without entering the roadway. The undesired
behavior used in the shield construction is to enter the roadway.

CarRacing is a benchmark to drive a car on a predetermined racing course.
As criteria of a safety violation, we measured the number of episodes with spin
behavior, i. e., ego drives off the road and keeps rotating indefinitely. The unde-
sired behavior used in the shield construction is to deviate from the road for any
consecutive steps, which is not yet a safety violation but tends to lead to it.

4.3 RQ1: Safety by Dynamic Shielding in the Training Phase

To evaluate the safety by dynamic shielding, we measured the number of training
episodes with undesired behaviors (“Undesired episodes” columns in Table 2),
and the relationship between the number of undesired training episodes before
each testing phase and the highest mean reward by the testing phase (Fig. 3).

In Table 2, we observe that, for all benchmarks, the training episodes with
undesired behavior were, on average, the lowest when we used dynamic shield-
ing. For example, for CarRacing, the mean number of the training episodes
with undesired behavior was reduced by about 77% compared to Plain and
about 70% compared to SafePadding. In Fig. 3, we observe that for all bench-
marks, the curve of Shielding is growing faster than the curves of Plain and
SafePadding. This suggests that dynamic shielding decreased the number of
undesired explorations to obtain a controller with similar performance.

Answer to RQ1: Overall, we conclude that dynamic shielding can significantly
reduce undesired behaviors during exploration.

Compared to Plain, Shielding decreases such undesired training episodes
because it prevents exploration of actions known to cause undesired behavior,
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Fig. 3. The mean of the number of undesired episodes before each testing phase and
the reward of the best controller obtained in the testing phase.

Table 3. Mean of the performance of the best controllers obtained in the 30 executions.
The cells with the best results are highlighted.

Mean reward Safe rate

Plain SafePadding Shielding Plain SafePadding Shielding

WaterTank 918.89 919.81 921.81 1.00 1.00 1.00

GridWorld 0.37 0.46 0.07 0.80 0.85 0.73

CliffWalk -69.13 -66.00 -65.93 1.00 1.00 1.00

Taxi -147.61 -139.62 -92.93 0.57 0.67 1.00

SelfDrivingCar 28.83 28.86 29.81 1.00 1.00 1.00

SideWalk 0.93 0.90 0.67 0.93 0.89 0.89

CarRacing 375.53 509.25 622.07 1.00 1.00 1.00

while the plain RL may repeatedly explore such actions. Although SafePadding

also prevents such an undesired exploration, the number of the undesired training
episodes of Shielding was smaller than that of SafePadding. This is because,
with Shielding, the undesired explorations are generalized by state merging in
the RPNI algorithm, while in SafePadding, the state space of the learned MDP
is identical to the observation space in the RL, and the undesired explorations
are not often generalized.
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4.4 RQ2: Performance of the Resulting Controller

To evaluate the performance of the resulting controller, for each instance of the
experiments, we measured the mean reward and the safe rate using the controller
that achieved the highest mean reward in the testing phases (Table 3).

In Table 3, we observe that dynamic shielding does not significantly decrease
the safe rate for most of the benchmarks. Moreover, the reward was the highest
when we used dynamic shielding for most of the benchmarks. This is likely
because dynamic shielding prevents explorations with undesired behaviors and
leads the learning agent to achieve the task.

In Table 3, we also observe that for GridWorld and SideWalk, the per-
formance of the controllers obtained by Shielding was the worst. This is likely
because when a dynamic shield prevents undesired explorations, some of the
useful explorations may also be prevented if they are deemed undesired when
generalizing undesired behavior. Note that such generalization is useful since it
can prevent undesired explorations even if we have not experienced exactly the
same exploration. Nevertheless, Table 3 also shows that the average degradation
of the safe rate due to dynamic shielding is at most 12% (GridWorld). This is
not prohibitively large considering the reduction of undesired explorations (e. g.,
from 6996.40 to 5623.43 for GridWorld in Table 3).

Answer to RQ2: Overall, we conclude that dynamic shielding usually improves
the performance of the resulting controller.

4.5 RQ3: Time Efficiency of Dynamic Shielding

To evaluate the overhead of dynamic shielding, we measured the execution time,
including both training and testing phases (“Total time” columns in Table 2).

In Table 2, we observe that Plain was the fastest on average for all bench-
marks. This is mainly because of the computation cost to construct the set of safe
actions. We also observe that SafePadding is usually faster than Shielding.
This is due to the combinatorial exploration in the RPNI algorithm to choose the
merged states, while SafePadding does not conduct such state merging and
directly uses the observation space in the RL as the state space of the learned
MDP. We again remark that the generalization by the state merging contributes
to the safety of Shielding.

In Table 2, we also observe that the overhead of Shielding is at most about
2.5 h (153.7 min in SelfDrivingCar). This is not negligible but still acceptable
for many common usage scenarios, e. g., learning a controller during non-working
hours. Moreover, Table 2 also shows that the overhead is not very sensitive to
the cost of each execution and the observation space. For example, the overhead
of Shielding for WaterTank was close to that for CarRacing. This indeed
makes the relative overhead for CarRacing small.

Answer to RQ3: Overall, we conclude that the overhead of dynamic shielding is
not prohibitively large, especially when the RL is time-consuming even without
shielding.
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5 Conclusions and Perspectives

Based on passive automata learning, we proposed a new shielding scheme called
dynamic shielding for RL. Since dynamic shielding does not require a prede-
termined system model, it is applicable to black-box systems. The experiment
results suggest that i) dynamic shielding prevents undesired exploration dur-
ing training, ii) dynamic shielding often improves the quality of the resulting
controller, and iii) the overhead of dynamic shielding is not prohibitively large.

In dynamic shielding, we assume that the system behaves deterministically
once the actions of the controller and the environment are fixed. Extending
our approach, for example, utilizing a probabilistic model identification [18] to
support probabilistic systems is a future direction.
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Abstract. The expanding role of reinforcement learning (RL) in
safety-critical system design has promoted ω-automata as a way to
express learning requirements—often non-Markovian—with greater ease
of expression and interpretation than scalar reward signals. When ω-
automata were first proposed in model-free RL, deterministic Rabin
acceptance conditions were used in an attempt to provide a direct trans-
lation from ω-automata to finite state “reward” machines defined over
the same automaton structure (a memoryless reward translation). While
these initial attempts to provide faithful, memoryless reward transla-
tions for Rabin acceptance conditions remained unsuccessful, transla-
tions were discovered for other acceptance conditions such as suitable,
limit-deterministic Büchi acceptance or more generally, good-for-MDP
Büchi acceptance conditions. Yet, the question “whether a memoryless
translation of Rabin conditions to scalar rewards exists” remained unre-
solved.

This paper presents an impossibility result implying that any attempt
to use Rabin automata directly (without extra memory) for model-free
RL is bound to fail. To establish this result, we show a link between
a class of automata enabling memoryless reward translation to closure
properties of its accepting and rejecting infinity sets, and to the insight
that both the property and its complement need to allow for positional
strategies for such an approach to work. We believe that such impossi-
bility results will provide foundations for the application of RL to safety-
critical systems.

1 Introduction

The empirical success of reinforcement learning (RL, [26]) in solving challenging
problems, even in the absence of an explicit model of the environment, has
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made its application to the design of safety-critical systems inevitable. However,
traditional RL relies on expert inputs in the form of scalar reward signals that
are often designed in intuitive, empirical fashion. A rigorous approach to the
design of safety-critical systems demands formal specifications at every stage
of the design process. Consequently, there is an increased interest in formal
languages that express learning requirements and in their automatic translation
to reward signals for model-free RL. This paper concerns an impossibility result
on the automatic reward translations when requirements are specified using an
important class of formal languages: the ω-regular objectives.

Omega-regular languages [21,27] have been used to specify high level objec-
tives in the safety-critical system-design community for decades—often in the
form of declarative specifications in Linear Temporal Logic [23]. Omega-regular
objectives express qualitative properties for infinite-horizon behaviors, extend-
ing what regular languages do for finite-horizon behaviors: they are expressive,
robust, and support efficient, automatic analysis. However, unlike regular lan-
guages, for which deterministic finite automata provide a de facto canonical
machine model, the machine models for ω-regular objectives are characterized
by infinitary acceptance conditions to be satisfied by the infinite-horizon behav-
ior. Widely adopted acceptance conditions include Büchi, parity, Rabin, and
Streett conditions [2], and the name of the acceptance condition customarily
precedes “automata” to specify the kind of ω-automata. Deterministic parity,
Rabin, Streett, and nondeterministic Büchi automata capture the same class of
languages and characterize the class of ω-regular languages; while, deterministic
Büchi automata are strictly less expressive.

It is known that unrestricted nondeterminism is not compatible with the
computation of optimal strategies when they are used to express the properties
of probabilistic systems modeled as Markov decision processes (MDPs). This has
motivated the study of a restricted form of nondeterminism formalized as the
good-for-MDPs automata [9,15,30]. Notably, good-for-MDPs Büchi automata
are expressive enough to represent all ω-regular objectives. The optimal control
problem for MDPs against ω-automata based specifications has been studied
extensively [1,6,22]. These solution methods, however, require a model of the
environment dynamics. In the RL framework, the system, specified as an MDP,
is unknown. Model-free RL algorithms synthesize a strategy without creating an
explicit model of the dynamics. Thus, when designing a model-free translation
from an ω-automaton to rewards, the rewards should not depend directly on
the unknown transition structure of the MDP. Model-free reward translations
for good-for-MDPs Büchi automata [5,13] and parity automata [16] have been
demonstrated; they assign reward from the transitions of the automaton.

When choosing a type of ω-automata to use for a model-free reward transla-
tion, one must consider that there are optimal positional strategies in MDPs for
discounted and average reward RL [24]. This means that, if a model-free reward
translation results in an MDP where optimal strategies for the ω-regular objec-
tive require additional memory, then this construction is incorrect. For instance,
if one forms the synchronous product between a deterministic Streett automa-
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ton and an MDP, optimal policies in the resulting product MDP may require
finite memory, so there is no faithful reward assignment on this product MDP.
Good-for-MDPs Büchi, deterministic parity, and deterministic Rabin automata
admit positional optimal strategies in the product MDP.

Since good-for-MDPs Büchi and deterministic parity automata are known
to have faithful model-free reductions, one may consider if a faithful model-free
reduction exists for Rabin automata with no additional memory. Attempts at
this [25] have later been shown to be incorrect [13]. We show that no such reduc-
tion exists. This somewhat surprising result explains why no attempt at using
Rabin automata in RL has been successful. We observe connections between
the existence of a model-free reward translation and the closure sets of Muller
automata. We also show how the positional nature of optimal strategies for the
complement of an automaton affects the existence of a model-free reward trans-
lation.

We begin the technical discussion by introducing ω-automata (Sect. 2) and
their closure properties (Sect. 3). Section 4 formalizes MDPs and the RL frame-
work with both automata-theoretic rewards and non-Markovian scalar rewards.
Section 5 introduces the idea of “memoryless” translations and associated impos-
sibility theorems for Rabin. Section 6 provides concluding remarks.

2 Omega-Automata

A finite word over an alphabet Σ is a finite concatenation of symbols from Σ.
Similarly, an ω-word w over Σ is a function w : ω → Σ from the natural numbers
to Σ. We write Σ∗ and Σω for the set of finite and ω-strings over Σ. We write B

for the binary alphabet {0, 1}.

Definition 1. An ω-automaton A = 〈Σ, Q, q0, δ, α〉 consists of a finite alphabet
Σ, a finite set of states Q, an initial state q0 ∈ Q, a transition function δ :
Q × Σ → 2Q, and an acceptance condition α ⊆ Qω. A deterministic automaton
is such that δ(q, σ) is a singleton for every state q and alphabet letter σ. For
deterministic automata, we write δ(q, σ) = q′ instead of δ(q, σ) = {q′}.

A run of an automaton A = 〈Σ, Q, q0, δ, α〉 on word w ∈ Σω is a function
ρ : ω → Q, such that ρ(0) = q0 and ρ(i + 1) ∈ δ(ρ(i), w(i)) holds. A run ρ is
accepting if ρ ∈ α. A word w is accepted by A if there exists an accepting run
of A on w. The language of A, written L(A), is the set of words accepted by A.

The set of states that appear infinitely often in ρ is written Inf(ρ). A deter-
ministic automaton D has exactly one run for each word in Σω. We write InfD(w)
for the set of states that appear infinitely often in the unique run of D on w.
When the deterministic automaton D is clear from the context, we drop the
superscript and simply write Inf(w).

Definition 2 (Acceptance Conditions). Several ways to give finite presen-
tations of α acceptance conditions1 are in use. We recall the most common ones
so as to fix notation. They are all defined in terms of Inf(ρ).
1 Abusing notation, we sometimes use α to denote the indicator function α : Qω → B.
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– A Büchi acceptance condition is specified by a set F ⊆ Q such that

α = {ρ ∈ Qω : Inf(ρ) ∩ F �= ∅}.

– A co-Büchi acceptance condition is specified by a set F ⊆ Q such that

α = {ρ ∈ Qω : Inf(ρ) ∩ F = ∅}.

– A generalized Büchi condition is specified by a set of sets F ⊆ 2Q such that

α = {ρ ∈ Qω : ∀F ∈ F . Inf(ρ) ∩ F �= ∅}.

– A generalized co-Büchi condition is specified by a set of sets F ⊆ 2Q such
that

α = {ρ ∈ Qω : ∃F ∈ F . Inf(ρ) ∩ F = ∅}.

– A parity acceptance condition of index k is specified by a function π : Q →
{0, . . . , k − 1} that assigns a priority to each state of the automaton, so that

α = {ρ ∈ Qω : π(Inf(ρ)) is odd},

where π(S) = max{π(s) : s∈S} is the maximum priority of states in S ⊆ Q.
– A Rabin acceptance condition of index k is specified by k pairs of sets of

states, {〈Ri, Gi〉}1≤i≤k. Intuitively, a run should visit at least one set of Red
(ruinous) states finitely often and its matching Green (good) set of states
infinitely often. Formally,

α = {ρ ∈ Qω : ∃ i . 1 ≤ i ≤ k and Inf(ρ) ∩ Ri = ∅ and Inf(ρ) ∩ Gi �= ∅}.

– A Streett acceptance condition of index k is specified by k pairs of sets of
states, {〈Gi, Ri〉}1≤i≤k. Intuitively, a run should visit each Red set of states
finitely often or its matching Green set of states infinitely often. Formally,

α = {ρ ∈ Qω : ∀ i . 1 ≤ i ≤ k → Inf(ρ) ∩ Ri = ∅ or Inf(ρ) ∩ Gi �= ∅}.

– A Muller acceptance condition is specified by a collection of sets of states
C ⊆ 2Q such that

α = {ρ ∈ Qω : Inf(ρ) ∈ C}.

The name of the acceptance condition customarily precedes automata to spec-
ify the kind of ω-automata, e.g. ω-automata with Büchi acceptance conditions
are called Büchi automata. A Büchi (or co-Büchi) automaton where, in every
strongly connected component (SCC) of the automaton, either all or none of the
states is in F , is called weak.
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3 Closure Properties of Acceptance Conditions

Definition 3 (Eventual Sets). An eventual set of a deterministic automaton
A = 〈Σ, Q, q0, δ, α〉 is a set of states E ⊆ Q such that E = Inf(w) for some
w ∈ Σω. An eventual set is accepting if it satisfies the acceptance condition α;
otherwise, it is rejecting. We denote the set of all eventual sets of A by EA.
The set of accepting (rejecting) eventual sets of A is written EA

a (EA
r ). Note that

EA
a ∪ EA

r = EA and EA
a ∩ EA

r = ∅. When the automaton A is clear from the
context, we drop the superscript and simply write, E, Ea, Er.

For a Muller automaton with acceptance condition C, for example, Ea = E ∩ C
and Er = E \C. For a Büchi automaton with acceptance condition F , Ea = {E ∈
E : E ∩ F �= ∅} and so on.

Definition 4 (Upward-Closure and Closure under Union). A set S ⊆ E
of eventual sets is upward-closed if, whenever E1 ∈ S, E2 ∈ E, and E1 ⊆ E2,
it is also the case that E2 ∈ S. The set S is closed under union if, whenever
E1, E2, . . . , En are in S, and E1 ∪E2 ∪ · · · ∪En ∈ E, then it is also the case that
E1 ∪ E2 ∪ · · · ∪ En ∈ S. Note that upward closure implies closure under union
because E1 ∪ E2 ∪ · · · ∪ En ⊇ E1.

We define “closure under union” in terms of union of n sets instead of just
pairs to account for cases like this: we have rejecting eventual sets E1, E2, E3

such that their pairwise unions are not in E , but the union of all three is. We
still want the union to be in Er. E1, E2, E3 may form a ring that is only strongly
connected when all three are taken together.

Table 1 summarizes the requirements that Ea and Er must satisfy for the
acceptance condition of a deterministic Muller automaton to be translated into
an equivalent acceptance condition of different type for the same transition struc-
ture. Dual types of acceptance condition (e.g., Streett and Rabin) must satisfy
dual requirements. A weak automaton may be regarded as both a Büchi automa-
ton and a co-Büchi automaton. Hence, it has the most restrictive conditions.
Likewise, a parity automaton may be seen as both a Rabin automaton and a
Streett automaton. Hence the constraints imposed on parity conditions combine
those of Rabin and Streett conditions.

Remark 1. The result for generalized Büchi acceptance extends [18, Theo-
rem 4.2], because it says that, with generalized Büchi acceptance, one is not
only guaranteed the existence of a deterministic Büchi automaton equivalent
to the given Muller automaton, but is also told that one exists with the same
transition structure as long as a generalized acceptance condition is used. Any
standard technique to “degeneralize” that automaton may be applied to recover
an automaton with plain Büchi acceptance.

As an example of how Table 1 is arrived at, we prove the following result.
Analogous results are in [32, Lemma 13] and [21, Proposition 4.4.5].
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Table 1. Closure conditions that Ea and Er must satisfy for a Muller condition to
be expressed as another type of condition. Positional and co-positional refer to the
(guaranteed) existence of positional optimal policies for maximizing the chance that
a run in Ea and Er, respectively, is produced. The final column lists which of these
target types permit memoryless reward translations (MRT) to scalar values with convex
aggregator functions, which allows for using them in reinforcement learning.

Target type Ea Er Positional Co-positional MRT

weak upward upward yes yes yes

Büchi upward union yes yes yes

co-Büchi union upward yes yes yes

generalized Büchi upward no yes no

generalized co-Büchi upward yes no no

parity union union yes yes yes

Streett union no yes no

Rabin union yes no no

Theorem 1 (Muller to Rabin). A Muller condition is expressible in Rabin
form if, and only if, Er is closed under union.

Proof. To see that, in a Rabin condition {〈Ri, Gi〉}1≤i≤k, Er is closed under
union, let, for j = 1, . . . , n, Ej be an element of Er. Then, for every i ∈ {1, . . . , k},
Ej∩Ri �= ∅ or Ej∩Gi = ∅ holds. If any Ej intersects Gi, so does E1∪E2∪· · ·∪En.
In the remaining case, no Ej intersects Ri, but then neither does E1∪E2∪· · ·∪En.

To prove the other direction, i.e., that closure under union of Er guarantees
the existence of an equivalent Rabin condition, we observe that closure under
union of Er implies that, for E ∈ Ea, the set

SE =
⋃

{S ∈ Er : S ⊆ E}

is a proper subset of E. (Otherwise, E would belong to both Ea and Er.) There-
fore, a Rabin condition equivalent to the given Muller condition such that Er is
closed under union consists of one pair 〈Q \ E,E \ SE〉 for each element E of
Ea. Every set E ∈ Ea is accepting in the Rabin automaton thanks to the pair
〈Q\E,E \SE〉 because E \SE is not empty. For a set D ∈ Er and a generic pair
〈Q \ E,E \ SE〉 of the Rabin condition, we consider two cases. If D ⊂ E, then
D ∩ (E \ SE) = ∅. If, however, D �⊂ E, given that D �= E and D �= ∅, it must be
D ∩ (Q \ E) �= ∅. Hence, no pair in the Rabin condition makes D accepting. ��
Example 1. For the deterministic Muller automaton of Fig. 1,

Ea = {{q0}, {q1}}
Er = {{q0, q1}}.

The automaton accepts the language L = (Σ∗aω) ∪ (Σ∗bω). Since Er is (triv-
ially) closed under union, the acceptance condition can be written in Rabin form.
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Fig. 1. A deterministic Muller automaton on the alphabet Σ = {a, b}.

The construction of Theorem 1 yields {〈{q1}, {q0}〉, 〈{q0}, {q1}〉}. Since Ea is not
closed under union, the automaton of Fig. 1 cannot be equipped with a parity
condition so that it still accepts L.

A deterministic Muller automaton for L that may be equipped with a parity
acceptance condition is shown in Fig. 2. State q0 is given priority 2, while the
other two states are given priority 1.

Remark 2. If acceptance is defined in terms of transitions instead of states, the
smallest deterministic Rabin automaton for the language L of Example 1 has
one state, while the smallest deterministic parity automaton has two states. In
general, translation from Rabin to parity may incur a factorial blow-up [19].

4 Markov Decision Processes

Let R be the set of real numbers. Let D(S) be the set of distributions over the
set S. A Markov decision process (MDP) M is a tuple (S, s0, A, T,AP,L), where
S is a finite set of states, s0 ∈ S is the initial state, A is a finite set of actions,
T : S×A → D(S) is the probabilistic transition function, AP is the set of atomic
propositions, and L : S → 2AP is the labeling function.

For any state s ∈ S, A(s) denotes the set of actions that may be selected in
state s. An MDP is a Markov chain if A(s) is singleton for all s ∈ S. For states
s, s′ ∈ S and a ∈ A(s), T (s, a)(s′) equals p(s′|s, a), that is, the probability that
the MDP moves from state s to state s′ if action a is chosen. A run of M is
an ω-word 〈s0, a1, s1, . . .〉 ∈ S × (A × S)ω such that p(si+1|si, ai+1)>0 for all
i ≥ 0. A finite run is a finite such sequence (〈s0, a1, s1, . . .〉 ∈ S × (A × S)∗).
For a run r = 〈s0, a1, s1, . . .〉 we define the corresponding labeled run as L(r) =
〈L(s0), L(s1), . . .〉 ∈ (2AP )ω. We write RunsM(FRunsM) for the set of runs
(finite runs) of the MDP M from its initial state and RunsM(s)(FRunsM(s))
for the set of runs (finite runs) of the MDP M starting from the state s. When

Fig. 2. A deterministic Muller automaton, equivalent to the one of Fig. 1, that may
be equipped with a parity condition.
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the context resolves ambiguity, we drop the superscript and simply write Runs
and FRuns. We write last(r) for the last state of a finite run r.

A strategy for M is a function σ : FRunsM → D(A) such that supp(σ(r)) ⊆
A(last(r)), where supp(d) denotes the support of the distribution d. A strategy
σ is pure if σ(r) is a point distribution for all runs r ∈ FRunsM and is mixed
otherwise. Let RunsM

σ (s) denote the subset of runs RunsM(s) that are possible
under strategy σ from state s. We say that σ is stationary if last(r) = last(r′)
implies σ(r) = σ(r′) for all runs r, r′ ∈ FRunsM. A stationary strategy can be
given as a function σ : S → D(A). A strategy is positional if it is both pure and
stationary. We write ΣM for the set of all strategies on M and ΠM for the set
of positional strategies on M.

An MDP M under a strategy σ results in a Markov chain Mσ. If σ is a
finite memory strategy, then Mσ is a finite-state Markov chain. The behavior
of an MDP M under a strategy σ and starting state s ∈ S is defined on a
probability space (RunsM

σ (s),FRunsMσ (s),PrM
σ (s)) over the set of infinite runs of

σ with starting state s. Given a random variable f : RunsM → R, we denote by
E

M
σ (s) {f} the expectation of f over the runs of M from s under strategy σ.

4.1 Optimal Strategies Against ω-Automata

Given an MDP M = (S, s0, A, T,AP,L) and deterministic automaton A =
〈Σ, Q, q0, δ, α〉 with Σ = 2AP , a strategy σ determines sequences Xi, Qi, and Yi

of random variables denoting the ith state of the MDP, state of the automaton,
and action, respectively, where Q0 = q0 and, for i > 0, Qi = δ(Qi−1, L(Xi−1)).
We define the optimal satisfaction probability PSemM

A (s) as

PSemM
A (s) = sup

σ∈ΣM
E

M
σ (s) {α(〈Q0, Q1, . . .〉)} .

We say that a strategy σ ∈ ΣM is optimal for A if

PSemM
A (s) = E

M
σ (s) {α(〈Q0, Q1, . . .〉)} .

4.2 Optimal Strategies Against Scalar Rewards

Reinforcement learning [26] is a sequential optimization approach where a deci-
sion maker learns to optimally resolve a sequence of choices from feedback pro-
vided by an unknown or partially known environment. This feedback takes the
form of rewards and punishments with strength proportional to the fitness of the
decisions taken by the agent as judged by the environment towards some higher-
level objectives. RL is inspired by the way dopamine-driven organisms latch
on to past rewarding actions. Historically, RL paradigms integrated a myopic
way of looking at the reward sequences in the form of discounted reward, with
additional notions such as average reward being introduced more recently.

For simplicity, we take an abstract interpretation of RL as a sampling-based
optimization approach that asymptotically converges to the optimal values and
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policies for a given cost objective Agg. We will make some assumptions on RL
that are known to hold for popular RL algorithms based on total reward, dis-
counted reward, multi-discounted reward, and average reward RL.

A rewardful MDP is a tuple M = (S, s0, A, T, ρ,Agg) where S, s0, A, and T
are defined in a similar way as for MDPs, ρ : S ×A×S → D(C) is a (stochastic)
reward function with values in a given set C of colors, and the aggregator function
Agg : Cω → R is a real-valued optimization objective that converts infinite
sequences of colors to real numbers. Traditionally, the set of colors C is often the
set of real numbers encoding a scalar reward signal; however permitting more
general sets of colors has paved the way for more expressive reward aggregations,
such as state-dependent discounting, reachability reward, and average reward-
per-cost objectives. We extend ρ from transitions to runs by ρ̂ : Runs → D(C)ω in
a straightforward manner. Some common aggregator functions are listed below.

– The reachability-sum (also, stochastic shortest path [3]) aggregator Reach :
(R × {0, 1})ω → R is defined as

Reach : 〈(r0, b0), (r1, b1), . . .〉 �→ lim inf
n→∞

∑

0≤i<min{j≤n:bj=1}
ri,

and provides the sum of rewards until the first appearance of bi = 1 (reacha-
bility). If bi = 0 for all i, one obtains the total-sum aggregator Total : Rω → R.

– The variable-discounted-sum (also, state-dependent discounted) [11] aggrega-
tor D : (R×[0, 1))ω→R is defined as

D : 〈(r0, λ0), (r1, λ1), . . .〉 �→ lim
n→∞

∑

i<n

[ ∏

0≤j<i

λj

]
ri.

When the discount is a constant λ, variable-discounted-sum recovers the clas-
sical discounted-sum aggregator Dλ : Rω → R.

– The reward-per-cost [4] aggregator RpC : (R×R)ω → R is defined as

RpC : 〈(r0, c0), (r1, c1) . . .〉 �→ lim inf
n→∞

∑
0≤i<n ri∑
0≤i<n ci

,

with suitable assumptions on the cost sequence 〈c0, c1, . . .〉 to avoid division by
zero. For the cost sequence 〈1, 1, . . .〉, reward-per-cost reduces to the average
aggregator Avg : Rω → R.

– The limit inferior [8] LimInf : Rω → R is defined as

LimInf : 〈r0, r1, . . .〉 �→ lim inf
n→∞ ri.

The limit superior aggregator LimSup : Rω → R is defined analogously.

Since an optimization problem over an MDP is specified by a reward function
and an aggregator, we refer to aggregators as optimization objectives (or simply
objectives). A rewardful MDP M under a strategy σ determines a sequence
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of random colors ρ(Xi−1, Yi,Xi)i≥1, where Xi and Yi are the random variables
denoting the ith state and action, respectively. For an objective Agg and an
initial state s, we define the optimal reward as

AggM
∗ (s) = sup

σ∈Σ
E

M
σ (s) {Agg(ρ̂(〈X0, Y1,X1, . . .〉))} .

We say that a strategy σ is optimal for the objective Agg if, for all s ∈ S,

AggM
∗ (s) = E

M
σ (s) {Agg(ρ̂(〈X0, Y1,X1, . . .〉))} .

Definition 5 (Positional objectives). An optimization objective Agg is posi-
tional if, for every MDP M, there exists a positional optimal strategy for Agg.

Definition 6 (Convex combination of strategies). We say that a strategy
σ ∈ Σ is a convex combination of strategies σ1, σ2 ∈ Σ if, for some β ∈ [0, 1], for
every run r ∈ FRuns and every a ∈ A, σ(r)(a) = βσ1(r)(a) + (1 − β)σ2(r)(a).

Definition 7 (Convex objectives). An objective Agg is convex, if the set
of optimal stationary strategies, for every MDP M, is convex. In particular, an
objective Agg is convex if any convex combination of positional optimal strategies
for Agg is a stationary optimal strategy.

The objectives listed above are both positional and convex. (See, e.g., [24]
for the discounted and average objectives.)

5 Memoryless Reward Translations for RL

We are interested in memoryless reward translation from ω-regular acceptance
conditions to optimization problems with various aggregation semantics. Our
notion of a memoryless reward translation is similar in spirit to the notion of
Blackwell optimality [24] in reducing the average reward to discounted-reward
that continues to operate on the same MDP state space, but accommodates the
presence of a hyperparameter (the discount factor). Another example of such
memoryless translation is the reduction of [13] from limit-deterministic Büchi
automata to average-reward objectives with an unknown hyperparameter ζ.

5.1 Memoryless Reward Translation

To compute strategies that maximize the probability that an MDP M satisfies
an ω-regular objective by reinforcement learning, one defines a rewardful MDP
M× such that, from the optimal strategies for M×, strategies may be derived
for M that maximize the probability that a run of M satisfies the objective.
The construction of M× that we consider builds a product of the transition
structures of the MDP M and the automaton A that accepts the objective. The
reward for a state-action pair of M× depends on the state of the automaton
and, possibly, on a fixed set of parameters whose values depend on M. Finally, a
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suitable objective must be chosen. This way of converting an ω-regular objective
into an RL objective is quite general and encompasses the approaches adopted
in the literature, e.g., [5,13,16,25]. The fixed set of parameters stand for the
hyperparameters of reinforcement learning.

With this scheme, even if the strategies computed for M× are positional, the
strategies for M require the memory supplied by the transition structure of the
automaton. Since the reward only depends on the state of the automaton, and
on no other memory, we call this translation memoryless.

In detail, let A = 〈Σ, Q, q0, δ, α〉 be an automaton and P a set of parameter
values. A reward assignment function for A and P is a function f : Q×Σ×Q×
P → D(C). Given an MDP M, an automaton A, a reward assignment function
f , values for the parameters P̂ , and an aggregator Agg, we define the rewardful
product MDP

M× = (S×Q, (s0, q0), A×Q,T×, ρ×,Agg),

where T× : (S×Q) × (A×Q) → D(S×Q) is such that

T×((s, q), (a, q′))((s′, q′)) = T (s, a)(s′)

if q′ ∈ δ(q, L(s)) and 0 otherwise. This definition of T× delegates to the strategy
for M× the resolution of nondeterminism for nondeterministic automata. The
reward function ρ× : (S×Q) × (A×Q) × (S×Q) → D(C) is defined by

ρ×((s, q), (a, q′), (s′, q′)) = f(q, a, q′, P̂ )

if q′ ∈ δ(q, L(s)) and 0 otherwise.

Definition 8 (Memoryless Translation). Given A = 〈2AP , Q, q0, δ, α〉 and
payoff Agg, we say that a memoryless translation exists from the acceptance
condition α to the aggregator function Agg, and we write α ↪→ Agg, when there
exists a reward function f : Q × 2AP × Q × P → D(C) such that, for any MDP
M with atomic propositions AP and for any two strategies σ1, σ2 ∈ ΣM,

E
M×
σ1

(s){α(〈Q0, Q1, . . .〉)} < E
M×
σ2

(s){α(〈Q0, Q1, . . .〉)}

if, and only if, for every ε > 0 there exists P̂ ∈ P (that may depend on the
MDP) such that

E
M×
σ1

(s){Agg(ρ̂×(〈X0, Y1,X1 . . .〉))} < E
M×
σ2

(s){Agg(ρ̂×(〈X0, Y1,X1 . . .〉))} + ε

on the product M× defined by M, A, and f(·, ·, ·, P̂ ).

Theorem 2. The following translations are memoryless:

1. good-for-MDPs Büchi objective to reachability-sum aggregator [13];
2. good-for-MDPs Büchi objective to variable-discounted-sum aggregator [5];
3. good-for-MDPs Büchi objective to average aggregator [14];
4. good-for-MDPs Büchi objective to total-sum aggregator [14]; and
5. parity objective to reachability-sum aggregator [16].
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Note that, although the reduction of [25] for Rabin automata does not use addi-
tional memory, it is incorrect [13], so it is not a memoryless translation. We
will show in the next subsection that a memoryless translation for deterministic
Rabin automata is impossible if the aggregator is convex.

5.2 Conditions for Memoryless Reductions

We are now in a position to discuss what the properties of acceptance conditions
of ω-automata discussed in Sect. 2 entail for a memoryless translation to exist.

Definition 9 (Test MDP). A test MDP for the set of atomic propositions AP
is

MAP = (2AP , s0, 2AP , T, AP,L),

with one state and one action for each subset of AP , such that, for all states,
L(s) = s, and p(s′|s, s′) = 1. The initial state s0 is a subset of AP .

All sequences of labels in 2AP that start with s0 may be produced by this test
MDP.

Theorem 3. Let A = 〈2AP , Q, q0, δ, α〉 be a deterministic automaton and let
Agg be a convex objective. Then α ↪→ Agg implies that EA

a and EA
r are closed

under union.

Proof. Suppose E1, . . . , En ∈ Ea (resp. ∈ Er) are accepting (resp. rejecting)
eventual sets of A such that their union is in E . Let MT be a test MDP for A
such that

⋃
i Ei is reachable from δ(q0, s0). Such an s0 exists because all eventual

sets are reachable from the automaton’s initial state. Let M× be the rewardful
product defined by MT , A, and a reward function f for which α ↪→ Agg.

For each Ei there exists a stationary strategy ξi such that a run from any
state in 2AP × ({q0} ∪ ⋃

i Ei

)
eventually dwells in Ei. Since α ↪→ Agg and

Agg is convex, ξ1, . . . , ξn are ε-maximal (resp. ε-minimal), so are their convex
combination, and such combination strategies also maximize (resp. minimize)
the probability of satisfying α. Since there are combination strategies that visit
all states in E1 ∪ · · · ∪ En infinitely often, Ea (resp. Er) is closed under union. ��
Corollary 1. There exist a Rabin automaton with acceptance conditions α such
that, if α ↪→ Agg, then Agg is not convex.

Proof. The deterministic Rabin automaton in Fig. 3 is such that Ea is not closed
under union. Application of Theorem 3 yields the desired result. ��
Remark 3. Note that the complement of α for the Rabin automaton in Fig. 3—a
Streett condition that requires that both q1 and q2 be visited infinitely often—
is not positional. Since Ea is not closed under union and Er = {{q0, q1, q2}}
is upward closed, the acceptance condition of the automaton of Fig. 3 may be
expressed as a generalized co-Büchi condition, but not as a plain co-Büchi con-
dition. Correspondingly, the complementary condition may be expressed as a
generalized Büchi condition, but not as a plain Büchi condition for the transi-
tion structure of Fig. 3.
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Fig. 3. A Rabin automaton on the alphabet Σ = 2{p}.

The connection between closure under union of both Ea and Er (a property
called ‘Ea has no splits’ there) and the existence of positional optimal strategies
for both players was first established in [20, Theorem 6.2].

To be self-contained, we provide a proof for the direction we need, namely
that closedness under union of Er entails memoryless strategies for a maximizer,
while closedness under union of Ea entails memoryless strategies for a minimizer.

Lemma 1. Let A = 〈2AP , Q, q0, δ, α〉 be a deterministic automaton and let Ac

be the automaton obtained from A by complementing the acceptance condition
(so that EA

a = EAc

r and EA
r = EAc

a ). If no strategy to produce an accepting word
on A (Ac) is positional, then EA

r (EA
a ) is not closed under union.

Proof. Suppose that there is no positional strategy for A (Ac). Then, for every
E ∈ EA

a (E ∈ EAc

a ), there exist states in E for which a pure strategy that visits
all of E chooses different successors depending on the run up to that point. For
at least one such state, the strategy depends on memory essentially, in the sense
that, if the strategy is made positional at that state by choosing one successors
among all successors chosen by the strategy, the resulting eventual set is a proper
subset of E that belongs to EA

r (EAc

r ). Moreover, depending on which successor
is chosen, there must be more than one distinct restriction of E that is contained
in EA

r (EAc

r ), and the union of all such restrictions must be E. This shows that
EA

r (EAc

r ) is not closed under union. Observing that EAc

a = EA
r (EA

a = EAc

r )
completes the proof. ��

Together with Lemma 1, we obtain the following corollary.

Corollary 2. Let A = 〈2AP , Q, q0, δ, α〉 be a deterministic automaton, let Agg
be a convex objective, and let Ac be the automaton obtained from A by comple-
menting the acceptance condition (so that EA

a = EAc

r and EA
r = EAc

a ). Then A
and Ac have optimal positional strategies.

Lemma 1 shows that a memoryless translation with a convex aggregator
does not exist for deterministic Rabin and Streett automata. Lemma 1 provides
a sufficient condition to check for the application of Theorem 3. Intuitively, if we
could compute the strategy for Rabin automata with RL, then we could compute
positional strategies for the complement of the Rabin condition by maximizing
the negative reward. Since the complement of a Rabin condition does not admit
positional strategies in general, this is impossible. This impossibility also applies
to generalized co-Büchi automata, as observed in Remark 3, as well as to their
duals (Streett as the dual to Rabin and generalized Büchi automata as the dual
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to generalized co-Büchi), with the dual argument: here, it is the strategy of the
maximizer itself that requires memory.

Theorem 3, and Corollary 2 provide the entries for the last three columns of
Table 1.

6 Conclusion

The study of ω-regular specifications for systems modeled as Markov decision
processes was initiated in [30] and [9] resulting in a thriving research community
(probabilistic model checking) developing principled techniques [2] and analysis
tools [17] for the analysis of probabilistic systems. Reinforcement learning is a
classical area of machine learning undergoing remarkable transformation under
the deep learning revolution [12,26] provide a snapshot of both classical and
recent results.

A combination of ω-regular specifications with RL has potential to posi-
tively impact both research fields: for probabilistic model checking, RL offers the
twinned advantages of scalability and an ability to reason with system without
an explicit model; while for RL, ω-regular objectives provide a rich specification
language to express learning requirements instead of scalar rewards. As a result,
the study of integrating formal requirements in RL in a way that is correct
and efficient has attracted considerable interest [5,13,16]. At the same time, the
machine learning community has advocated the need for non-Markovian reward
signals in RL [10,28]. These representations often take the form of weighted
automata called reward machines [28]. Automata-based rewards also serve as
a memory mechanism for reasoning over partially observable environments [29],
are useful for defining reward shaping functions to mitigate sparse reward signals
[7], and can facilitate explanations of RL systems [31].

When ω-regular objectives were first used in model checking MDPs, deter-
ministic Rabin automata were used to represent the objectives. The same was
attempted by the reinforcement learning community when they first turned to ω-
regular objectives: they tried the tested route through deterministic Rabin [25],
but that translation fails as shown in [13]. This paper answers why any trans-
lation of Rabin conditions, even from a deterministic automaton, directly into
scalar values is not possible for common reward aggregators used in reinforce-
ment learning, like discounted and average reward. In a broader sense, this paper
highlights the existence of positional optimal strategies that may not be com-
puted by reinforcement learning. In so doing, the paper underscores the need
for theoretical machine learning research at the promising intersection of the
overlapping fields of probabilistic model checking and reinforcement learning.
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21. Perrin, D., Pin, J.É.: Infinite Words: Automata, Semigroups, Logic and Games.
Elsevier (2004)

22. Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games. In: Sympo-
sium on Logic in Computer Science, pp. 275–284 (2006)

23. Pnueli, A.: The temporal logic of programs. In: IEEE Symposium on Foundations
of Computer Science, pp. 46–57 (1977)

24. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York (1994)

25. Sadigh, D., Kim, E., Coogan, S., Sastry, S.S., Seshia, S.A.: A learning based
approach to control synthesis of Markov decision processes for linear temporal
logic specifications. In: Conference on Decision and Control (CDC), pp. 1091–1096
(2014)

26. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT Press, Cambridge (2018)

27. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, pp. 133–191. The MIT Press/Elsevier (1990)

28. Toro Icarte, R., Klassen, T., Valenzano, R., McIlraith, S.: Using reward machines
for high-level task specification and decomposition in reinforcement learning. In:
International Conference on Machine Learning, pp. 2107–2116 (2018)

29. Toro Icarte, R., Waldie, E., Klassen, T., Valenzano, R., Castro, M., McIlraith,
S.: Learning reward machines for partially observable reinforcement learning. In:
Advances in Neural Information Processing Systems, vol. 32, pp. 15523–15534
(2019)

30. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state pro-
grams. In: Foundations of Computer Science, pp. 327–338 (1985)

31. Xu, Z., Wu, B., Ojha, A., Neider, D., Topcu, U.: Active finite reward automa-
ton inference and reinforcement learning using queries and counterexamples. In:
Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2021. LNCS,
vol. 12844, pp. 115–135. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84060-0 8

32. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

https://doi.org/10.1007/3-540-46691-6_8
https://doi.org/10.1007/978-3-030-84060-0_8
https://doi.org/10.1007/978-3-030-84060-0_8


Reusable Contracts for Safe Integration
of Reinforcement Learning in Hybrid

Systems

Julius Adelt(B), Daniel Brettschneider, and Paula Herber(B)

University of Münster, Einsteinstr. 62, 48149 Münster, Germany
{julius.adelt,daniel.brettschneider,paula.herber}@uni-muenster.de

Abstract. Deductive verification is a powerful approach for establishing
crucial safety properties of intelligent hybrid systems. However, deductive
verification requires abstract formal descriptions, e.g. properties, con-
tracts, and invariants. Defining these requires a high level of expertise
and an enormous amount of manual effort, in particular if the system
contains intelligent components such as reinforcement learning agents. In
this paper, we propose reusable contract patterns for the safe integration
of reinforcement learning in hybrid systems. Our key ideas are threefold:
First, we identify recurring verification problems for intelligent hybrid
systems that contain reinforcement learning agents. Second, we provide
a set of contract patterns that ease the definition of contracts for the
safe integration of reinforcement learning agents. Third, we indicate how
to derive invariants from the contract patterns. Our contract patterns
together with the invariant derivation enable systematic reuse of manu-
ally defined hybrid contracts and invariants and reduce the manual effort
of the deductive verification process for intelligent hybrid systems.

Keywords: Hybrid systems · Reinforcement learning · Formal
verification · Theorem proving · Reusability

1 Introduction

Embedded or cyber-physical systems are often hybrid systems (HS), i.e., they
combine discrete and continuous behavior, for example, a discrete controller is
embedded into a continuous environment. The complexity of HS is ever grow-
ing, and they are more and more embedded into highly dynamic environments.
To make good control decisions in unexpected situations, HS increasingly use
machine learning techniques such as reinforcement learning. At the same time,
these systems are often safety-critical, for example, because an autonomous robot
may harm pedestrians or a reactor may overheat. This makes it highly desirable
to formally verify their correct behavior under all circumstances. One possible
solution for this problem is provided by deductive verification [2,8,9]. However,
deductive verification typically requires manual definitions of specifications, con-
tracts, and invariants to guide the verification process, which requires a high
expertise and a substantial amount of manual time and effort. This is especially
true if learning components are used within HS.
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In this paper, we propose reusable contract patterns for the safe integration of
reinforcement learning (RL) in HS. Our key ideas are threefold: First, we iden-
tify recurring verification problems for intelligent HS that contain RL agents.
Such verification problems often concern crucial properties such as safety and
resilience, e.g. they require the RL agent to maintain a minimal safety threshold
or to adapt to external disruptions. Second, we provide a set of contract patterns
that ease the definition of hybrid contracts (HC) for the safe integration of RL
agents. These contracts formally define the safe behavior of the RL agent with
respect to the previously identified verification problems. Third, and finally, we
indicate how to derive invariants from the contract patterns. These invariants
capture conditions that are necessary to maintain safe behavior until the next
discrete control decision. Our contract patterns together with the derived invari-
ants enable the reuse of manually defined HC and invariants and thus have the
potential to significantly reduce the manual effort for deductive verification.

We illustrate the applicability of our approach with five illustrating examples
that use RL for discrete control decisions in continuous or hybrid environments:
a temperature control system, a water tank, a water distribution system, an
adaptive cruise control and an autonomous factory robot. All of these examples
are inspired by existing Simulink models. Simulink [22] is a widely used modeling
language and has become the de facto standard for the design of HS in industry.
With the RL Toolbox [21], it enables the integration of RL agents. We have
translated the Simulink models into formal models in differential dynamic logic
(dL) using an automated transformation [17], and carried out all correctness
proofs using the interactive theorem prover KeYmaera X [8]. Our experimental
results demonstrate the applicability of the proposed contract patterns. For the
considered examples, the derived invariants play a key role for verifying the safe
integration of RL agents. We deduce from this that they have the potential to
significantly reduce the required effort and expertise for deductive verification.

The rest of this paper is structured as follows: In Sect. 2, we introduce pre-
liminaries. In Sect. 3, we summarize related work. In Sect. 4, we introduce our
approach for reusable contract patterns. We conclude in Sect. 5.

2 Preliminaries

In this section, we introduce RL, Simulink, the RL Toolbox, dL, and our previ-
ously proposed transformation from Simulink to dL.

2.1 Reinforcement Learning

Reinforcement learning is a class of machine learning methods for learning in a
trial and error approach by interacting with an environment through actions [30].
The mathematical basis for most RL algorithms are Markov decision processes
(MDPs) [30]. An MDP is a tuple (S,A,R, p), where S is a set of possible states, A
a set of possible actions, R ⊂ R a set of rewards, and p a probability distribution.
In an MDP, an agent and an environment interact in discrete time steps. At each
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Fig. 1. Simulink and dL

step t, the agent receives a current state st ∈ S from the environment and chooses
an action at ∈ A to interact with it. The environment reacts with a new state
st+1 ∈ S resulting from the action and a numeric reward rt+1 ∈ R. The goal of
an RL algorithm is to optimize the reward over time by learning a policy π(a|s)
that determines which actions to take in which states.

2.2 Simulink and the RL Toolbox

Simulink [22] is an industrially well established, graphical modeling language
for HS. Simulink models consist of blocks that are connected by discrete or
continuous signals. The Simulink block library provides a large set of predefined
blocks, from arithmetics over control flow blocks to integrators and complex
transformations. The RL Toolbox [21] provides an RL agent block, which samples
observations and rewards and chooses actions in fixed intervals.

Figure 1a shows a Simulink model of an intelligent temperature control sys-
tem, e.g., for cooling a motor or a reactor. The model has two input ports for the
current heating value (h) and a desired temperature T d. The system features an
RL Agent block, which decides on a cooling value (c) in discrete sample times.
The current temperature T is computed in an integrator block by integrating
h− c over time. The reward system supplies the RL agent with numeric rewards
for keeping the temperature T close to Td and may terminate the simulation.

2.3 Deductive Verification with the Differential Dynamic Logic

Differential dynamic logic (dL) [26] is a logic for formally specifying and reason-
ing about properties of HS, which are described as hybrid programs.

The syntax is as follows: α;β models a sequential composition of two hybrid
programs α and β. α ∪ β (or α ++ β) models a non-deterministic choice. A
non-deterministic loop α∗ executes α zero or more times. The hybrid program
x := e evaluates the term e and assigns it to the variable x. x := ∗ denotes
a non-deterministic assignment. ?Q is a test formula. A continuous evolution
{x′

1 = η1, x′
2 = η2, ... x′

n = ηn & Q} evolves a set of variables xi with a set of
differential equations x′

i = ηi. A continuous evolution may progress as long as
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the evolution domain Q is satisfied. dL provides two modalities for reasoning
about reachable states of hybrid programs. [α]φ states that a formula φ holds in
every state reachable by α. 〈α〉φ states that there exists a state reachable by α
in which φ holds. Specifications are defined as pre → [α]post.

A dL specification can be deductively verified with the interactive theorem
prover KeYmaera X [8]. Proofs in KeYmaera X are based on the dL sequent
calculus, which enables applying inference rules to simplify dL formulas into
subgoals. One of the central proof rules is the loop rule:

(1.) Γ 	 J,Δ (2.) J 	 [α]J (3.) J 	 P

Γ 	 [α∗]P,Δ

The rule enables verifying non-deterministic loops using an invariant, namely
a set of properties J , which (1.) holds initially, (2.) holds before and after each
repetition, and (3.) implies the postcondition P . By proving all three subgoals,
the sequent Γ 	 [α∗]P is proven (within an arbitrary context Δ).

2.4 Transformation from Simulink to dL
In [17], we have presented an automated transformation of hybrid Simulink mod-
els into dL. To integrate RL agents safely into the transformation, we have pro-
posed to define the safe behavior of RL agents with hybrid contracts (HC), which
specify assumptions on the inputs and guarantees on the outputs [2,18].

A simplified illustrating example is shown in Fig. 1b. The dL model corre-
sponds to the intelligent temperature control system in Fig. 1a. The inputs h
and Td are captured by non-deterministic assignments with constraining tests,
i.e., an arbitrary value from the given input range can be assigned at any time.
The integrator block for the temperature T is captured by a continuous evolu-
tion T ′ = h − c. The agent selects a cooling value as an action (c) restricted by
the HC in discrete sampling steps, i.e. whenever the time since the last decision
cS reaches the sample time tS. Otherwise, it does nothing. The clock variable
cS is evolved in the continuous evolution and cS ≤ tS is added to the evolution
domain to ensure that no discrete sampling step is missed. A non-deterministic
repetition models the global simulation loop.

3 Related Work

In the last decade, a variety of approaches have been proposed for the formal
verification of hybrid systems that are modeled in Simulink. For example, in
[23], Simulink is translated into hybrid automata. However, the models are ver-
ified by exploring the state space via reachability analysis, which does not scale
for larger systems. In [5,32], the authors present an approach to automatically
transform Simulink models into Hybrid CSP and enable verification with hybrid
Hoare logic in the HHL Prover. They thereby inherit compositionality from a
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highly expressive process algebra. However, both the property specification and
the verification process with Hybrid CSP require a very high level of expertise.
Formal methods to ensure safety of RL have seen increasing interest in the last
years. A common approach is the use of a formally synthesised shield [3,14],
which substitutes unsafe for safe actions. In [9], the safety of an RL controller
is ensured via verified runtime monitors that are automatically generated from
dL models. In [25] the authors ensure contracts for complex system components
using a simplex architecture. All of these approaches, however, require formal
specifications, but do not provide any guidance on how to define these.

There exists a broad body of work on reusability in deductive verification,
and techniques to enable proof reuse have been incorporated in many verification
systems, including KeY [4] and KeYmaera X [8]. An overview over the reuse
of specifications, intermediate representations, and verification tools is given in
[11]. However, all of these approaches address reusability from a perspective
of building proofs technically, and not from an application point of view, i.e.,
they do not address the question how we can reuse specifications or contracts
we have specified for one application to similar applications. The same holds
for the broad spectrum of approaches for automated invariant generation, for
example, [13,27]: they tend to focus on technology for building proofs and not
on leveraging knowledge about the application [11].

Some application-specific specification patterns have been proposed for com-
plex verification problems, for example, for structured arrays in [10], or for the
parallel prefix sum in [28]. In [6], a contract-based approach to analyze systems
from various application domains is proposed, in [12], abstract method calls for
structured reuse are proposed, and in [31], the reuse of proofs for variants of soft-
ware product lines. However, to the best of our knowledge, none of the existing
approaches proposes contract patterns that are derived from recurring verifica-
tion problems in intelligent hybrid systems and their requirements and ease the
specification and verification of similar systems.

4 Reusable Hybrid Contracts

In intelligent hybrid systems (HS), an intelligent discrete controller typically con-
trols a continuous environment. This approach follows the classical architecture
of HS [15] with a controller that takes discrete control decisions, and a plant,
whose continuous behavior is described by differential equations. In this paper,
we consider intelligent HS where the discrete controller is implemented as an RL
agent (for example with the RL Toolbox), and the plant is modeled in Simulink.
For the safe integration of RL in HS, we have proposed to define the safe behavior
of RL agents with hybrid contracts (HC) in [2]. HC precisely define the safety-
relevant behavior of an RL component and abstract from the concrete behavior
learned during execution. For example, for an autonomous robot, a contract
may describe collision avoidance, but omit navigation and planning. HC can be
enforced at run-time, e.g., with automatically generated run-time monitors [9].
For system verification, we replace RL agents with their HC, and deductively
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Fig. 2. Deductive Verification with Reusable Hybrid Contracts

verify safety properties under the assumption that the agent adheres to its con-
tract with the interactive theorem prover KeYmaera X. However, the process
of defining contracts and their use for system verification is time-intensive and
requires a high level of expertise.

In this paper, we propose reusable HC patterns for recurring verification
problems of intelligent HS. We have identified the following kinds of properties
that are crucial for many intelligent HS with RL agents:

– Threshold properties. Many control systems have to maintain minimal or max-
imal values of a process variable, e.g., a maximal temperature to avoid over-
heating, or a minimal distance between two cars [15].

– Range properties. Often, process variables have to be kept within a lower and
an upper limit. For example, the temperature must be kept within a certain
range, or the fluid in a tank should neither overflow nor run dry [15].

– Recovery properties. One of the major strengths of intelligent HS is their
ability to function in dynamic environments. A recurring verification problem
in this context is to recover from unexpected disruptions, i.e., if the process
variable falls below a certain threshold due to external stressors, e.g., a pump
failure, the system should recover in a timely manner [7].

– Resilience properties. The ability of a system to recover from external dis-
ruptions is an important step towards resilient system design. To increase
resilience, systems are often required to remain operational in the presence of
stressors and to dynamically adapt their functioning in case stressors persist
[16]. To achieve this, many resilient systems offer a degraded service level [29].
A crucial property for such systems is that they maintain safety properties
while always providing at least the degraded service level.

For each of these kinds of properties, we identify the elements that are rel-
evant to precisely capture the safety-relevant behavior of an RL discrete con-
troller and its interplay with the continuous environment. From these elements,
we build an HC pattern, which can be used to construct HC for RL agents. The
pattern involves the relevant state variables together with actions and reactions,
and their timing behavior. Our pattern-based approach enables the designer to
define HC from a template and helps to identify relevant variables and relations.
This eases the deductive verification process and reduces the required expertise.

The overarching goal of our method is shown in Fig. 2. The HC patterns
we define are embedded into our deductive verification process presented in
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Fig. 3. Illustrating Examples

[17,18]. The key idea is to derive reusable HC definitions from Simulink mod-
els (which may contain an RL agent) and their requirements. By identifying
reusable patterns in these contract definitions, we incrementally build a library
of HC design patterns, which a designer can select from for the verification
of other systems. These HC design patterns significantly ease the definition of
HC. A major challenge in deductive verification is finding invariants, properties
which hold throughout all runs of a system and which imply the system property.
Invariants are closely related to the HC and typically contain similar elements,
e.g., relevant state variables and actions. As a consequence, they can often be
derived from HC design patterns. Together with our previously proposed trans-
formation from Simulink to dL, the invariant derivation significantly reduces the
effort for the deductive verification of intelligent HS with KeYmaera X.

In the following, we first introduce five case studies as illustrating examples.
All of these are inspired by existing Simulink models and demonstrate how HS
that use RL are typically modeled [20]. Then, we define HC patterns and indicate
how to derive invariants for the four kinds of properties defined above: threshold
properties, range properties, recovery properties and resilience properties. For
each pattern, we discuss the recurring elements constituting the pattern as well
as the invariant derivation, and illustrate its application with our case studies.

4.1 Illustrating Examples

To illustrate the applicability of our approach, we present a set of illustrating
examples, which represent typical HS that use RL.

Temperature Control. In the temperature control system in Fig. 3a, an RL agent
controls the temperature T in a reactor by applying a cooling value c. At the same
time, the reactor temperature can heat up with a heating value h ∈ [hMIN, hMAX].
The change in temperature is described by the differential equation T ′ = h − c.
Furthermore, a sudden disruption, e.g. overheating due to a coolant leakage, is
possible. This changes the temperature suddenly, possibly to unsafe values.
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Water Tank. Figure 3b depicts a Simulink water tank example from the RL
Toolbox [21]. The RL agent is tasked with keeping the water level l in a certain
range [lMIN, lMAX]. The agent can change the inflow into the tank by setting a
voltage v. The outflow out of the tank is dependant on the square root of the
current water height. b and a are proportional constants for the in- an outflow
respectively. The water level follows the differential equation l′ = b · v − a · √

l.

Autonomous Robot. Figure 3c depicts our case study from [2], which is inspired
by [19]. It consists of multiple robots, i.e., an RL robot (RL) and two opponents
(A,B) in an abstract factory setting. The RL robot is tasked with reaching
workstations (W ) while avoiding opponents. The collision avoidance concept of
this example is inspired by [24]. If the distance of an opponent to the robot
(d(pr, po)) falls below a safety threshold θo, the opponent evades. To ensure that
the opponent evades successfully, we require the RL robot to stop in time to not
surpass the safety threshold θo of the opponent. The position of each robot Rob ∈
{RL} ∪ {A,B} is a vector pRob = (xRob, yRob). Robots move with x′

Rob = vx,Rob

and y′
Rob = vy,Rob. The overall velocity of a robot is vRob = ||(vx,Rob, vy,Rob)||.

Adaptive Cruise Control (ACC). Figure 3d depicts an adaptive cruise control
system inspired by [21]. A follower car controlled by an RL agent (F) has to keep
a minimum distance to a leading car (L) pF < pL. The cars change positions
with p′

car = vcar and v′
car = acar. Accelerations (acar) are constant between

decisions.

Water Distribution System (WDS). Figure 3e depicts a water distribution sys-
tem. It is based on another Simulink example [21], and we have extended it with
pump failures and with varying service levels in [1]. The system features four
pumps (p1 − p4) that pump fluid from a reservoir into a water tank. Pumps can
fail during usage and can be repaired. The systems RL agent can activate three
of the pumps (actions a1−a3), and it can limit the outflow to a maximum supply
s. The fourth pump is a backup pump, which is automatically activated if the
water falls below a certain threshold. If a pump is turned on by the RL agent
and is functional, it pumps fluid with a constant rate r into the tank. The overall
inflow i is determined by the activated pumps. The fluid in the tank is used to
satisfy a consumer demand d ∈ [0, s]. The water level l evolves with l′ = i − d.

4.2 Recurring Elements

To define HC patterns, we have first identified a set of recurring elements that are
needed to capture the safety-relevant behavior of RL agents for the verification
problems we consider in this paper. From these elements, HC can be systemati-
cally constructed using the HC patterns we define in the following subsections.

1. Critical Variable ( varsc). The process variable that should be kept above or
below a threshold or in a certain range.

2. Current State ( state). The current system state (including the values of vari-
ables and system parameters).
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3. Controller Action ( action). The action chosen by an RL controller.
4. Maximum Effect Time ( tE). The maximum time for which we need to consider

the effect of a chosen action.
5. Worst-Case Reaction (wcreaction). The worst case reaction of the overall

hybrid system in the current state with the currently chosen action.
6. Relation (∼). A relation to a threshold or bound with ∼ ∈ {≥, >,<,≤}.
7. Threshold ( θ). A lower or upper bound on a critical variable.
8. Degraded Service Level ( servicedeg). A degraded service level an RL agent

may choose to dynamically adapt to persisting stressors.

4.3 Threshold Pattern

If an RL agent has to keep a critical variable above or below a threshold, this
means that it has to be ensured that for each system state and for each control
decision in which a new action is chosen, the worst case reaction of the overall
system still maintains the threshold. The worst case reaction depends on the
current state and chosen action. The maximum effect time is the time between
control decisions , i.e., one sample time (tS). Often, wcreaction can be divided
into the effect of the RL agents action and the worst case reaction of the envi-
ronment. For example, for the temperature control, the worst case reaction is a
combination of the effect of the cooling action chosen by the RL agent and the
heating by the environment. For simple differential equations, whose solutions
can be represented in dL, wcreaction corresponds to this solution with worst
case assumptions applied for one sample time. For more complex differential
equations, over-approximations may be necessary (e.g. for the water tank).

Definition 1: Threshold Pattern
varsc ∼ θ → varsc + wcreaction(state, action, tS) ∼ θ

Invariant Derivation. To verify threshold properties, we need to establish that
the controllers actions are safe in every reachable state, including intermediate
states between control decisions. Thus, we can derive loop invariants that capture
safe behavior at arbitrary time steps by replacing the worst case reaction or
sample time tS by the remaining time tS − cS, where cS is the time since the last
decision (cf. Sect. 2.4), and use this for loop induction.

Illustrating Examples. Table 1 shows threshold properties, hybrids contracts,
and derived invariants that are built from the threshold contract pattern for our
illustrating examples. For brevity, assumptions are omitted here. To avoid over-
heating, the Temperature Control system has to keep T ≤ TMAX. The controller
chooses a cooling value c (action). The worst case reaction of the environment
is the maximum possible heating hMAX, which leads to a worst case change in
temperature of +hMAX · tS −c · tS until the next sample time. The Water Tank has
to ensure l > lMIN, i.e., the tank may never run empty. The controller chooses a
voltage v, which determines the inflow v · b until the next sample time tS. The
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Table 1. Threshold Properties, Contracts, and Invariants

Pattern varsc +wcreaction(state, action, tS) ∼ θ
T
em

p
C

tr
l

Property pre → [α] T≤TMAX

Contract T +(hMAX − c) · tS ≤ TMAX

Invariant T +(hMAX − c) · (tS − cS) ≤ TMAX

W
a
te

r
T
a
n
k

Property pre → [α] l>lMIN

Contract l +(v · b − a · √
l) · tS > lMIN

Invariant l +(v · b − a · √
l) · (tS − cS) > lMIN

R
o
b
o
t Property pre → [α] d(pr, po)>θo

Contract d(pr, po) −(vr + vo,MAX) · tS > θo

Invariant d(pr, po) −(vr + vo,MAX) · (tS − cS) > θo

A
C

C

Property pre → [α] pF<pL

Contract pL − pF −(vF · tS + aF ·(tS)2
2

) > (vF+aF ·tS)2
2·b

Invariant pL − pF −(vF · (tS − cS) + aF ·((tS−cS))
2

2
) > (vF+aF ·(tS−cS))

2

2·b

W
D

S

Property pre → [α] l>lMIN

Contract l +(0 · r − s) ·tS > lMIN

Invariant l +(0 · r − s) ·(tS − cS) > lMIN

flow of the tank is described by the differential equation l′ = b ·v−a ·√l. The dif-
ferential equations solution cannot be defined in KeYmaera X. Because of this,
we use a linear over-approximation of the flow where

√
l is treated as a constant

value until the next sample time. The RL Robot has to maintain a safety dis-
tance to the opponent d(pr, po) > θo. In the contract, we omit directions. Thus,
as a worst case reaction, the agent decreases distance with its velocity vr and the
opponent with maximum velocity vo,MAX for one sample time tS. In the ACC, the
follower may not crash into the lead car. For this, the distance to the lead car
must always be greater than the followers maximum braking distance, which can
be calculated from the current velocity, chosen acceleration and maximal brak-
ing force b (θ = (vF + aF · tS)2/(2 · b)). The effect of choosing an acceleration
aF ≥ 0 is a reduction of the current distance (pL − pF ) by vF · tS + aF · tS

2/2.
The worst case reaction of the environment is that the opponent stopps instantly,
i.e., vL = aL = 0. In the WDS, the RL agent also has to keep the water level
above a minimum l > lMIN. As an action, the agent may limit the outflow sMAX
and activate pumps (a1 − a3). The worst case reaction of the environment is a
demand that fully exploits the supply limit (i.e. d = s) together with a failure of
all three pumps, which sets the inflow to zero independent of pump activations.

4.4 Range Pattern

An HC pattern for keeping a critical variable varsc inside a range [θMIN, θMAX] can
be constructed by combining two threshold patterns for staying above θMIN and
below θMAX. Note that ≥ and ≤ can be replaced with > and <.
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Table 2. Additional Properties, Contracts, and Invariants for Ranges

Pattern varsc +wcreaction(state, action, tS) ∼ θ
T
em

p
C

tr
l

Property pre → [α] T≥TMIN

Contract T +(hMIN − c) · tS ≥ TMIN

Invariant T +(hMIN − c) · (tS − cS) ≥ TMIN

W
D

S

Property pre → [α] l<lMAX

Contract l +((a1 + a2 + a3) · r) − 0) ·tS < lMAX

Invariant l +((a1 + a2 + a3) · r) − 0) ·(tS − cS) < lMAX

Definition 2: Range Pattern

varsc ≥ θMIN → varsc + wcreactionMIN(state, action, tS) ≥ θMIN
varsc ≤ θMAX → varsc + wcreactionMAX(state, action, tS) ≤ θMAX

Invariant Derivation. Analogously to the threshold properties, invariants for
range properties can be derived by replacing tS by tS − cS.

Illustrating Examples. The applicability of the range pattern is illustrated by
the additional properties, threshold contracts and invariants for the tempera-
ture control, the water tank, and the WDS shown in Table 2. For the Temper-
ature Control system, the temperature is now kept in a range [TMIN, TMAX]. To
achieve this, we add a second threshold contract for TMIN. Note that the worst
case reactions wcreactionMIN and wcreactionMAX are dependant on the respective
thresholds, i.e. while the worst-case reaction for the upper bound involves the
maximum possible heating value hMAX, the contract for the lower bound involves
the minimal possible heating value hMIN. The range patterns for the water tank
and the ACC example work analogously and are omitted here for brevity. In the
WDS, the water level should be kept in (lMIN, lMAX). The worst case reaction w.r.t.
the upper bound is a maximum possible inflow (i.e. none of the pumps activated
by the RL agent fail) combined with a minimal possible outflow (d = 0).

4.5 Range Recovery Pattern

If a safety-critical variable changes its value unexpectedly because of a disrup-
tion, the system should recover back into a safe range within a given maximum
recovery time. To achieve this, the RL agent needs to ensure that whenever the
process variable is out of the safe range, an action is chosen that guarantees
that the process variable reaches the safe range within the maximum recovery
time, even if the system shows worst case behavior. After recovery or without
disruptions, the variable should be kept inside the safe range.

Our Range recovery pattern consists of two parts. The upper two lines
describe recovery. The effect of the action and worst case reaction takes place
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during the whole revocery time. Thus, the wcreaction that may be permitted
by the contract depends on the remaining recovery time (tR), which can be cal-
culated from the time of the last disruption (tD,LAST) and the maximum recovery
time (tR,MAX). The recovery part states that whenever out of range ¬(varsc∼θ),
the agent chooses an action which brings varsc back into the safe range within
the remaining recovery time (tR), even with a worst case system reaction. The
lower two lines (analogous to the range pattern) ensure that the safety critical
variable is kept in the safe range after recovery or as long as no disruptions occur.

Definition 3: Range Recovery Pattern

¬(varsc ≥ θMIN) → varsc + wcreactionMIN(state, action, tR) ≥ θMIN
¬(varsc ≤ θMAX) → varsc + wcreactionMAX(state, action, tR) ≤ θMAX

varsc ≥ θMIN → varsc + wcreactionMIN(state, action, tS) ≥ θMIN
varsc ≤ θMAX → varsc + wcreactionMAX(state, action, tS) ≤ θMAX

Invariant Derivation. For the deductive verification of range recovery patterns,
an invariant can be used that states that a disruption either just occured within
the current sample time (t − tD,LAST ≤ cS), or that the recovery contract is main-
tained. The recovery part of the contract (upper two lines) is already strong
enough as it reasons about the remaining time and can thus directly be used in
the invariant. For the range part (lower two lines), analogously to range proper-
ties, invariants can be derived by replacing tS by tS − cS.

Illustrating Examples. In Table 3, the application of the range recovery pattern
is illustrated for the temperature control system and the water tank. As desired
properties, we require the system to always keep the temperature resp. water
level within a certain range if the time since the last disruption is greater than the
maximal recovery time. The HC for the RL agents can directly be constructed
from our HC pattern. For the temperature control, if the temperature is too low,
the worst case reaction is minimal heating together with the chosen cooling value.
The effect must be strong enough to reach or exceed TMIN within the remaining
recovery time tR = tD,LAST + tR,MAX − t. The range patterns are applied as before,
and the contract for the water tank is built analogously.

4.6 Resilience Contracts

If external stressors persist, e.g., components of a model fail permanently, recov-
ery may not be possible. Resilient systems can dynamically adapt to such per-
sisting stressors by, e.g., switching to a degraded service level. In the WDS, a
degraded service level is modeled by limiting the maximum supply, and a backup
pump ensures that the limited supply can always be provided even if all other
pumps fail. For the autonomous robot, an external stressor might lead to oppo-
nents getting closer to the RL robot than expected, and the RL robot provides
a degraded service level where it just stops as long as this stressor persists.
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Table 3. Range Recovery Properties, Contracts, and Invariants
T
em

p
C
tr
l

Pattern varsc ∼a θ → varsc +wcreaction(, action, tR) ∼g θ

Property pre → [α] (t − tD,LAST > tR,MAX → TMIN ≤ T ≤ TMAX)

RecoveryTMIN
T < TMIN → T +(hMIN − c) · (tD,LAST + tR,MAX − t) ≥ TMIN

RecoveryTMAX
T > TMAX → T +(hMAX − c) · (tD,LAST + tR,MAX − t) ≤ TMAX

RangeTMIN
T ≥ TMIN → T +(hMIN − c) · tS ≥ TMIN

RangeTMAX
T ≤ TMAX → T +(hMAX − c) · tS ≤ TMAX

Invariant

t − tD,LAST ≤ cS ∨ ((RecoveryTMIN
) ∧ (RecoveryTMAX

) ∧
(T ≥ TMIN → T+(hMIN − c) · (tS − cS) ≥ TMIN) ∧
(T ≤ TMAX → T+(hMAX − c) · (tS − cS) ≤ TMAX))

W
a
te
r
T
a
n
k

Property pre → [α] (t − tD,LAST > tR,MAX → lMIN < l < lMAX)

RecoverylMIN l ≤ lMIN → l +(v · b − a · √
l) · (tD,LAST + tR,MAX − t) > lMIN

RecoverylMAX l ≥ lMAX → l +(v · b − a · √
l) · (tD,LAST + tR,MAX − t) < lMAX

RangelMIN l > lMIN → l +(v · b − a · √
l) · tS > lMIN

RangelMAX l < lMAX → l +(v · b − a · √
l) · tS < lMAX

Invariant

t − tD,LAST ≤ cS ∨ ((RecoverylMIN ) ∧ (RecoverylMAX ) ∧
(l > lMIN → l +(v · b − a · √

l) · (tS − cS) > lMIN ∧
(l < lMAX → l +(v · b − a · √

l) · (tS − cS) < lMAX))

A crucial property of resilient systems is that they are always safe, e.g., safety
thresholds are maintained, while at least the degraded service level servicedeg

is always provided. For the HC of an RL agent controlling a resilient system,
this means that it may only choose an action with a higher service level than
servicedeg if it can guarantee to provide this service level until the next control
decision, even with a worst case system reaction. If threshold properties are
considered, this means that we can only choose a higher service level if the safety
threshold θsafe is not yet tight (varsc ∼ θsafe ±ΔMIN). If the process variable is to
close to the safety threshold, the RL agent provides the degraded service level.

Definition 4: Resilience Pattern

varsc ∼ θsafe ± ΔMIN → action ≥ servicedeg ∧
varsc + wcreaction(state, action, tS) ∼ θsafe

¬(varsc ∼ θsafe ± ΔMIN) → action = servicedeg

Invariant Derivation. An invariant can be derived from the HC pattern by using
a disjunction of the case where the agent is able to provide a higher service
level for the remaining sample time and the case where the agent provides the
degraded service level. For the former, we can again replace tS by tS − cS. In
addition, we explicitly state that the agent provides at least degraded service.

Illustrating Example. The resilience properties, contracts, and invariants for the
WDS and the autonomous robot are shown in Table 4. In the WDS, the RL agent
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Table 4. Resilience Properties, Contracts, and Invariants

Pattern
vsc∼θsafe ± ΔMIN → act ≥ servdeg ∧ vsc +wcr(, act, tS) ∼ θsafe

¬(vsc∼ θsafe ± ΔMIN) → act = servdeg

W
D
S

Property pre → [α] l > lMIN ∧ s ≥ sdeg

ServW,high l > lMIN + Δsuff → s ≥ sdeg ∧ l +(0 · r − s) · tS > lMIN

ServW,deg l ≤ lMIN + Δsuff → s = sdeg

Invariant (l + (0 · r − s) · (tS − cS) > lMIN ∨ s = sdeg) ∧ s ≥ sdeg

R
o
b
o
t

Property pre → [α] (d(pr, po) > θo ∨ vr = 0) ∧ vr ≥ 0

ServR,high d(pr, po) > θo → vr ≥ 0 ∧ d(pr, po) −(vr + vMAX,o) · tS > θo

ServW,deg d(pr, po) ≤ θo → vr = 0

Invariant (d(pr, po) − (vRL + vMAX,o) · (tS − cS) > θo ∨ vr = 0) ∧ vr ≥ 0

may limit the service level by setting the maximum water supply s provided to
consumers. For the worst case, in which all pumps fail, the system features a
backup pump, which ensures that a minimum amount of water can be supplied
to critical consumers (degraded service sdeg). A crucial system property is that
the tank never runs dry while the degraded service can always be provided. To
verify this property, we ensure that the RL agent only chooses s ≥ sdeg if a
sufficient amount of water l > lMIN + Δsuff is available. Otherwise, sdeg must
be chosen. For the autonomous Robot, a degraded service level is to just stop
(vr = 0). A crucial safety property of the robot is to maintain a safety distance
or to stop. For the RL agent, this means that if the distance to the opponent
is big enough (d(pr, po) > θo + 0), it may choose any velocity vr ≥ 0 which
maintains the safety distance. If the distance is violated, the RL agent stops.

4.7 Deductive Verification in KeYmaera X

We have deductively verified most of the properties used as illustrating examples
in KeYmaera X, namely threshold properties for all of our case studies, range
properties for the temperature control and the water tank, range recovery for
the temperature control, and resilience for the WDS and the autonomous robot.
The proof files can be found at https://www.uni-muenster.de/EmbSys/research/
Simulink2dL.html. To define the necessary invariants, the derived invariants
mainly needed to be supplemented by simple variable relations in all of our
case studies, e.g., non-negativity conditions and relations between clocks. This
shows that the derived invariants play a key role for deductive verification and
significantly ease the verification process.

5 Conclusion

In this paper, we have proposed an approach for making hybrid contracts for
the safe integration of reinforcement learning into hybrid systems reusable. Our
main contribution is a set of HC patterns, which are derived from recurring veri-
fication problems in such systems. In addition, for each contract pattern, we have

https://www.uni-muenster.de/EmbSys/research/Simulink2dL.html
https://www.uni-muenster.de/EmbSys/research/Simulink2dL.html
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discussed how invariants that play a key role for deductive verification can be
derived from the resulting HC. Our HC patterns help the designer to construct
HC from predefined elements. The derived invariants help the designer to per-
form deductive system verification, i.e., to verify that the overall system satisfies
safety and resilience properties under the assumption that the RL components
adhere to their HC. Together, the HC patterns and derived invariants have the
potential to significantly decrease the time and effort for deductive verification
of intelligent HS that use RL. We have illustrated the applicability of our app-
roach with several case studies that were designed in Simulink together with the
RL Toolbox, namely an intelligent temperature control system, a water tank
controlled by an RL controller, an autonomous factory robot, an adaptive cruise
control, and an intelligent water distribution system. To further demonstrate
the applicability of our approach, we have deductively verified at least one case
study for each contract pattern in KeYmaera X.

In future work, we plan to investigate further contract patterns. In particular,
the dynamic adaptation to a degraded service level only constitutes a small
part of what makes a system resilient. We plan to investigate further system
adapations and requirements in the context of resilience.
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Abstract. Automatically generating test inputs for input handling rou-
tines which implement highly structured input formats is challenging.
Existing input generation approaches (e.g. fuzzing) address this problem
by requiring verification engineers to create input specifications based
on which new inputs are generated. However, depending on the input
format, creating such input specifications can be cumbersome and error-
prone. We propose simplifying the creation of input specifications by
allowing input formats to be only partially specified. This is achieved by
utilizing concolic testing (a combination of concrete random testing and
symbolic execution) as an input generation technique and thereby allow-
ing parts of the input format to remain unspecified (i.e. unconstrained)
symbolic values. For this purpose, we present SISL, a domain-specific
language for creating partial input specifications for structured binary
input formats.

Keywords: Concolic testing · Software verification · Network
protocols

1 Introduction

Input handling routines are a known source of potentially exploitable bugs in
existing software [4]. An emerging dynamic testing technique to uncover these
sorts of bugs is concolic testing, a combination of concrete random testing (i.e.
fuzzing) and symbolic execution. Employment of concolic testing is limited by
the fact that input handling routines often expect inputs to satisfy a complex
predefined structured input format (e.g. JSON). As such, invalid inputs are
rejected early by the software without performing interesting input processing.
Since concolic testing is largely performed with a given time budget, critical
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bugs remain unnoticed if deeper parts of the software are not reached within
that budget.

The outlined problem is of central importance in the fuzzing context. Con-
trary to symbolic execution, fuzzing performs no formal reasoning and instead
relies solely on randomly generated values to create test inputs, thus requiring
even more time to satisfy complex input formats. Prior work on fuzzing attempts
to address this problem by randomizing individual rules of a specified grammar
[1,6,9] or individual fields of specified input blocks [3,7]. Due to the lack of formal
reasoning, it is necessary in both cases to manually provide a detailed description
of the utilized input format, which can be cumbersome and error-prone. Errors
in the provided input specification will cause the software to consider generated
inputs as invalid. We propose using concolic testing (which combines fuzzing
and symbolic execution) to ease the creation of input format specifications by
allowing verification engineers to only partially specify the targeted structured
input format. That is, unspecified parts of the input format can be treated as
unconstrained symbolic values, thereby allowing an SMT solver—used in sym-
bolic execution for formal reasoning—to automatically fill in the leftover gaps
based on extracted program constraints.

We present SISL, a Domain-Specific Language (DSL) to partially specify
structured binary input formats which are often used in security critical domains
(such as the Internet of Things). Furthermore, we illustrate that our proposed
language can be easily integrated into existing concolic testing frameworks by
proposing an exemplary integration for SymEx-VP [8], a concolic testing engine
for embedded RISC-V software. Lastly, we evaluate our DSL by providing evi-
dence that the minimal effort, required to create partial specifications, is out-
weighed by the gain in coverage and that our proposed DSL is expressive enough
to describe a wide range of structured binary input formats. To the best of our
knowledge, SISL is the first input format specification language designed explic-
itly for concolic testing. The SISL tooling is open source and can be obtained
from https://agra-uni-bremen.github.io/sisl/.

2 Scheme-Based Input Specification Language

The Scheme-based Input Specification Language (SISL) is a DSL for partially
specifying parametrisable binary input formats for concolic software testing. As
the name suggests, SISL is based on the Scheme programming language which,
in turn, is a Lisp dialect. We choose Scheme as the basis for our language since
it supports hygienic macros which allow defining custom syntactic constructs
within the language framework, thereby easing the creation of DSLs [2].

Similar to block-based fuzzers [3,7], SISL allows specifying binary input for-
mats as a sequence of variable-width bit blocks. Contrary to existing work on
fuzzing, SISL targets concolic testing and therefore supports distinct block types
to distinguish concrete and symbolic values in the specified input format. Sym-
bolic field values can optionally be constrained with symbolic expressions, hence
allowing expressing the relationship between different symbolic fields (e.g. X < Y

https://agra-uni-bremen.github.io/sisl/
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Fig. 1. Excerpt of an example SISL input specification for the ICMPv6 message format.

must hold for two symbolic fields X and Y ). Unconstrained symbolic fields can
be used to leave parts of the input format unspecified, therefore allowing the
concolic testing engine to fill in these gaps based on program execution and thus
easing the creation of input format specifications. Defined input formats can also
be nested, e.g. to express encapsulation in the network protocol context.

An example SISL input specification is provided in Fig. 1 were a specifica-
tion for the ICMPv6 message format is presented. ICMPv6 is a binary network
protocol implemented on top of IPv6. For this reason, the SISL specification in
Fig. 1 defines two input formats. First, the IPv6 message format is defined in Line
1–Line 9 using SISL’s define-input-format keyword. This keyword defines a
new input format and requires specifying the input format name, optional input
format parameters, and the input format fields. In Line 1 the input format name
is given as ipv6-packet, an optional next-hdr parameter is defined, and the
special &encapsulate keyword is used to denote that the format encapsulates
an additional payload format. In Line 2–Line 9 the fields of the IPv6 packet
format are defined. Each field definition takes at least two parameters: A field
name (expressed as a Scheme symbol) and a field size in bits. Fields can either
be concrete or symbolic. Concrete fields require the field value as a third argu-
ment. Symbolic fields support an optional third parameter to express symbolic
constraints. For ipv6-packet, six concrete fields are defined in Line 2–Line 7.
The majority of these fields (Line 3, Line 4, Line 6, and Line 7) use an integer
literal as field value. The version field (Line 2) uses a predefined variable as a
field value and the value of the payload-length field depends on the byte size
of the payload parameter. Furthermore, the ipv6-packet definition also uses
two symbolic fields for the source and destination address of the IPv6 header
format (Line 8–Line 9). IPv6 addresses have a complex internal structure which
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Fig. 2. Overview of our SISL-based concolic testing setup using SymEx-VP.

is cumbersome to express, by declaring them as symbolic the correct value for
these fields will be inferred by the concolic testing engine during execution.

The second input format, defined in Fig. 1, is the ICMPv6 message format
(Line 11–Line 16) This definition is analog to the ipv6-packet definition, with
the exception that it only consists of symbolic fields (Line 12–Line 16). Fur-
thermore, the symbolic type field (Line 12–Line 14) demonstrates the expres-
sion of symbolic constraints on a symbolic field values. Symbolic constraints
are expressed as a list of KQuery expressions, a textual representation of sym-
bolic constraints from prior work [5]. In Line 12–Line 16, the type field is
constrained so that it either has the value of the variable icmpv6-nbr-sol or
icmpv6-nbr-adv. These two variables refer to constants from the IPv6 Neigh-
bor Discovery Protocol (NDP) specification, thereby enabling targeted concolic
testing of an NDP implementation with this SISL specification.

To enable such tests, the two described input formats are instantiated in Line
18–Line 23 of Fig. 1 with specific parameters. In this case, the next-hdr of the
ipv6-packet is instantiated with the value of the variable icmpv6-next-header
and the payload parameter is set to an instance of an icmpv6-packet which
itself has its body parameter set to an input format with 32 unconstrained sym-
bolic bytes.

3 Overview and Implementation

We have integrated our proposed DSL with SymEx-VP, an existing open source
concolic testing engine for RISC-V embedded software [8]. An overview of the
interaction between SISL, the tested software, and SymEx-VP is provided in
Fig. 2. The central component of Fig. 2 is the high-level SISL specification. As
discussed in Sect. 3, this specification is created manually by a verification engi-
neer. Based on the human-readable SISL input specification, a machine-readable
low-level specification is automatically generated. This low-level specification is
then provided to and read by SymEx-VP which constrains utilized concolic val-
ues according to the specification. Since SymEx-VP targets embedded RISC-V
software in binary form, the constrained concolic input values are passed to the
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Table 1. Comparison of concolic testing with SISL and the original SymEx-VP.

Application SISL SymEx-VP

Name ALOC SLOC #Paths ST #Paths ST

Zephyr-CoAP 25383 24 23411 226 min 22999 232 min
Zephyr-IPv6-NDP 31066 30 15122 338 min 1736 453 min
Zephyr-MDNS 31238 35 19585 242 min 2287 452 min

executed software via Memory-Mapped I/O (MMIO) peripheral interfaces (e.g.
via a network peripheral) [8]. The software binary is then explored by SymEx-
VP based on these input values. Figure 2 (left side) shows a schematic repre-
sentation of relevant software components performing input processing. Con-
ceptually, the input parser of the software will process the concolic inputs and
create data structures based on them. Since the inputs are concolic, the created
data structures will also contain concolic values. Based on these concolic val-
ues, execution paths through both the input parser and the software processing
logic (which processes data structures created by the input parser component)
will be enumerated by SymEx-VP. For this purpose, SymEx-VP employs a
standard Dynamic Symbolic Execution (DSE) concolic testing technique where
branches in the software are tracked and negated by an SMT solver to discover
new assignments for concolic input values.

By constraining concolic input values prior to execution using SISL, we can
(a) reduce the amount of generated input values which are rejected by the soft-
ware’s input parser early on and do not reach the processing logic and (b) reduce
the amount of time spend in the SMT solver by using partially instead of fully
symbolic inputs, thus reducing the complexity of SMT queries.

4 Experiments and Conclusion

We evaluate our proposed input specification language by applying it to Zephyr1.
Zephyr is a popular operating system for programming constrained embedded
devices in the Internet of Things. For this reason, Zephyr provides input handling
routines for structured binary input formats used by different network protocols
in this domain. We performed experiments with three different protocol message
formats (CoAP, IPv6 NDP, MDNS) using example Zephyr applications. Gen-
erated input values were passed directly to the Zephyr network stack through
a network peripheral provided by SymEx-VP. The results of our experiments
are show in Table 1. For each application, we list the amount of RISC-V assem-
bler instructions (ALOC) in the binary and the amount of SISL lines (SLOC),
required for the created input format specification, as a complexity metric. We
executed each application for 8h using the created input specification with our
SISL enhanced version of SymEx-VP and with the original SymEx-VP (i.e.

1 https://zephyrproject.org/.

https://zephyrproject.org/
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entirely unconstrained symbolic input). For both executions, we list the amount
of discovered paths through the program (as a coverage metric, column: #Paths)
and the amount of time spend solving constraints on symbolic values (a known
bottleneck of concolic testing, column: ST).

The results in Table 1 demonstrate that partial SISL input specifications
significantly reduce the amount of solver time, thereby allowing the discovery of
more execution paths through a given program in a given time span. The gain in
path coverage increases with application complexity (as measured in assembler
instructions, column: ALOC). We deem the effort required to create partial
input specifications to be comparatively low since complex parts of the input
format can be marked as unconstrained symbolic and will thus be inferred during
execution. For example, even for a complex input format like MDNS (which is
encapsulated in an IPv6 and UDP packet) only 35 lines of SISL specification were
required. The utilized SISL specifications and Zephyr applications are available
as part of the publication artifacts2.

In conclusion, we have presented an open source DSL for partial specification
of binary input formats in the concolic testing context. Our experiments with
Zephyr indicate that our DSL is expressive enough to support different binary
input formats and the manual labor required to employ our DSL is outweighed
by the benefits in terms of increase in path coverage.
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Abstract. The C/C++11 (C11 ) standard offers a spectrum of order-
ing guarantees on memory access operations. The combinations of such
orderings pose a challenge in developing correct and efficient weak mem-
ory programs. A common solution to preclude those program outcomes
that violate the correctness specification is using C11 synchronization-
fences, which establish ordering on program events. The challenge is in
choosing a combination of fences that (i) restores the correctness of the
input program, with (ii) as little impact on efficiency as possible (i.e.,
the smallest set of weakest fences). This problem is the optimal fence
synthesis problem and is NP-hard for straight-line programs. In this
work, we propose the first fence synthesis technique for C11 programs
called FenSying and show its optimality. We additionally propose a near-
optimal efficient alternative called fFenSying. We prove the optimality
of FenSying and the soundness of fFenSying and present an implemen-
tation of both techniques. Finally, we contrast the performance of the
two techniques and empirically demonstrate fFenSying’s effectiveness.

Keywords: C11 · Fence-synthesis · Optimal

1 Introduction

Developing weak memory programs requires careful placement of fences and
memory barriers to preserve ordering between program instructions and exclude
undesirable program outcomes. However, computing the correct combination of
the type and location of fences is challenging. Too few or incorrectly placed fences
may not preserve the necessary ordering, while too many fences can negatively
impact the performance. Striking a balance between preserving the correctness
and obtaining performance is highly non-trivial even for expert programmers.

This paper presents an automated fence synthesis solution for weak mem-
ory programs developed using the C/C++11 standard (C11 ). C11 provides a
spectrum of ordering guarantees called memory orders. In a program, a memory
access operation is associated with a memory order which specifies how other
memory accesses are ordered with respect to the operation. The memory orders
range from relaxed (rlx) (that imposes no ordering restriction) to sequentially-
consistent (sc) (that may restore sequential consistency). Understanding all the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bouajjani et al. (Eds.): ATVA 2022, LNCS 13505, pp. 83–99, 2022.
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subtle complexities of C11 orderings and predicting the program outcomes can
quickly become exacting. Consider the program (RWRW) Sect. 2), where the orders
are shown as subscripts. When all the memory accesses are ordered rlx, there
exists a program outcome that violates the correctness specification (specified
as an assert statement). However, when all accesses are ordered sc, the program
is provably correct.

In addition, the C11 memory model supports C11 fences that serve as tools
for imposing ordering restrictions. Notably, C11 associates fences with memory
orders, thus, supporting various degrees of ordering guarantees through fences.

This work proposes an optimal fence synthesis technique for C11 called
FenSying. It involves finding solutions to two problems: (i) computing an opti-
mal (minimal) set of locations to synthesize fences and (ii) computing an optimal
(weakest) memory order to be associated with the fences (formally defined in
Sect. 3). FenSying takes as input all program runs that violate user-specified
assertions and attempts optimal C11 fence synthesis to stop the violating out-
comes. FenSying reports when C11 fences alone cannot fix a violation. In general,
computing a minimal number of fences with multiple types of fences is shown to
be NP-hard for straight-line programs [24]. We note, rather unsurprisingly, that
this hardness manifests in the proposed optimal fence synthesis solution even
for the simplest C11 programs. Our experiments (Sect. 7) show an exponential
increase in the analysis time with the increase in the program size.

Further, to address scalability, this paper proposes a near-optimal fence syn-
thesis technique called fFenSying (fast FenSying) that fixes one violating out-
come at a time optimally. Note that fixing one outcome optimally may not
guarantee optimality across all violating outcomes. In the process, this tech-
nique may add a small number of extra fences than what an optimal solution
would compute. Our experiments reveal that fFenSying performs exponentially
better than FenSying in terms of the analysis time while adding no extra fences
in over 99.5% of the experiments.

Both FenSying and fFenSying, compute the solution from a set of combina-
tions of fences that can stop the violating outcomes, also called candidate solu-
tions. The candidate solutions are encoded in a head-cycle-free CNF SAT query [8].
Computing an optimal solution from candidates then becomes finding a solution
to a min-model finding problem.

Many prior works have focused on automating fence synthesis (discussed in
Sect. 8). However, the techniques presented in this paper are distinct from prior
works in the following two ways: (i) prior techniques do not support C11 memory
orders, and (ii) the proposed techniques in this paper synthesize fences that are
portable and not architecture-specific.

Contributions. To summarize, this work makes the following contributions:

– The paper presents FenSying and fFenSying (Sect. 6). To the best of our
knowledge, these are the first fence synthesis techniques for C11 .

– The paper shows (using Theorems 1 and 2) that the techniques are sound,
i.e., if the input program can be fixed by C11 fences, then the techniques
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Initially: x = 0, y = 0
a :=sc y b :=sc x
x :=rlx 1 y :=rlx 1
assert(¬(a=1 ∧ b=1))
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will indeed find a solution. The paper also shows (using Theorem 3) that
FenSying produces an optimal result in the number and type of fences.

– Finally, the paper presents an implementation of the said techniques and
presents an empirical validation using a set of 1389 litmus tests. Further, the
paper empirically shows the effectiveness of fFenSying on a set of challenging
benchmarks from prior works. fFenSying performs on an average 67x faster
than FenSying.

2 Overview of FenSying and fFenSying

Given a program P , a trace τ of P (formally defined in Sect. 3); is considered
buggy if it violates an assertion of P . FenSying takes all buggy traces of P as
input. The difference in fFenSying is that the input is a single buggy trace of
P .

Consider the input program (RWRW), where x and y are shared objects with
initial values 0, and a and b are local objects. Let Wm(o, v) and Rm(o, v) rep-
resent the write and read of object o and value v with the memory order m.
Let I(o, v) represent the initialization event for object o with value v. The
parallel bars (‖) represent the parallel composition of events from separate
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threads. Figure (RWRW-bt) represents a buggy trace τ of (RWRW) under C11 seman-
tics. For convenience, the relations −sequenced-before (→sb

τ ), reads-from (→rf
τ ),

modification-order (→mo
τ ) (formally defined in Sect. 3, Sect. 4) − among the

events of τ are shown. The assert condition of (RWRW) is violated as the read
events are not ordered before the write events of the same object, allowing reads
from later writes.

Consider the following three sets of fences that can invalidate the trace
(RWRW-bt): c1 = {Fsc

12,F
sc
22}, c2 = {Frel

12 ,Facq
22 } and c3 = {Frel

12 } (the super-
scripts indicate the memory orders and the subscripts represent the synthe-
sis locations for fences). The solutions are depicted in Figures (RWRW-inv-to),
(RWRW-inv-sync) and (RWRW-inv-sync-opt) for c1, c2 and c3, respectively. The
candidate solution c1 prevents a total order on the sc ordered events [9,12],
thus, invalidating (RWRW-inv-to) under C11 semantics. With candidate solu-
tion c2, a happens-before (→hb

τ ) ordering is formed (refer to Sect. 4) between
Rsc(y, 1) and W sc(y, 1). This forbids a read from an ordered-later write, thus,
invalidating (RWRW-inv-sync). Candidate solution c3 establishes a similar →hb

τ

ordering by exploiting the strong memory order of Rsc(x, 1) and invalidates
(RWRW-inv-sync-opt).

The candidate solution c2 is preferred over c1 as it contains weaker fences.
On the other hand, candidate c3 represents an optimal solution as it uses the
smallest number of weakest fences. We formally define the optimality of fence
synthesis in Sect. 3. While FenSying will compute the solution c3, fFenSying
may compute one from the many candidate solutions.

Both FenSying and fFenSying start by transforming each buggy trace τ to
an intermediate version, τ imm, by inserting untyped C11 fences (called candidate
fences) above and below the trace events. (RWRW-imm) shows an intermediate
version corresponding to (RWRW-bt). The addition of fences (assuming they are
of the strongest variety) leads to the creation of new →hb

τ ordering edges. This
may result in cycles in the dependency graph under the C11 semantics (explained
in Sect. 4). The set of fences in a cycle constitutes a candidate solution. For
example, an ordering from F12 to F22 in (RWRW-imm) induces a cyclic relation
W rlx(y, 1) →rf

τ Rsc(y, 1) →hb
τ W rlx(y, 1) violating the →rf

τ ;→hb
τ irreflexivity

(refer to Sect. 4).
The candidate solutions are collected in a SAT query (Φ). Assuming c1, c2

and c3 are the only candidate solutions for (RWRW-bt), then Φ = (F12 ∧ F22) ∨
(F12 ∧ F22) ∨ (F12), where for a fence F

m
i , Fi represents the same fence with

unassigned memory order. fFenSying uses a SAT solver to compute the min-
model of Φ, minΦ = {F12}. Further, fFenSying applies the C11 ordering rules
on fences to determine the weakest memory order for the fences in minΦ. For
instance, F12 in minΦ is computed to have the order rel (explained in Sect. 6).
fFenSying then inserts F12 with memory order rel in (RWRW) at the location
depicted in (RWRW-inv-sync-opt). This process repeats for the next buggy trace.

In contrast, since FenSying works with all buggy traces at once, it requires
the conjunction of the SAT queries Φi corresponding to each buggy trace τi. The
min-model of the conjunction is computed, which provides optimality.
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3 Preliminaries

Consider a multi-threaded C11 program (P ). Each thread of P performs a
sequence of events that are runtime instances of memory access operations
(reads, writes, and rmws) on shared objects and C11 fences. Note that an event
is uniquely identified in a trace; however, multiple events may be associated with
the same program location. The events may be atomic or non-atomic.

C11 Memory Orders. The atomic events and fence operations are associated
with memory orders that define the ordering restriction on atomic and non-
atomic events around them. Let M = {na, rlx, rel, acq, ar, sc}, represent the
orders relaxed (rlx), release (rel), acquire/consume (acq), acquire-release (ar)
and sequentially consistent (sc) for atomic events. A non-atomic event is recog-
nized by the na memory order. Let � ⊆ M × M represent the relation weaker
such that m1�m2 represents that the m1 is weaker than m2. As a consequence,
annotating an event with m2 may order two events that remain unordered with
m1. The orders in M are related as na � rlx � {rel, acq} � ar � sc. We also
define the relation � to represent weaker or equally weak. Similarly, we define �
to represent stronger and � to represent stronger or equally strong.

We use EW ⊆ E to denote the set of events that perform write to shared
memory objects i.e., write events or rmw events. Similarly, we use ER ⊆ E to
denote events that read from a shared memory object i.e., read events and rmw
events, and EF to denote the fence events. We also use E(m) ∈ E (and accordingly
EW(m), ER(m) and EF(m)) to represent the events with the memory order m ∈ M;
as an example EF(sc) represents the set of fences with the memory order sc.

Definition 1 (Trace). A trace, τ , of P is a tuple 〈Eτ ,→hb
τ ,→mo

τ ,→rf
τ 〉, where

Eτ ⊆ E represents the set of events in the trace τ ;
→hb

τ (Happens-before) ⊆ Eτ × Eτ is a partial order which captures the event
interactions and inter-thread synchronizations, discussed in Sect. 4;

→mo
τ (Modification-order) ⊆ EW

τ ×EW
τ is a total order on the writes of an object;

→rf
τ (Reads-from) ⊆ EW

τ × ER
τ is a relation from a write event to a read event

signifying that the read event takes its value from the write event in τ .

Note that, we use EW
τ , ER

τ and EF
τ (and also EW(m)

τ , ER(m)
τ and EF(m)

τ where
m ∈ M) for the respective sets of events for a trace τ .

Relational Operators. R−1 represents the inverse and R+ represents the tran-
sitive closure of a relation R. Further, R1;R2 represents the composition of rela-
tions R1 and R2. Let R|sc represent a subset of a relation R on sc ordered events;
i.e. (e1, e2) ∈ R|sc ⇐⇒ (e1, e2) ∈ R ∧ e1, e2 ∈ E(sc). Note that we also use
the infix notation e1Re2 for (e1, e2) ∈ R. Lastly, a relation R has a cycle (or is
cyclic) if ∃e1, e2 ∈ E s.t. e1Re2 ∧ e2Re1.

A Note on Optimality. The notion of optimality may vary with context.
Consider two candidate solutions {Fsc

i } and {Frel
j ,F

acq
k } where the superscripts

represent the memory orders. The two solutions are incomparable under C11 ,
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and their performance efficiency is subject to the input program and the underly-
ing architecture. FenSying chooses a candidate solution c as an optimal solution
if: (i) c has the smallest number of candidate fences, and (ii) each fence of c has
the weakest memory order compared to other candidate solutions that satisfy
(i).

Let sz(c) represent the size of the candidate solution c and given the set of
all candidate solutions {c1, ..., cn} to fix P , let sz(P ) = min(sz(c1), ..., sz(cn)).
Further, we assign weights wt(c) to each candidate solution c, computed as the
summation of the weights of its fences where a fence ordered rel or acq is
assigned the weight 1, a fence ordered ar is assigned 2, and a fence ordered sc
is assigned 3. Optimality for FenSying is formally defined as:

Definition 2. Optimality of Fence Synthesis. Consider a set of candidate
solutions c1, ..., cn. A solution ci (for i ∈ [1, n]) is considered optimal if:

(i) sz(ci) = sz(P ) ∧ (ii) ∀j ∈ [1, n] s.t. sz(cj) = sz(P ), wt(ci) ≤ wt(cj).

4 Background: C11 Memory Model

The C11 memory model defines a trace using a set of event relations, described
in Definition 1. The most significant relation that defines a C11 trace τ is the
irreflexive and acyclic happens-before relation, →hb

τ ⊆ Eτ ×Eτ . The →hb
τ relation

is composed of the following relations [12].

→sb
τ (Sequenced-before): total occurrence order on the events of a thread.

→sw
τ (Synchronizes-with) Inter-thread synchronization between a write ew

(ordered � rel) and a read er (ordered � acq) when ew→rf
τ er.

→dob
τ (Dependency-ordered-before): Inter-thread synchronization between a
write ew (ordered � rel) and a read er (ordered � acq) when e′

w→rf
τ er

for e′
w ∈ release-sequence1 of ew in τ [9,12].

→ithb
τ (Inter-thread-hb): Inter-thread relation computed by extending →sw

τ and
→dob

τ with →sb
τ .

→hb
τ (Happens-before): Inter-thread relation defined as →sb

τ ∪ →ithb
τ .

The →hb
τ relation along with the →mo

τ and →rf
τ relations (Definition 1) is

used in specifying the set of six coherence conditions [12,17]:

→hb
τ is irreflexive. (co-h)

→rf
τ ;→hb

τ is irreflexive. (co-rh)
→mo

τ ;→hb
τ is irreflexive. (co-mh)

→mo
τ ;→rf

τ ;→hb
τ is irreflexive. (co-mrh)

→mo
τ ;→hb

τ ;→rf
τ

−1 is irreflexive. (co-mhi)
→mo

τ ;→rf
τ ;→hb

τ ;→rf
τ

−1 is irreflexive. (co-mrhi)

1 release-sequence of ew in τ : maximal contiguous sub-sequence of →mo
τ that starts at

ew and contains: (i) write events of thr(ew), (ii) rmw events of other threads [9,12].
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rf
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F
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sc
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W sc(x, 1) W sc(y, 1)

F
sc
1 : F

sc
2 :

Rrlx(y, 0): Rrlx(x, 0):

so so
so so

fr fr

SB SB-inv

Additionally, all sc ordered events in a trace τ must be related by a total
order (→to

τ ) that concurs with the coherence conditions. We use an irreflexive
relation called from-reads (→fr

τ � →rf
τ

−1;→mo
τ ) for ordering reads with later

writes. Consequently, →to
τ must satisfy the following condition [12,25], referred

to as (to-sc) and formally defined in the extended version [22].

– ∀esc1 , esc2 ∈ E(sc)
τ if esc1 →to

τ esc2 then (esc2 , esc1 ) �∈ →hb
τ ∪ →mo

τ ∪ →rf
τ ∪ →fr

τ ;
and,

– an sc read (or any read with an sc fence →sb
τ ordered before it) must not

read from an sc write that is not immediately →to
τ ordered before it.

Conjunction of (coherence conditions) and (to-sc) forms the sufficient con-
dition to determine if a trace τ is valid under C11 (formally defined in [22]).

HB with C11 Fences. C11 fences form →ithb
τ with other events [9,12]. A fence

can be associated with the memory orders rel, acq, ar and sc. An appropriately
placed fence can form →sw

τ and →dob
τ relation from an →rf

τ relation between
events of different threads (formal described in the extended version [22]).

5 Invalidating Buggy Traces with C11 Fences

The key idea behind the proposed techniques is to introduce fences such that
either (coherence conditions) or (to-sc)are violated. This section introduces
two approaches for determining if the trace is rendered invalid with fences.

Consider τ imm of a buggy trace τ . The candidate fences of τ imm inflate →sb
τ ,

→sw
τ , →dob

τ and →ithb
τ relations (fences do not contribute to →mo

τ imm , →rf
τ imm and

→fr
τ imm). The inflated relations are denoted as →sb

τ imm , →sw
τ imm , →dob

τ imm and →ithb
τ imm . We

propose Weak-FenSying and Strong-FenSying to detect the invalidity of τ imm.

Weak-FenSying. Weak-FenSying computes compositions of relations that cor-
respond to the (coherence conditions). It then checks if there exist cycles
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esc1

esc2

soR

esc1 e2

F
sc

so

R

sb

F
sc

e1 esc2

so

R

sb

F
sc
1 F

sc
2

e1 e2

so

R

sb sb

(soee) (soef) (sofe) (soff)

in the compositions (using Johnson’s algorithm [13]). The approach assumes
the memory order ar for all candidate fences. Consider a buggy trace (WRIR)

where x and y have 0 as initial values. Weak-FenSying detects a cycle in
→mo

τ ;→rf
τ ;→hb

τ ;→rf
τ

−1 with the addition of candidate fences F
ar
1 and F

ar
2 as

shown in (WRIR-invalidated). This violates the condition (co-mrhi), thus, inval-
idating (WRIR).

Strong-FenSying. This technique works with the assumption that all candidate
fences have the order sc. Strong-FenSying detects the infeasibility in construct-
ing a →to

τ imm that adheres to (to-sc). In order to detect violation of (to-sc),
Strong-FenSying introduces a possibly reflexive relation on sc-ordered events
of τ imm, called sc-order (→so

τ imm). The →so
τ imm relation is such that a total order

cannot be formed on the sc events of τ imm iff a cycle exists in →so
τ imm . All sc

event pairs ordered by →hb
τ imm , →mo

τ imm , →rf
τ imm and →fr

τ imm are contained in →so
τ imm .

Notably, pairs of sc events that do not have a definite order are not ordered by
→so

τ imm . This is because if such a pair of events is involved in a cycle then we can
freely flip their order and eliminate the cycle. Consider the buggy trace (SB),
W sc(x, 1)→toW sc(y, 1) and W sc(y, 1)→toW sc(x, 1) are both valid total-orders
on the sc events of the trace. The set →so

τ imm does not contain either of the two
event pairs and would be empty for this example.

As a consequence, pairs of events that do not have definite total order cannot
contribute to the reflexivity of →so

τ and can be safely ignored. Thus, →so
τ

+ ⊆ →to
τ

for a trace τ . Further, if a total order cannot be formed on sc ordered events then
a corresponding cycle exists in →so

τ imm . The observations are formally presented
with supporting proofs in the extended version [22]).

Definition 3 formally presents →so
τ imm based on the above stated considerations.

Definition 3 sc-order (→so
τ imm).

∀e1, e2 ∈ Eτ s.t. (e1, e2) ∈ R, where R = →hb
τ ∪ →mo

τ ∪ →rf
τ ∪ →fr

τ

– if e1, e2 ∈ E(sc)
τ then e1→so

τ imme2; (soee)
– if e1 ∈ E(sc)

τ , ∃Fsc ∈ EF(sc)
τ imm s.t. e2→sb

τ immF
sc then e1→so

τ immF
sc; (soef)

– if e2 ∈ E(sc)
τ , ∃Fsc ∈ EF(sc)

τ imm s.t. Fsc→sb
τ imme1 then F

sc→so
τ imme2; (sofe)

– if ∃Fsc
1 , Fsc

2 ∈ EF(sc)
τ imm s.t. Fsc

1 →sb
τ imme1 and e2→sb

τ immF
sc
2 then F

sc
1 →so

τ immF
sc
2 . (soff)

The trace depicted in (SB) can be invalidated with strong fences as shown in
(SB-inv). The sc events of (SB-inv) cannot be totally ordered and Strong-
FenSying detects the same through a cycle in →so (formed by @@soee and
@@sofe).
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Scope of FenSying/fFenSying. Our work synthesizes C11 fences and stands
fundamentally different from techniques that strengthen the memory orders of
events. On the one hand, sc fences cannot restore sequential consistency; thus,
strengthening memory orders may invalidate buggy traces that the strongest
C11 fences cannot. On the other hand, strengthening may lead to sub-optimal
byte-code. The difference is explained in the extended version [22].

6 Methodology

Buggy Traces and Candidate Fences. Algorithms 1 and 2 present FenSying
and fFenSying, respectively. The algorithms rely on an external buggy trace
generator (BTG) for the buggy trace(s) of P (lines 2,8). The candidate fences are
inserted (to obtain τ imm), and the event relations are updated (lines 16–17).

Detecting Violation of Trace Coherence. The algorithms detect possible
violations of trace coherence conditions resulting from the candidate fences
at lines 18–19 of the function synthesisCore. Figures (RWRW-inv-sync) and
(RWRW-inv-sync-opt) represent two instances of violations of (co-rh) detected by
Weak-FenSying (through a cycle W rlx(y, 1)→rf

τ immRrlx(y, 1)→hb
τ immW rlx(y, 1)). The

candidate solutions corresponding to these cycles (which include only candidate
fences) are {F12,F22} and {F12}. Further, for the same example, (RWRW-inv-to)
represents a violation detected by Strong-FenSying with the candidate solution
{F12,F22}. The algorithms discard all candidate fences other than F12 and F22

from future considerations (assuming no other violations were detected). Now τ
can be invalidated as the set of cycles is nonempty (line 20).

The complexity of detecting all cycles for a trace is O((|Eτ |+E).(C+1)) where
C represents the number of cycles of τ and E represents the number of pairs of
events in Eτ . Note that E is in O(|Eτ |2) and C is in O(|Eτ |!). Thus, Weak- and
Strong-Fensying have exponential complexities in the number of traces and the
number of events per trace.

Reduction for Optimality. The algorithms use a SAT solver to determine
the optimal number of candidate fences. The candidate fences from each can-
didate solution of τ are conjuncted to form a SAT query. Further, to retain
at least one solution corresponding to τ the algorithms take a disjunction
of the conjuncts. The SAT query is represented in the algorithm as Φτ :=
Q(weakCyclesτ ∨ strongCyclesτ ) (line 22) and presented in Eq. 1 (where Wτ

and Sτ represent weakCyclesτ and strongCyclesτ and WF and SF represent the
set of candidate fences in cycles W and S respectively). Further, FenSying com-
bines the SAT formulas corresponding to each buggy trace via conjunction (line
4), shown in Eq. 2. However, note that for fFenSying Φ = Φτ .

Φτ = (
∨

W∈Wτ

∧

Fw∈WF

Fw) ∨ (
∨

S∈Sτ

∧

Fs∈SF

Fs) (1) Φ =
∧

τ∈BT

Φτ (2)
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Algorithm 1: FenSying (P )
1 Φ := �; C := ∅
2 forall τ ∈ buggyTraces(P) do
3 Φτ , Cτ := synthesisCore(τ)
4 Φ :=Φ ∧ Φτ ; C :=C ∪ Cτ

5 minΦ := minModel(Φ)
6 F := assignMO(minΦ, C)
7 return syn(P , F)

Algorithm 2: fFenSying (P )
8 if ∃τ ∈ buggyTraces(P) then
9 Φ, C:= synthesisCore(τ)

10 minΦ := minModel(Φ)
11 F := assignMO(minΦ, C)
12 P ′ := syn(P , F)

13 return fFenSying (P ′)
14 else return P

15 Function synthesisCore(τ) /* τ = 〈Eτ , →hb
τ , →mo

τ , →rf
τ 〉 */:

16 Eτimm := Eτ ∪ candidateFences(τ)

17 (→hb
τimm , →mo

τimm , →rf
τimm , →rf−1

τimm , →fr
τimm) := computeRelations(τ, Eτimm)

18 weakCyclesτ := weakFensying(τ imm)

19 strongCyclesτ := strongFensying(τ imm)

20 if weakCyclesτ = ∅ ∧ strongCyclesτ = ∅ then
21 return /* ABORT: cannot stop τ with C11 fences */

22 Φτ := Q(weakCyclesτ ∨ strongCyclesτ ); Cτ :=weakCyclesτ ∪ strongCyclesτ
23 return Φτ , Cτ

We use a SAT solver to compute the min-model (minΦ) of the query Φ (lines
5,10). For instance, the query for (RWRW-bt) is Φ = (F12) ∨ (F12 ∧ F22) ∨ (F12 ∧
F22) and min-model, minΦ = {F12}. The solution to the SAT query returns the
smallest set of fences to be synthesized.

The complexity of constructing the query Φτ is O(C.F), where C is the number
of cycles per trace and F is the number of fences per cycle. The structure of the
query Φ corresponds to the Head-cycle-free (HCF) class of CNF theories; hence,
the min-model computation falls in the FP complexity class [8].

Determining Optimal Memory Orders of Fences. The set minΦ gives
a sound solution that is optimal only in the number of fences. The function
assignMO (lines 6,11) assigns the weakest memory order to the fences in minΦ
that is sound. Let min-cycles represent a set of cycles such that every candidate
fence in the cycles belongs to minΦ. The assignMO function computes memory
order for fences of min-cycles of each trace as follows: If a cycle c ∈ min-cycles
is detected, then its fences must form a →sw

τ imm or →dob
τ imm with an event of τ imm

(since, candidate fences only modify →sb
τ , →sw

τ and →dob
τ ). Let R = →sw

τ imm ∪
→dob

τ imm . The scheme to compute fence types is as follows:

– If a fence F in a weak cycle c is related to an event e of c by R as eRF, then
F is assigned the memory order acq;

– if an event e in c is related to F as FRe then F is assigned rel;
– if events e, e′ of c are related to F as eRFRe′ then F is assigned ar.
– All the fences in a strong cycle are assigned the memory order sc.

Consider a cycle c : e→sb
τ ′immF1→sw

τ ′immF2→sw
τ ′immF3→sb

τ ′imme′→rf
τ ′imme representing a vio-

lation of →rf
τ ′imm ;→hb

τ ′imm irreflexivity (condition (co-rh)). According to the scheme
discussed above, the fences F1, F2 and F3 are assigned the memory orders rel,
ar and acq respectively and wt(c) = 4 (defined in Sect. 3).
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Φτ1= (F1 ∧ F2)∨(F1 ∧ F3 ∧ F4)

cycles in τ2 (Cτ2): {F3,F4}
Φτ2= (F3 ∧ F4)

3-fence

Further, assignMO iterates over all buggy traces and detects the sound weak-
est memory order for each fence across all traces as follows. Assume a cycle c1 in
τ1

imm and a cycle c2 in τ2
imm. The function computes a union of the fences of τ1

and τ2 while choosing the stronger memory order for each fence that is present
in both the cycles. In doing so, both τ1 and τ2 are invalidated. Further, when
two candidate solutions have the same set of fences, the function selects the one
with the lower weight.

Consider the cycles of buggy traces τ1 and τ2 shown in (candidate-fences).
Let minΦ = {F1,F2,F3}. The memory orders of the fences for each trace are
shown with superscripts and the weights of the cycle τ1c1, τ1c2 and τ2c1 are
written against the name of the cycles. The candidate solutions τ1c1 and τ1c2
are combined with τ2c1 to form τ12c11 and τ12c21 of weights 5 and 4, respectively.
The solution τ12c11 is of higher weight and is discarded. In τ12c21, the optimal
memory orders rel, acq and ar are assigned to fences F1, F2 and F3, respectively.
It is possible that min-cycles may contain fences originally in P . If the process
discussed above computes a stronger memory order for a program fence than
its original order in P , then the technique strengthens the memory order of the
fence to the computed order. Note that this reasoning across traces does not
occur in fFenSying as it considers only one trace at a time.

Determining the optimal memory orders has a complexity in O(BT.C.F+MBT),
where BT if the number of buggy traces of P , C and F are defined as before, and
M is the number of min-cycles per trace.

In our experimental observation (refer to Sect. 7), the number of buggy traces
analyzed by fFenSying is significantly less than |BT|. Therefore, in practice, the
complexity of various steps of fFenSying that are dependent on BT reduces
exponentially by a factor of |BT|.
Nonoptimality of fFenSying. Consider the example (3-fence). It shows cycles
in two buggy traces τ1 and τ2 of an input program. FenSying provides the
formula Φτ1 ∧ Φτ2 to the SAT solver and the optimal solution obtained is (F1 ∧
F3 ∧ F4). However, fFenSying considers the formula Φτ1 and Φτ2 in separate
iterations and may return a nonoptimal result (F1 ∧ F2) ∧ (F3 ∧ F4).

We prove the soundness of fFenSying and FenSying with Theorems 1 and 2
respectively and the optimality of FenSying with Theorem 3. The theorems are
formally presented with proofs in the extended version [22].

Theorem 1. fFenSying is sound. If a buggy trace τ of P can be invalidated
using C11 fences then fFenSying will invalidate τ .



94 S. Singh et al.

Theorem 2. FenSying is sound. If a buggy program P can be fixed using C11

fences, then FenSying will invalidate all buggy traces of P .

Theorem 3. FenSying is optimal. FenSying synthesizes optimal number of
fences with optimal memory orders.

7 Implementation and Results

Implementation Details. The techniques are implemented in Python. Weak-
FenSying and Strong-FenSying use Johnson’s cycle detection algorithm in the
networkx library. We use Z3 theorem prover to find the min-model of SAT queries.
As a BTG, we use CDSChecker [20], an open-source model checker, for the fol-
lowing reasons;

1. CDSChecker supports the C11 semantics. Most other techniques are designed
for a variant [15] or subset [1,3,23] of C11 .

2. CDSChecker returns buggy traces along with the corresponding →hb
τ , →rf

τ

and →mo
τ relations.

3. CDSChecker does not halt at the detection of the first buggy trace; instead,
it continues to provide all buggy traces as required by FenSying.

To bridge the gap between CDSChecker’s output and our requirements, we mod-
ify CDSChecker’s code to accept program location as an attribute of the pro-
gram events and to halt at the first buggy trace when specified. FenSying and
fFenSying are available as an open-source tool that performs fence synthesis for
C11 programs at: https://github.com/singhsanjana/fensying.

Experimental Setup. The experiments were performed on an Intel(R)
Xeon(R) CPU E5-1650 v4 @ 3.60 GHz with 32 GB RAM and 32 cores. We
collected a set of 1389 litmus tests of buggy C11 input programs (borrowed
from Tracer [3]) to validate the correctness of FenSying and fFenSying exper-
imentally. We study the performance of FenSying and fFenSying on a set of
benchmarks borrowed from previous works on model checking under C11 and
its variants [1,3,20,23].

Experimental Validation. The summary of the 1389 litmus tests is shown
under Litmus Tests Summary, Table 1. The number of buggy traces for the
litmus tests ranged between 1–9 with an average of 1.05, while the number of
fences synthesized ranged between 2–4. None of the litmus tests contained fences
in the input program. Hence, no fences were strengthened in any of the tests.

We present the results of FenSying and fFenSying under Result Summary,
Table 1. The results have been averaged over five runs for each test. fFenSying
timed out (column ‘TO’) on a fewer number of tests (34 tests) in comparison
to FenSying (56 tests). The techniques could not fix 148 tests with C11 fences
(‘no fix’). The column ‘NO’ represents the number of tests where the fences
synthesized or strengthened is nonoptimal. To report the values of ‘NO’, we
conducted a sanity test on the fixed program as follows: we create versions

https://github.com/singhsanjana/fensying
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Table 1. Litmus testing summary

Litmus Tests Summary

Tests min-BT max-BT avg-BT min-syn max-syn avg-syn min-str max-str avg-str

1389 1 9 1.05 1 4 2.25 0 0 0

BT: #buggy traces, syn: #fences synthesized, str: # fences strengthened

min: minimum, max: maximum, avg: average

Results Summary

completed (syn+no fix) TO NO Tbtg (total) TF (total) Ttotal

FenSying 1333 (1185+148) 56 0 50453.19 36896.06 87266.09

fFenSying 1355 (1207+148) 34 0 30703.71 49068.61 79772.32

Times in seconds. TO: 15 min for BTG + 15min for technique

Tbtg: Time of BTG, TF: Time of FenSying or fFenSying, Ttotal: Tbtg+TF

P1, ...Pk of the fixed program P fx s.t. in each version, one of the fences of
P fx is either weakened or eliminated. Each version is then tested separately on
BTG. The sanity check is successful if a buggy trace is returned for each version.

Performance Analysis. We contrast the performance of the techniques using
a set of benchmarks that produce buggy traces under C11 . The results are
averaged over five runs. Table 2 reports the results where ‘#BT’ shows the
number of buggy traces, ‘iter’ shows the minimum:maximum number of iter-
ations performed by fFenSying over the five runs and, ‘FTo’ and ‘BTo’ repre-
sent FenSying/fFenSying time-out and BTG time-out, respectively (set to 15 min
each). A ‘?’ in ‘#BT’ signifies that BTG could not scale for the test, so the number
of buggy traces is unknown. The column (‘syn+str’) under fFenSying reports
the minimum:maximum number of fences synthesized and/or strengthened. We
add a ‘*’ against the time when BTG timed out in detecting that the fixed program
has no more buggy traces.

The performance of FenSying and fFenSying is diagrammatically contrasted
in Fig. 1. It is notable that fFenSying significantly outperforms FenSying in
terms of the time of execution and scalability and adds extra fences in only 7
tests with an average of 1.57 additional fences. With the increase in the number
of buggy traces, an exponential rise in FenSying’s time leading to FTo was
observed; except in cases 12, 13, 20, and 25, where FenSying times out with as
low as 10 traces. The tests time-out in Johnson’s cycle detection due to a high
density of the number of related events or the number of cycles.

fFenSying analyzes a remarkably smaller number of buggy traces (‘iter’)
in comparison with ‘#BT’ (≤2 traces for ∼85% of tests). We conclude that a
solution corresponding to a single buggy trace fixes more than one buggy traces.
As a result, fFenSying can scale to tests with thousands of buggy traces and
we witness an average speedup of over 67x, with over 100x speedup in ∼41% of
tests, against FenSying.

Interesting cases. Consider test 16, where BTG times out in 3/5 runs and completes
in ∼100s in the remaining 2 runs. A fence is synthesized between two events, e1
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Table 2. Comparative performance analysis

FenSying fFenSying

Id Name #BT syn+str Tbtg TF Ttotal iter syn+str Tbtg TF Ttotal

1 peterson(2,2) 30 1+0 2.63 54.31 56.94 1:1 1:1+0:0 0.18 2.07 2.25

2 peterson(2,3) 198 1+0 29.96 594.34 624.3 1:1 1:1+0:0 0.53 3.58 4.11

3 peterson(4,5) ? − − FTo − 1:1 1:1+0:0 397.51 21.07 418.58

4 peterson(5,5) ? − BTo − − 1:1 1:1+0:0 BTo 31.52 *931.52

5 barrier(5) 136 1+0 1.09 207.74 208.83 1:1 1:1+0:0 0.13 1.40 1.53

6 barrier(10) 416 1+0 3.37 565.44 568.81 1:1 1:1+0:0 0.2 2.70 2.9

7 barrier(100) 31106 − − FTo − 1:1 1:1+0:0 34.2 198.54 232.74

8 barrier(150) ? − − FTo − 1:1 1:1+0:0 117.09 399.20 516.29

9 barrier(200) − − − − − − − − FTo −
10 store-buffer(2) 6 2+0 0.08 0.91 0.99 1:1 2:2+0:0 0.04 0.05 0.09

11 store-buffer(4) 20 2+0 1.61 195.35 196.96 1:1 2:2+0:0 1.20 0.05 1.25

12 store-buffer(5) 30 − − FTo − 1:1 2:2+0:0 14.07 0.22 14.29

13 store-buffer(6) 42 − − FTo − 1:1 2:2+0:0 171.09 0.15 171.24

14 store-buffer(10) ? − BTo − − 1:1 2:2+0:0 BTo 0.05 *900.05

15 dekker(2) 54 2+0 0.17 0.27 0.44 1:1 2:2+0:0 0.26 0.04 0.3

16 dekker(3) 1596 − − FTo − 1:1 2:2+0:0 586.46 1.34 587.8

17 dekker-fen(2,3) 54 1+1 0.15 0.29 0.44 1:1 1:1+1:1 0.25 0.05 0.3

18 dekker-fen(3,2) 730 − − FTo − 1:1 1:1+1:1 159.84 5.56 165.4

19 dekker-fen(3,4) 3076 − BTo − − 1:1 1:1+1:1 BTo 6.06 *906.06

20 burns(1) 36 − − FTo − 7:8 8:10+2:2 0.61 4.69 5.3

21 burns(2) 10150 − − FTo − 6:7 8:10+0:1 71.53 554.6 626.13

22 burns(3) ? − BTo − − − − − FTo −
23 burns-fen(2) 100708 − − FTo − 5:7 4:6+3:3 329.41 43.96 373.37

24 burns-fen(3) ? − BTo − − 5:7 4:6+3:3 BTo 70.14 *970.14

25 linuxrwlocks(2,1) 10 − − FTo − 1:1 2:2+0:0 0.13 0.12 0.25

26 linuxrwlocks(3,8) 353 − − FTo − 2:2 3:4+0:0 686.52 0.41 *686.93

27 seqlock(2,1,2) 500 − − FTo − 1:1 1:1+0:0 341.54 2.38 343.92

28 seqlock(1,2,2) 592 − − FTo − 1:2 1:2+0:0 119.88 27.69 147.57

29 seqlock(2,2,3) ? − BTo − − 1:2 1:2+0:0 BTo 88.52 988.52*

30 bakery(2,1) 6 1+0 0.25 25.42 2.88 1:1 1:1+0:0 0.07 0.18 0.25

31 bakery(4,3) 7272 − − FTo − 1:1 1:1+0:0 166.11 5.68 171.79

32 bakery(4,4) 50402 − − FTo − 1:1 1:1+0:0 BTo 18.17 918.17*

33 lamport(1,1,2) 1 No fix 0.06 0.05 0.11 1:1 No fix 0.04 0.05 0.09

34 lamport(2,2,1) 1 No fix 411.94 0.05 411.99 1:1 No fix 53.34 0.05 53.39

35 lamport(2,2,3) ? − BTo − − 1:1 No fix 389.77 0.05 389.82

36 flipper(5) 297 2+0 6.22 254.18 260.40 1:1 2+0 2.51 0.02 2.53

37 flipper(7) 4493 − − FTo − 1:1 2+0 119.21 0.02 119.23

38 flipper(10) ? − − FTo − 1:1 2+0 BTo 0.03 900.03*

Tbtg: Time of BTG, TF: Time of technique (FenSying or fFenSying), Ttotal: Tbtg+TF

and e2, that are inside a loop. Additionally, e1 is within a condition. Depending
on where the fence is synthesized (within the condition or outside it), BTG either
runs out of time or finishes quickly. Similarly, BTG for test 26 times out in 3/5
runs. However, the reason here is the additional nonoptimal fences synthesized
that increase the analysis overhead of the chosen BTG (CDSChecker).

Note that, for most benchmarks, fFenSying’s scalability is limited by BTo
and observably fFenSying’s time is much lesser than FTo for such cases. There-
fore, an alternative BTG would significantly improve fFenSying’s performance.
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Fig. 1. Performance comparison between FenSying and fFenSying

8 Related Work

The literature on fence synthesis is rich with techniques targeting the x86-TSO
[2,5–7,10] and sparc-PSO [4,18] memory models or both [14,16,19]. The work
in [10] and [16] perform fence synthesis for ARMv7 and RMO memory models.
The works in [4,7,11] are proposed for Power memory model, where [11] also
supports IA-32 memory model.

Most fence synthesis techniques introduce additional ordering in the program
events with the help of fences [5–7,10,11,14,18,19,24]. However, the axiomatic
definition of ordering varies with memory models. As a consequence, most exist-
ing techniques (such as those for TSO and PSO) may not detect C11 buggy
traces due to a strong implicit ordering. While the techniques [6,7,24] are para-
metric in or oblivious to the memory model, they introduce ordering between
pairs of events that is globally visible (to all threads). Such an ordering constraint
is restrictive for weaker models such as C11 that may require ordering on a set
of events that may be conditionally visible to a thread. Similarly, [14] proposes a
bounded technique applicable to any memory model that supports interleaving
with reordering. Program outcomes under C11 may not be feasible under such a
model. Moreover, any existing technique, cannot fix a C11 input program while
conserving its portability.

Some earlier works such as [2,7,11] synthesize fences to restrict outcomes
to SC or its variant for store-buffering [5]. Most fence synthesis techniques [4,
14,16,18,19] attempt to remove traces violating a safety property specification
under their respective axiomatic definition of memory model. Various works
[4,5,10,14,16,19,24] perform optimal fence synthesis where the optimality (in
the absence of types of fences) is simply defined as the smallest set of fences.
Technique [6] assigns weights to various types of fences (similar to our work)
and defines optimality on the summation of fence weights of candidate solutions.
However, their definition of optimality is incomparable with ours, and no prior
work establishes the advantage of one definition over the other.

Lastly, a recent technique [21] fixes a buggy C11 program by strengthening
memory access events instead of synthesizing fences.
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9 Conclusion and Future Work

This paper proposed the first fence synthesis techniques for C11 programs: an
optimal (FenSying) and a near-optimal (fFenSying). The work also presented
theoretical arguments that showed the correctness of the synthesis techniques.
The experimental validation demonstrated the effectiveness of fFenSying vis-
à-vis optimal FenSying. As part of future work, we will investigate extending
the presented methods (i) to support richer constructs such as locks and (ii) to
include strengthening memory accesses to fix buggy traces.
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D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 164–180. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33125-1 13

3. Abdulla, P.A., Atig, M.F., Jonsson, B., Ngo, T.P.: Optimal stateless model checking
under the release-acquire semantics. Proc. ACM Program. Lang. 2(OOPSLA), 1–
29 (2018)

4. Abdulla, P.A., Atig, M.F., L̊ang, M., Ngo, T.P.: Precise and sound automatic fence
insertion procedure under PSO. In: Bouajjani, A., Fauconnier, H. (eds.) NETYS
2015. LNCS, vol. 9466, pp. 32–47. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-26850-7 3

5. Abdulla, P.A., Atig, M.F., Ngo, T.-P.: The best of both worlds: trading efficiency
and optimality in fence insertion for TSO. In: Vitek, J. (ed.) ESOP 2015. LNCS,
vol. 9032, pp. 308–332. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46669-8 13

6. Alglave, J., Kroening, D., Nimal, V., Poetzl, D.: Don’t sit on the fence. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 508–524. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9 33

7. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in weak memory models. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 258–272.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 25

8. Angiulli, F., Ben-Eliyahu-Zohary, R., Fassetti, F., Palopoli, L.: On the tractability
of minimal model computation for some CNF theories. Artif. Intell. 210, 56–77
(2014)

9. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing c++ con-
currency. ACM SIGPLAN Notices 46(1), 55–66 (2011)

10. Bender, J., Lesani, M., Palsberg, J.: Declarative fence insertion. ACM SIGPLAN
Notices 50(10), 367–385 (2015)

11. Fang, X., Lee, J., Midkiff, S.P.: Automatic fence insertion for shared memory multi-
processing. In: Proceedings of the 17th Annual International Conference on Super-
computing, pp. 285–294 (2003)

12. ISO/IEC-JTC1/SC22/WG21: Programming languages - C++ (2013). http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf

https://doi.org/10.1007/978-3-642-33125-1_13
https://doi.org/10.1007/978-3-319-26850-7_3
https://doi.org/10.1007/978-3-319-26850-7_3
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-319-08867-9_33
https://doi.org/10.1007/978-3-642-14295-6_25
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf


Fence Synthesis Under the C11 Memory Model 99

13. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975)

14. Joshi, S., Kroening, D.: Property-driven fence insertion using reorder bounded
model checking. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp.
291–307. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19249-9 19

15. Kokologiannakis, M., Raad, A., Vafeiadis, V.: Model checking for weakly consistent
libraries. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 96–110 (2019)

16. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences.
ACM SIGACT News 43(2), 108–123 (2012)

17. Lahav, O., Vafeiadis, V., Kang, J., Hur, C.K., Dreyer, D.: Repairing sequential
consistency in c/c++ 11, vol. 52, pp. 618–632. ACM New York, NY (2017)

18. Linden, A., Wolper, P.: A verification-based approach to memory fence insertion in
PSO memory systems. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS,
vol. 7795, pp. 339–353. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36742-7 24

19. Meshman, Y., Dan, A., Vechev, M., Yahav, E.: Synthesis of memory fences via
refinement propagation. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS,
vol. 8723, pp. 237–252. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10936-7 15

20. Norris, B., Demsky, B.: CDSchecker: checking concurrent data structures written
with C/C++ atomics. In: Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications,
pp. 131–150 (2013)

21. Oberhauser, J., et al.: VSync: push-button verification and optimization for syn-
chronization primitives on weak memory models. In: Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 530–545 (2021)

22. Singh, S., Sharma, D., Jaju, I., Sharma, S.: Fence synthesis under the c11 memory
model. arXiv preprint arXiv:2208.00285 (2022)

23. Singh, S., Sharma, D., Sharma, S.: Dynamic verification of c11 concurrency over
multi copy atomics. In: 2021 International Symposium on Theoretical Aspects of
Software Engineering (TASE), pp. 39–46. IEEE (2021)

24. Taheri, M., Pourdamghani, A., Lesani, M.: Polynomial-time fence insertion for
structured programs. In: 33rd International Symposium on Distributed Computing
(DISC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

25. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Zappa Nardelli, F.:
Common compiler optimisations are invalid in the c11 memory model and what
we can do about it. In: Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 209–220 (2015)

https://doi.org/10.1007/978-3-319-19249-9_19
https://doi.org/10.1007/978-3-642-36742-7_24
https://doi.org/10.1007/978-3-642-36742-7_24
https://doi.org/10.1007/978-3-319-10936-7_15
https://doi.org/10.1007/978-3-319-10936-7_15
http://arxiv.org/abs/2208.00285


Checking Scheduling-Induced Violations
of Control Safety Properties

Anand Yeolekar1,2(B), Ravindra Metta1,2, Clara Hobbs3,
and Samarjit Chakraborty3

1 TCS Research, Pune, India
{anand.yeolekar,r.metta}@tcs.com
2 TUM Germany, Munich, Germany

3 University of North Carolina at Chapel Hill, Chapel Hill, USA
{cghobbs,samarjit}@cs.unc.edu

Abstract. Cyber-physical systems (CPS) are typically implemented as
a set of real-time control tasks with periodic activation. When a con-
trol task misses it’s deadline, policies for handling deadline miss – e.g.
delayed scheduling of the task instance – may still lead the CPS into an
unsafe or sub-optimal state. We present a technique for exact checking of
such control safety and reachability properties, for a class of CPS, under
common deadline miss handling and control update policies. In partic-
ular, we propose a joint encoding of control and scheduling behaviour
as a satisfiability-modulo-theory formulation and a novel abstraction-
refinement procedure with incremental solving to scale the analysis. Case
studies with realistic systems show the utility of our approach.

Keywords: Control · Scheduling · Verification · Abstraction ·
Refinement

1 Introduction

CPS controllers are typically designed as a set of real-time tasks assuming ideal
conditions, such as all tasks meet their deadlines, for ease of design, by abstract-
ing away the implementation details. However, when the tasks are finally imple-
mented in software, the control performance might deviate from the expected
behaviour due to factors such as control task missing deadlines due to transient
overload on the processor. When a control task instance misses its deadline,
then depending on how the CPS is configured to handle deadline misses, the
corresponding control computation may be skipped or delayed causing a poten-
tial deviation from the expected behaviour. Such intermittent deviation from
expected behaviour, depending on when it occurs and by what amount, may in
turn lead to control safety or reachability violation.

For example, consider the F1Tenth car model [14], where the controller is
designed to steer the car along a predetermined path, without hitting an obstacle.
Only some deadline miss patterns, coupled with selected choice of initial state of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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the car, will result into a collision (see Fig. 5). In this work, we focus on analysing
the interaction between control and scheduling leading to such violations.

Existing analysis techniques assume a simplified scheduling model, such as
bounding the maximum number of consecutive deadline misses [10,18], or restrict
the scheduling behaviour by not admitting non-determinism in task specifica-
tion, or non-preemption of tasks. However, a precise bound accounting for all
feasible scheduling behaviours may not be easily identifiable for a given task
set implementing the CPS. As a result, these techniques tend to be pessimistic,
meaning the assumed worst-case deadline miss pattern, based on the bound,
might never occur for a real system. Further, bugs that occur based on the inter-
action between control and scheduling layers are often subtle, near-impossible
to reproduce by analyzing separately control or scheduling.

Therefore, to establish system correctness with respect to control properties,
an analysis that precisely maps task runs containing all permitted sequences
of deadline misses to control behaviour is needed, especially if the control or task
specification admits non-determinism. Such an analysis helps CPS designers (i)
to gauge the impact of scheduling parameters on control performance, and (ii)
gain insight into the interplay of control evolution, scheduling policy, and strate-
gies for handling deadline misses. Towards this end, we propose an approach to
check scheduling-induced violations of control safety and reachability properties.

Summary of Our Approach: Given a (discrete) control system, a set of tasks
realizing the controller, and an analysis horizon h indicating length of control
evolution, we construct an abstract model of the system behaviour (control evo-
lution and runs of the tasks), which admits all feasible system behaviour as well
as some infeasible (spurious) behaviour. We check this model for violation of
specified control properties using a constraint solver, which reports a witness on
finding a violation. If the witness is spurious (an infeasible task run or control
trajectory), we iteratively refine the model to block the spurious witnesses, until
either a genuine witness is obtained or no more witnesses exist, proving that the
control property holds on the original system. Our main contributions are:

Encoding: we propose a Satisfiability-Modulo-Theory (SMT) encoding that
abstracts control and scheduling by relaxing certain constraints on their
behaviour, which is then composed together with the property to be checked. Our
encoding admits non-determinism at the control layer (arbitrary initial states),
and scheduling layer such as delayed release (jitter) and variable execution times.

Refinement: we construct blocking implications from spurious witnesses to
refine the abstraction, and utilize the incremental analysis feature of SMT solvers
to efficiently analyze reasonably sized controllers and task sets.

Tool: we implemented the above abstraction and the refinement scheme to check
control property violations, supporting four common combinations of deadline
miss handling and control update strategies, and one static and one dynamic
non-preemptive scheduling policy.
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Table 1. Symbolic variables used in the SMT encoding

Notation Type Description

xj,k Real j-th dimension of plant state at k-th time step

uk Real Control update value at k-th step

rik, s
i
k, e

i
k, d

i
k Int release, start, end, and deadline times of the k-th job of i-th task

Related Work: Encoding of control and schedule to assess and correct impact
of scheduling anomalies on control performance has been studied [17] when a set
of periodic tasks with implicit deadlines is not schedulable, and to systematically
adjust the task periods to achieve schedulablity. [5] combines the control and
timing models as hybrid automata and verifies with Space Ex model checker [6].

The impact of timing uncertainty, such as deadline misses, on control has
been studied [10,12,18,20], but broadly focused on analysis of control stability
i.e. whether control trajectories converge to an equilibrium point. However, as
observed in [1], a stable control system might still violate safety properties, hence
the need for an approach to check safety properties. [15] proposes a rich state-
based representation for capturing deadline misses and measure their impact
on control performance. [16] presents a static scheduling strategy that guaran-
tees control performance while smartly saving resources. Another approach of
automatically adapting the control system to deadline misses to guarantee per-
formance is proposed in [19], along with worst-case stability analysis. However,
these approaches need a bound to be specified on the number of consecutive
deadline misses possible.

The effect of control trajectories going outside safe regions in CPS has also
been studied and remedial actions were proposed [4,21] for fixed priority schedul-
ing and controller co-design. [3] dynamically extends the period of control tasks,
based on historical measurements, to reduce power consumption and accommo-
date increased resource demands from other components.

In most works, a model of deadline misses needs to be provided by user,
which may sometimes help scale the analysis better than our approach. However
the main limitations of these approaches are: (i) extracting the assumed model
of deadline misses from the task specification, and (ii) unavoidable pessimism
due to worst case assumptions. In contrast, our approach faithfully models task
runs and control evolution, for precise analysis.

2 System Model and Encoding

2.1 Control System Model and Evolution

A discrete control system describing the plant model is defined as:

xk+1 = Axk + Buk uk = R − Kxk (1)

where x ∈ R
n×1 is the discrete state vector, n ≥ 1 is the control system dimen-

sion; k ∈ N denotes the discrete steps of evolution; A ∈ R
n×n and B ∈ R

n×1
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are matrices specifying the discrete-time plant model with timestep δ. The con-
trol input u ∈ R is computed using a state feedback vector K ∈ R

1×n, and an
optional reference value R ∈ R. The initial state x0 must lie in a user-specified
interval [X0,X0] along each dimension.

Our encoding approach unrolls the closed-loop discrete control system
described in Eq. 1 up to the user-specified bound h. To unroll, we introduce
symbolic variables xj,k corresponding to the control states, and uk correspond-
ing to the control action update, where j ranges over the dimension of the control
system 1, 2, . . . , n, and k ranges over the discrete steps of evolution 0, 1, . . . , h.
We first construct the constraints on the initial plant state as:

φinit := ∀j : Xj,0 ≤ xj,0 ≤ Xj,0 (2)

Then, symbolically encoding the trajectories that could originate from any point
in the initial set, we construct constraints on the control state variables as:

φtraj :=
h∧

k=0

⎛

⎝
n∧

i=1

xi,k+1 =
j∑

j′=1

Ai,j′xj′,k + Biuk

⎞

⎠ (3)

We defer the explanation of the timing model and associated control update
modeling uk to Sect. 2.4. Given the analysis horizon h, the control safety and
reachability properties over the trajectories are:

φprop := Xj,h ≤ xj,h ≤ Xj,h (reachability)

φprop := Xj,k ≤ xj,k ≤ Xj,k , 0 ≤ k ≤ h (safety)
(4)

where [Xj,h,Xj,h], [Xj,k,Xj,k] denote the user-specified reach and safety inter-
vals (or safety pipes), respectively, for j-th dimension.

2.2 Task Specification

The controller is realized in software via a set of tasks T that includes the con-
trol and auxiliary tasks e.g. loggers, communication, etc. We currently support
non-preemptive earliest-deadline-first (NP-EDF) representing dynamic priority
scheduling, and rate-monotonic (NP-RM), representing static priority schedul-
ing1, under unicore setting. A task τi ∈ T is defined as

(
O, J,E,E, P

)
, where

i is a unique task id, O is the task offset, J denotes release jitter faced by
task instances, E and E denote the best- and worst-case execution times of the
tasks respectively, and P denotes the period. We assume τ0 corresponds to the
controller task with period set to the discretization timestep: P 0 = δ.

We refer to task instances as jobs. Release time of the k-th job spawned
by τi is denoted by rik. Due to release jitter, the instant of job release lies in
the interval [kP i + Oi, kP i + Oi + J i]. We denote the start, end and deadline

1 While our method can be adapted to handle preemptions, we focus on NP scheduling
for ease of presentation and leave the extension as future work.
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time of the job as sik, e
i
k and dik. We assume task deadlines are implicit, thus

dik = Oi+(k+1)P i, and a deadline miss occurs when eik > dik. Under Continue

policy, jobs are eventually scheduled even if they miss deadline, and under Kill,
jobs are aborted in case of conservative deadline miss (i.e., a job is aborted if
its execution does not begin by dik − Ei). Under NP-RM, jobs of the same task
are scheduled in the order of release. Finally, jobs are released, scheduled and
terminate at discrete time points.

Definition 1. A run of the task set is a timed sequence of jobs,
〈. . . , (i, k, sik, e

i
k), . . .〉, respecting the given scheduling policy and deadline miss

strategy.

We assume the scheduling is work-conserving i.e. a ready job must be scheduled
as soon as the processor is available. Observe that multiple runs of the task
set are possible due to (i) release jitter experienced by each job, (ii) variable
execution budget leading to non-deterministic termination time for each job,
and (iii) arbitrary selection of equal-priority ready jobs. These runs can have
varying impact on the control performance and need to be analyzed rigorously.

2.3 An Abstraction for Task Runs

We explain how to encode the set of runs of the task set. Our approach spawns
jobs of all tasks up to the time instant h×δ and we encode runs of the task set as
a logical formula. There is no explicit modeling of the scheduler; the operational
semantics of the scheduling process, e.g., the scheduler’s run queue, tasks moving
from sleep to ready state, etc. are modeled implicitly in the formula.

From the task specification (Sect. 2.2) we construct constraints on the sym-
bolic variables (Table 1) associated with each spawned job as:

φruns := ∀ (i, k) : rik ≤ sik ∧ kP i + Oi ≤ rik ≤ kP i + Oi + J i ∧ eik ≤ sik+1

∧ Ei ≤ eik − sik ≤ Ei (under Continue)

∧ (sik + Ei ≤ di
k ⇒ Ei ≤ eik − sik ≤ Ei) ∧ (sik + Ei > di

k ⇒ eik = sik) (under Kill)

(5)

These constraints restrict the release, start and end times of jobs as per the
task specification and deadline miss policy, however, they exclude the scheduling
policy and work conservation at this stage of modeling. While this helps to keep
the constraints concise and tractable, it introduces an abstraction with respect
to the set of valid runs of the task set (admits all valid runs as well as spurious
ones) as defined in Definition 1. In Sect. 3, we will restore precision by using
refinements to prune away the spurious behaviour i.e invalid task runs.

2.4 Control Action Update Modeling

We admit Zero and Hold policies for control update u, where Zero signifies
applying u = 0 when the corresponding control task instance misses deadline,
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and Hold signifies applying the previous value. Figure 1 illustrates the simplified
logical execution timing (LET) model assumed in this work and the associated
control action updates, under Hold semantics. Plant sensing and actuation hap-
pens instantaneously at fixed discrete time points kδ, irrespective of the schedul-
ing of tasks2. As shown in the figure, job k − 1, spawned at time (k − 1)δ, reads
the plant state xk−1 at the beginning of its execution, processes the data, and
writes an actuation value at termination. This actuation value is applied to the
plant at the next time step kδ, and corresponds to the control action update uk.
We assume u0 = 0 (open loop for first step). On a deadline miss, e.g instance k
missing deadline, uk+1 is matched to uk (due to Hold). Observe that instance k,
which missed its deadline, is scheduled in the next slot [(k+1)δ, (k+2)δ), enabling
it to read the relatively fresher plant state xk+1. Instance k + 1 is scheduled in
its own slot [(k + 1)δ, (k + 2)δ) but misses its deadline, instance k + 2 meets its
deadline, and both write sequentially to the actuation buffer in the same time
slot, corresponding to control action update uk+3. In such a case, we assume the
actuation buffer is overwritten by the fresher value.

Updates are thus delayed when the controller is realized in software. We
model this by constructing conditional control update constraints as:

φu := ∀k : uk = 0, if k = 0

∧ e0k−1 ≤ d0k−1 ⇒ uk = R −
n∑

j=1

Kjxj,k−1 (under Continue)

∧ s0k−1 + E0 ≤ d0k−1 ⇒ uk = R −
n∑

j=1

Kjxj,k−1 (under Kill)

∧ s0k−1 + E0 > d0k−1 ⇒ uk = uk−1 (under Hold-Kill)

∧ s0k−1 + E0 > d0k−1 ⇒ uk = 0 (under Zero-Kill)

(6)

Notice that, under Continue policy, the above constraints enforce control
update computation when deadlines are met, but leaves the control update
unconstrained on a deadline miss. This introduces an abstraction with respect to
control updates. This is necessary at this stage of modeling, as we do not know
statically how many jobs could miss being consecutively scheduled all together
in any run of the given task set i.e. how much to “look back” from the cur-
rent step to pick the preceding control task instance execution, to use that value
as the freshest, when encoding the control update. Additionally, this helps in
keeping the control action constraints tractable and concise. In Sect. 3.4, we
will restore precision by refining control updates. Note that under Kill policy,
control updates are always precisely computed (there is no abstraction).

Definition 2 (Trajectory). A (discrete) trajectory of the control system is a
sequence of values of state variables

〈
. . . , (k, x1, . . . , xj), . . .

〉
, originating from

a valid initial state, ordered on the evolution step counter k, respecting the state
and control Eqs. 1 and 6.

2 We assume a time-triggered hardware implementation of sensing/actuation, outside
the scheduling purview, with values stored in buffers accessed by the control task.
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Fig. 1. Timing model illustrating sensing, task release and actuation, under Hold

2.5 Composing Control and Scheduling Models

From the encodings for the control trajectories from Eqs. 2 and 3, task runs
from Eq. 5, control update from Eq. 6, and the control property from Eq. 4, we
construct the system composition as:

φsys := φinit ∧ φtraj ∧ φu ∧ φruns ∧ ¬φprop (7)

3 Refining the Abstraction

Consider a solution to φsys reported by an SMT solver, that assigns concrete
values to all the symbolic variables in the formula. The solution is parsed to
extract (i) the run of the tasks consisting of a sequence of jobs, termed σrun,
and (ii) the control trajectory, sorted on the step counter k, termed σtraj. If
σrun satisfies Definition 1, we have a run generated from the abstract φsys that
precisely maps to a concrete run of T . Similarly, if σtraj satisfies Definition 2, we
have a control trajectory, generated from the abstract φsys, that precisely maps
to a concrete trajectory of the control system.

However, if either σrun or σtraj violate their respective definitions, we have a
spurious trace leading to property violation. To block such a trace from φsys, we
identify the causes of non-compliance within the definitions. For Definition 1 the
causes can be overlapping jobs, scheduling policy violation, or work conservation
violation, and for Definition 2, unconstrained control update due to deadline
miss.

3.1 Overlapping Jobs

Suppose job (i, j) overlaps with (i′, j′) in σrun, with sij ≤ si
′
j′ . This is possible

as the abstraction does not prevent overlaps upfront. Observe that though in
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this trace (i, j) preceded (i′, j′), there can be a run of T with the precedence
reversed. Thus, to block this overlap as witnessed in this trace, we construct:

Bov := (sij ≤ si
′
j′ ∧ si

′
j′ < eij) ⇒ eij ≤ si

′
j′ (8)

This implication when conjuncted with φsys blocks this particular pair of jobs
from overlapping again in any trace, under the premise that (i, j) precedes (i′, j′).

3.2 Schedule Violation

Suppose job (i, j) precedes (i′, j′) in σrun, but this precedence violates the
scheduling policy. Under NP-EDF, (i, j) can precede (i′, j′) if and only if the
deadline of (i, j) is no later than that of (i′, j′), or (i, j) is scheduled strictly
before (i′, j′) is released. Thus we construct the blocking implication3:

Bsv := sij < si
′
j′ ⇒ (dij ≤ di

′
j′ ∨ sij < ri

′
j′) (under NP-EDF) (9)

Conjuncting Bsv with φsys blocks the scheduling violation caused by this pair
of jobs in any trace, under the premise that (i, j) precedes (i′, j′).

3.3 Work Conservation Violation

Here, the processor cannot idle in the presence of a ready job. We assume that
σrun is free of overlapping jobs, easily achieved by repeatedly refining φsys with
Bov implications. There are two cases to analyze: (a) processor idling immedi-
ately after release of job (i, j), implying that sij = rij , and (b) idling post termi-
nation of some job (i′, j′) within the waiting time of (i, j), implying sij = ei

′
j′ .

Observe, however, there can be runs of T with different jobs preceding (i, j),
which raises the question: what is the set of jobs preceding (i, j) across all runs?
This set, denoted precij , is conservatively estimated as follows: Intuitively, jobs
released earlier and having higher priority will always precede (i, j) in all runs,
and vice versa. Importantly, this set of jobs can be identified statically based
on their period and deadline. Then, the complement of this set, characterized
by a lack of static precedence guarantee, forms precij . Formally, consider job
(i′, j′), i′ �= i. If di

′
j′ < dij ∧ j′P i′ + Oi′ + J i′ <= jP i + Oi (and vice-versa) does

not hold (under NP-EDF)4, then (i′, j′) ∈ precij . Observe that prec sets need to
be computed only once per job violating work conservation.

The concrete starting instant of the processor idle interval, which is rij in case
(a), serves to partition the set of jobs precij , as witnessed in σrun, into: (i) a prefix
subset of jobs scheduled prior to rij , and (ii) a suffix subset of jobs scheduled
post rij . Since there are no job overlaps in σrun, we are guaranteed that prefix
and suffix are mutually exclusive. Thus, we construct the blocking implication
for case (a) to preventing processor idling as:

3 Under NP-RM, priority (period) must be higher (lower): Pi ≤ Pi′ ∨ sij < ri
′
j′ .

4 Under NP-RM, this is P i′ < P i.
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Bwc a := ( rij < sij ∧
∧

(i′,j′)∈prefix

ei
′
j′ < rij ∧

∧

(i′,j′)∈suffix

si
′
j′ > rij ) ⇒ sij = rij (10)

Here, the antecedent captures the context witnessed in σrun that: (i) job (i, j) had
a non-zero waiting time, (ii) some jobs that could precede (i, j) were scheduled
prior to rij , (iii) the remaining jobs that could precede (i, j) were scheduled post
rij . Under these premises, the consequent enforces work conservation.

Similarly for case (b), ei
′
j′ partitions prec, changing the consequent to sij = ei

′
j′ .

3.4 Unconstrained Control Updates

The basic idea for refining unconstrained control updates is to locate the latest
control job that was scheduled in σrun, compute the control update issued by
this job (if not already done), and use this as the freshest value. Observe that we
cannot always pick the control update issued by the preceding job: From Fig. 1,
job k + 1 missed its deadline, leading to an unconstrained uk+2. However, here,
we cannot pick uk+1 to match uk+2, as job k did get scheduled and successfully
terminated before the instant (k + 2)δ, thereby issuing a fresher control update
that must be matched with uk+2. We discuss the various cases below.

Case 1: Suppose job (0, n) missed its deadline d0n in σrun, enabling a spurious
assignment to un+1 in σtraj. Then, suppose examining σrun leads us to a job
(0,m),m < n, as the closest control job that was scheduled (and thus termi-
nated) prior to the instant d0n. Then, un+1 should have matched um+1, based
on Hold. Now, if job (0,m) has met its deadline in σrun, then um+1 is already
computed (and the concrete value is reflected in σtraj). This allows us to build
the blocking implication for this first case as:

Buu a := ( e0n > d0n ∧ e0m ≤ d0m ∧ e0m+1 > d0n ) ⇒ un+1 = um+1 (11)

Here, the antecedent captures the context that (i) job (0, n) missed deadline, (ii)
job (0,m) is the closest preceding job to the time instant d0n (through e0m+1 > d0n)
and met deadline . This case is illustrated in Fig. 1 with job k missing deadline
and job k − 1 meeting its deadline, enforcing uk+1 to match uk.

Case 2: Consider that the preceding job (0,m) too missed its deadline in σrun,
and hence um+1 is not computed, as defined in Eq. 6. We have to locate the
“scheduling slot” in which (0,m) started execution, encode computation of the
the corresponding control update, and match with un+1. Recall that control task
instances read the control state at the beginning of their execution. Suppose, by
examining σrun, we observe that m′P 0 ≤ s0m < (m′ + 1)P 0, with m ≤ m′ ≤ n.
In other words, job (0,m) was scheduled in a slot (interval of length P 0) that
begins at time m′P 0. Then, job (0,m) must have read the control state available
in this slot, which allows us to construct a blocking implication that computes
the correct control action as:

Buu b := ( e0n > d0n ∧ e0m > d0m ∧ e0m ≤ d0n ∧ e0m+1 > d0n

∧ m′P 0 ≤ s0m < (m′ + 1)P 0 ) ⇒ un+1 = R −
j∑

j′=1

Kj′xj′,m′
(12)
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Here, the antecedent captures the conditions that: (i) jobs (0, n) and (0,m)
missed their deadlines, (ii) job (0,m) is closest one to be scheduled prior to
the time instant d0n, and (iii) job (0,m) was scheduled in the slot beginning at
time m′P 0. The consequent constrains the control update to pick the control
state xj,m′ i.e. state at time m′P 0. This case is illustrated in Fig. 1, with jobs
k + 1 and k missing their respective deadlines. Job k, however, is scheduled in
the next slot post release (m′ = k + 1), and terminates before the time instant
(k + 2)δ, leading to uk+2 matching the control update issued by job k, albeit
reading the control state xk+1 instead of xk.

Case 3: The last special case that no preceding job is found (all preceding jobs
missed deadline) can be handled similarly by enforcing un+1 = u0.

3.5 Correctness of Refinement

Theorem 1. Based on Eqs. 8–12, each refinement step removes only spurious
runs and/or trajectories from the set of solutions of φsys.

Proof (sketch). Bov (Eq. 8) ensures that pairs of jobs do not overlap and does
not obstruct any run of T . Bsv (Eq. 9) prevents incorrect scheduling of pairs of
jobs by blocking such spurious runs.

Bwc prevents processor idling in the presence of ready jobs, by “moving” the
waiting job appropriately, thus blocking the spurious run. Note that the prec
set (Sect. 3.3), by construction, soundly over-approximates the set of jobs that
could precede the violating job in all runs of T . Thus, the antecedent in Bwc

(Eq. 10) is guaranteed to cover all possible spurious cases involving this job, i.e.,
the refinement is complete with respect to work-conservation violation.

Buu prevents unconstrained control updates by processing the trace σrun to
locate the closest preceding job and computes the control update issued by this
job (if not already computed in σtraj). The cases presented in Eqs. 11 and 12
guarantee that the freshest update is identified within σtraj and matched to
restore precision. Thus in all cases, the refinement implications block spurious
behaviour or traces of φsys that do not constitute runs of T or C. These scenarios
are the only causes of spuriousness in φsys.

4 Tool Design

Figure 2 depicts our tool implementation of the abstraction (Sect. 2) and refine-
ment (Sect. 3) using Python 3.8 and Z3 4.8.12. The tool accepts (i) control
specification (A,B,K,X0), analysis horizon h, (ii) safety and reachability sets
of plant states, (iii) task specification, and scheduling policy. Jobs are spawned
up to the analysis horizon and symbolic variables (Table 1) are introduced for
each job. Formulas φtraj and φruns are constructed and conjuncted along with
the control property of interest. If Z3 reports unsatisfiability, the property holds.

If Z3 reports a witness, we parse it to extract assignments to the symbolic
variables and reconstruct the task run and control trajectory. Internally, Z3
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Fig. 2. Tool design

tracks the set of formulas on symbolic variables using a context stack. Refine-
ment iterations incrementally add blocking clauses to the current context, lever-
aging the incremental analysis capability of Z3. The refinement loop is split into
two phases, catering to the two sources of abstraction, φtraj and φruns. During
experiments, we observed that a majority of the refinements were required for
pruning spurious task runs, as compared to spurious control trajectories. Hence,
we specifically built a separate loop for quickly refining φruns with the advantage
that the composition of φtraj and φruns, which yields the larger formula φsys and
consequently larger state space to be explored, is built and analyzed only after
a valid task run is obtained, thus boosting Z3 performance.

Refinement loops interface using context pushing and popping API from
Z3. Just before the composition step, the context is pushed i.e. saved on Z3
stack. Constraints from φtraj are then added to the context, encoding the entire
system φsys. Spurious control updates are processed according to Sect. 3.4. While
refining φsys, if we obtain a spurious task run, it is likely that several iterations
of refinements over φruns will be needed (as evidenced during experiments). At
this point, the presence of constraints from φtraj in the solver context is an
unnecessary burden for the solver. Consequently, the saved context is popped
out, flushing out φtraj constraints and restoring φruns refined upto the last good
point, thereby boosting the solver performance.

5 Case Study 1: DC Motor Control Model

Consider a DC motor speed model adapted from [11], specified by the model:

xk+1 =

⎡

⎣
0.9058 0.09617 0
0.01923 1.021 0

0 0 0

⎤

⎦ xk +

⎡

⎣
−0.009742
−0.2021

1

⎤

⎦uk

uk =
[
−0.219719 −0.942677 0.184469

]
xk

This discrete-time model has a period of 100ms. We assume a synthetic task set,
consisting of 5 tasks, implementing the controller, described in Table 2. Task τ0
is the controller task, thus P 0 = 100ms. We considered the following properties:
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Table 2. Synthetic task set for DC
Motor controller

Id Offset Period [bcet,wcet] Jitter

τ0 0 100 [15, 30] 2

τ1 0 100 [15, 30] 2

τ2 0 100 [15, 30] 2

τ3 10 400 [15, 30] 2

τ4 10 500 [20, 40] 2

Table 3. Task set for RC Network con-
troller

Id Offset Period [bcet, wcet] Jitter

τ0 0 100 [6, 13] 2

τ1 0 50 [6, 16] 2

τ2 0 100 [15, 30] 2

τ3 2 250 [8, 16] 2

τ4 6 100 [15, 30] 2

τ5 2 500 [5, 15] 0

Fig. 3. Analysis of DC Motor control system.

Property 1: Safe angular velocity of motor: xideal
1 − 0.3 ≤ x1 ≤ xideal

1 + 0.3 i.e.
the angular velocity must not deviate by more than 0.3 units from the corre-
sponding ideal (i.e no deadline miss) control states, at each step of evolution.

Property 2: Safe current through armature: x2 ≤ xideal
2 + 0.5 i.e. the current

through armature must not rise by more than 0.5 units from the corresponding
ideal current values, at each step of evolution.

We applied the tool to check these safety properties over the DC motor
system. Analysis over 50 steps, under Zero-Continue strategy and NP-EDF
schedule, revealed violation of the properties. Figure 3a shows the trajectory
reported by the tool, with Property 1 (angular velocity staying within specified
bounds) violated at steps 15 and 16. Property 2 (current through armature
within specified bounds) was reported violated at steps 9, 11 and 12. The task
set run corresponding to this trajectory had a total of 17 deadline misses of
the control task (τ0) spread over the 50 steps of evolution. The computation
time was approximately 1.5 min, requiring 65 refinements. All experiments were
executed on a laptop with Intel i5 processor, 16GB RAM and Ubuntu 20 OS.

Comparing Tool Precision. To illustrate improvement in precision in comput-
ing reach states using our tool (ConCh), we compared with a tool that computes
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Table 4. Reach upper bounds, under
Zero-Kill

Var Steps Ideal Reach ConCh

x1 10 1.2724 1.9051 1.61

x2 10 0.2163 1.449 0.74

x1 20 0.4681 1.5075 0.81

x2 20 −0.0628 1.0539 0.28

Table 5. Tool performance for 60 steps, NP-
EDF schedule

Bov Bsc Bwc Buu R Miss Time

Zero-Kill 819 501 2531 NA 189 6 466

Hold-Kill 819 501 2531 NA 189 6 657

Hold-Cont 565 212 202 20 56 18 274

Zero-Cont 565 212 202 20 56 18 379

a sound over-approximation of the reachable set (Reach) [8]. Unlike our method,
this tool only explicitly models the control system, and over-approximates the
possible scheduling behaviors with a constraint on the maximum number of con-
secutive deadline misses. This provides a baseline against which ConCh tool
can be compared, illustrating the benefit of modeling the scheduling explicitly.
For better computational efficiency, the Reach tool also over-approximates the
reachable sets themselves, creating further pessimism that our method avoids.

We performed this comparison under Zero-Kill strategy and NP-EDF
schedule, with initial control states set to the point x0 = (2, 2, 0). Observe that
under Kill and NP-EDF, this task set admits at most 2 consecutive deadline
misses for τ0, and so this constraint is applied for the Reach tool. ConCh dis-
covered the bounds by incrementing the ideal reach values in small steps and
checking if the revised bound is violated, until it hit a safe value. Table 4 shows
the safe reach upper bounds, for variables x1, x2, for 10 and 20 steps of evolu-
tion. Column “ideal” reports the value of states reached by the ideal trajectory
(no deadline misses.) The safety bounds computed by Reach, with at most 2
consecutive deadline misses, is significantly over-approximated due to assuming
a worst-case scheduling scenario of k-misses every k + 1 instances, which may
not occur in practice, as illustrated by this task set.

Illustrating Deadline Miss Policies. Figure 3b illustrates the impact of the
various deadline miss handling policies on control evolution, for this task set,
under NP-RM. For Kill policy, the jobs that missed deadline were 0,5,6, and for
Continue policy, jobs 1,2 and 6 missed deadline. The graph zooms on the first
10 steps of control evolution, to illustrate the sets of control states (or alternately,
segments of control evolution) that are more sensitive to deadline misses. Control
behaviour under different strategies is impacted differently by similar sequences
of deadline misses. We believe this analysis can help the control designer in
uncovering finer insights into the interplay of scheduling policy, task parameters
and strategies for deadline miss / control action update. Further, observe that for
both NP-RM (Fig. 3b) and NP-EDF (Fig. 3a) policies, the maximum deviation
from ideal behaviour generally occurs during the early steps of system evolution.
This highlights the need to rigorously analyze small, transient segments of control
evolution.

Tool Performance and Insights. Table 5 shows the scalability of the tool
for 60 steps and the five tasks, for a custom reachability property, under NP-



Checking Scheduling-Induced Violations 113

EDF schedule. The B columns list the number of blocking implications mined
across all iterations, column “R” lists refinements i.e. calls to the SMT solver
Z3 [2], column “Miss” lists deadline misses witnessed in the property violation
trace produced by the Z3. As seen from the table, tool performance is sensitive
to the task set and deadline miss policy; this task set was crafted to admit a
large number of runs arising from non-deterministic scheduling choices, jitter
and execution budget, in an attempt to showcase the tool’s capability.

6 Case Study 2: RC Network Control Model

Consider an RC network model, adapted from [7], specified as:

xk+1 =

⎡

⎣
0.5495 0.0724 0.1616
0.01448 0.9332 0.02665

0 0 0

⎤

⎦ xk +

⎡

⎣
0.2166
0.02569

1

⎤

⎦ uk

uk =
[
0.0977 0.2504 0.0781

]
xk

This discrete-time model has a period of 100 ms. We assume that the con-
troller is implemented by a task set inspired from the real-life PapaBench [9]
task set for an unmanned aerial vehicle, adapted for our setting. The adapted
task set used for our experiment is described in Table 3.

For the RC network control system, we consider the safety property that
maximum voltage across both capacitors does not exceed the ideal voltage by
0.1 units: x1 ≤ xideal

1 + 0.1 ∧ x2 ≤ xideal
2 + 0.1. The scheduling policy is set to

NP-EDF and the strategy chosen is Zero-Continue.
Application of our tool for this system reveals property violation, shown in

Fig. 4. The control jobs that missed deadlines are 2, 6, 8, 10, 11, 12, 14, 15.
Variable x1 violates the safety property at steps 5 and 10 within the 20-step
analysis horizon. Notice that continuous deadline misses (e.g. jobs 10, 11, 12)
cause more deviation from the ideal behaviour than isolated incidents of deadline
miss. Depending on the control application, the deviation might be unacceptable,
and thus this requires a precise analysis of scheduling and its impact on control.

The Reach tool, under the above setting, reported an upper bound on the
deviation experienced by x1 as 0.2715, whereas our tool ConCh reported a
tighter bound of 0.15, which took 745 refinements and 150 s, and this safe bound
was arrived at by incrementing and checking in steps of 0.01 units.

For Hold-Continue strategy, the tool reported that x1 did not violate
the property i.e. the maximum voltage for capacitor 1 stays within the given
safe bounds over the analysis horizon. Proving safety took 579 refinements and
approximately 2.5 min.

For Kill strategy, no control job misses deadline (other task instances miss
deadline and are killed, allowing the control task to be always successfully sched-
uled within the analysis horizon). This again demonstrates that the task specifi-
cation in combination with the strategies for handling deadline miss and control
action updates can have significantly differing impact on control behaviour.
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Fig. 4. Safety violating trajectory for
RC Network, Zero-Cont strategy

Fig. 5. Safety violation for F1Tenth car
model

7 Case Study 3: F1Tenth Car Model

Our final model captures the motion of an F1Tenth [14] model car, adapted
for our setting (linearized, x1 dimension dropped, discretized at 20 ms), with
controller adapted from [13], as:

xk+1 =
[
1 0.13
0 1

]
xk +

[
0.02559
0.3937

]
uk

uk =
[
0.2935 0.4403

]
xk−1

The task set is adapted from the synthetic example presented in Table 2, where
we drop task τ4, periods of tasks τ0 − τ2 are set to 20 and their execution times
are set to [4,6], period of τ3 is set to 40 and execution time is set to [5,10]. The
safety property of interest is that the steering angle should not deviate by more
than 0.2 units from the ideal behaviour: −0.2 ≤ x2 − xideal ≤ 0.2.

Under Zero-Continue strategy, ConCh reported property violation, as
shown in Fig. 5. The task set run had a total of 12 deadline misses for the con-
trol task τ0, but Zero control update occurred only twice in this run (since
under Continue, these jobs were eventually scheduled). Observe that the con-
trol trajectory violated both the upper and lower safety threshold, at steps 8 and
16, respectively. Interestingly, under Kill strategy, the bound was not violated.
Proving property safety took 193 refinements and nearly 53 s.

8 Conclusions and Future Work

Our approach for exact checking of control properties, by jointly encoding con-
trol evolution and task scheduling under common deadline miss handling policies,
could successfully check both safety and reachability properties that might be
impacted due to scheduling issues of controller tasks, within practically accept-
able time limits. Additionally, our tool can provide useful insights to CPS design-
ers to: (i) Precisely compute control behaviour at step-wise granularity of evolu-
tion, (ii) Explore the impact of design choices e.g. Zero-Cont vs. Hold-Kill,



Checking Scheduling-Induced Violations 115

and (iii) Explore the impact of task parameters on control e.g. release jitter.
We believe this can address a large variety of practical problems involving con-
trol and scheduling interaction, which may be otherwise hard to reproduce or
debug. For future work, we plan to extend our encoding to model and analyze
distributed CPS with three components: control, scheduling and network.

Acknowledgement. Hobbs and Chakraborty were funded by NSF grant 2038960.
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Abstract. Runtime Verification deals with the question of whether a
run of a system adheres to its specification. This paper studies run-
time verification in the presence of partial knowledge about the observed
run, particularly where input values may not be precise or may not
be observed at all. We also allow declaring assumptions on the execu-
tion which permits to obtain more precise verdicts also under imprecise
inputs. We encode the specification into a symbolic formula that the
monitor solves iteratively, when more observations are given. We base
our framework on stream runtime verification, which allows to express
temporal correctness properties not only in the Boolean but also in richer
logical theories. While in general our approach requires to consider larger
and larger sets of formulas, we identify domains (including Booleans
and Linear Algebra) for which pruning strategies exist, which allow to
monitor with constant memory (i.e. independent of the length of the
observation) while preserving the same inference power as the monitor
that remembers all observations. We empirically exhibit the power of our
technique using a prototype implementation under two important cases
studies: software for testing car emissions and heart-rate monitoring.

1 Introduction

We study runtime verification (RV) for imprecise and erroneous inputs, and
describe a solution—called Symbolic Runtime Verification—that can exploit
assumptions about the input and the system under analysis. RV is a dynamic
verification technique in which a given run of a system is checked against a
specification, typically a correctness property (see [1,13,23]). In online moni-
toring a monitor—synthesized from the specification—attempts to produce a
verdict incrementally from the input trace. Originally, variants of LTL [26] tai-
lored to finite runs were employed to formulate properties [3]. However, since
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Fig. 1. An example specification (a) and three monitors: (b) with perfect observability,
(c) with an interval abstract domain, (d) a symbolic monitor developed in this paper.
The symbolic monitor is enriched with the additional constraint that 1 ≤ ld0 ≤ 5.

RV requires to solve a variation of the word problem and not the harder model-
checking problem, richer logics than LTL have been proposed that allow richer
data and verdicts [10,14]. Lola [9] proposes Stream Runtime Verification (SRV)
where monitors are described declaratively and compute output streams of ver-
dicts from inputs streams (see also [12,21]). The development of this paper is
based on Lola.

Example 1. Figure 1(a) shows a Lola specification with ld as input stream (the
load of a CPU), acc as an output stream that represents the accumulated load,
computed by adding the current value of ld and subtracting the third last value.
Finally, ok checks whether acc is below 15. The expression acc[−1|0] denotes the
value of acc in the previous time point and 0 as default value if no previous time
point exists.

Such a specification allows a direct evaluation strategy whenever values on
the input streams arrive. If, for example, ld = 3 in the first instant, acc and ok
evaluate to 3 and tt, respectively. Reading subsequently 4, 5, 7 results in 7, 12, 16
for acc and a violation is identified on stream ok. This is shown in Fig. 1(b).

A common obstacle in RV is that in practice sometimes input values are
not available or not given precisely, due to errors in the underlying logging
functionality or technical limitations of sensors. In Fig. 1(c) the first value on ld
is not obtained (but we assume that the value of ld at instant 0 is between 1 and
5). One approach (followed in [22]) is to use interval arithmetic, which can be
easily encoded as a domain in Lola. Even after reading precisely 4, 5 and 7, at
time 4 the monitor cannot know for sure whether ok has been violated, as the
interval [12, 20] contains 15. If the unknown input on ld is denoted symbolically
by ld0 we still deduce that ok holds at time points 1 to 3. For time point 4,
however, the symbolic representation acc4 = acc3+7− ld0 = ld0+9+7− ld0 = 16
allows to infer that ok is clearly violated! This is shown in Fig. 1(d). ��
Example 1 illustrates our first insight: Symbolic Runtime Verification is more
precise than monitoring using abstract domains.
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Since an infinite symbolic unfolding of the specification and all assumptions
is practically infeasible, our online monitor unfolds the specification as time
increases. We show that our monitor is both sound and perfect in the sense that
it only produces correct verdicts and these verdicts are as precise as possible
with the information provided. However, even with an incremental unfolding of
the specification the symbolic monitor can grow as more unknowns and their
inter-dependencies are introduced. For example, in the run in Fig. 1(d) as more
unknown ld values are received, more variables ldi will be added, which makes
the size of the symbolic formula depend on the trace length. We show that
for certain logical theories, the current verdict may be still be computed even
after summarizing the history into a compact symbolic representation, whose
size is independent of the trace length. For other theories, preserving the full
precision requires an amount of memory that can grow with the trace length.
More precisely, we show that for the theories of Booleans and of Linear Algebra,
bounded symbolic monitors exist while this is not the case for the combined
theory, which is our second insight.

We empirically validate our symbolic RV approach— including constant
memory monitoring on long traces—using two realistic case studies: the Legal
Driving Cycle [5,19] and an ECG heartbeat analysis [25,27] (following the Lola
encoding from [11]). When intervals are given for unknown values, our method
provides precise answers more often than previous approaches based on inter-
val domains [22]. Especially in the ECG example, these methods are unable to
recover once the input is unknown for even a short time, but our symbolic moni-
tors recover and provide again precise results, even when the input was unknown
for a larger period.

Related Work. Monitoring LTL for traces with mutations (errors) is studied
in [17] where properties are classified according to whether monitors can be built
that are resilient against the mutation. However, [17] only considers Boolean ver-
dicts and does not consider assumptions. The work in [22] uses abstract interpre-
tation to soundly approximate the possible verdict values when inputs contain
errors for the SRV language TeSSLa [7].

Calculating and approximating the values that programs compute is cen-
tral to static analysis and program verification. Two traditional approaches are
symbolic execution [18] and abstract interpretation [8] which frequently require
over-approximations to handle loops. In monitoring, a step typically does not
contain loops, but the set of input variables (unlike in program analysis) grows.
Also, a main concern of RV is to investigate monitoring algorithms that are guar-
anteed to execute with constant resources. Works that incorporate assumptions
when monitoring include [6,15,20] but uncertainty is not considered in these
works, and verdicts are typically Boolean. A symbolic approach for monitoring
but in the setting of timed data automata and without constant memory guar-
antee (thus perfect) is also presented in [28]. Monitoring under assumptions in
form of a linear hybrid automaton, and sampling uncertainty for a different kind
of specifications and Boolean verdicts is also studied in [29]. Note that bounded
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model checking [4] also considers bounded unfoldings, but it does not solve the
problem of building monitors of constant memory for successive iterations.

In summary, our contributions are: (1) A Symbolic Runtime Verification algo-
rithm that dynamically unfolds the specification, collects precise and imprecise
input readings, and instantiates assumptions generating a conjunction of formu-
las. This representation can be used to deduce verdicts even under uncertainty,
to precisely recover automatically for example under windows of uncertainty, and
even to anticipate verdicts. (2) A pruning method for certain theories (Booleans
and Linear Algebra) that guarantees bounded monitoring preserving the power
to compute verdicts. (3) A prototype implementation and empirical evaluation
on realistic case studies.

Missing proofs, further examples and figures can be found in an extended
version of this paper [16].

2 Preliminaries

We use Lola [9] to express our monitors. Lola uses first-order sorted theories to
build expressions. These theories are interpreted in the sense that every symbol is
both a constructor to build expressions, and an evaluation function that produces
values from the domain of results from values from the domains of the arguments.
All sorts of all theories that we consider include the = predicate.

A synchronous stream s over a non-empty data domain D is a function s :
SD := T → D assigning a value of D to every element of T (timestamp). We
consider infinite streams (T = N) or finite streams with a maximal timestamp
tmax (T = [0 . . . tmax]). For readability we denote streams as sequences, so s =
〈1, 2, 4〉 stands for s : {0, 1, 2} → N with s(0) = 1, s(1) = 2, s(2) = 4. A Lola
specification describes a transformation from a set of input streams to a set of
output streams.

Syntax. A Lola specification ϕ = (I,O,E) consists of a set I of typed variables
that denote the input streams, a set O of typed variables that denote the output
steams, and E which assigns to every output stream variable y ∈ O a defining
expression Ey. The set of expressions over I∪O of type D is denoted by ED and is
recursively defined as: ED = c | s[o|c] | f(ED1 , ..., EDn

) | ite(EB, ED, ED), where
c is a constant of type D, s ∈ I ∪ O is a stream variable of type D, o ∈ Z is an
offset and f a total function D1 × · · · ×Dn → D (ite is a special function symbol
to denote if-then-else). The intended meaning of the offset operator s[o|c] is to
represent the stream that has at time t the value of stream s at t + o, and value
c used if t + o /∈ T. A particular case is when the offset is o = 0 in which case
c is not needed, which we shorten by s[now]. Function symbols allow to build
terms that represent complex expressions. The intended meaning of the defining
equation Ey for output variable y is to declaratively define the values of stream
y in terms of the values of other streams.
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Semantics. The semantics of a Lola specification ϕ is a mapping from input to
output streams. Given a tuple of concrete input streams (Σ = (σ1, . . . , σn) ∈
SD1 × · · · × SDn

) corresponding to input stream identifier s1, . . . , sn and a speci-
fication ϕ the semantics of an expression �·�Σ,ϕ : ED → SD is iteratively defined
as:

– �c�Σ,ϕ(t) = c

– �s[o|c]�Σ,ϕ(t) =

⎧
⎪⎨

⎪⎩

σi(t + o) if t + o ∈ T and s = si ∈ I (input stream)
�e�Σ,ϕ(t + o) if t + o ∈ T and Es = e (output stream)
c otherwise

– �f(e1, ..., en)�Σ,ϕ(t) = f(�e1�Σ,ϕ(t), . . . , �en�Σ,ϕ(t))

– �ite(e1, e2, e3)�Σ,ϕ(t) =

{
�e2�Σ,ϕ(t) if �e1�Σ,ϕ(t) = tt
�e3�Σ,ϕ(t) if �e1�Σ,ϕ(t) = ff

The semantics of ϕ is a map (�ϕ� : (SD1 × · · · × SDn
) → (SD′

1
× · · · × SD′

m
)

defined as �ϕ�(σ1, ..., σn) = (�e′
1�Σ,ϕ, . . . , �e′

m�Σ,ϕ). The evaluation map �·�Σ,ϕ is
well-defined if the recursive evaluation above has no cycles. This acyclicity can
be easily checked statically (see [9]).

In online monitoring monitors receive the values incrementally. The very effi-
ciently monitorable fragment of Lola consists of specifications where all offsets
are negative or 0 (without transitive 0 cycles). It is well-known that the very
efficiently monitorable specifications (under perfect information) can be moni-
tored online in a trace length independent manner. In the rest of the paper we
also assume that all Lola specifications come with −1 or 0 offsets. Every spec-
ification can be translated into such a normal form by introducing additional
streams (flattening).

In this paper we investigate online monitoring under uncertainty and assump-
tions for three special fragments of Lola (and the constraints for uncertain input
readings and assumptions), depending on the data theories used:

– Propositional Logic (LolaB): The data domain of all streams is the Boolean
domain D = B = {tt,ff} and available functions are ∧,¬.

– Linear Algebra (LolaLA): The data domain of all streams are real numbers
D = R and every stream definition has the form c0 + c1 ∗ s0[o1|d1] + · · ·+ cn ∗
sn[on|dn] where ci, di are constants.

– Mixed (LolaB/LA): The data domain is B or R. Every stream definition is
either contained in the Propositional Logic fragment extended by the func-
tions <,= for real variables or in the Linear Algebra fragment.

3 A Framework for Symbolic Runtime Verification

In this section we introduce a general framework for monitoring using symbolic
computation, where the specification and the information collected by the moni-
tor (including assumptions and precise and imprecise observations) are presented
symbolically.
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3.1 Symbolic Expressions

Consider a specification ϕ = (I,O,E). We will use symbolic expressions to
capture the relations between the different streams at different points in time.
We introduce the instant variables xt for a given stream variable x ∈ I ∪ O and
instant t ∈ T. The type of xt is that of x. Considering Example 1, ld3 represents
the real value that corresponds to the input stream ld at instant 3 which is 7.
The set of instant variables is V = (I ∪ O) × T.

Definition 1 (Symbolic Expression). Let ϕ be a specification and A a set of
variables that contains all instant variables (that is V ⊆ A), the set of symbolic
expressions D is the smallest set containing (1) all constants c and all symbols
in a ∈ A, (2) all expressions f(t1, . . . , tn) where f is a constructor symbol of
type D1 × · · · × Dn → D and ti are elements of D of type Di.

We use ExprDϕ(A) for the set of symbolic expressions of type D (and drop ϕ and
A when it is clear from the context).

Example 2. Consider again Example 1. The symbolic expression acc3 + ld4, of
type R, represents the addition of the load at instant 4 and the accumulator
at instant 3. Also, acc4 = acc3 + ld4 is a predicate (that is, a B expression)
that captures the value of acc at instant 4. The symbolic expression ld1 = 4
corresponds to the reading of the value 4 for input stream ld at instant 1. Finally,
1 ≤ ld0 ∧ ld0 ≤ 5 corresponds to the assumption at time 0 that ld has value
between 1 and 5. ��

3.2 Symbolic Monitor Semantics

We define the symbolic semantics of a Lola specification ϕ = (I,O,E) as the
expressions that result by instantiating the defining equations E.

Definition 2 (Symbolic Monitor Semantics). The map �·�ϕ : ED → T →
ExprDϕ is defined as �c�ϕ(t) = c for constants, and

– �f(e1, . . . , en)�ϕ(t) = f(�e1�ϕ(t), . . . , �en�ϕ(t))
– �s[o|c]�ϕ(t) = st+o if t + o ∈ T, or �s[o|c]�ϕ(t) = c otherwise.

The symbolic semantics of a specification ϕ is the map �·�sym : T → 2ExprBϕ

defined as �ϕ�t
sym = {yt = �Ey�ϕ(t) | for every y ∈ O}.

A slight modification of the symbolic semantics allows to obtain equations
whose right hand sides only have input instant variables:

– �s[o|c]�ϕ(t) = st+o if t + o ∈ T and s ∈ I
– �s[o|c]�ϕ(t) = �Es�(t + o) if t + o ∈ T and s ∈ O
– �s[o|c]�ϕ(t) = c otherwise

We call this semantics the symbolic unrolled semantics, which corresponds to
what would be obtained by performing equational reasoning (by equational sub-
stitution) in the symbolic semantics.
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Example 3. Consider again the specification ϕ in Example 1. The first four ele-
ments of �ϕ�sym are (after simplifications like 0 + x = x etc.):

0 1 2 3

acc0 = ld0 acc1 = acc0 + ld1 acc2 = acc1 + ld2 acc3 = acc2 + ld3 − ld0

ok0 = acc0 ≤ 15 ok1 = acc1 ≤ 15 ok2 = acc2 ≤ 15 ok3 = acc3 ≤ 15

Using the unrolled semantics the equations for ok would be, at time 0, ok0 =
ld0 ≤ 15, and at time 1, ok1 = ld0 + ld1 ≤ 15. In the unrolled semantics all
equations contain only instant variables that represent inputs. ��

Recall that the denotational semantics of Lola specifications in Sect. 2 maps
every tuple of input streams into a tuple of output streams, that is �ϕ� : SD1 ×
· · · × SDn

→ SD′
1

× · · · × SD′
m

. The symbolic semantics also has a denotational
meaning even without receiving the input stream, defined as follows.

Definition 3 (Denotational semantics). Let ϕ = (I,O,E) be a specification
with I = (x1, . . . , xn) and O = (y1, . . . , ym). The denotational semantics of a set
of equations E ⊆ ExprBϕ, �E�den ⊆ SD1 × · · · × SDn

× SD′
1
× · · · × SD′

m
is:

�E�den = {(σ1, . . . , σn, σ′
1, . . . , σ

′
m) | for every e ∈ E

{xt
1 = σ1(t), . . . , xt

n = σn(t), yt
1 = σ′

1(t), . . . , y
t
m = σ′

m(t)} |= e}

Using the previous definition, �
⋃

i≤t�ϕ�i
sym�den corresponds to all the tuples of

streams of inputs and outputs that satisfy the specification ϕ up to time t.

A Symbolic Encoding of Inputs, Constraints and Assumptions. Input
readings can also be defined symbolically as follows. Given an instant t, an
input stream variable x and a value v, the expression xt = v captures the
precise reading of v at t on x. Imprecise readings can also be encoded easily.
For example, if at instant 3 an input of value 7 for ld is received by a noisy
sensor (consider a 1 unit of tolerance), then 6 ≤ ld3 ≤ 8 represents the imprecise
reading.

Assumptions are relations between the variables that we assume to hold at all
positions, which can be encoded as stream expressions of type B. For example,
the assumption that the load is always between 1 and 10 is 1 ≤ ld[now] ≤ 10.
Another example, ld[−1|0] + 1 ≥ ld[now] which encodes that ld cannot increase
more than 1 per unit of time. We use A for the set of assumptions associated
with a Lola specification ϕ (which are a set of stream expressions of type B over
I ∪ O).

3.3 A Symbolic Runtime Verification Algorithm

Based on the previous definitions we develop our symbolic RV algorithm
shown in Algorithm 1. Line 3 instantiates the new equations and assump-
tions from the specification for time t. Line 4 incorporates the set of input
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readings ψt (perfect or imperfect). Line 5 performs evaluations and sim-
plifications, which is dependent on the particular theory. In the case of
past-specifications with perfect information this step boils down to sub-
stitution and evaluation. Line 6 produces the output of the monitor.

Alg. 1: Online Symbolic Monitor for ϕ

1 t ← 0 and E ← ∅;
2 while t ∈ T do
3 E ← E ∪ �ϕ�t

sym ∪ �At�ϕ;
4 E ← E ∪ ψt;
5 Evaluate and Simplify;
6 Output;
7 Prune;
8 t ← t + 1 ;

Again, this is application depen-
dent. In the case of past speci-
fications with perfect information
the output value will be com-
puted without delay and emitted
in this step. In the case of B out-
puts with imperfect information,
an SMT solver can be used to dis-
card a verdict. For example, to
determine the value of ok at time
t, the verdict tt can be discarded if

∃ ∗ .okt is UNSAT, and the verdict ff can be discarded if ∃ ∗ .¬okt is UNSAT.
For richer domains specific reasoning can be used, like emitting lower and upper
bounds or deducing the set of constraints. Finally, Line 7 eliminates constraints
that will not be necessary for future deductions and performs variable renaming
and summarization to restrict the memory usage of the monitor (see Sect. 4).
For past specifications with perfect information, after step 5 every equation will
be evaluated to yt = v and the pruning will remove from E all the values that
will never be accessed again.

The symbolic RV algorithm generalizes the concrete monitoring algorithm by
allowing to reason about uncertain values, while it still obtains the same results
and performance under certainty. Concrete RV allows to monitor with constant
amount of resources specifications with bounded future references when inputs
are known with perfect certainty.

Symbolic RV, additionally, allows to handle uncertainties and assumptions,
because the monitor stores constraints (equations) that include variables that
capture the unknown information, for example the unknown input values. We
characterize a symbolic monitor as a step function M : 2Expr

ϕ → 2Expr
ϕ that

transforms expressions into expressions. At a given instant t the monitor collects
readings ψt ∈ Exprϕ about the input values and applies the step function to
the previous information and the new information. Given a sequence of input
readings ψ0, ψ1 . . . we use M0 = M(ψ0) and M i+1 = M(M i ∪ ψi+1) for the
sequence of monitor states reached by the repeated applications of M . We use
Φt = ∪i≤t(�ϕ�i

sym ∪ �Ai�ϕ ∪ ψi) for the formula that represents the unrolling
of the specification and the current assumptions together with the knowledge
about inputs collected up to t.

Definition 4 (Sound and Perfect monitoring). Let ϕ be a specification, M
a monitor for ϕ, ψ0, ψ1 . . . a sequence of input observations, and M0,M1 . . .
the monitor states reached after repeatedly applying M . Consider an arbitrary
predicate α involving only instant variables xt at time t.
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– M is sound if whenever M t |= α then Φt |= α for all t ∈ T.
– M is perfect if it is sound and if Φt |= α then M t |= α for all t ∈ T.

Note that soundness and perfectness is defined in terms of the ability to infer
predicates that only involve instant variables at time t, so the monitor is allowed
to eliminate, rename or summarize the rest of the variables. It is trivial to extend
this definition to expressions α that can use instant variables xt′

with (t − d) ≤
t′ ≤ t for some constant d. If a monitor is perfect in this extended definition it
will be able to answer questions for variables within the last d steps.

The version of the symbolic algorithm presented in Alg. 1 that never prunes
(removing line 7) and computes at all steps Φt is a sound and perfect monitor.
However, the memory that the monitor needs grows without bound if the number
of uncertain items also grows without bound. In the next section we show that
(1) trace length independent perfect monitoring under uncertainty is not possible
in general, even for past only specifications and (2) we identify concrete theories,
namely Booleans and Linear Algebra and show that these theories allow perfect
monitoring with constant resources under unbounded uncertainty.

4 Symbolic Runtime Verification at Work

Example 4. Consider the Lola specification on the left, where the Real input
stream ld indicates the current CPU load and the Boolean input stream usra

indicates if the currently active user is user A. This specification checks whether
the accumulated load of user A is at most 50% of the total accumulated load.
Consider the inputs ld = 〈?, 10, 4, ?, ?, 1, 9, . . . 〉, usra = 〈ff,ff,ff, tt, tt, tt,ff, . . . 〉
from 0 to 6. Also, assume that at every instant t, 0 ≤ ldt ≤ 10. At instant 6 our

acc := acc[−1|0] + ld[now]
acca := acca[−1|0] + ite(usra[now],

ld[now], 0)
ok := acca[now] ≤ 0.5 ∗ acc[now]

monitoring algorithm would yield the
symbolic constraints (acc6 = 24 +
ld0 + ld3 + ld4) and (acc6a = 1 + ld3 +
ld4) for acc6 and acc6a, and the addi-
tional one (0 ≤ ld0 ≤ 10 ∧ 0 ≤ ld3 ≤

10 ∧ 0 ≤ ld4 ≤ 10). An existential query to an SMT solver allows to conclude
that ok6 is true since acc6a is at most 21 but then acc6 is 44. However, every
unknown variable from the input will appear in one of the constraints stored
and will remain there during the whole monitoring process. ��

When symbolic computation is used in static analysis, it is not a common
concern to deal with a growing number of unknowns as usually the number of
inputs is fixed a-priori. In contrast, a goal in RV is to build online monitors
that are trace-length independent, which means that the calculation time and
memory consumption of a monitor stays below a constant bound and does not
increase with the received number of inputs. In Example 4 above this issue can
be tackled by rewriting the constraints as part of the monitor’s pruning step
using n ← ld0, m ← (ld3 + ld4) to obtain (acct = 24 + n + m), (acct

a = 1 + m)
and (0 ≤ n ≤ 10) ∧ (0 ≤ m ≤ 20). From the rewritten constraints it can still
be deduced that acc6a ≤ 0.5 ∗ acc6. Note also that every instant variable in the
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specification only refers to previous instant variables. Thus for all t ≥ 7, there is
no direct reference to either ld3 or ld4. Variables ld3 and ld4 are, individually, no
longer relevant for the verdict and it does not harm to denote ld3+ld4 by a single
variable m. We call this step of rewriting pruning (of non-relevant variables).

Let Ct ⊆ ExprBϕ be the set of constraints maintained by the monitor that
encode its knowledge about inputs and assumptions for the given specification.
In general, pruning is a transformation of a set of constraints Ct into a new set
C′t requiring less memory, but still describing the same relations between the
instant variables:

Definition 5 (Pruning strategy). Let C ⊆ ExprB be a set of constraints over
variables A and R = {r1, . . . , rn} ⊆ A the subset of relevant variables. We use
|C| for a measure on the size of C. A pruning strategy P : 2ExprB → 2ExprB is a
transformation such that for all C ∈ ExprB, |P(C)| ≤ |C|. A Pruning strategy P
is called

– sound, whenever for all C ⊆ ExprB, �C�R ⊆ �P(C)�R,
– perfect, whenever for all C ⊆ ExprB, �C�R = �P(C)�R,

where �C�R = {(v1, . . . , vn)|(r1 = v1 ∧ · · · ∧ rn = vn) |= C} is the set of all value
tuples for R that entail the constraint set C. We say that the pruning strategy is
constant if for all C ⊆ ExprB : |P(C)| ≤ c for a constant c ∈ N.

A monitor that exclusively stores a set Ct for every t ∈ T is called a constant-
memory monitor if there is a constant c ∈ N such that for all t, |Ct| ≤ c.

Previously we defined an online monitor M as a function that iteratively
maps sets of constraints to sets of constraints. Clearly, the amount of informa-
tion to maintain grows unlimited if we allow the monitor to receive constraints
that contain information of an instant variable at time t at any other time t′.
Consequently, we first restrict our attention to atemporal monitors, defined as
those which receive proposition sets that only contain instant variables of the
current instant of time. Atemporal monitors cannot handle assumptions like
ld[−1|0] ≤ 1.1 ∗ ld[now]. At the end of this section we will extend our technique
to monitors that may refer n instants to the past.

Theorem 1. Given a specification ϕ and a constant pruning strategy P for
ExprBϕ, there is an atemporal constant-memory monitor Mϕ s.t.

– Mϕ is sound if the pruning strategy is sound.
– Mϕ is perfect if the pruning strategy is perfect.

Yet we have not given a complexity measure for constraint sets. For our
approach we use the number of variables and constants in the constraints,
that is |C| =

∑
ϕ∈C |ϕ| and |c| = 1, |v| = 1, |f(e1, . . . , en)| = |e1| + · · · +

|en|, |ite(e1, e2, e3)| = |e1| + |e2| + |e3| for a constant c and a variable v.
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4.1 Application to Lola Fragments

We describe now perfect pruning strategies for LolaB and LolaLA. For LolaB/LA
we will show that no such perfect pruning strategy exists but present a sound
and constant pruning strategy.

LolaB: First we consider the fragment LolaB where all input and output streams,
constants and functions are of type Boolean. Consequently, we assume con-
straints given to the monitor (input readings, assumptions) also only contain
variables, constants and functions of type Boolean.

Example 5. Consider the following specification (where all inputs are uncertain,
⊕ denotes exclusive or) shown on the left. The unrolled semantics, shown on the
right, indicates that ok is always true.

a := a[−1|ff] ⊕ x[now]
b := b[−1|tt] ⊕ x[now]

ok := a[now] ⊕ b[now]

0 1 2 3 . . .

x0 x0 ⊕ x1 x0 ⊕ x1 ⊕ x2 x0 ⊕x1 ⊕x2 ⊕x3 . . .
¬x0 ¬x0 ⊕ x1 ¬x0 ⊕ x1 ⊕ x2 ¬x0 ⊕x1 ⊕x2 ⊕x3 . . .
tt tt tt tt . . .

However, the Boolean formulas maintained internally by the monitor are contin-
uously increasing. Note that at time 1 the possible combinations of (a1, b1, ok1)
are (ff, tt, tt) and (tt,ff, tt), as shown below (left). By eliminating duplicates from

(x0, x1) 00 01 10 11
a1 ff tt tt ff
b1 tt ff ff tt
ok1 tt tt tt tt

v1 0 1
a1 ff tt
b1 tt ff
ok1 tt tt

this table we obtain another table with two
columns which can be expressed by formulas
over a single, fresh variable v1 (as shown on
the right). From this table we can directly
infer the new formulas a1 = v1, b1 = ¬v1,
ok1 = tt, which preserve the condensed infor-

mation that a1 and b1 are opposites. We can use these new formulas for further
calculation. At time 2, a2 = v1 ⊕x2, b1 = ¬v1 ⊕x2 which we rewrite as a2 = v2,
b1 = ¬v2 again concluding ok1 = tt. This illustrates how the pruning guarantees
a constant-memory monitor. Note that this monitor will be able to infer at every
step that ok is tt even without reading any input. ��

The strategy from the example above can be generalized to a pruning strat-
egy. Let R = {r1, . . . , rm} be the set of relevant variables (in our case the
output variables st

i) and V = {s1, . . . , sn} ∪ R all variables (in our case input
variables and fresh variables from previous pruning applications). Let C be a set
of constraints over r1, . . . , rm, s1, . . . , sn, which can be rewritten as a Boolean
expression γ by conjoining all constraints.

The method generates a value table T which includes as columns all value
combinations of (v1, . . . , vm) for (r1, . . . , rm) such that (r1 = v1) ∧ · · · ∧ (rm =
vm) |= γ. Then it builds a new constraint set C′ with an expression ri =
ψi(v1, . . . , vk) for every 1 ≤ i ≤ m over k fresh variables, where the ψi are gen-
erated from the rows of the value table. The number of variables is k = �log(c)�
with c being the number of columns in the table (i.e. combinations of ri satisfying
γ). This method is the LolaB pruning strategy which is perfect. By Theorem 1
this allows to build a perfect atemporal constant-memory monitor for LolaB.
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Lemma 1. The LolaB pruning strategy is perfect and constant.

LolaLA: The same idea used for LolaB can be adapted to Linear Algebra.

Example 6. Consider the specification on the left. The main idea is that acca

acca := acca[−1|0] + lda[now]
accb := accb[−1|0] + ldb[now]
total := total[−1|0] + 1

2 (lda[now]+
ldb[now])

accumulates the load of CPU A (as
indicated by lda), and similarly accb

accumulates the load of CPU B (as
indicated by ldb). Then, total keeps the
average of lda and ldb. The unrolled
semantics is

0 1 2 . . .

ld0a ld0a + ld1a ld0a + ld1a + ld2a . . .
ld0b ld0b + ld1b ld0b + ld1b + ld2b . . .
1
2
(ld0a + ld0b)

1
2
((ld0a + ld0b)+(ld1a + ld1b))

1
2
((ld0a + ld0b) + (ld1a + ld1b) + (ld2a + ld2b)) . . .

Again, the formulas maintained during monitoring are increasing. The formulas
at 0 cannot be simplified, but at 1, ld0a and ld1a have exactly the same influence
on acc1a, acc1b and total. To see this consider the calculation of (acc1a, acc1b , total1)
as the matrix multiplication shown below on the left. The matrix in the middle
just contains two linearly independent vectors. Hence the system of equations
can be equally written as shown in the right, over two fresh variables u1, v1:

⎛

⎝
acc1a
acc1b
total1

⎞

⎠ =

⎛

⎝
1 0 1 0
0 1 0 1
1
2

1
2

1
2

1
2

⎞

⎠ ∗

⎛

⎜
⎜
⎝

ld0a
ld0b
ld1a
ld1b

⎞

⎟
⎟
⎠

⎛

⎝
acc1a
acc1b
total1

⎞

⎠ =

⎛

⎝
1 0
0 1
1
2

1
2

⎞

⎠ ∗
(

u1

v1

)

The rewritten formulas then again follow directly from the matrix. Repeating
the application at all times yields:

0 1 2 . . .
ld0a ld0a + ld1a ≡ u1 u1 + ld2a ≡ u2 . . .
ld0b ld0b + ld1b ≡ v1 v1 + ld2b ≡ v2 . . .
ld0

a+ld0
b

2
(ld0

a+ld0
b)+(ld1

a+ld1
b)

2 ≡ u1+v1

2
(u1+v1)+(ld2

a+ld2
b)

2 ≡ u2+v2

2 . . .

which results in a constant monitor. ��
This pruning strategy can be generalized as well. Let R = {r1, . . . , rm}

be a set of relevant variables (in our case the output variables st
i) and

V = {s1, . . . , sn} ∪ R be the other variables (in our case input variables or
fresh variables from previous pruning applications). Let C be a set of con-
straints maintained by our monitoring algorithm which has to be fulfilled over
r1, . . . , rm, s1, . . . , sn, which contains equations of the form c =

∑m
i=1 cri

∗ ri +∑n
i=1 csi

∗ si + c′ where c, c′, csi
, cri

are constants.
If the equation system is unsolvable (which can easily be checked) we return

C′ = {0 = 1}, otherwise we can rewrite it as shown on the left. The matrix N of
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this equation system has m rows and n columns. Let r be the rank of this matrix
which is limited by min{m,n}. Consequently an m × r matrix N ′ with r ≤ m
exists with the same span as N and the system can be rewritten (without loosing
solutions to (r1, . . . , rm)). From this rewritten equation system a new constraint
⎛

⎜
⎝

r1
...

rm

⎞

⎟
⎠ =

⎛

⎜
⎝

c1,1 . . . c1,n

...
cm,1 . . . cm,n

⎞

⎟
⎠ ∗

⎛

⎜
⎝

s1
...

sn

⎞

⎟
⎠ +

⎛

⎜
⎝

o1
...

om

⎞

⎟
⎠

set C′ can be generated which
contains the equations from the
system. We call this method the
LolaLA pruning strategy, which
is perfect and constant.

Lemma 2. The LolaLA pruning strategy is perfect and constant.

LolaB/LA. Consider the specification below (left) where i, a and b are input
streams of type R. Consider a trace where the values of stream i are unknown
until time 2, but that we have the assumption 0 ≤ i[now] ≤ 1. The unpruned
symbolic expressions describing the values of x, y at time 2 would then be in
matrix notation:

x := x[−1|0] + i[now]
y := 2 ∗ y[−1|0] + i[now]

ok := (a[now] = x[now]) ∧ (b[now] = y[now])

(
x2

y2

)

=
(

1 1 1
4 2 1

)

∗
⎛

⎝
i0

i1

i2

⎞

⎠

Fig. 2. Set of possible values of x2 and y2

Since the assumption forces all ij

to be between 0 and 1 the possi-
ble set of value combinations x and
y can take at time 2 is described
by a polygon with 6 edges depicted
in Fig. 2. Describing this polygon
requires 3 vectors. It is easy to see that
each new unknown input generates a
new vector, which is not multiple of
another. Hence for n unknown inputs
on stream i the set of possible value combinations for (xt, yt) is described by a
polygon with 2n edges for which a constraint set of size O(n) is required. This
counterexample implies that for LolaB/LA there is no perfect pruning strategy.
However, one can apply the following approximation: Given a constraint set C
over V = {s1, . . . , sn} ∪ R with R = {r1, . . . , rm} the set of relevant variables.

1. Split the set of relevant variables into RB containing those of type Boolean
and RR containing those of type Real.

2. For RB do the rewriting as for LolaB obtaining C′
B
.

3. For RR do the rewriting as for LolaLA over CLE with CLE ⊆ C being the set
of all linear equations in C, obtaining C′

R
.

4. For all fresh variables vi with 1 ≤ i ≤ k in C′
R

calculate a minimum bound
li and maximum bound gi (may be over-approximating) over the constraints
C ∪ C′

R
and build C′′

R
= C′

R
∪ {li ≤ vi ≤ gi|1 ≤ i ≤ k}.

5. Return C′ = C′
B

∪ C′′
R
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We call this strategy the LolaB/LA pruning strategy, which allows to build an
atemporal (imperfect but sound) constant-memory monitor.

Lemma 3. The LolaB/LA pruning strategy is sound and constant.

Note that with the LolaB/LA fragment we can also support if-then-else expres-
sions. A definition s = ite(c, t, e) can be rewritten to handle s as an input stream
adding assumption (c ∧ s = t) ∨ (¬c ∧ s = e). After applying this strategy the
specification is within the LolaB/LA fragment and as a consequence the sound
(but imperfect) pruning algorithm from there can be applied.

4.2 Temporal Assumptions

We study now how to handle temporal assumptions. Consider again Example 4,
but instead of the assumption 0 ≤ ld[now] ≤ 10 take 0.9 ∗ ld[−1, 0] ≤ ld[now] ≤
1.1 ∗ ld[−1, 100]. In this case it would not be possible to apply the presented
pruning algorithms. In the pruning process at time 1 we would rewrite our for-
mulas in a fashion that they do not contain ld1 anymore, but at time 2 we would
receive the constraint 0.9 ∗ ld1 ≤ ld2 ≤ 1.1 ∗ ld1 from the assumption.

Pruning strategies can be extended to consider variables which may be refer-
enced by input constraints at a later time as relevant variables, hence they will
not be pruned. A monitor which receives constraint sets over the last l instants
is called an l-lookback monitor. An atemporal monitor is therefore a 0-lookback
monitor. For an l-lookback monitor the number of variables that are referenced
at a later timestamp is constant, so our pruning strategies remain constant.
Hence, the following theorem is applicable to our pruning strategies and as a
consequence our solutions for atemporal monitors can be adapted to l-lookback
monitors (for constant l).

Theorem 2. Given a Lola specification ϕ and a constant pruning strategy P
for ExprBϕ there is a constant-memory l-lookback monitor Mϕ such that

– Mϕ is sound if the pruning strategy is sound.
– Mϕ is perfect if the pruning strategy is perfect.

5 Implementation and Empirical Evaluation

We have developed a prototype implementation of the symbolic algorithm
for past-only Lola in Scala, using Z3 [24] as solver. Our tool supports Reals
and Booleans with their standard operations, ranges (e.g. [3, 10.5]) and ? for
unknowns. Assumptions can be encoded using the keyword ASSUMPTION.1 Our
tool performs pruning (Sect. 4.1) at every instant, printing precise outputs when
possible. If an output value is uncertain the formula and a range of possible
values is printed.
1 Note that for our symbolic approach assumptions can indeed be considered as a

stream specification of type Boolean which has to be true at every time instant.



Symbolic Runtime Verification Under Uncertainties and Assumptions 131

We evaluated two realistic case studies, a test drive data emission monitor-
ing [19] and an electrocardiogram (ECG) peak detector [11]. All measurements
were done on a 64-bit Linux machine with an Intel Core i7 and 8 GB RAM. We
measured the processing time of single events in our evaluation, for inputs from
0% up to 20% of uncertain values, resulting in average of 25 ms per event (emis-
sions case study) and 97 ms per event (ECG). In both cases the runtime per
event did not depend on the length of the trace (as predicted theoretically). The
long runtime is in general due to using Z3 naively to deduce bounds of unknown
variables, other methods/specialized tools should be investigated in the future.
The longer runtime per event in the second case study is explained because of
a window of size 100 which is unrolled to 100 streams. We discuss the two case
studies separately.

Case Study #1: Emission Monitoring. The first example is a specifica-
tion that receives test drive data from a car (including speed, altitude, NOx
emissions,. . . ) from [19]. The Lola specification is within LolaB/LA (with ite),
and checks several properties, including trip valid which captures if the trip
was a valid test ride. The specification contains around 50 stream definitions in
total. We used two real trips as inputs, one where the allowed NOx emission was
violated and one where the emission specification was satisfied.

We injected uncertainty into the two traces by randomly selecting
x% of the events and modifying the value to an uncertainty interval of
±y% around the correct value. The figure on the left shows the result
of executing this experiment for all integer combinations of x and y

between 1 and 20, for one trace. The green
space represents the cases for which the mon-
itor computed the valid answer and the red
space the cases where the monitor reported
unknown. In both traces, even with 20% of
incorrect samples within an interval of ±7%
around the correct value the monitor was able
to compute the correct answer. We also com-

pared these results to the value-range approach, using interval arithmetic. How-
ever, the final verdicts do not differ here. Though the symbolic approach is able
to calculate more precise intermediate results, these do not differ enough to
obtain different final Boolean verdicts.

As expected, for fully unknown values and no assumptions, neither the sym-
bolic nor the interval approaches could compute any certain verdict, because
the input values could be arbitrarily large. However, in opposite to the inter-
val approach, the symbolic approach allows adding assumptions (e.g. the speed
or altitude does not differ much from the previous value). With this assump-
tion, we received the valid result for trip valid when up to 4% of inputs are
fully uncertain. In other words, the capability of symbolic RV to encode physi-
cal dependencies as assumptions often allows our technique to compute correct
verdicts in the presence of several unknown values.
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Fig. 3. ECG analysis. Left: symbolic approach, Right: value range approach. Green:
certain heartbeats, Yellow: potential heartbeats, Red: bursts of unknown values. (Color
figure online)

Case Study #2: Heart Rate Monitoring. Our second case study concerns
the peak detection in electrocardiogram (ECG) signals [11]. The specification
calculates a sliding average and stores the values of this convoluted stream in
a window of size 100. Then it checks if the central value is higher than the 50
previous and the 50 next values to identifying a peak.

We evaluated the specification against a ECG trace with 2700 events corre-
sponding to 14 heartbeats. We integrated uncertainty into the data in two differ-
ent ways. First, we modified x% percent of the events to uncertainty intervals of
±y%. Even if 20% of the values were modified with an error of ±20%, the sym-
bolic approach returned the perfect result, while the interval approach degraded
over time because of accumulated uncertainties (many peaks were incorrectly
“detected”, even under 5% of unknown values with a ±20% error—see front
part of traces in Fig. 3). Second, we injected bursts of consecutive errors (? val-
ues) of different lengths into the input data. The interval domain approach lost
track after the first burst and was unable to recover, while the symbolic approach
returned some ? around the area with the bursts and recovered when new values
were received (see Fig. 3).

We exploited the ability of symbolic monitors to handle assumptions by
encoding that heartbeats must be apart from each other more than 160 steps
(roughly 0.5 s), which increased the accuracy. In one example the monitor cor-
rectly detected a peak right after a burst of errors. The assumption allowed the
monitor to infer values of certain variables from the knowledge that there is no
heartbeat, which enabled in turn the detection of the next heartbeat. This is not
possible if heartbeats that are not at least 160 steps apart are just filtered out.

6 Conclusion

We have introduced the concept of symbolic Runtime Verification to monitor
in the presence of input uncertainties and assumptions on the system behavior.
We showed theoretically and empirically that symbolic RV is more precise than
monitoring with intervals, and have identified logical theories for which perfect
symbolic RV can be implemented in constant memory. Future work includes: (1)
to identify other logical theories and their combinations that guarantee perfect
trace length independent monitoring; (2) to be able to anticipate verdicts ahead
of time for rich data domains by unfolding the symbolic representation of the
specification beyond, along the lines of [2,20,30] for Booleans;
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Finally, we envision that symbolic Runtime Verification can become a general,
foundational approach for monitoring that will allow to explain many existing
monitoring approaches as instances of the general schema.
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Abstract. We present a method for determining the satisfiability of
quantifier-free first-order formulas modulo the theory of non-linear arith-
metic over the reals augmented with transcendental functions. Our pro-
cedure is based on the fruitful combination of two main ingredients:
unconstrained optimisation, to generate a set of candidate solutions,
and a result from topology called the topological degree test to check
whether a given bounded region contains at least a solution. We have
implemented the procedure in a prototype tool called ugotNL, and
integrated it within the MathSAT SMT solver. Our experimental eval-
uation over a wide range of benchmarks shows that it vastly improves
the performance of the solver for satisfiable non-linear arithmetic formu-
las, significantly outperforming other available tools for problems with
transcendental functions.

1 Introduction

When dealing with real arithmetic in SMT, a fundamental challenge is to go
beyond the linear case (LRA), by introducing nonlinear polynomials (NRA),
possibly augmented with transcendental functions like exponential and trigono-
metric ones (NT A). In fact, the expressive power of NT A is required by
many application domains (e.g. railways, aerospace, control software, and cyber-
physical systems). Unfortunately, dealing with non-linearity is a very hard chal-
lenge. Going from SMT(LRA) to SMT(NRA) yields a complexity gap that
results in a computational barrier in practice. Adding transcendental functions
exacerbates the problem even further, because reasoning on NT A is undecid-
able [26]. Existing SMT solvers therefore have to resort to incomplete techniques
in order to handle NT A constraints [7,16], which are however particularly inef-
fective at proving that a formula is satisfiable (i.e. that it has at least one model).
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One of the main sources of complexity is the need to provide exact answers:
when an SMT solver says “sat”, the input problem must indeed be satisfiable,
and not just “likely satisfiable” or “satisfiable with high probability”. Remov-
ing this requirement makes it possible to use approximate techniques, such as
numerical methods or procedures based on weaker notions of satisfiability such
as δ-satisfiability [18], which are typically significantly more scalable in practice
than exact methods.

In this paper, we present a technique for significantly improving the effec-
tiveness of SMT(NT A) solvers in determining that a formula is satisfiable,
by exploiting a fruitful combination of approximate and exact techniques. Our
procedure uses numerical methods based on unconstrained global optimisation
to quickly identify (small) boxes containing candidate solutions for a given
set/conjunction of NRA and NT A constraints, which are then analysed with a
procedure whose main ingredient is the topological degree test [14,24] – a result
from topology that guarantees the existence of a solution for a set of equalities if
certain conditions are met – to confirm whether a candidate box contains at least
one solution. The procedure is then plugged into an SMT context, which allows
us to handle problems containing arbitrary Boolean combinations of constraints.

The main contribution of this work is an effective combination of numeric and
symbolic methods that allows to significantly enhance the capability of state-of-
the-art SMT solvers to determine the satisfiability of formulas containing NT A
constraints, as demonstrated by our extensive experimental evaluation. To this
extent, although all the ingredients we use are known, our overall procedure is,
to the best of our knowledge, novel. The synergy between numerical optimisa-
tion and the topological degree test is essential for the viability of our approach,
as none of the two techniques in isolation is effective in practice. On one hand,
being based on numerical methods, unconstrained global optimisation alone can-
not detect exact solutions, but only approximate ones. On the other hand, the
topological degree test alone is not immediately applicable to arbitrary sets of
constraints, as it works only for problems in a specific form, in which (i) there are
only equations, (ii) the number of equations is equal to the number of variables,
(iii) all variables are bounded, and (as a more empirical requirement rather than
theoretical limitation) (iv) the bounds on the variables are “sufficiently small”
for the practical effectiveness of the test. The first limitation has been tackled in
[15] by pairing the topological degree test with interval arithmetic to deal with
inequalities. In this paper, we show how a further combination with numerical
optimization can be exploited to obtain a practical and effective method that
can be easily integrated in a modern SMT solver, thus overcoming the other
three points.

In order to substantiate our claims, we have implemented our procedure in a
prototype tool called ugotNL, and we have integrated it within the MathSAT

SMT solver [8]. We have extensively evaluated our prototype on a wide range of
NRA and NT A benchmarks, comparing it to the main state-of-the art tools.
Our experimental evaluation shows that it vastly improves the performance of
the MathSAT solver for satisfiable NRA formulas, significantly outperforming
the other tools on NT A problems.
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Related Work. For NRA, various techniques have been explored. Complete
methods based on quantifier-elimination procedures such as Cylindric Algebraic
Decomposition (CAD) [9] have been successfully implemented in several SMT-
solvers (such as z3 [11], Yices [13], SMT-RAT [10]), proving their effectiveness
especially when tightly integrated into the Boolean search through a model-
constructing framework such as MCSAT [12,20]. However, their complexity is
doubly-exponential in the worst case, and they cannot deal with transcendental
functions.

For NT A, there exist very few techniques able to prove satisfiability. Incre-
mental linearization (IL) [7] starts from an abstract model and tries to check
whether the formula is satisfiable under all possible interpretations (within a
given bounded region) of the transcendental functions involved. This tactic works
well when the transcendental functions are isolated in the formula, but it is quite
ineffective when the transcendental component is more complex (expecially in
the presence of equations). iSAT3 [16] implements a method based on a tight
integration of Interval Constraint Propagation (ICP) [4] into the CDCL frame-
work, and it is able to prove satisfiability if it finds a box in which every point
is a solution.

Differently from these methods, our approach is not compelled to find more
solutions than needed, and it is able to prove satisfiability even when the only
models of the formula are isolated points. Interestingly, raSAT [27] combines
ICP with the Generalized Intermediate Value Theorem (GIVT) [23], but does
not support transcendental functions.

Other approaches, e.g. dReal [19] and ksmt [5], rely on the notion of δ-
satisfiability [18], which guarantees that there exists a perturbation (up to some
δ > 0 specified by the user) of the original formula that is satisfiable1. iSAT3

relies on a similar notion and, when not able to prove satisfiability nor to detect
conflicts, returns a candidate solution. In comparison with these approaches,
when we return “sat” we guarantee that the problem is actually satisfiable.

Content. The paper is organized as follows. In Sect. 2 we provide the necessary
theoretical background; in Sect. 3 we describe how we use unconstrained opti-
misation to find candidate models; in Sect. 4 we describe a general procedure,
restricted to conjunctions of NT A constraints, based on the topological degree
test and interval arithmetic; in Sect. 5 we extend the previous procedure to gen-
eral NT A formulas, following either an eager or a lazy approach; in Sect. 6 we
present our experimental evaluation; in Sect. 7 we conclude.

2 Background

We work in the setting of SMT, with the quantifier-free theory of real arithmetic,
either limited to polynomial constraints (denoted NRA), or augmented with
trigonometric and exponential transcendental functions (denoted NT A). We
1 Note that, according to this definition, a problem could be unsat and δ-sat at the

same time.
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assume the standard notions of interpretation, model, satisfiability, validity and
logical consequence.

We use the following notation. We write logical variables with x1, x2, . . ., and
values in R with x1, x2, . . .. If t is a generic (quantifier-free) term, we write [t]
for its interpretation in the standard model of arithmetic. If φ is a formula, we
denote with Var(φ) the set of its (free) variables. We use f, g to denote logic
symbols representing a polynomial or a transcendental function; when there is
no ambiguity, we will use the same symbol also to denote the real function
corresponding to its standard interpretation. We use boldface to denote vectors
of values x def= {x1, . . . , xm} ∈ R

m, and intervals I
def= {x ∈ R | a ≤ x ≤ b} with

[a,b] (or simply [a] when a ≡ b), where a and b ∈ Q. Given a vector x ∈ R
m, we

denote with ‖x‖2 its Euclidean norm (i.e.
√∑

i xi
2), and with |x| its maximum

norm (i.e. max{|x1|, · · · , |xm|}). If φ is a formula with Var(φ) ≡ {x1, . . . , xm},
we denote with Mφ

def= {x ∈ R
m | x is a model of φ} the set of its models.

We assume that the reader is familiar with the main theoretical and algo-
rithmic concepts of SMT, as well as with its terminology. We recall that the
lazy-SMT approach consists in building ad-hoc theory-specific procedures (called
theory solvers, usually written just for conjunctions of literals, i.e. atomic formu-
las and their negations) and integrating them into a SAT-solver. The most used
approach for lazy-SMT, called CDCL(T ), is to modify the CDCL procedure [29]
commonly used for SAT to work with formulas having a background theory T .
We refer the reader to, e.g., [3] for more details on lazy SMT.

In the rest of this section, we introduce the necessary background techniques
from the fields of unconstrained optimisation, interval arithmetic, and topology.

2.1 Unconstrained Global Optimisation

We say that x∗ is a local minimum for h : Rm → R, if there exists a neighborhood
S := {x ∈ R

m : ‖x∗ −x‖2 < δ} for some δ > 0, such that ∀x ∈ S : h(x∗) ≤ h(x).
We say that x∗ is a global minimum for h if ∀x ∈ R

m : h(x∗) ≤ h(x).
Unconstrained global optimisation is the problem of minimizing a function h

on the entire space R
m of the real numbers. A common approach to tackle this

problem is leveraging fast local optimisation techniques.
In this paper, we use a Monte Carlo Markov Chain method called Basin-

hopping [28], based on the Metropolis-Hasting algorithm [21]. The idea of Basin-
hopping is to do a random sampling of h to simulate a target distribution,
and then alternate a local minimization phase with a stepping phase, used to
decide, guided by the target distribution, how to jump from a local minimum to
another. In particular, we use a slight modification of the algorithm that, given
a maximum number of iterations, returns all the local minima found during the
search.

2.2 Interval Arithmetic

Interval Arithmetic is a systematic approach to represent real numbers as inter-
vals and to compute safe bounds that account for rounding errors. We define a box
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as a subset of Rm that is the Cartesian product of m intervals: B = I1×· · ·×Im ⊂
R

m. The width of an interval I
def= [aI , bI ] is defined as width(I) def= bI − aI, and

the width of a box is defined as width(B) def= maxi(width(Ii)). We can define
several operations and relations between intervals, such as addition, multiplica-
tion, inclusion, and many more. For a more in-depth coverage of properties of
and operations on intervals, we refer to [22].

We now give the definition of interval-computable functions, which plays
an important role in our method. The intuition is that a function is interval-
computable if it is possible to compute arbitrarily precise images for every inter-
val domain. It has been proved that every function in NT A is interval com-
putable (we refer to Sect. 5.4 of [22] for the proof)

Definition 1 (Function interval-computable). A function f : Ω ⊆ R
m →

R
n is said to be interval-computable iff there exists an algorithm If that, for

every box B′ ⊆ Ω with rational vertices, computes a box If (B′) with rational
vertices, such that: (i) f(B′) ⊆ If (B′); and (ii) ∀ε > 0 : ∃δ > 0 such that for
every B′ having width(B′) < δ, then width(If (B′)) < ε.

Given a formula φ in m real variables and a box B
def= I1 × · · ·× Im ⊂ R

m (where
Ii

def= [ai,bi]), we define the restriction of φ to the box B (and say φ|B is a bounded
formula) as

φ|B := φ ∧
∧

xi∈Var(φ)

(ai ≤ xi ∧ xi ≤ bi) (1)

2.3 Robustness and Quasi-decidability

Intuitively, a formula is robust if its satisfiability status does not change under
“small” perturbations2. Robustness is a desirable property in many real-world
applications, as already observed in the literature (e.g. [18,25]). The related
notion of quasi-decidability [15] is then a property that allows to circumvent
general undecidability results for a class of formulas when focusing only on robust
inputs.

Definition 2 (Quasi-decidability). A class of problems is quasi-decidable if
there exists an algorithm that always terminates on robust instances, and that
always returns the right answer when terminating.

2.4 Topological Degree Test

The topological degree of a continuous function f : Rn → R
n bounded over a box

B is an integer deg(f,B) that can be defined in several different equivalent ways.
Those definitions however require a consistent background, so for lack of space
we refer to [24] for a detailed presentation. The property that we are interested
in is the following, that we will call topological degree test :

2 A formal definition of robustness can be found in Sect. 2 of [15].
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Property 1. If deg(f,B) �= 0, then the equation f = 0 has a solution in B.

The topological degree has proven to be computable if 0 �∈ f(∂B)3 [1]. A practical
tool for computing it is TopDeg

4, implementing the algorithm described in [14].

3 Local Search Using Unconstrained Global Optimisation

In this section we explain how to exploit unconstrained global optimisation to
help a generic SMT solver to find models for sets of constraints in NRA and
NT A. The general idea is that of mapping a formula φ over real variables
x1, . . . , xm into a real-valued non-negative function h : Rm → R

≥0, such that x is
a model of φ only if h(x) = 0, and then use an unconstrained optimisation routine
to determine global minima of h. An ad-hoc encoding for Boolean variables
should be introduced. This technique, which we shall call Logic-to-Optimisation,
has already been applied successfully in other theories, e.g. [17]. In general, there
exist several approaches to perform logic-to-optimisation, that vary depending
on which logical theory is considered, what the purpose of the translation is, and
which properties of the cost function are desired.

We illustrate the specific translation that we use in our procedure. We assume
w.l.o.g. that our input formula consists of conjunctions and disjunctions of
Boolean variables b1, . . . , bk, possibly negated, and constraints of the form f �� 0,
where �� ∈ {<,≤,=}, and f is a NT A term. We define an operator L2O that
maps a formula to a non-negative real function from R

m+k to R
≥0 as follows:

L2O(f �� 0), �� ∈{≤,=} def= (if ([f ](x) �� 0) then 0 else [f ]2(x))
L2O(f < 0) def= L2O(f ≤ 0)
L2O(¬(f �� 0)), �� ∈{<,≤} def= L2O(−f �� 0)
L2O(¬(f = 0)) def= (if ([f ](x) = 0) then 1 else 0)
L2O(b) def= L2O(−xb ≤ 0)
L2O(¬b) def= L2O(xb + 1 ≤ 0)
L2O(φ1 ∧ φ2)

def= L2O(φ1) + L2O(φ2)
L2O(φ1 ∨ φ2)

def= L2O(φ1) ∗ L2O(φ2),

where xb is a fresh real variable.
Note that with this definition, our logic-to-optimisation transformation will

produce an overapproximation, meaning that not all the points in which L2O(φ)
evaluates to 0 (the zero set of L2O(φ), denoted Zφ) are models of φ: specifically,
this is due to the encoding used for strict inequalities and Boolean variables.
What is important for our purposes, however, is the converse, i.e. the fact that
Zφ contains the set Mφ of all the models of φ. Moreover, since L2O(φ) has non-
negative values, if Zφ �= ∅, then Zφ contains all and only the global minima of
the function. We can exploit these facts as follows.
3 ∂B is the topological boundary of B, i.e. the set of points in the closure of B that

are not in its interior.
4 Available at https://www.cs.cas.cz/∼ratschan/topdeg/topdeg.html.

https://www.cs.cas.cz/~ratschan/topdeg/topdeg.html
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Through the unconstrained global optimisation algorithm Basin-hopping
mentioned in Sect. 2.1, we obtain a finite set of local minima Lφ ⊆ {x ∈
R

m|x is a local minimum of L2O(φ)}. Implementation-wise, the output will
consist of rational approximations of local minima. We denote this set by L̃φ. For
each element x̃ ∈ L̃φ, we try to produce a model x for φ. We first propose two
simple tactics that work only in the case that φ is in NRA, and we will present a
more elaborate procedure for NT A in the next section. Moreover, in the follow-
ing we only consider formulas which are simply conjunctions of constraints, and
that contain no Boolean variables. We shall deal with general formulas in Sect. 5.

Given x̃ def= {x̃1, · · · , x̃m} ∈ L̃φ, it is trivial to check whether x̃ is a model
for φ by substituting the variables with their values into the formula5. If x̃ is
not a model we can try to look in the surroundings of x̃. An idea is to reduce φ
to a linear under-approximation by forcing all the multiplications to be linear,
similarly to what is done in [7] equation (3), in the context of the incremen-
tal linearization approach (we will refer to this techique as check-crosses). A
third more general idea is restricting the problem to a bounded subformula φ|B,
obtained by imposing that the variables range over a box B ≡ I1×· · ·×Im ⊂ R

m

(where Ii
def= [ai,bi] and x̃i ∈ Ii ). A naive choice of B is the hyper-cube having x̃

as its center (that is, Ii
def= [x̃i − c, x̃i + c] for a given small c ∈ Q>0).

The reason to restrict to a box is that bounded problems are, in general, easier
to solve, and, if the cost of x̃ is zero or very close to zero, we can reasonably
hope that a model lies in the box. However, restricting to bounded instances by
itself does not help much in terms of classes of problems we are able to solve.
In fact, if our SMT solver was unable to find irrational models before, it still is.
Nonetheless, as we will see in the next section, the idea of finding a point x̃ very
close to being a model and then restrict the problem to a (possibly very tight)
bounded instance, allows the adoption of a new procedure for NT A.

4 Solving Bounded Instances with the Topological
Degree Test and Interval Arithmetic

In this section we explain how, given a local minimum x̃ obtained as in the
previous section, we can prove the satisfiability of a bounded conjunction of
constraints φ|B in NT A through interval arithmetic and the computation of the
topological degree.

First, in Sect. 4.1, we provide a practical quasi-decidability procedure for
bounded formulas in m variables that contain n equations and k non-strict
inequalities, and for which either n = m or n = 0. We then generalize this
in Sect. 4.2, by providing a method that, given a formula with the only condi-
tion that n ≤ m (and no conditions on the kind of inequalities), can generate
subformulas for which the quasi-decidability procedure is applicable. Finally,
in Sect. 4.3, we discuss how we can integrate these results within the Logic-to-
Optimisation framework.

5 We remind that we are assuming to be in NRA only here.
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4.1 Quasi-decidability Procedure

Algorithm 1. Quasi-dec

Input: A formula φ|B in m variables, n equations f1 = 0, · · · , fn = 0, and k non-
strict inequalities gi ≤ 0, · · · , gk ≤ 0 s.t. n = m or n = 0

Output: <False> or <True, Bsol> � Bsol is a box containing a model

1: grid ← {B}
2: conflict indices ← {0, · · · , m}
3: while True do
4: for A ∈ grid do
5: if (0 �∈ If (A)) ∨ (Ig(A) ∩ (−∞, 0]k = ∅) then � If and Ig as in def. 1
6: grid.remove(A)

7: if grid = {} then return <False>

8: if n �= 0 then
9: grid ← Merge all the boxes in grid having a common face C s.t. 0 ∈ If (C)

10: grid∂ ← {A ∈ grid | exists C a face of A s.t. C ⊆ ∂B ∧ 0 ∈ If(C)}
11: else
12: grid∂ ← {}
13: for A ∈ grid \ grid∂ do
14: conflict indices A ← {}
15: demerge(A) := {E | E has been merged into A in line 9}
16: for E ∈ demerge(A) do
17: for i ∈ {0, · · · , k} do
18: if Igi(E) �⊂ (−∞, 0] then
19: conflict indices A.add({j ∈ {0, · · · , m} | xj appears in gi})

20: if conflict indices A = {} ∧ (n = 0 ∨ TopDeg(f, A) �= 0) then
21: return <True , A >

22: conflict indices.add(conflict indices A)

23: refinement index ← Choose an index with the help of conflict indices

24: grid ← refine(grid, refinement index) � First, we demerge the grid; then,
each sub-box is split in two sub-boxes along the axis refinement index

25: conflict indices ← ∅

The procedure that we introduce in Algorithm 1 is inspired by that proposed
in [15], although some significant changes – discussed at the end of this subsec-
tion – have been made to ensure its applicability in practice. We stress that the
condition n = m ∨ n = 0 depends by the fact that the topological degree cannot
be defined for n �= m. Using symbolic rewriting tricks (e.g. adding redundant
equalities, or rewriting an equality as the conjunction of two non-strict inequal-
ities) to force a robust formula to satisfy the condition would not work, as it
would make the formula non-robust and so the procedure – albeit applicable –
would just not terminate. For the sake of brevity, we introduce the multi-valued
functions f := f1 × · · · × fn, and g := g1 × · · · × gk.
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The idea of the algorithm is to iteratively divide the starting box into smaller
sub-boxes (the set of which is called a grid), removing at each step from the
grid the sub-boxes for which either an equation or an inequality does not hold
(lines 4–6), and using the topological degree test to prove if the system of equa-
tions admits a solution inside one of the sub-boxes (line 20), provided that the
inequalities hold in that sub-box (lines 16-19). The algorithm terminates either
returning True when a box respecting these last conditions has been found, or
returning False if the grid is emptied (line 7).

In order to be computable in a box A, the topological degree requires that
no zero lies in f(∂A). Because of that, we have to take some precautions, such as
merging boxes having a common face in which a zero lies (line 9) and avoiding
boxes having a face contained on the border of B and in which lies a zero (line
10). Regarding the last case we remark that, if the only solution of φ|B lies in ∂B,
then the formula is not robust (and the algorithm is allowed to never terminate).

Another sensitive point is to make sure that, given a robust formula, the
algorithm always terminates. To this extent, it is essential that the following
property is satisfied: “for every ε > 0, there is a finite number of iterations after
which each sub-box A in the grid has width(A) < ε”. In order to satisfy this
property, a necessary and sufficient condition is that, for each i ∈ {0, · · · ,m},
the refinement index assumes infinitely many times the value i. One naive idea
would be to assign the refinement index to i + 1 at each iteration. However, this
is not practical. In fact, refining the grid without considering the reasons for
which the algorithm does not terminate leads to an unmanageable growth in the
size of the grid. Thus we use a greedy approach: at each step we take note of
the indexes for which there is a conflict in the inequalities (line 19), and then we
base our choice of the refinement index on that (line 24), preferring indices that
appear in the conflicts (but making sure that eventually each index is chosen,
even though with different frequency). This is a main difference compared to
the algorithm from [15], where the grid is divided along all the indices at each
step. This results in a double exponential growth in the number of sub-boxes
to consider: after i steps, in the worst case the grid will contain (2i)m sub-
boxes. In our algorithm at each step we choose exactly one index along which to
split the sub-boxes, choosing the index that most likely is causing the algorithm
not to terminate. Avoiding splitting along indices that are not responsible for
conflicts is essential to prevent an explosion in dimension which would make the
algorithm impractical. Moreover, to the best of our knowledge, ours is the first
implementation of this kind of procedures. In the next subsection, we will further
modify the procedure to make it able to produce explanations for unsat cases.

4.2 From a Formula with n ≤ m to Quasi-dec

Let φ|B be some bounded formula, with the only condition that n ≤ m. We define
φ̂|B as the formula obtained from φ|B by replacing every constraint e

def= (g > 0)
with the constraint ê

def= (g − ε ≥ 0), given a predefined constant ε > 0. It is
straightforward to prove that every model of φ̂|B is also a model of φ|B.



146 A. Cimatti et al.

Algorithm 2. Solve a formula φ|B with n ≤ m

Input: A formula φ|B in m variables, n equations, and k inequalities s.t. n ≤ m
A candidate point x̃ ∈ R

m

Output: <True, Bsol> or <Unknown>

1: φ̂|B := the formula obtained from φ|B by replacing every g > 0 with g − ε ≥ 0
2: if n = m ∨ n = 0 then
3: res quasidec ← Quasi-dec (φ̂|B)
4: if res quasidec ≡ <True, Bsol > then return <True, Bsol >

5: else return <Unknown>
6: infeasible var subsets ← {}
7: for vars subset ∈ Combinations(Vars, m − n) do
8: if vars subset ∈ infeasible var subsets then
9: continue

10: μ := {vari �→ xi | vari ∈ vars subset}
11: <sat, p> ← Quasi-dec (μ(φ̂|B))
12: if <sat, p> = <True, Bsol > then
13: return <True, Bsol >

14: else if <sat, p> = <False, μ(h) > then
15: conflict vars := {vari ∈ vars subset | vari appears in h}
16: infeasible var subsets.add(conflict vars)

17: return <Unknown>

If n = m we can directly apply Quasi-dec. If n < m, then we can try
to assign m − n variables to real values, and then apply Quasi-dec to the
formula obtained from the substitution. We start from a given point x̃ ∈ R

m, and
enumerate possible assignments to m − n variables. In general, there are

(
m
n

)
=

m!
n!(m−n)! possible combinations to explore, but we can reduce their number via
conflict-driven learning, as commonly done in SAT and SMT, by modifying the
Quasi-dec procedure (Algorithm 1), to make it return, before the while cycle in
line 3, <False ,fi > if 0 �∈ Ifi

(B), and <False , gj > if Igj
(A)∩(−∞, 0] = ∅. This

modification helps the procedure by explaining why the problem is unsatisfiable,
even though only for simple cases where no grid refinement is required. Given
an explanation, we can extract the set E of variables involved, and use them
to avoid the enumeration of assignments to supersets of E. In general, we could
extend the idea of returning explanations for unsatisfiable instances to more
complex situations. In this paper, we do not delve into this path, and leave
further investigations for future work.

Overall, our approach to reduce to the Quasi-dec procedure given a formula
with the only restriction that n ≤ m is illustrated in Algorithm 2.

4.3 A General Procedure

We can now combine the results of the last two sections. First, we obtain several
local minima x̃1, · · · , x̃k as in Sect. 3 . The two tactics described in the section
(i.e., the simple check of x̃, and the reduction to a linear underapproximation)
are reasonably inexpensive for NRA. Thus, if the problem is in NRA, we first



Handling Polynomial and Transcendental Functions in SMT 147

Fig. 1. Schema of the overall procedure.

apply these two tactics to each local minimum. If these two tactics fail, or the
problem is in NT A, we apply the algorithm described in Sect. 4.2 to each local
minimum (starting from the minimum with the lowest cost). A sketch of this
procedure is shown in Fig. 1.

Remark 1. Our general procedure is not a quasi-decidability procedure. How-
ever, relying on a quasi-decidability subprocedure is a crucial point of our
method. By construction, the formulas that we feed to Quasi-dec have the prop-
erty that if they are unsatisfiable then they are also robust (Lemma 3 from [15])6.
This means that Quasi-dec always terminates on unsatisfiable subformulas,
guaranteeing that we always progress towards a solution.

5 From Constraint Sets to Formulas

So far we have considered only sets of constraints. In this section, we present
two different ways to solve a formula φ with arbitrary Boolean structure and
that includes also Boolean variables. In the first way, we apply L2O eagerly to
the formula, and then try to decide the disjunctions through the insight given
by a local minimum, and then proceed to solve the constraints set as in Sect. 4.
In the second way, we use the procedure of Sect. 4 as a theory solver inside a
DPLL(T )-based lazy-SMT algorithm.

5.1 An Eager Approach

Let φ be a formula in CNF form. We can apply L2O to φ and obtain several
local minima. Given a local minimum x̃, if there are no transcendental functions,

6 This is not true for formulas containing strict inequalities, but we replaced strict
inequalities in Algorithm 2 at line 1.
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we can use the two tactics discussed in Sect. 3 (the simple check, and the call
to an LRA-solver for a linear underapproximation of φ – i.e. check-crosses). We
cannot directly apply the tactic discussed in Sect. 4, since Quasi-dec does not
work with disjunctions.

In order to apply it, we can try to decide the disjunctions using x̃, to obtain
an implicant of φ which we can then feed to Algorithm 2. In line 1, we obtained
a formula μ(φ̂|B) that, except for containing disjunctions, is in the form required
by Quasi-dec. In fact, μ(φ̂|B) has the form

∧
Cj , where Cj ≡

∨
i∈Ij

(hi �� 0).
If we substitute each Cj with one of the atomic formulas that appear in it, then
we reduce to the case discussed in the previous section. Hence, for each Cj , we
choose one constraint hi �� 0 that most likely is satisfied by x̃. As a last resort, if
for each local minimum this tactic do not work, we rewrite the original formula
into DNF and try to solve each constraints set as in the previous section.

5.2 A Lazy Approach

In the lazy approach, the method defined in Sect. 4 is used as a theory solver
inside a DPLL(T ) procedure. Since our method is able to prove only satisfia-
bility, it needs to be paired with a method able to prove unsatisfiability. In our
implementation, we pair it with incremental linearization [7], which is usually
effective in proving unsatisfiability, and also good in finding linear models, but
whose weak spot is finding irrational models.

Currently, our implementation is quite simple. Inside the DPLL(T ) algo-
rithm, we introduce a parameter n calls IncrLin that keeps track of the calls
to incremental linearization, and that is reset whenever the DPLL(T ) solver
backtracks. After a given k number of calls to incremental linearization, we call
our method. If it returns sat, we are done. Otherwise it returns unknown, and
we proceed with incremental linearization.

6 Experimental Evaluation

Implementation We have implemented our method in a prototype written in
Python, called ugotNL (as in Unconstrained Global Optimisation and Topolog-
ical degree for Non-Linear). We refer to the version based on the eager approach
as ugotNLeager. For the lazy approach, we integrated ugotNL as a theory
solver inside the MathSAT SMT solver [8]. We will refer to this version as
MathSAT+ugotNL.

Setup. We have run our experiments7 on a cluster equipped with 2.4 GHz Intel
Xeon E5-2440 machines, using a time limit of 1000 s and a memory limit of 9 Gb.
We compared our tools with z3 [11] and Yices [13] (CAD-based), raSAT [27] (that
combines ICP and GIVT), CVC5 [6] (that combines IL with cylindrical algebraic

7 Available at https://drive.google.com/file/d/1f6RmvojKw4om0L08g3hYMBl-wb6n
vEpf/.

https://drive.google.com/file/d/1f6RmvojKw4om0L08g3hYMBl-wb6nvEpf/
https://drive.google.com/file/d/1f6RmvojKw4om0L08g3hYMBl-wb6nvEpf/


Handling Polynomial and Transcendental Functions in SMT 149

Fig. 2. Summary of results for SMT(NRA) sat cases. The results in parenthesis indicate
“maybe sat” answers.

Fig. 3. Summary of results for SMT(NTA) sat cases. On the left the original instances;
on the right the bounded instances.The results in parenthesis indicate “maybe sat”
answers.

coverings [30]), iSAT3 [16] (based on ICP), and dReal [19] (that operates in the
δ-sat framework [18]). Only the last three solvers can deal with NT A.

We checked that, when terminating, our tools always return the correct result
when the status of the benchmark is known, and never disagree with the other
solvers; for NRA, we checked with z3 that every box returned by our tools
contains indeed a model.

Benchmarks. For NRA, we consider all the SMT-LIB [2] benchmarks from
the QF-NRA category. This is a class of 11523 benchmarks, among which
5142 are satisfiable, 5379 are unsatisfiable, and 1002 have unknown status. For
NT A, we considered the benchmarks from the dReal distribution [19], and other
benchmarks deriving from discretization of Bounded Model Checking of hybrid
automata. The problems in these classes come all with an unknown status. Since
iSAT3 is not able to work with unbounded instances, in order to include it in
the comparison, we generated for each benchmark a bounded version by adding
constraints that force all the real variables in the problem to assume values in
the [−300, 300] interval.

Results (sat). First, we analyze the results for satisfiable instances, which are
reported in Figs. 2 and 3. The tables show, for each solver, the number of suc-
cessfully solved instances, both overall (1st column) and for each benchmark
family (rest of the columns), with the best results highlighted in boldface.
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Fig. 4. Summary of results for SMT(NRA) unsat cases.

Fig. 5. Summary of results for SMT(NTA) unsat cases. On the left the original
instances; on the right the bounded instances.

For NRA (Fig. 2), we see that z3 is overall superior. Nevertheless, we see
that both our new tools are very competitive, and perform significantly better
than MathSAT. Moreover, since we are comparing new-born ideas implemented
in a prototype with well-optimised CAD-based techniques that have a decade of
progresses on their shoulders, we believe that these results are very encouraging.

Where our methods shine and go beyond the state of the art is when we con-
sider problems with transcendental functions. In the results for NT A (Fig. 3)
we see that both our tools outperform the others. For this, the synergy between
numerical optimization and the procedure based on the topological degree test
is essential, as neither of the two methods in isolation is effective: when dis-
abling either of the two components, in fact, the performance is similar to that
of the “stock” version of MathSAT (we omit the details due to lack of space).
Moreover, there is a great complementarity between the two tools. For families
in which the Boolean component is huge (such as bmc) we see that Math-

SAT+ugotNL is by far the best, whereas for benchmarks where the theory
component is predominant (e.g. the dreal ones) the situation is reversed.

Results (unsat). Now we analyze the results for unsatisfiable cases (Figs. 4 and
5). Our methods are designed to finding models, so, for unsatisfiable instances,
there are no advancements whatsoever. Nevertheless, we are interested in eval-
uating possible losses of the lazy version wrt. MathSAT due to the integration
of our method. (The eager approach can never return unsat, so it does not com-
pete.)
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We see that for NRA there are some losses (expecially for very time-
consuming benchmark families such as LassoRanker and MBO), that overall
count for 4.5% of the benchmarks that MathSAT is able to solve before the
timeout. For NT A, we observed that the losses are even less: respectively 2.1%
and 0.6% for unbounded and bounded instances. We remark that these results
do not imply that our new tool is unable to prove the unsatisfiability for those
cases, rather that it is unable to prove it within the same timeout. In fact, since
our theory solver always terminates for unsatisfiable instances (see Remark 1),
we know that, if MathSAT returns unsat for a problem, then eventually Math-

SAT+ugotNL will return unsat as well.
We stress the fact that our implementation is currently still a research pro-

totype, implemented in Python and integrated within MathSAT in a quite
inefficient manner, introducing a lot of overhead in the interaction with the
DPLL(T ) solver. We are confident that a more optimised and better integrated
implementation can significantly reduce the overhead and improve the situation
for unsatisfaible instances. Therefore, we believe that these results prove that our
tool, albeit aimed specifically at proving satisfiability, works well even for unsat-
isfiable instances, and, in particular for NT A (which is our privileged theory
of interest), there are no relevant downsides in pairing our sat-oriented theory
solver with an unsat-oriented theory solver based on incremental linearization.

7 Conclusions and Future Work

In this paper we proposed a new procedure for proving satisfiability in NT A,
based on a fruitful synergy of numerical and symbolic methods. We implemented
our ideas in a prototype called ugotNL, and proposed two different approaches:
an eager one and a lazy one (integrated inside MathSAT). We tested the two
methods on a wide variety of satisfiable benchmarks, and the results demon-
strated that both our methods significantly outperform the state of the art for
NT A, while being competitive for NRA. In the future, we plan to better
integrate ugotNL inside MathSAT and to experiment with more thoughtful
heuristics. Furthermore, we plan to investigate the potential of our ideas in
several directions, including how to exploit the procedure also for proving unsat-
isfiability and whether similar techniques can be applied also to solve problems
involving differential equations.
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Abstract. We consider the problem of invariant checking for transi-
tion systems using SMT and quantified variables ranging over finite but
unbounded domains. We propose a general approach, obtained by com-
bining two ingredients: exploration of a finite instance, to obtain can-
didate inductive invariants, and instantiation-based techniques to dis-
charge quantified queries. A thorough experimental evaluation on a wide
range of benchmarks demonstrates the generality and effectiveness of our
approach. Our algorithm is the first capable of approaching in a uniform
way such a large variety of models.

1 Introduction

Model checking algorithms based on efficient quantifier-free SAT and SMT rea-
soning have seen significant progress in the last few years. However, in many
verification areas first-order quantifiers are needed, both in the symbolic descrip-
tion of the system and in the property to prove. This is the case, for example,
of verification of parameterized systems.

Unfortunately, dealing with the combined case of transition systems with
theories and first-order is far from trivial: SMT-based model checking algorithms
can’t be naturally extended. In this paper, we discuss the problem of model
checking invariant properties in systems containing SMT theories and first-order
quantifiers, with quantified variables ranging over finite but unbounded domains.
For example, the (finite) size of the domain may depend on the number of
processes in a protocol, or the number of components of the station in a railway
interlocking system.

We present a simple yet general approach based on the interaction of two
key ingredients. First, given a fixed cardinality for the domain, we compute a
quantifier-free system (a ground instance) that can be model checked with exist-
ing techniques. We either get a counterexample, in which case the system is
unsafe, or a proof for the property. Such a proof is lifted to a candidate invariant
for the quantified system. This step is crucial, and is made effective by com-
bining minimization and generalization techniques [15,17,26]. Second, we check
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the validity of the candidate invariant using quantified SMT reasoning. If the
candidate invariant is valid, then the system is safe. Otherwise, further reason-
ing is required, e.g. by increasing the cardinality of the domain, and iterating
the first step. Such a check can in principle be carried out by any off-the-shelf
solver supporting SMT and quantifiers (e.g. Z3 [23]). However, a black-box app-
roach to checking the validity of quantified invariants may cause the procedure
to diverge in practice. Therefore, we adopt a more careful, resource-bounded
approach to instantiation, that can be used to discharge quantified queries in a
more controlled way.

The approach combines in a unique framework different aspects of the recent
literature that have never been integrated. Compared to our approach, previous
works on verification of parameterized systems with SMT [8,14] impose strong
syntactic restrictions on the formulae used for defining systems, and allow only
a very limited form of quantifier alternation. Other approaches based on modern
SAT-based model checking algorithms such as [15,18,25] are more liberal, but
they do not support theories.

The algorithm has been implemented and experimentally evaluated on vari-
ous families of benchmarks, obtained from different sources, and making use of
theories, quantifier alternations, or both. The experimental evaluation demon-
strates that the algorithm is very general, being the only one able deal with
all the benchmarks. As far as we know, our algorithm is the first capable of
approaching in a uniform way such a large variety of systems. Furthermore,
the experimental evaluation shows that, despite the relative simplicity of the
implementation, the algorithm is quite efficient, and very effective, solving more
instances than the competitor approaches in all the benchmarks classes.

2 Preliminaries

Our setting is standard first order logic. A theory T in the SMT sense is a pair
T = (Σ, C), where Σ is a first-order signature and C is a class of models over
Σ. A theory T is closed under substructure if its class C of structures is such
that whenever M ∈ C and N is a substructure of M, then N ∈ C. We use the
standard notions of Tarskian interpretation (assignment, model, satisfiability,
validity, logical consequence). We refer to 0-arity predicates as Boolean variables,
and to 0-arity uninterpreted functions as (theory) variables. A literal is an atom
or its negation. A clause is a disjunction of literals. A ground term is a term
which does not contain free variables. A formula is in conjunctive normal form
(CNF) iff it is a conjuction of clauses. If x1, ..., xn are variables and φ is a formula,
we might write φ(x1, ..., xn) to indicate that all the variables occurring free in φ
are in x1, ..., xn.

If φ is a formula, t is a term and v is a variable which occurs free in φ, we
write φ[v/t] for the substitution of every occurrence of v with t. If t and v are
vectors of the same length, we write φ[v/t] for the simultaneous substitution of
each vi with the corresponding term ti.

Given a set of variables v, we denote with v′ the set {v′ |v ∈ v}. A symbolic
transition system is a triple (v, I(v), T (v, v′)), where v is a set of variables, and
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I(v), T (v, v′) are first-order formulae over some signature. An assignment to the
variables in v is a state. A state s is initial iff it is a model of I(v), i.e. s |= I(v).
The states s, s′ denote a transition iff s ∪ s′ |= T (v, v′), also written T (s, s′). A
path is a sequence of states s0, s1, . . . such that s0 is initial and T (si, s

′
i+1) for

all i. We denote paths with π, and with π[j] the j-th element of π. A state s is
reachable iff there exists a path π such that π[i] = s for some i.

A formula φ(v) is an invariant of the transition system C = (v, I(v), T (v, v′))
iff it holds in all the reachable states. Following the standard model checking
notation, we denote this with C |= φ(v).1 A formula φ(v) is an inductive invariant
for C iff I(v) |= φ(v) and φ(v) ∧ T (v, v′) |= φ(v′). Given a first-order formula φ
over a signature Σ, containing arbitrary quantifiers, it is well known that it is
possible to obtain a universal formula φ′, called the Skolemization of φ, defined
over a larger signature Σ′, which is equisatisfiable to φ.

3 Verification of Quantified SMT Systems

3.1 Symbolic Formalism

The problem discussed in this paper is to prove or disprove that a given quan-
tified formula is an invariant of a symbolic transition system. In this section,
we describe the formalism that we use for defining systems and we present an
overall picture of the algorithm we use to solve the problem.

We introduce a class of symbolic transition systems, which subsumes many
formalisms presented in the literature [14,24]. We start by considering two theo-
ries; a theory TI = (ΣI , CI), called the index theory, which is closed under sub-
structures. In practice, this is often the theory of an uninterpreted sort, whose
class of models includes all possible finite (but unbounded) structures. In addi-
tion, we consider a theory of elements TE = (ΣE , CE), used to model the data
of the system. Relevant examples consider as TE the theory of an enumerated
datatype, or linear arithmetic (integer or real). Then, with AE

I we denote the
theory whose signature is Σ = ΣI ∪ ΣE ∪ {[ ]}, and a model for it is given by a
set of total functions from a model of TI to a model of TE , where [ ] is interpreted
as the function application. In the following, we might refer to variables of sort
AE

I as arrays.
We restrict ourselves to one index theory and one element theory for the

sake of simplicity, but typically applications include a multi-sorted setting, with
several index theories and several element theories.

Definition 1. In the following, we will considered a subclass of transition sys-
tems, defined by triples S = (x, ι(x), τ(x, x′)) where:

– x are arrays, i.e. variables of sort AE
I interpreted as functions from a model of

TI to a model of TE. Note that this includes also 0-ary or constant functions,
i.e. variables of sort TE.

1 Note that we use the symbol |= with three different denotations: if φ, ψ are formulae,
φ |= ψ denotes that ψ is a logical consequence of φ; if μ is an interpretation, and
ψ is a formula, μ |= ψ denotes that μ is a model of ψ; if C is a transition system,
C |= ψ denotes that ψ is an invariant of C.
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– ι(x), τ(x, x′) are first-order formulae over Σ possibly containing quantifiers
over variables of sorts TI .

Example 1. (A simple train station). In this example, we describe an abstract
simple train station, with an arbitrary number of tracks and routes; routes can
be activated by locking the corresponding tracks. As index theories, we use two
uninterpeted sorts: track and route. As element theory, we use two enumeratives,
TE1 with model {locked, free}, and TE2 with model {active, inactive}. As state
variables, we use an array state t : track → {locked, free}, and an array state r :
route → {active, inactive}. Moreover, we define a relation symbol UsedBy : track×
route → Bool to model the correspondences between tracks and routes. The
initial formula of our model is:

∀r : route.state r[r] = inactive ∧ ∀t : track.state t[t] = free.

The transition formula of the system is the disjunction of two formulae τ1 ∨ τ2,
corresponding to the activation or the deactivation of a route. The first disjunct
is:

∃r : route.
(
state r[r] = inactive ∧ ∀t : track.(UsedBy(t, r) → state t[t] = free)

∧ state r′[r] = active ∧ ∀r1 : route.(r1 	= r → state r′[r1] = state r[r1])
∧ ∀t1 : track.(UsedBy(t1, r) → state t′[t1] = locked)

∧ ∀t1 : track.(¬UsedBy(t1, r) → state t′[t1] = state t[t1])
)
.

The second disjunct is:

∃r : route.
(
state r[r] = active ∧ state r′[r] = inactive

∧ ∀r1 : route.(r1 	= r → state r′[r1] = state r[r1])
∧ ∀t1 : track.(UsedBy(t1, r) → state t′[t1] = free)

∧ ∀t1 : track.(¬UsedBy(t1, r) → state t′[t1] = state t[t1])
)
.

The Invariant Problem we consider is the problem of proving (or disproving)
that a given formula φ, possibly containing quantified variables of sort TI , is an
invariant for S. The problem is well-known to be undecidable, since it subsumes
undecidable problems such as safety of parameterized systems [2].

Example 2. In the example before, we want to prove mutual exclusion of routes
which are using a same track. To do this, we define a new relational symbol
Incompatible : route × route → Bool and we introduce the following axiom:

∀r1 : route, r2 : route.
(
Incompatible(r1, r2) ↔

(r1 	= r2 ∧ ∃t : track.UsedBy(t, r1) ∧ UsedBy(t, r2))
)

Axioms are not defined in Definition 1, but they are common in the literature
regarding symbolic transition systems. An axiom is a formula which is implicitly
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considered in conjunction to both the initial and the transition formula. The
invariant we want to prove is the formula

∀r1 : route, r2 : route.
(
Incompatible(r1, r2) →

¬(state r[r1] = active ∧ state r[r2] = active)
)

i.e. incompatible routes are never active together. ��
To solve the invariant problem affirmatively, we search for an inductive

strengthening, i.e. a first-order formula ψ such that ψ∧φ is an inductive invariant
for S.

Definition 2. Let S = (x, ι(x), τ(x, x′)) a transition system, and φ a candidate
invariant. An invariant strengthening ψ is a first-order fomula such that the
following formulae are AE

I -unsatisfiable:

ι(x) ∧ ¬(φ(x) ∧ ψ(x)), τ(x, x′) ∧ φ(x) ∧ ψ(x) ∧ ¬(φ(x′) ∧ ψ(x′)). (1)

Since a formula is valid iff its negation is unsatisfiable, it follows from the defi-
nition that ψ ∧ φ is an inductive invariant for S.

Our method will first automatically synthesize a candidate invariant strength-
ening ψ, and then try to discharge inductive queries with instantiation-based
methods to see if the guess was correct. In fact, after Skolemizing inductive
queries (1) to a universal form, our method will search for a set of ground terms
G such that the ground formula obtained by instantiating universal quantifiers
(in G) is unsatisfiable. We have, however, many open problems, which we can
summarize with the following questions: (i) How to find such candidate invariant
strengthenings? (ii) How to choose the set of ground terms G? (iii) If the query
is SAT, how to detect real counterexamples?

In the method we propose, we will try to address these problems with a
common approach, which is ground instance exploration. A ground instance
of the system is obtained by fixing the cardinality of models of TI to a fixed
integer. In this way we can obtain (after removing quantifiers by instantiation)
a transition system defined by quantifier-free formulae, which can be analyzed
by standard SMT-based techniques.

We will describe our approach more thoroughly in the next sections. Here,
we give a high-level overview of our method, depicted also in Fig. 1.

3.2 Overview

As an input, we have a symbolic transition system S and a candidate invariant
φ. We set n, a counter for the size of the ground instance we explore, equal to
1. We perform the following steps:

– we consider a ground instance of cardinality n, and then use a model checker
to get either a counterexample for the property (thus terminating the algo-
rithm with Unsafe result), or an inductive invariant in size n. More details
about the computation of ground instances are given in Sect.3.3.



Model Checking with Quantifiers 159

Fig. 1. An overview of the algorithm.

– From the invariant of size n, we synthesize a candidate invariant strenghtening
ψ (Generalization).

– We consider the quantified queries (1), and try to prove their unsatisfiability
(Invariant Checking box). In case of a success, the property is proved and
we have found an inductive invariant. In case of a failure, we need a better
candidate invariant: we restart the loop with a new exploration from size
n + 1.

Since we are dealing with undecidable problems, there are many possible
causes of non-termination of the algorithm: the main problems are the invariant
checking box, which involves quantified reasoning, and the existence of a cut-off,
i.e. an integer n such that the generalized formula obtained afted model checking
a ground instance of size n is inductive also for all other instances. Note that
the procedure of invariant checking could be implemented with the usage of
any prover supporting SMT reasoning and quantifiers. However, especially for
satisfiabile instances, such solvers can diverge easily. Thus, since many queries
can be SAT, a naive usage of such tools will cause the procedure to get stuck in
quantified reasoning with no progress obtained.

Therefore, we proposed a ‘bounded’ sub-procedure of Invariant Checking,
explained in detail in Sect.3.5, in which instead of relying on an off-the-shelf SMT
solver supporting quantifiers, we ‘manually’ apply standard instantiation-based
techniques for quantified SMT reasoning [10], in which however we carefully
manage the set of terms used to instantiate the quantifiers, in order to prevent
divergence.

We now describe each step in more detail.

3.3 Ground Instances

We start by describing in detail the computation of a ground instance from
the quantified system S. Traditionally, the exploration of ground instances has
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always been recognized as a source of helpful heuristics, especially in the ver-
ification of parameterized systems [9,26]. The intuition is that in most cases,
if a counterexample to a property exists, it can be detected for small values of
the parameter. Moreover, if a property holds, the reason for that should be the
same for all values of the parameter (at least after a certain threshold value).
We try to use this intuition in a symbolic setting, where we use as a parameter
the cardinality of the models of the theory TI . In the following, we denote with
n an integer, and with c = c1, . . . , cn a set of fresh constants of index sort. These
will be frozen variables of the ground instance, i.e. we will implicitly consider a
constraint c′ = c as a conjunction of the transition formula; moreover, they will
be also considered all implicitly different.

In the following, if φ = Q1i1, ..., Qmim.φ′(i, x[i]), with Qj ∈ {∀,∃} is a for-
mula with quantifiers of only sort TI , we denote φn(c, x[c]) the ground formula
obtained by expanding the quantifiers in c.

Definition 3. Given S = (x, ι(x), τ(x, x′)) a transition system and n an integer,
the ground instance of S of size n, denoted with Sn, is obtained in the following
way:

– for each function symbol a in Σ whose codomain type is TI , consider the
formula

∀i1, . . . , im∃j.a(i1, . . . , im) = j,

where m is the arity of a, and i1, . . . , im, j are fresh variables of appropriate
sort2;

– add the formulae generated in this way in conjuction to the initial formula ι
and the transition formula τ ;

– Instantiate all the quantifiers in the modified formulae with c, thus obtaining
a quantifier-free transition system

Sn =
(
c ∪ x, ιn(c, x[c]), τn(c, x[c], x′[c])

)
.

We observe that a state of Sn is given by: (i) an assignment of c to a finite
model of cardinality n of TI , and (ii) an interpretation of the state variables as
functions from that model to a model of TE . Note that even if the models of TI

have finte cardinality, the set of states of Sn can be infinite, since TE could have
an infinite model, e.g. if integer or real variables are in the system. Nevertheless,
the system can be model checked efficiently by modern symbolic SMT techniques
like [3].

Symmetric Presentation of Ground Instances. As already observed in
previous works [4,15,20], transition systems obtained by instantiating quantified
formulae have a certain degree of symmetry. We report here the notion that will
be useful to our description.

2 These are ‘cardinality axioms’, used to restrict the values of functions in appropriate
models.
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Definition 4. If σ is a permutation of 1, ..., n, and φ is a formula in which
c1, . . . , cn occur free, we denote with σφ the formula obtained by substituting
every ci with cσ(i).

The following follows directly from the fact that ιn and τn are obtained by
instantiating a quantified formula with a set of fresh constants c [20]:

Lemma 1. For every permutaion σ, we have that: (i) σιn ≡ ιn; (ii) στn ≡ τn.

From this lemma and a simple induction proof, the following holds:

Proposition 2 (Invariance for permutation). Let s be a state of Sn, reach-
able in k steps. Then s |= φ(c, x[c]), if and only if, for every σ, there exists a
state s′ reachable in k steps such that s′ |= σφ(c, x[c])

This property will be exploited both for the verification of ground instances,
and in the generalization process. In fact, from the last proposition we can sim-
plify every invariant problem Sn |=

∧
σ σφ(c) – where σ ranges over all possible

substitutions – to Sn |= φ(c). This simplification is of great help when checking
properties which are the result of instantiating a formula with only universal
quantifiers.

3.4 Generalizing Invariants from Instances

After computing Sn, let φn(c, x[c]) be the result of instantiating the quantifiers of
the original candidate invariant φ in c. Then, we suppose to have a model checker
capable of proving or disproving that Sn |= φn(c, x[c]). If a counterexample is
not found, we also suppose to have an formula In(c, x[c]) which witnesses the
proof, i.e. an inductive invariant. From this witness we generalize a candidate
invariant for the unbounded case.

Definition 5 (Generalization). Let S be a transition system and φ a can-
didate invariant. Let Sn be the ground instance of size n, and suppose Sn |=
φn(c, x[c]). A generalization from size n is a (quantified) formula ψ such that ψn

is an inductive invariant for φn.

For generalization, we exploit the same technique that we used in [4], inspired
by [26]. Suppose that In is in CNF. Then, In = C1 ∧ · · · ∧ Cm is a conjunction of
clauses. From every one of such clauses we will obtain a universally quantified
formula. Let AllDiff (i) be the formula which states that all variables in i are
different from each other. For all j ∈ {1, . . . , m}, let ψj = ∀i.AllDiff (i) → Cj [c/i].
Let Ψ =

∧m
j=1 ψj . It follows from Proposition (2) than such a Ψ is a generalization

from size n.
It should be clear that our technique can infer invariant strenghtnenings

with only universal quantifiers, but more generalizations are possible [11,15].
For example, if a clause of the inductive invariant is l(c1) ∨ ... ∨ l(cn), a naive
generalization of that clause would be ∃x.l(x).
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Example 3. Continuing our example, suppose to model check a ground instance
with exactly two tracks (t1, t2) and two routes (r1, r2). Suppose that after suc-
ceeding in proving the property, a clause of the inductive invariant is the formula

¬UsedBy(t1, r1) ∨ ¬state r[r1] = active ∨ ¬state t[t1] = free

Our generalization is simply:

∀t1 : track, r1 : route.(¬UsedBy(t1, r1)∨¬state r[r1] = active∨¬state t[t1] = free).

This is actually an inductive strengthening for the property we wanted to prove.

Minimizing Modulo Symmetries. Recall that our next step will be to try
to prove that the generalized invariant from size n is inductive also for all other
ground instances. Therefore, it is intuitive to try to weaken as much as possible
the candidate strenghtening Ψ , to increase the chances that its inductiveness will
be preserved in other instances. So, before generalization, we use the invariant
minimization techniques described in [17] to weaken the inductive invariant In

by removing unnecessary clauses. However, note that, with our generalization
technique, two symmetric clauses produce the same quantified formula: if σ is
a substitution of the c’s, the formulae obtained by generalizing a clause C(c) or
σC(c) are logically equivalent. So, we apply the following strategy: given a clause
C(c) in In, we add to the invariant all the ‘symmetric’ versions σC, where σ ranges
over all possible substitutions of the c’s. By Proposition (2), we can safely add
those clause to In and it will remain inductive. Then, during the minimization
process, a clause is removed from the invariant only if all its ‘symmetric’ versions
are. In our experiments, minimizing invariants with this method has proved to
be crucial for the effectiveness of our approach.

3.5 Invariant Checking

Having described how we synthesize candidate inductive invariants from a
ground instance of size n, we now describe how we try to prove that our gener-
alization is correct. Given a candidate inductive invariant, we perform Skolem-
ization on the inductive query (1), obtaining a universal formula. Then, we look
for a set of terms G such that the ground formula obtained by instantiating the
universals with G is unsatisfiable. This is the standard approach used in SMT
solvers for detecting unsatisfiability of quantied formulae [10,13]. The main dif-
ference is that instead of relying on heuristics to perform the instantiation lazily
during the SMT search (e.g. [10,13]), we carefully control the quantifier instan-
tiation procedure, and expand the quantifiers eagerly, so that we can use only
quantifer-free SMT reasoning.

Let φS = ∀i.φ′
S(i, x[i]) be the result of the Skolemization process, where φ′

S

is a quantifier-free formula over a signature Σ′, obtained by expanding Σ with
new Skolem symbols. Initially, we simply let G to be the set of 0-ary symbols of
the index sort in the formula. Note that apart from constants in the original sig-
nature, new (Skolem) constants arise by eliminating existential quantifiers. Since
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we use only universal quantification the generalized invariant strengthening, Ψ
is a conjunction of universal formulae, and we can commute the conjunction and
the universal quantification to obtain a formula with only n universal quantified
variables. Notice that, since the candidate inductive strengthening occurs also
negated in the quantified formula, this will produce n new Skolem constants.

Finally, we can add to the inductive query an additional constraint. By induc-
tion on the structure of our algorithm, if Ψ is generalized from size n, we have
proven already that the property φ holds in S for all the ground instances of size
equal or less than n. Thus, we impose that in our universe G there are at least
n different terms.

To sum up, let φS = ∀i.φ′
S(i, x[i]) be the universal formula obtained after

Skolemization, and let m be the length of i. Let n be the cardinality of the last
visited ground instance. Let G be the set of constants of index sort in φ′

S (by the
previous discussion, |G| ≥ n). Let c1, . . . , cn be a set of fresh variables of index
sort. We test with an SMT solver the satisfiability of the following formula

∧

g∈Gm

φ′
S [i/g] ∧ AllDiff (c) ∧

n∧

j=1

(
∨

g∈G

cj = g) (2)

We have that:

Proposition 3. For any set of ΣI-terms G, if (2) is unsatisfiable, then ψ is an
inductive strengthening for φ.

Refinement. If the former formula is SAT, there are two possibilities. Either
we have a real counterexample to induction, and we need a better candidate, or
our instantiation set G was too small to detect unsatisfiability. In general, if G
covers all possible ΣI -terms, then we can deduce that the counterexample is not
spurious.

Definition 6. Given an index theory TI with signature ΣI , we say that a set of
ΣI-terms G is saturated if, for all terms ΣI-term t, there exists a g ∈ G such
that TI |= t = g.

So, if G is saturated, any model of (2) correspond to a counterexample to induc-
tion, and we need a better strenghtening. However, in case (2) is satisfiable, but
G is not saturated, we use the following heuristic to decide whether we need a
better candidate or a larger G. We consider the inductive query in Sn+1,using
as a candidate inductive invariant (ψ ∧ φ)n+1. If the candidate invariant is still
good (the query is UNSAT), we try to increase G to get the unsatisfiablity of the
unbounded case. Our choice is to add to G terms of the form f(x) where f is a
function symbol of index type, and x are constants already in G. Note that if no
function symbols are available, i.e. if ΣI is a relational signature, then saturation
of G follows already by considering 0-ary terms. Therefore, in case G is initially
not saturated, the existence of at least one function symbol is guaranteed3.
3 In our implementation, the saturation of G is detected when no new function symbols

are available.
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If the query (2) is now UNSAT, we have succeeded. Otherwise, we continue
to add terms to G, until either all function symbols have been used, or an
UNSAT result is encountered. If the candidate invariant strengthening is not
inductive for size n + 1 (the query is SAT), we search for a better candidate.
To do so, before completely discharging the invariant generalized from size n,
we can run an additional minimization procedure (see Sect. 3.4) in size Sn+1, to
try to remove unnecessary clauses. If a new invariant is obtained, we repeat the
instantiation procedure. Otherwise, we repeat the whole loop, starting by model
checking the ground instance Sn+1 and obtaining a new strenghtening from size
n + 1.

3.6 Termination

In general, we do not have theoretical guarantees that our algorithm eventually
terminates. In fact, there can be many causes of non termination: note that
in case of infinite theories, the model checking of ground instances already can
be non terminating. Moreover, in general universal formulae are not enough to
strengthen an arbitrary invariant property [18], and existential quantification in
the invariant strengthening might be needed.

However, we want to remark that even with our simple generalization tech-
nique we have obtained termination in many cases. An important remark is
necessary to put more insight on the reasons of why our instantiation procedure
is effective for the benchmarks we considered. In many systems descriptions,
especially the ones arising from parameterized verification, the signature ΣI is
relational and all the formulae describing inductive queries contain only ∃∗∀∗

quantifiers alternation. In this case, no function symbols are introduced during
Skolemization: therefore, the set G of 0-ary terms already is saturated. Even in
case of ∀∃ alternation (but in a multi-sorted setting), saturation can be achieved
after few refinement steps (as long as the Skolem functions introduced in the
signature do not combine in cycles). More details about completeness of instan-
tiation methods, especially for the verification of parameterized systems, can be
found in [12,14]. Since we limit ourselves to terms of depth one, our method
can fail to prove invariants requiring some more complex instantiations. Note
that in that case it is always possible to change the choice and the refinement
of the set G with more sophisticated methods [13,27]. Finally, we remark that,
by limiting the possible refinements of G, our method has a notion of progress:
given a transition system S and a candidate invariant φ, if there exists an n such
that Sn 	|= φn, and if all the model checking problems Sn′ |= φn′

, with n < n′,
terminate, then our algorithm eventually finds a counterexample.

4 Related Work

Verification of systems with quantifiers ranging over finite but unbounded
domains has always received a lot of attention from the literature. A main area
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of application, for which our method is designed, is parameterized verification,
where the parameters represent the cardinality of components of the system.

Many proposed methods for solving the problem are based on cut-off results.
In our terms, a cut-off is an integer n such that the ground system Sn bisimulates
the quantified system S. Cut-off values exist for large varieties of classes of
systems, but such results strongly depend on the assumptions such as topology,
data, etc. (see [2] for a survey). Nonetheless, we can see a posteriori that, when
our algorithm terminates with a candidate invariant from size n, such a size is a
candidate cut-off, since the proof of the property for that size holds also for all
integers n′ > n.

The method of invisible invariants [26] was to our knowledge the first which
proposed the usage of finite instance exploration to produce universally quan-
tified invariant strengthening. In that paper the invariant is generalized from
the formula describing the set of reachable states of the finite instance. Systems
considered in that work are, however, a subclass of ours.

Tools designed for the verification of systems with a combination of first-
order quantifiers and SMT theories are MCMT [14] and Cubicle [8]. These tools
use the framework of array-based transition systems, of which our formalism
is an extension. They implement a fully symbolic backward reachability algo-
rithm, where pre-images of states can be described by symbolic quantified for-
mulae. Quantified queries are then discharged with an instantiation approach
similar to ours. Nonetheless, many approximations can be introduced during the
backward computation, which may cause spurious counterexamples [1]. Cubicle
extends this algorithm by using finite instance exploration to speed up pre-image
computation [9].

Ivy [12,24] is a tool for the verification of inductive invariants of parameter-
ized systems. Again, the formalism for defining systems considered in Ivy can
be seen as a subclass of ours: a translation can be obtained if we put TE to
be the theory of Booleans, and TI is the theory of an uninterpreted sort. In
Ivy, the quantified queries can always be embedded in EPR (Effective Propo-
sitional Logic), a decidable fragment of first-order logic where formulae have a
∃∗∀∗ quantifier prefix, and do not contain function symbols. Therefore, the set of
possible ΣI -terms is always finite, and it is always possible to do complete instan-
tiations. Inspired by Ivy, MyPyvy [19] is a tool which implements algorithms
for the automatic discovery of inductive invariants. Among those we have updr
[18], a version of the IC3 algorithm capable of inferring universally quantified
invariants, fol-ic3 [19], which extends IC3 by using separators to find invariants
with quantifier alternation during the construction of frames, and PdH, a recent
algorithm which combines the duality between states and predicates to discover
invariants [25].

Various tools in the literature are designed to use finite instance exploration
to guess invariants to lift to the unbounded case [11,16,21,22,28]. These tools
either rely on cut-off results, or some external prover to discharge the quanti-
fied queries. Instead, we propose a tighter integration between finite instance
exploration and quantified queries. Moreover, most of this approaches rely on
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enumerating possible models for finding inductive invariants; such an apprach
cannot be extended naively to support theories. The tool Ic3po [15] proposes a
generalization technique that can also infer formulae with quantifier alternation
by detecting symmetries in a clausal proof. As a future work, we will try to
combine their generalization technique with our method.

Abstraction methods are another major trend in verification of quantified
systems. In our previous paper [4], we designed an CEGAR approach for the
verification of array-based systems based on the Parameter Abstraction [20,21],
which also used the ground instance exploration technique presented here. How-
ever, that approach imposed some syntactic restrictions on the definition of the
systems, allowing only a single quantifier alternation with outermost existential
quantification in transition formulae, and only universal quantification in the ini-
tial formula and in the candidate invariant. Our new approach, instead, is more
general, and allows for arbitrary quantification in the definition of the transition
system and properties to check.

5 Experimental Evaluation

To evaluate our approach, we have implemented our algorithm in the tool
Lambda, which was initially developed in a previous work [4] for model check-
ing parameterized systems. The tool accepts as input transition systems specified
either in the language of MCMT [14], Ic3po, or in VMT format (a light-weight
extension of SMT-LIB to model transition systems [6]).

For clarity, we use bi-Lambda (for bounded induction) to denote the algo-
rithm described in this paper, while Lambda will denote the previously devel-
oped method. We used the SMT-based IC3 with implicit predicate abstrac-
tion of [3] as underlying verification engine for the finite instances, and MATH-
SAT5 [5] as the solver for ground checks. We also have implemented a version of
the algorithm which uses Z3 [23] to discharge quantified queries, to compare the
effectiveness of our instantiation-based procedure (this version will be referred
to as bi-Lambda-z3).

In case of successful termination, we generate either a counterexample trace
(for violated properties) in a concrete instance of the quantified system, or a
quantified inductive invariant that proves the property. In the latter case, we
can also generate proof obligations that can be independently checked with an
SMT solver supporting quantifiers.

For our evaluation, we have collected a total of 183 benchmarks, divided in
five different groups:

Protocols consists of 42 instances taken from the MCMT or the Cubicle dis-
tributions. Due to the very different format, we could not run Ic3po or the
MyPyvy algorithms on them. This was not only a syntactic problem: many
(but not all) benchmarks contain theory variables (like integers or reals), which
are not supported in MyPyvy and Ic3po.
DynArch consists of 57 instances of verification problems of dynamic architec-
tures, taken from [7]. These benchmarks make use of arithmetic constraints on
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index terms, which are not supported by Cubicle, MyPyvy or Ic3po.
PdH consists of 20 benchmarks used in the experimental evaluation of [25],
written in MyPyvy and Ic3po format. We could not run MCMT, Cubicle

or Lambda on them, for the different input language and for not supported
features such as multi-sorted indexes.
Ic3po consists of 37 benchmarks from the experimental evaluation of [15], writ-
ten in Ic3po format and in (old) MyPyvy format. For the same reasons as the
previous set, we could not run MCMT, Cubicle and Lambda on them. For
compatibility issues, we could not run the PdH algorithm on them.
Trains consists of 17 instances derived by (a simplified version of) verifica-
tion problems of railway interlocking. These benchmarks contains theory vari-
ables and synctactic requirements currently supported only by Lambda and
bi-Lambda.
Trains-AE consists of 10 instances derived again by verification problems on
railway interlocking logics; in these systems a forall-exists quantification alter-
nation in a multi-sorted setting occurs, along with theory variables. Therefore,
they are supported only by bi-Lambda.

We have run our experiments on a cluster of machines with a 2.90 GHz Intel
Xeon Gold 6226R CPU running Ubuntu Linux 20.04.1, using a time limit of 1 h
and a memory limit of 4 GB for each instance. For MCMT, we used standard
settings. For Cubicle, we used the --brab 2 option. For fol-ic3 and updr, we
used the implementation in the artifact given in [19]. For Ic3po, we used the
option --finv=2 to discharge unbounded checks with Z3. Without this option,
Ic3po terminates when the tool finds a proof for size n which is still valid for size
n+1; this was conjectured to be enough [15] to ensure that the proof was correct
for all the instances, but, without unbounded checks, we have encountered errors
of the tool in the PdH benchmarks. We also remark that in case of termination
with Unsafe result, our tool produces always concrete counterexamples in finite
instances; on the other hand, counterexamples of MCMT, Cubicle and updr
can be spurious [1,18] (and in theory should be checked manually). The results of
bi-Lambda-z3 are obtained with a timeout of 120 s on every Z3 query, to avoid
the prover being stuck in quantified reasoning as discussed in Sect.3.2 (without
such timeout, we have obtained worse results, both in resource usage and number
of instances solved). A summary of our experimental evaluation is presented in
Table 1. A virtual machine with our implementation and all the benchmarks can
be found at https://es-static.fbk.eu/people/gredondi/atva2022.html.

As we can see from the table, bi-Lambda is applicable on a large set of
benchmarks and in every set it is competitive with other approaches. When
comparing bi-Lambda with bi-Lambda-z3, we see that our simple instantiation
procedure is more effective than relying on the built-in support for quantifiers
in Z3, allowing to solve 5 more instances (and in general reducing the execution
time, though this is not reported in Table 1 for lack of space).

https://es-static.fbk.eu/people/gredondi/atva2022.html
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Table 1. Summary of experimental results. In every column, we have reported the
number of solved instances or ‘-’ for incompatibility.

Tot bi-Lambda bi-Lambda-z3 Lambda MCMT Cubicle updr fol-ic3 PdH Ic3po

Protocols 42 34 31 34 24 30 – – – –

DynArch 57 50 50 48 49 – – – – –

Trains 17 16 16 17 – – – – – –

Trains-AE 10 10 10 – – – – – – –

PdH 20 11 11 – – – 12 11 5 12

Ic3po 37 18 16 – – – 18 17 – 25

Tot 183 139 134 99 73 30 30 28 5 37

6 Conclusions and Future Work

In this paper we have presented a general approach for model checking systems
with quantifiers and SMT variables; the novelty in the presented algorithm relies
in the tight integration between finite instance exploration and instantiation-
based techniques. However, our proposed method currently synthesizes only
universal invariants, which in some cases are not enough to prove properties
of quantified systems. In our future works, we will investigate how to combine
our approach with techniques that infer invariants with quantifier alternations.
Moreover, we will study how to combine our approach with more sophisticated
instantiation techniques exploited in state-of-the-art provers.
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Abstract. Given a system of constraints over a set X of variables, pro-
jected model counting asks us to count satisfying assignments of the
constraint system projected on a subset P of X. A key idea used in mod-
ern projected counters is to first compute an independent support, say I,
that is often a small subset of P, and to then count models projected
on I instead of on P. While this has been effective in scaling perfor-
mance of counters, the question of whether we can benefit by projecting
on variables beyond P has not been explored. In this paper, we study
this question and show that contrary to intuition, it can be beneficial
to project on variables even beyond P. In several applications, a good
upper bound of the projected model count often suffices. We show that in
several such cases, we can identify a set of variables, called upper bound
support (UBS), that is not necessarily a subset of P, and yet counting
models projected on UBS guarantees an upper bound of the projected
model count. Theoretically, a UBS can be exponentially smaller than
the smallest independent support. Our experiments show that even oth-
erwise, UBS-based projected counting can be faster than independent
support-based projected counting, while yielding bounds of high qual-
ity. Based on extensive experiments, we find that UBS-based projected
counting can solve many problem instances that are beyond the reach of
a state-of-the-art independent support-based projected model counter.

1 Introduction

Given a Boolean formula ϕ over a set X of variables, and a subset P of X, the
problem of projected model counting asks us to determine the number of satisfy-
ing assignments of ϕ projected on P. Projected model counting is # NP-complete
in general [33]1, and has several important applications ranging from verification
of neural networks [4], hardware and software verification [32], reliability of power
grids [11], probabilistic inference [25], and the like. This problem has therefore
attracted significant attention from both theoreticians and practitioners over the

1 A special case where P = X is known to be #P-complete [34].

The resulting tool is available open-source at https://github.com/meelgroup/arjun.
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years [7,9,18,27,28,30,34]. While an ideal projected model counter offers high
scalability and strong quality guarantees for computed counts, these goals are
often hard to achieve simultaneously in practice. A pragmatic approach in sev-
eral applications is therefore to use counters that offer good scalability and good
quality of counts in practice, even if worst-case quality guarantees are weaker
than ideal. Unfortunately, designing such counters is not easy either, and this
motivates our current work.

Over the past decade, hashing-based techniques have emerged as a promising
approach to projected model counting, since they scale moderately in practice,
while providing strong approximation guarantees [6,7,13,18,27]. For proposi-
tional model counting, the hash functions are implemented using random XOR
clauses over variables in P. Starting from a formula ϕ in conjunctive normal
form (CNF), these techniques construct a CNF+XOR formula ϕ′ consisting of a
conjunction of CNF clauses from ϕ and random XOR clauses implementing the
hash functions. If each variable in P is chosen with probability 1/2 the expected
size of a random XOR clause is |P|/2. If the projection set is large, this can
indeed result in large XOR clauses – a known source of poor performance of
modern SAT solvers on CNF+XOR formulas [8,16]. Researchers have therefore
explored the use of hash functions with sparse XOR clauses [1,12,16,19,23] with
moderate success.

A practically effective idea to address the problem of large XOR clauses was
introduced in [8], wherein the notion of an independent support I (⊆ P), was
introduced. Specifically, it was shown in [8] that (a) random XOR clauses over
I suffice to provide strong guarantees for computed bounds, and (b) for a large
class of practical benchmarks, |I| is much smaller than |P|. Hence, constructing
random XOR clauses over I instead of over P reduces the expected size of a
random XOR clause, thereby improving the runtime performance of hashing-
based counters [19]. Subsequently, independent supports have also been found
to be useful in the context of exact projected model counting [21,22,26].

The runtime performance improvements achieved by (projected) model coun-
ters over the past decade have significantly broadened the scope of their appli-
cations, which, in turn, has brought the focus sharply back on performance
scalability. Importantly, for several crucial applications such as neural network
verification [4], quantified information flow [5], software reliability [32], reliability
of power grids [11], etc. we are primarily interested in good upper bound esti-
mates of projected model counts. As aptly captured by Achlioptas and Theodor-
opoulos [1], while obtaining “lower bounds are easy” in the context of projected
model counting, such is not the case for good upper bounds. Therefore, scal-
ing up to large problem instances while obtaining good upper bound estimates
remains an important challenge in this area.

The primary contribution of this paper is a new approach to selecting vari-
ables on which to project solutions, with the goal of improving scalability of
hashing-based projected counters when good upper bounds of projected counts
are of interest. Towards this end, we generalize the notion of an independent
support I. Specifically, we note that the restriction I ⊆ P ensures a two-way
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implication: if two solutions agree on I, then they also agree on P, and vice-
versa. Since we are interested in upper bounds, we relax this requirement to a
one-sided implication, i.e., we wish to find a set U ⊆ X (not necessarily a subset
of P) such that if two solutions agree on U , then they agree on P, but not neces-
sarily vice versa. We call such a set U an Upper Bound Support, or UBS for short.
We show that using random XOR clauses over UBS in hashing-based projected
counting yields provable upper bounds of the projected counts. We also show
some important properties of UBS, including an exponential gap between the
smallest UBS and the smallest independent support for a class of problems. Our
study suggests a simple algorithm, called FindUBS, to determine UBS, that
can be fine-tuned heuristically.

To evaluate the effectiveness of our idea, we augment a state-of-the-art
model counter, ApproxMC4, with UBS to obtain UBS+ApproxMC4. Through
an extensive empirical evaluation on 2632 benchmark instances arising from
diverse domains, we compare the performance of UBS+ApproxMC4 with
IS+ApproxMC4, i.e. ApproxMC4 augmented with independent support com-
putation. Our experiments show that UBS+ApproxMC4 is able to solve 208
more instances than IS+ApproxMC4. Furthermore, the geometric mean of
the absolute value of log-ratio of counts returned by UBS+ApproxMC4 and
IS+ApproxMC4 is 1.32, thereby validating the claim that using UBS can lead
to empirically good upper bounds. In this context, it is worth remarking that
a recent study [2] comparing different partition function2 estimation techniques
labeled a method with the absolute value of log-ratio of counts less than 5 as a
reliable method.

The rest of the paper is organized as follows. We present notation and pre-
liminaries in Sect. 2. To situate our contribution, we present a survey of related
work in Sect. 3. We then present the primary technical contributions of our work,
including the notion of UBS and an algorithmic procedure to determine UBS,
in Sect. 4. We present our empirical evaluation in Sect. 5, and finally conclude in
Sect. 6.

2 Notation and Preliminaries

Let X = {x1, x2 . . . xn} be a set of propositional variables appearing in a propo-
sitional formula ϕ. The set X is called the support of ϕ, and denoted Sup(ϕ). A
literal is either a propositional variable or its negation. The formula ϕ is said to be
in Conjunctive Normal Form (CNF) if ϕ is a conjunction of clauses, where each
clause is disjunction of literals. An assignment σ of X is a mapping X → {0, 1}.
If ϕ evaluates to 1 under assignment σ, we say that σ is a model or satisfying
assignment of ϕ, and denote this by σ |= ϕ. For every P ⊆ X, the projection of
σ on P, denoted σ↓P , is a mapping P → {0, 1} such that σ↓P(v) = σ(v) for all
v ∈ P. Conversely we say that an assignment σ̂ : P → {0, 1} can be extended to
2 The problem of partition function estimation is known to be #P-complete and

reduces to model counting; the state of the art techniques for partition function
estimates are based on model counting [10].
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a model of ϕ if there exists a model σ of ϕ such that σ̂ = σ↓P . The set of all
models of ϕ is denoted sol(ϕ), and the projection of this set on P ⊆ X is denoted
sol(ϕ)↓P . We call the set P a projection set in our subsequent discussion3.

The problem of projected model counting is to compute |sol(ϕ)↓P | for a given
CNF formula ϕ and projection set P. An exact projected model counter is a
deterministic algorithm that takes ϕ and P as inputs and returns |sol(ϕ)↓P | as
output. A probably approximately correct (or PAC) projected model counter is a
probabilistic algorithm that takes as additional inputs a tolerance ε > 0, and a
confidence parameter δ ∈ (0, 1], and returns a count c such that Pr

[ |sol(ϕ)↓P |
(1+ε) ≤

c ≤ (1 + ε) · |sol(ϕ)↓P |
]

≥ 1 − δ, where Pr[E] denotes the probability of event E.

Definition 1. Given a formula ϕ and a projection set P ⊆ Sup(ϕ), a subset of
variables I ⊆ P is called an independent support (IS) of P in ϕ if for every
σ1, σ2 ∈ sol(ϕ), we have

(

σ1↓I = σ2↓I
) ⇒ (

σ1↓P = σ2↓P
)

.

Since
(

σ1↓P = σ2↓P
) ⇒ (

σ1↓I = σ2↓I
)

holds trivially when I ⊆ P, it follows
fromDefinition1thatifI isanindependentsupportofP inϕ, then

(

σ1↓I = σ2↓I
) ⇔

(

σ1↓P = σ2↓P
)

. Empirical studies have shown that the size of an independent
support I is often significantly smaller than that of the original projection set
P [8,19,21,26]. In fact, the overhead of finding a small independent support I is
often more than compensated by the efficiency obtained by counting projections
of satisfying assignments on I, instead of on the original projection set P.

3 Related Work

As mentioned in Sect. 1, state-of-the-art hashing-based projected model coun-
ters work by adding random XOR clauses over the projection set P to a given
CNF formula ϕ before finding satisfying assignments of the CNF+XOR formula.
There are several inter-related factors that affect the runtime performance of
such counters, and isolating the effect of any one factor is difficult. Nevertheless,
finding satisfying assignments of the CNF+XOR formula is among the most sig-
nificant bottlenecks. Among other things, the average size (i.e. number of literals)
in XOR clauses correlates positively with the time taken to solve CNF+XOR
formulas using modern conflict-driven clause learning (CDCL) SAT solvers [19].

The idea of using random XOR clauses over an independent support I (⊆ P)
that is potentially much smaller than P was introduced in [8]. This is particu-
larly effective when a small subset of variables functionally determines the large
majority of variables in a formula, as happens, for example, when Tseitin encod-
ing is used to transform a non-CNF formula to an equisatisfiable CNF formula.
State-of-the-art hashing-based model counters, viz. ApproxMC4 [27], therefore
routinely use random XOR clauses over the independent support. While the
naive way of choosing each variable in I with probability 1/2 gives a random
XOR clause with expected size |I|/2, specialized hash functions can also be

3 Projection set has also been referred to as sampling set in prior work [8,27].
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defined such that the expected size of a random XOR clause is p · |I|, with
p < 1/2 [1,12,23]. The works of [1,12] achieved this goal while guaranteeing a
constant factor approximation of the reported count. The work of [23] achieved
a similar reduction in the expected size of XOR clauses, while guaranteeing
PAC-style bounds.

All earlier work focused on random XOR clauses chosen over subsets of
the projection set P. While this is a natural choice, we break free from this
restriction and allow XOR clauses to be constructed over any subset of variables
as long as the model count projected on the chosen subset bounds the model
count projected on P from above. This allows us more flexibility in construct-
ing CNF+XOR formulas, which as our experiments confirm, leads to improved
overall performance of projected model counting in several cases. Since we guar-
antee upper bounds of the desired counts, our approach yields an upper bound-
ing projected model counter. Nevertheless, as our experiments show, the bounds
obtained using our approach are consistently very close to the projected counts
reported using independent support. Therefore, in practice, our approach gives
high quality bounds on projected model counts more efficiently than state-of-
the-art hashing-based techniques that use independent supports.

It is worth mentioning that several bounding model counters have been
reported earlier in the literature. These counters produce a count that is at least
as large (or, as small, as the case may be) as the true model count of a given CNF
formula with a specified confidence. Notable examples are SampleCount [17],
BPCount [20], MBound and Hybrid-MBound [18] and MiniCount [20]. Owing
to several technical reasons, however, these bounding counters scale poorly com-
pared to state-of-the-art hashing-based counters like ApproxMC4 [27] in practice.
Unlike earlier bounding counters, we first carefully identify a subset of variables
(not restricted to be a subset of P), and then use state-of-the-art hashing-based
approximate projected counting using this subset as the new projection set.
Therefore, our approach directly benefits from improvements in performance
of hashing-based projected counting achieved over the years. Furthermore, by
carefully controlling the chosen subset of variables, we can also control the qual-
ity of the bound. As an extreme case, if all variables are chosen from P, then
our approach produces counts with true PAC-style guarantees.

4 Technical Contribution

In this section, we generalize the notion of independent support, and give tech-
nical details of projected model counting using this generalization.

Definition 2. Given a CNF formula ϕ and a projection set P, let S ⊆ Sup(ϕ)
be such that for every σ1, σ2 ∈ sol(ϕ), we have

(

σ1↓S = σ2↓S
)

��
(

σ1↓P = σ2↓P
)

,
where �� ∈ {⇒,⇐,⇔}. Then S is called a

1. generalized independent support (GIS) of P in ϕ if �� is ⇔
2. upper bound support (UBS) of P in ϕ if �� is ⇒
3. lower bound support (LBS) of P in ϕ if �� is ⇐
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Note that in the above definition, S need not be a subset of P. In fact, if S
is restricted to be a subset of P, the definitions of GIS and UBS coincide with
that of IS (Definition 1), while LBS becomes a trivial concept (every subset of
P is indeed an LBS of P in ϕ). The following lemma now follows immediately.

Lemma 1. Let G, U and L be GIS, UBS and LBS, respectively, of P in ϕ. Then
|sol(ϕ)↓L| ≤ |sol(ϕ)↓P | = |sol(ϕ)↓G | ≤ |sol(ϕ)↓U |.

Let UBS,LBS,GIS and IS be the set of all UBS, LBS, GIS and IS respec-
tively of a projection set P in ϕ. It is easy to see that IS ⊆ GIS ⊆ UBS, and
GIS ⊆ LBS. While each of the notions of GIS, UBS and LBS are of indepen-
dent interest, this paper focuses primarily on UBS because we found this notion
particularly useful in practical projected model counting. Additionally, as the
above inclusion relations show, UBS and LBS are the largest classes among
UBS,LBS,GIS and IS; hence, finding an UBS is likely to be easier than find-
ing a GIS. Furthermore, the notion of UBS continues to remain interesting (but
not so for LBS) even when I is chosen to be a subset of P.

We call a UBS U (resp. LBS L, GIS G and IS I) of P in ϕ minimal if there
is no other UBS (resp. LBS, GIS and IS) of P in ϕ that is a strict subset of U
(resp. of L, G and I).

Example 1. Consider a CNF formula ϕ(x1, x2, x3, x4) ≡ (x3 ∨ x4)∧ (x1 ∨ x4)∧
(x2∨x3)∧ (x2∨x4)∧ (¬x1∨¬x2∨¬x4)∧ (¬x3∨¬x4∨¬x2). There are four satisfy-
ing assignments of ϕ, given by (x1, x2, x3, x4) ∈ {(0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 1, 1),
(1, 1, 1, 0)}. If P = {x1, x3, x4}, it can be seen that the only minimal IS of P in ϕ
is {x1, x3, x4}, whereas {x1, x2} is a minimal UBS and also GIS of P in ϕ. Any
single variable subset of {x1, x2, x3, x4} serves as a minimal LBS of P in ϕ.

In the remainder of this section, we first explore some interesting theoretical
properties of GIS and UBS, and then proceed to develop a practical algorithm
for computing a UBS from a given formula ϕ and projection set P. Finally, we
present an algorithm for computing bounds of projected model counts using the
UBS thus computed.

4.1 Extremal Properties of GIS and UBS

We first show that by allowing variables on which to project to lie beyond the
projection set P, we can obtain an exponential reduction in the count of variables
on which to project.

Theorem 1. For every n > 1, there exists a propositional formula ϕn on (n −
1) + log2 n� variables and a projection set Pn with |Pn| = n − 1 such that

– The smallest GIS of Pn in ϕn is of size log2 n�.
– The smallest UBS of Pn in ϕn is of size log2 n�.
– The smallest IS of Pn in ϕn is Pn itself, and hence of size n − 1.
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Proof:

x1 x2 · · · xn−1 y1 y2 · · · ylog2 n

σ0 0 0 · · · 0 0 · · · 0 0

σ1 1 0 · · · 0 0 · · · 0 1

...
...

...
...

...
...

...
...

σn−1 0 0 · · · 1 1 · · · 1 1

For notational convenience, we
assume n to be a power of 2.
Consider a formula ϕn on propo-
sitional variables x1, . . . xn−1,
y1, . . . ylog2 n with n satisfying
assignments, say σ0, . . . σn−1, as
shown in the table below. Thus,
for all i ∈ {1, . . . n − 1}, the val-

ues of y1 . . . ylog2 n in σi encode i in binary (with y1 being the most significant
bit), the value of xi is 1, and the values of all other xj ’s are 0. For the special
satisfying assignment σ0, the values of all variables are 0.

Let Pn = {x1, . . . xn−1}. Clearly, |sol(ϕn)| = |sol(ϕn)↓Pn
| = n. Now consider

the set of variables Gn = {y1, . . . ylog2 n}. It is easy to verify that for every pair
of satisfying assignments σi, σj of ϕn,

(

σi↓Gn
= σj↓Gn

) ⇔ (

σi↓Pn
= σj↓Pn

)

.
Therefore, Gn is a GIS, and hence also a UBS, of Pn in ϕn, and |Gn| = log2 n.
Indeed, specifying y1, . . . ylog2 n completely specifies the value of all variables for
every satisfying assignment of ϕn. Furthermore, since |sol(ϕn)↓Pn

| = n, every
GIS and also UBS of Pn must be of size at least log2 n. Hence, Gn is a smallest-
sized GIS, and also a smallest-sized UBS, of Pn in ϕn.

Let us now find how small an independent support (IS) of Pn in ϕ can be.
Recall that |sol(ϕn)↓Pn

| = n. If possible, let there be an IS of Pn, say In ⊆ Pn,
where |In| < n−1. Therefore, at least one variable in Pn, say xi, must be absent
in In. Now consider the satisfying assignments σi and σ0. Clearly, both σi↓In

and σ0↓In
are the all-0 vector of size |In|. Therefore, σi↓In

= σ0↓In
although

σi↓Pn
�= σ0↓Pn

. It follows that In cannot be an IS of Pn in ϕn. This implies that
the smallest IS of Pn in ϕn is Pn itself, and has size n − 1. ��

Observe that the smallest GIS/UBS Gn above is disjoint from Pn. Therefore,
it can be beneficial to look outside the projection set when searching for a GIS
or UBS. The next theorem shows that the opposite can also be true. The proof
is deferred to the detailed technical report [35].

Theorem 2. For every n > 1, there exist formulas ϕn and ψn on (n − 1) +
log2 n� variables and a projection set Qn with |Qn| = n−log2 n�− 1 such that
the only GIS of Qn in ϕn is Qn, and the smallest UBS of Qn in ψn is also Qn.

Theorems 1 and 2 indicate that the search for the smallest GIS or UBS is
likely to be hard, since it has to potentially consider subsets of X ranging from
those completely overlapping with P to those disjoint from P. Below, we present
an algorithm to compute a minimal (as opposed to smallest) UBS, for use in
projected model counting.

4.2 Algorithm to Compute Projected Count Using UBS

We now describe an algorithm to compute a minimal UBS for a given CNF
formula ϕ and projection set P. We draw our motivation from Padoa’s theo-
rem [24], which provides a necessary and sufficient condition for a variable in
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the support of ϕ to be functionally determined by other variables in the support.
Let Sup(ϕ) = X = {x1, x2, . . . xt}; we also write ϕ(X) to denote this. We create
another set of fresh variables X ′ = {x′

1, x
′
2, . . . x

′
t}. Let ϕ(X �→ X ′) represent the

formula where every xi ∈ X in ϕ is replaced by x′
i ∈ X ′.

Lemma 2 (Padoa’s Theorem [24]). Let ψ(X,X ′, i) be defined as ϕ(X) ∧
ϕ(X �→ X ′) ∧ ∧t

j=1
j �=i

(xj ⇔ x′
j) ∧ xi ∧ ¬x′

i. The variable xi is defined by X \ {xi}
in the formula ϕ iff ψ(X,X ′, i) is unsatisfiable.

Padoa’s theorem has been effectively used in state-of-the-art hashing-based
projected model counters such as ApproxMC4 [27] to determine small indepen-
dent supports of given projection sets. In our setting, we need to modify the
formulation since we seek to compute an upper bound support.

Given P, we first partition X = Sup(ϕ) into sets J , D and Q as follows.
The set J contains variables already determined to be in a minimal UBS of
P in ϕ. The set D contains variables not necessarily in a minimal UBS of P
in ϕ obtainable by adding elements from Q to J . Finally, Q contains all other
variables in X.

Initially, J and D are empty sets, and Q = X. As the process of computation
of a minimal UBS proceeds, we maintain the invariant that J ∪ Q is a UBS (not
necessarily minimal) of P in ϕ. Notice that this is trivially true initially.

Let z be a variable in Q for which we wish to determine if it can be added to
the partially computed minimal UBS J . In the following discussion, we use the
notation ϕ(J,Q \ {z},D, z) to denote ϕ with its partition of variables, and with
z specially identified in the partition Q. Recalling the definition of UBS from
Sect. 2, we observe that if z is not part of a minimal UBS containing J , and if
J ∪ Q is indeed a UBS of P ∈ ϕ, then as long as values of variables other than z
in J ∪ Q are kept unchanged, the projection of a satisfying assignment of ϕ on
P must also stay unchanged. This suggests the following check to determine if
z is not part of a minimal UBS containing J .

Define ξ(J,Q \ {z},D, z,D′, z′) as ϕ(J,Q \ {z},D, z) ∧ ϕ(J,Q \ {z},D′, z′) ∧
∨

xi ∈ P∩(D∪{z})(xi �⇔ x′
i), where D′ and z′ represent fresh and renamed

instances of variables in D and z, respectively. If ξ is unsatisfiable, we know
that as long as the values of variables in J ∪ (Q \ {z}) are kept unchanged, the
projection of the satisfying assignment of ϕ on P cannot change. This allows us
to move z from the set Q to the set D.

Theorem 3. If ξ(J,Q \ {z},D, z,D′, z′) is unsatisfiable, then J ∪ (Q \ {z}) is
a UBS of P in ϕ.

The proof of Theorem 3 is deferred to the extended version [35]. The above
check suggests a simple algorithm for computing a minimal UBS. We present
the pseudocode of our algorithm for computing UBS below.

After initializing J , Q and D, FindUBS chooses a variable z ∈ Q and
checks if the formula ξ in Theorem 3 is unsatisfiable. If so, it adds z to D and
removes it from Q. Otherwise, it adds z to J . The algorithm terminates when Q
becomes empty. On termination, J gives a minimal UBS of P in ϕ. The strat-
egy for choosing the next z from Q, implemented by sub-routine ChooseNextVar,
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Algorithm 1. FindUBS(ϕ,P)
1: J ← ∅;Q ← Sup(ϕ);D ← ∅;
2: repeat
3: z ← ChooseNextVar(Q);

4: ξ ←
(

ϕ(J, Q \ z, D, z) ∧ ϕ(J, Q \ z, D′, z′) ∧∨
xi ∈ P∩(D∪{z}) ¬(xi ⇔ x′

i)

)
;

5: if ξ is UNSAT then
6: D ← D ∪ {z};
7: else
8: J ← J ∪ {z};
9: Q ← Q \ {z};
10: until Q is ∅;
11: return J;

clearly affects the quality of UBS obtained from this algorithm. We require that
ChooseNextVar(Q) return a variable from Q as long as Q �= ∅. Choosing z from
outside P gives a UBS that is the same as an IS of P in ϕ. In our experiments,
we therefore bias the choice of z to favour those in P.

In our prototype implementation, ChooseNextVar chooses variables from
within P before variables outside P. Note that this policy heuristically prior-
itizes removal of variables in P from the set J . To see why this is so, suppose
x1 ↔ x2 is entailed by ϕ, and x1 ∈ P while x2 �∈ P. Suppose neither x1 nor
x2 have been chosen so far. If we first choose x1 as z, the formula ξ in line 4 of
Algorithm 1 will be UNSAT, and x1 will be moved to D and finally x2 will be
added to J (and hence to UBS). However, if we first choose x2 as z, x2 will be
moved to D while x1 will subsequently get added to J , and hence to UBS. We
hope to leave x2 (outside P) in UBS and thereby first choose x1 (within P).

We further use an incidence-based heuristic to prioritize variables within P,
or outside P (after all variables in P have been considered). The incidence for
each variable is defined as the number of clauses containing the variable or its
negation in the given CNF. ChooseNextVar always returns the variable with the
smallest incidence (within P, or outside P, as the case may be) that has not been
considered so far. This is based on our observation that these variables often do
not belong to upper bound support in practice.

We now state some key properties of Algorithm FindUBS. All proofs are
deferred to the extended version [35].

Lemma 3. There exists a minimal UBS U∗ of P in ϕ such that J ⊆ U∗ ⊆ J∪Q,
where J and Q refer to the respective sets at the loop head (line 2) of Algorithm 1.

Theorem 4. Algorithm 1, when invoked on ϕ and P, terminates and computes
a minimal UBS of P in ϕ.

The overall algorithm for computing an upper bound of the projected model
count of a CNF formula using UBS is shown in Algorithm 2. This algorithm
takes a timeout parameter τpre to limit the time taken for computing a UBS U
using algorithm FindUBS. If FindUBS times out, it uses the projection set P
itself for U . It also invokes a PAC-style projected model counter ComputeCount
to estimate the count of ϕ projected on U .
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Algorithm 2. UBCount(ϕ,P, ε, δ, τpre)
1: U ← FindUBS(ϕ, P) with timeout τpre;
2: if call to FindUBS times out then
3: U ← P;

4: return ComputeCount(ϕ, U, ε, δ)

Theorem 5. Given a CNF formula ϕ, a projection set P, timeout parameter
τpre > 0, parameters ε (> 0) and δ (0 < δ ≤ 1), and given access to a (ε, δ)-PAC
projected counter ComputeCount, suppose Algorithm UBCount returns a count c.
Then for every choice of sub-routine ChooseNextVar in Algorithm FindUBS, we
have Pr [|sol(ϕ)↓P | ≤ (1 + ε) · c] ≥ 1 − δ.

Theorem 5 provides the weakest worst-case guarantee for Algorithm UBCount,
over all possible choices of sub-routine ChooseNextVar. In practice, the specifics
of ChooseNextVar can be factored in to strengthen the guarantee, including PAC-
style guarantees in the extreme case if ChooseNextVar always chooses variables
from the projection set P. A more detailed analysis of UBCount, taking into
account the specifics of ChooseNextVar, is beyond the scope of this paper. Note,
however, that despite the apparent weakness of worst-case guarantees, Algo-
rithm UBCount consistently computes high quality bounds for projected counts
in practice, as detailed in the next section.

5 Experimental Evaluation

To evaluate the practical performance of UBCount, we implemented a prototype
in C++. Our prototype implementation4 builds on Arjun [29], a state of the art
independent support computation tool, which is shown to significantly improve
over prior state of the art approaches for computation of independent support [21,
22]. For projected model counting, we employ the version of ApproxMC4 that
was used as a winning entry to the model counting competition 2020 [14]5. Since
all prior applications and benchmarking for approximation techniques have been
presented with ε = 0.8 in the literature, we continue to use the same value of ε
in this work. Note, however, that UBS can be used with any backend tool that
computes projected model counts, and the benefits of UBS are orthogonal to
those of choosing the backend projected model counter.

We use UBS+ApproxMC4 to denote the case when ApproxMC4 is invoked
with the computed UBS as the projection set, while we use IS+ApproxMC4 to
refer to the version of ApproxMC4 invoked with IS as the projection set.

Benchmarks. Our benchmark suite consists of 2632 instances, which are cat-
egorized into four categories: BNN, Circuit, QBF-exist and QBF-circuit. The
4 The tool is available open-source at https://github.com/meelgroup/arjun.
5 The ApproxMC4-based entry achieved 3rd place in the 2021 competition, with the

tolerance for error (ε) set to 0.01. As mentioned during the competitive event pre-
sentation at the SAT 2021 conference, had ε been set to 0.05, the ApproxMC4-based
entry would have indeed won the competition.

https://github.com/meelgroup/arjun
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’BNN’ benchmarks are adapted from [4]. Each instance contains CNF encoding
of a binarized neural network (BNN) and constraints from properties of inter-
est such as robustness, cardinality, and parity. The projection set P is set to
variables from a chosen layer in the BNN. The class ‘Circuit’ refers to instances
from [8], which encode circuits arising from ISCAS85/ISCAS89 benchmarks con-
juncted with random parity constraints imposed on output variables. The pro-
jection set, as set by authors in [8], corresponds to output variables. The ’QBF’
benchmarks are based on instances from the Prenex-2QBF track of QBFEval-
176, QBFEval-187, and disjunctive decomposition [3], arithmetic [31] and fac-
torization [3] benchmarks for Boolean functional synthesis. Each ‘QBF-exist’
benchmark is a CNF formula transformed from a QBF instance. We remove
quantifiers for the (2-)QBF instances and set the projection set to the variables
originally existentially quantified. The class ‘QBF-circuit’ refers to circuits syn-
thesized using the state-of-the-art functional synthesis tool, Manthan [15]. The
projection set here is set to output variables.

Our choice of benchmark categories is motivated by the observation that UBS-
based approximate model counting is likely to perform well when the variables in
a problem instance admit partitioning into a sequence of “layers”, with variables
in each layer functionally determined by those in preceding layers. Note that this
may not hold for arbitrary model counting benchmarks. We defer additional
discussion on this to [35] for lack of space.

Experiments were conducted on a high-performance computer cluster, each
node consisting of 2xE5-2690v3 CPUs with 2×12 real cores and 96 GB of RAM.
For each benchmark, the projected model counter with each preprocessing tech-
nique runs on a single core. We set the time limit to 5000 s for each of prepro-
cessing and counting, and the memory limit to 4 GB. The maximal number of
conflicts in SAT solver calls during pre-processing is set to 100k. To compare
runtime performance, we use PAR-2 scores, which is the de-facto standard in
the SAT community. Each benchmark contributes a score that is the time in
seconds taken by the corresponding tool to successfully complete execution or in
case of a timeout or memory out, twice the timeout in seconds. We then calculate
the average score for all benchmarks, obtaining the PAR-2 score.

We seek to answer the following research questions:

RQ 1 Does the usage of UBS enable ApproxMC4 to solve more benchmarks in
comparison to the usage of IS ?

RQ 2 How does the quality of counts computed by UBS+ApproxMC4 vary in
comparison to IS+ApproxMC4?

RQ 3 How does the runtime behavior of UBS+ApproxMC4 compare with that
of IS+ApproxMC4?

Summary. In summary, UBS+ApproxMC4 solves 208 more instances than
IS+ApproxMC4. Furthermore, while computation of UBS takes 777 more

6 http://www.qbflib.org/qbfeval17.php.
7 http://www.qbflib.org/qbfeval18.php.

http://www.qbflib.org/qbfeval17.php
http://www.qbflib.org/qbfeval18.php
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seconds, the PAR-2 score of UBS+ApproxMC4 is 817 s less than that of
IS+ApproxMC4. Finally, for all the instances where both UBS+ApproxMC4
and IS+ApproxMC4 terminated, the geometric mean of log-ratio of counts
returned by IS+ApproxMC4 and UBS+ApproxMC4 is 1.32, indicating
that UBS+ApproxMC4 provides good upper bound estimates. Therefore,
UBS+ApproxMC4 can be used instead of IS+ApproxMC4 for applications that
really care about upper bounds of projected counts.

In this context, it is worth highlighting that since there has been considerable
effort in recent years in optimizing computation of IS, one would expect that
further engineering efforts would lead to even more runtime savings for UBS.

Number of Solved Benchmarks. Table 1 compares the number of bench-
marks solved by IS+ApproxMC4 and UBS+ApproxMC4. Observe that the
usage of UBS enables ApproxMC4 to solve 435, 291, and 145 instances on
Circuit, QBF-exist, and QBF-circuit benchmark sets respectively while the
usage of IS+ApproxMC4 solved 407, 156 and 100 instances. In particular,
UBS+ApproxMC4 solved almost twice as many instances on QBF-exist bench-
marks.

Table 1. The number of solved benchmarks.

Benchmarks Total VBS IS+ApproxMC4 UBS+ApproxMC4

BNN 1224 868 823 823

Circuit 522 455 407 435

QBF-exist 607 314 156 291

QBF-circuit 279 152 100 145

The practical adoption of tools for NP-hard problems often relies on portfolio
solvers. Therefore, from the perspective of practice, one is often interested in
evaluating the impact of a new technique to the portfolio of existing state of
the art. To this end, we often focus on Virtual Best Solver (VBS), which can be
viewed as an ideal portfolio. An instance is considered to be solved by VBS if is
solved by at least one solver in the portfolio. Observe that in our experiments
on BNN benchmarks, while UBS+ApproxMC4 and IS+ApproxMC4 solved the
same number (not same set) of instances, VBS solves 45 more instances since
there were instances solved by one solver and not the other.

Time Analysis. To analyze the runtime behavior, we separate the preprocess-
ing time (computation of UBS and IS) and the time taken by ApproxMC4.
Table 2 reports the mean of preprocessing time over benchmarks and the PAR-2
score for counting time. The usage of UBS reduces the PAR-2 score for counting
from 3680, 2206, 7493, and 6479 to 3607, 1766, 5238, and 4829 respectively on
the four benchmark sets. Remarkably, UBS reduces PAR-2 score by over 2000 s
on QBF-exist benchmarks and over by 1000 s on QBF-circuit – a significant
improvement!
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Table 2. The mean of preprocessing time and PAR-2 score of counting time

Preprocessing time PAR-2 score of counting time

Benchmarks IS (s) UBS (s) IS (s) UBS (s)

BNN 2518 2533 3680 3607

Circuit 229 680 2206 1766

QBF-exist 70 2155 7493 5238

QBF-circuit 653 2541 6479 4829

Observe that the mean pre-processing time taken by UBS is higher than
that of IS across all four benchmark classes. Such an observation may lead one
to wonder whether savings due to UBS are indeed useful; in particular, one may
wonder what would happen if the total time of IS+ApproxMC4 is set to 10,000 s
so that the time remaining after IS computation can be used by ApproxMC4.
We observe that even in such a case, IS+ApproxMC4 is able to solve only four
more instances than Table 1. To further emphasize, UBS+ApproxMC4 where
ApproxMC4 is allowed a timeout of 5000 s can still solve more instance than
IS+ApproxMC4 where ApproxMC4 is allowed a timeout of 10, 000 − tIS where
tIS is time taken to compute IS with a timeout of 5000 s.

Table 3. Performance comparison of UBS vs. IS. The runtime is reported in seconds
and “−’ in a column reports timeout after 5000 s.

IS+ApproxMC4 UBS+ApproxMC4

Benchmarks |X| |P| |IS| Time (s) Count |UBS| Time (s) Count

amba2c7n.sat 1380 1345 313 0.24+2853 50 ∗ 265 73 17+1 63 ∗ 267

bobtuint31neg 1634 1205 678 0.37+5000 − 417 148+16 64 ∗ 2411

ly2-25-bnn 32-bit-5-id-11 131 32 32 1313+3416 94 ∗ 29 59 2113+1034 63 ∗ 210

ly3-25-bnn 32-bit-5-id-10 131 32 32 1389+5000 − 61 2319+841 60 ∗ 29

floor128 891 879 254 0.07+5000 − 256 9+6 64 ∗ 2250

s15850 10 10.cnf 10985 684 605 0.50+5000 − 600 41+2070 50 ∗ 2566

arbiter 10 5 23533 129 118 0.71+4 64 ∗ 2112 302 7+5000 −
cdiv 10 5 101705 128 60 102+50 72 ∗ 250 − 5000+5000 −

rankfunc59 signed 64 5140 4505 1735 3+274 43 ∗ 21727 − 5000+5000 −

Detailed Runtime Analysis. Table 3 presents the results over a subset of
benchmarks. Column 1 of the table gives the benchmark name, while columns
2 and 3 list the size of support X and the size of projection set P, respectively.
Columns 4–6 list the size of computed IS, runtime of IS+ApproxMC4, and model
count over IS while columns 7–9 correspond to UBS. Note that the time is
represented in the form tp + tc where tp refers to the time taken by IS (resp.
UBS) and tc refers to the time taken by ApproxMC4. We use ‘−’ in column 6
(resp. column 9) for the cases where IS+ApproxMC4 (resp. UBS+ApproxMC4)
times out.



184 J. Yang et al.

The benchmark set was chosen to showcase different behaviors of inter-
est: First, we observe that the smaller size of UBS for amba2c7n.sat helps
UBS+ApproxMC4 while IS+ApproxMC4 times out. It is, however, worth empha-
sizing that the size of UBS and IS is not the only factor. To this end, observe
that for the two benchmarks arising from BNN, represented in the third and
fourth row, even though the size of UBS is large, the runtime of ApproxMC4 is
still improved. Furthermore, in comparison to IS (which is heavily optimized in
Arjun [29], our implementation for UBS did not explore engineering optimiza-
tions, which explains why UBS computation times out in the presence of the
large size of support. Therefore, an important direction of future research is to
further optimize the computation of UBS to fully unlock the potential of UBS.

Quality of Upper Bounds. To evaluate the quality of computed upper
bounds, we compare the counts computed by UBS+ApproxMC4 with those
of IS+ApproxMC4 for 1376 instances where both IS+ApproxMC4 and
UBS+ApproxMC4 terminated. Suppose CIS and CUBS denote the model count
using IS and UBS respectively. The error is computed as Error = log2 CUBS −
log2 CIS, using common comparing convention for model counters. Figure 1 shows
the Error distribution over our benchmarks. A point (x, y) represents Error ≤ y on
the first x benchmarks. For example, the point (1000, 2.2) means that Error ≤ 2.2
on 1000 benchmarks. Overall, the geometric mean of Error is 1.32. Furthermore,
for more than 67% benchmarks, Error is less than 1, and for 81% benchmarks,
Error is less than 5. Only 11% benchmarks have Error larger than 10. We intend to
investigate heuristics for ChooseNextVar to reduce Error in these extremal cases
as part of future work. To put the significance of Error in context, we refer to
the recent survey [2] comparing several partition function estimation techniques,
wherein a method with Error less than 5 is considered a reliable method. It is
known that partition function estimation reduces to model counting, and the
best performing technique identified in that study relies on model counting.

Fig. 1. Error of upper bound.
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6 Conclusion

In this work, we introduced the notion of Upper Bound Support (UBS), which
generalizes the well-known notion of independent support. We then observed that
the usage of UBS for generation of XOR constraints allows the computation of
upper bound of projected model counts. Our empirical analysis demonstrates
that UBS+ApproxMC leads to significant runtime improvement in terms of the
number of instances solved as well as the PAR-2 score. Since identification of
the importance of IS in the context of counting led to follow-up work focused
on efficient computation of IS, we hope our work will excite the community to
work on efficient computation of UBS.
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Abstract. While the minimization problem for deterministic Büchi
word automata is known to be NP-complete, several fundamental prob-
lems around it are still open. This includes the complexity of minimzation
for transition-based automata, where acceptance is defined with respect
to the set of transitions that a run traverses infinitely often, and mini-
mization for good-for-games (GFG) automata, where nondeterminism is
allowed, yet has to be resolved in a way that only depends on the past. Of
special interest in formal verification are liveness properties, which state
that something “good” eventually happens. Liveness languages consti-
tute a strict fragment of ω-regular languages, which suggests that min-
imization of automata recognizing liveness languages may be easier, as
is the case for languages recognizable by weak automata, in particular
safety languages. We define three classes of liveness, and study the mini-
mization problem for automata recognizing languages in the classes. Our
results refer to the basic minimization problem as well as to its exten-
sion to transition-based and GFG automata. In some cases, we provide
bounds, and in others we provide connections between the different set-
tings. Thus, our results are of practical interest and also improve our
understanding of the (still very mysterious) minimization problem.

Keywords: Automata on infinite words · Minimization · Complexity ·
Good-for-games automata · Büchi · Liveness

1 Introduction

A prime application of automata theory is specification, verification, and syn-
thesis of reactive systems. Since we care about the on-going behavior of non-
terminating systems, the automata run on infinite words. Acceptance in such
automata is determined according to the set of states that are visited infinitely
often along the run. In Büchi automata (NBWs and DBWs, for nondeterministic
and deterministic Büchi word automata, respectively), the acceptance condition
is a subset α of states, and a run is accepting iff it visits α infinitely often. Dually,
in co-Büchi automata (NCWs and DCWs), a run is accepting iff it visits α only
finitely often.
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A classical problem in automata theory is minimization: the generation of an
equivalent automaton with a minimal number of states. For NBWs and NCWs,
minimization is PSPACE-complete, as it is for nondeterministic automata on
finite words [9]. For DBWs and DCWs, minimization is NP-complete [20]. Thus,
the transition to infinite words makes the problem harder. Indeed, for deter-
ministic automata on finite words (DFWs), a minimization algorithm, based
on the Myhill-Nerode right congruence [17,18], generates in polynomial time a
canonical minimal deterministic automaton.

While [20] solves the question of the complexity of DBW and DCW mini-
mization, several fundamental questions around the problem are still open. This
includes the complexity of minimzation for transition-based automata and good-
for-games (GFG) automata.

In transition-based automata, acceptance is defined with respect to the set of
transitions that a run traverses infinitely often. In particular, in Büchi automata
(tNBWs and tDBWs), the acceptance condition is a subset α of transitions, and
a run is required to traverse transitions in α infinitely often, and dually for co-
Büchi. Beyond the theoretical interest, there is recently growing use of transition-
based automata in practical applications, with evidences they offer a simpler
translation of LTL formulas to automata and enable simpler constructions and
decision procedures [14].

In GFG automata, nondeterminism is allowed, yet has to be resolved in a
way that only depends on the past. Consequently, GFG automata can be used
instead of deterministic automata in games whose winning condition is specified
by an ω-regular language [5,7,12]. Such games are extensively used in the solu-
tion of the synthesis problem from LTL or ω-regular specifications. Formally, a
nondeterministic automaton A over an alphabet Σ is GFG if there is a strategy
g that maps each finite word u ∈ Σ∗ to the transition to be taken after u is read;
and following g results in accepting all the words in the language of A. Note that
a state q of A may be reachable via different words, and g may suggest different
transitions from q after different words are read. Still, g depends only on the
past, namely on the word read so far. Obviously, there exist GFG automata:
deterministic ones, or nondeterministic ones that are determinizable by pruning
(DBP); that is, ones that just add transitions on top of a deterministic automa-
ton. Surprisingly, however, GFG-NBWs need not be DBP [3]. Moreover, the
best known determinization construction for GFG-NBWs is quadratic, whereas
determinization of GFG-NCWs has a tight exponential bound [10]. Thus, GFG
automata on infinite words are more succinct (possibly even exponentially) than
deterministic ones. In recent years, we see growing research on GFG automata,
their theoretical properties, and applications [2,6,10].

Proving NP-hardness for DBW minimization, Schewe used a reduction
from the vertex-cover problem [20]. Essentially1, given an undirected graph

1 The reduction in [20] is more complicated and involves an additional letter. One of
our contributions here is to show that the vertex-cover problem is NP-hard already
for a class of graphs for which these complications are not required. Consequently,
it is possible to simplify the reduction, and the description above is of the simplified
version.
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G = 〈V,E〉, we seek a minimal DBW for the language SG of words of the
form v+

i1
· v+

i2
· v+

i3
· · · ∈ V ω, where for all j ≥ 1, we have that {vij , vij+1} ∈ E.

We can recognize SG by an automaton obtained from G by replacing an edge
{u1, u2} by transitions from u1 to u2 and from u2 to u1, adding self loops to
all vertices, labelling each transition by its destination, and requiring a run to
traverse infinitely many transitions induced by edges of G. Indeed, such runs
correspond to words that traverse an infinite path in G, possibly looping at ver-
tices, but not getting trapped in a self loop, as required by SG. When, however,
the acceptance condition is defined by a set of states, rather than transitions,
we need to duplicate some states, and a minimal duplication corresponds to a
minimal vertex cover. Consequently, finding a minimal DBW for SG (or a min-
imal DCW for its complement) corresponds to finding a minimal vertex cover
in G. Clearly, as a tDBW for SG has the same structure as G, the reduction
does not apply to tDBWs or tDCWs. On the other hand, it can be extended
to GFG-NBWs and GFG-NCWs [21]. Interestingly, though, for GFG-tNCWs,
minimization can be done in PTIME [1]. Thus, the complexity of minimization
of tDBWs and tDCWs is still open, and so is the complexity for GFG-tNBWs.

Recall that for languages of finite words, a minimal DFW can be obtained in
PTIME by merging of equivalent states. A similar algorithm is valid for determin-
isitic weak automata on infinite words: DBWs in which each strongly connected
component is either contained in α or is disjoint from α [15,16]. In particular,
safety properties, which assert that the system stays within some allowed region,
can be recognized by DBWs in which all states are in α, which are a special case
of weak automata. This raises the question of finding other natural fragments of
ω-regular languages for which minimization could be solved in PTIME.

Of special interest in formal verification are liveness properties, which assert
that something “good” eventually happens. For example, a process eventually
enters its critical section or a grant is given infinitely often. We distinguish
between three classes of liveness. Specifically, a language L ⊆ Σω is Live1 if it
has no “bad prefixes”, thus every finite word in Σ∗ can be extended to a word in
L. Then, L is Live2 if L = Σ∗ ·L, thus, every finite word in Σ∗ can be extended
by a word in L to a word in L, or, equivalently, every infinite word that has
a suffix in L is also in L. Finally, L is Live3 if L = ∞R, for some language
R ⊆ Σ∗ of finite words, thus L consists of words with infinitely many disjoint
infixes in R. It is not hard to see that the classes are strictly ordered, in the
sense that every Live3 language is Live2, every Live2 language is Live1, yet
implication in the other direction does not hold. Also, the language SG used for
proving NP-hardness in [20] is not a liveness language. Indeed, finite sequences
of vertices that do not correspond to a path in G are bad prefixes for SG.

We study the minimization problem for automata recognizing languages in
the three classes. We also consider the dual setting, where we minimize co-Büchi
automata for languages that complement liveness languages. Note that while for
deterministic automata, dualization of the acceptance condition complements
the automaton, thus DBW and tDBW minimization coincides with DCW and
tDCW minimization, this is not the case for GFG automata, where comple-
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mentation should involve also a dualization of the nondeterministic branching
mode (see [4] for a study of alternating GFG automata). In particular, as noted
above, while minimization of GFG-tNCWs is in PTIME [1], the complexity for
GFG-tNBWs is still open.

We first show that Schewe’s reduction can be modified so that the vertex-
cover problem is reduced to minimization of automata for Live1 languages. The
main contribution in this part is a characterization of nice graphs: graphs for
which the vertex-cover problem stays NP-hard yet they enjoy properties that
enable us to significantly simplify the languages needed for the reduction. Then,
given a nice graph G, we define a Live1 language LG such that finding a minimal
vertex-cover for G can be reduced to minimizing a DBW or a GFG-NBW for LG,
or to minimizing a DCW or a GFG-NCW for the complement of LG. Essentially,
while the language SG does not allow prefixes that do not correspond to paths
in G, the language LG handles attempts to proceed to a vertex that is not
connected by an edge the same way SG handles self loops.

We continue to Live2 languages and describe a general scheme for transform-
ing a language L to a Live2 language L# such that minimization of automata
for L can be reduced to minimization of automata for L#. Thus, minimization
stays NP-hard for Live2 languages. Our scheme applies to deterministic and
GFG automata, Büchi and co-Büchi, with either state-based or transition-based
acceptance. Consequently, while the problem of minimizing tDBWs and GFG-
tNBWs is still open, our results imply that its complexity for general ω-regular
languages coincides with its complexity for Live2 languages. Thus, efforts to
find a PTIME algorithm can focus on the Live2 fragment.

Finally, we show that the transition from Live2 to Live3 languages is sig-
nificant: while minimization of GFG-NCWs that recognize the complement of
Live2 languages is NP-hard, minimization of GFG-NCWs that recognize the
complement of Live3 languages can be done in PTIME. We find this result
interesting, as we also show that Live3 languages maintain the combinatorial
richness of GFG automata over deterministic ones. In particular, the exponen-
tial succinctness of GFG-NCWs over DCWs [10] applies also for languages whose
complements are Live3, and the fact that GFG-NBWs need not be DBP [3] is
exhibited also for Live3 languages. Also, for other classes of automata, the com-
plexity of minimization of Live3 languages remains open.

Due to the lack of space, some proofs are omitted and can be found in the
full version, in the authors’ URLs.

2 Preliminaries

For a finite nonempty alphabet Σ, an infinite word w = σ1 · σ2 · · · ∈ Σω is an
infinite sequence of letters from Σ. A language L ⊆ Σω is a set of words. We
denote the empty word by ε, and the set of finite words over Σ by Σ∗. For an
index i ≥ 0, we use w[1, i] to denote the (possibly empty) prefix σ1 · σ2 · · · σi of
w. For 1 ≤ i ≤ j, we use w[i, j] to denote the infix σi · σi+1 · · · σj of w, and use
w[i,∞] to denote the infinite suffix σi · σi+1 · · · of w. For a set A, we denote its
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complement by A. In particular, if R ⊆ Σ∗ is a language over finite words and
L ⊆ Σω is language over infinite words, then R = Σ∗\R and L = Σω\L.

2.1 Automata

A nondeterministic automaton on infinite words is a tuple A = 〈Σ,Q, q0, δ, α〉,
where Σ is an alphabet, Q is a finite set of states, q0 ∈ Q is an initial state,
δ : Q × Σ → 2Q\∅ is a transition function, and α is an acceptance condition,
to be defined below. For states q and s and a letter σ ∈ Σ, we say that s is a
σ-successor of q if s ∈ δ(q, σ). If |δ(q, σ)| = 1 for every state q ∈ Q and letter
σ ∈ Σ, then A is deterministic. The transition function δ can be viewed as a
transition relation Δ ⊆ Q × Σ × Q, where for every two states q, s ∈ Q and
letter σ ∈ Σ, we have that 〈q, σ, s〉 ∈ Δ iff s ∈ δ(q, σ). We define the size of A,
denoted |A|, as its number of states, thus, |A| = |Q|.

Given an input word w = σ1 · σ2 · · · , a run of A on w is an infinite
sequence of states r = r0, r1, r2, . . . ∈ Qω, such that r0 = q0, and for all
i ≥ 0, we have that ri+1 ∈ δ(ri, σi+1), i.e., the run starts in the initial state
and proceeds according to the transition function. We sometimes view the run
r = r0, r1, r2, . . . on w = σ1 · σ2 · · · as an infinite sequence of successive tran-
sitions 〈r0, σ1, r1〉, 〈r1, σ2, r2〉, . . . ∈ Δω. We sometimes consider finite runs on
finite words. In particular, we sometimes extend δ to sets of states and finite
words. Then, δ : 2Q × Σ∗ → 2Q is such that for every S ∈ 2Q, finite word
u ∈ Σ∗, and letter σ ∈ Σ, we have that δ(S, ε) = S, δ(S, σ) =

⋃
s∈S δ(s, σ), and

δ(S, u · σ) = δ(δ(S, u), σ). Thus, δ(S, u) is the set of states that A may reach
when it reads u from some state in S.

The acceptance condition α determines which runs are “good”. We con-
sider state-based and transition-based automata. Let us start with state-based
automata. Here, α ⊆ Q, and we use the terms α-states and α-states to refer
to states in α and in Q\α, respectively. For a run r ∈ Qω, let inf (r) ⊆ Q
be the set of states that r visits infinitely often. Thus, inf (r) = {q : q =
ri for infinitely manyi’s}. In Büchi automata, r is accepting iff inf (r) ∩ α �= ∅,
thus if r visits states in α infinitely often. In co-Büchi automata, r is accepting
iff inf (r) ∩ α = ∅, thus if r visits states in α only finitely often.

We proceed to transition-based automata. There, α ⊆ Δ and acceptance
depends on the set of transitions that are traversed infinitely often during the
run. We use the terms α-transitions and ᾱ-transitions to refer to transitions in
α and in Δ\α, respectively. For a run r ∈ Δω, we define inf (r) = {〈q, σ, s〉 ∈
Δ : q = ri, σ = σi+1, and s = ri+1 for infinitely manyi′s}. As expected, in
transition-based Büchi automata, r is accepting iff inf (r) ∩ α �= ∅, and in
transition-based co-Büchi automata, r is accepting iff inf (r) ∩ α = ∅. A run
that is not accepting is rejecting. A word w is accepted by an automaton A if
there is an accepting run of A on w. The language of A, denoted L(A), is the
set of words that A accepts.

Consider an automaton A = 〈Σ,Q, q0, δ, α〉. For a state q ∈ Q of A, we define
Aq = 〈Σ,Q, q, δ, α〉, i.e., Aq is the automaton obtained from A by setting the
initial state to be q. We say that two states q, s ∈ Q are equivalent, denoted
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q ∼A s, if L(Aq) = L(As). We say that qis reachable if there is a word x ∈ Σ∗

with q ∈ δ(q0, x), and say that qis reachable from s if q is reachable in As.
An automaton A is good for games (GFG, for short) if its nondeterminism

can be resolved based on the past, thus on the prefix of the input word read
so far. Formally, A is GFG if there exists a strategy f : Σ∗ → Q such that the
following hold:

1. The strategy f is consistent with the transition function. That is, f(ε) = q0,
and for every finite word u ∈ Σ∗ and letter σ ∈ Σ, we have that f(u · σ) ∈
δ(f(u), σ).

2. Following f causes A to accept all the words in its language. That is, for
every infinite word w = σ1 · σ2 · · · ∈ Σω, if w ∈ L(A), then the run
f(w[1, 0]), f(w[1, 1]), f(w[1, 2]), . . ., which we denote by f(w), is an accepting
run of A on w.

We say that the strategy f witnesses A’s GFGness. For an automaton A, we
say that a state q of A is GFG, if Aq is GFG. Note that every deterministic
automaton is GFG.

We use three-letter acronyms in {D,N}×{B,C}×{W} to denote the different
automata classes. The first letter stands for the branching mode of the automaton
(deterministic or nondeterministic); the second for the acceptance condition type
(Büchi or co-Büchi); and the third indicates that we consider automata on words.
For transition-based automata, we start the acronyms with the letter “t”, and
for GFG automata, we write “GFG-” before the acronyms. For example, a GFG-
NBW is a state-based GFG Büchi automaton, and a tDCW is a transition-based
deterministic co-Büchi automaton.

For a class γ of automata, e.g., γ = GFG-NCW or γ = tDBW, we say that
a language L ⊆ Σω is γ-recognizable iff there is an automaton in the class γ
that recognizes L. It is known [12,19] that GFG automata are as expressive as
deterministic automata of the same acceptance condition, e.g., L is GFG-tNBW
recognizable iff L is DBW recognizable.

For a class γ of automata, we say that a γ automaton A is minimal if for
every equivalent γ automaton B, namely one with L(A) = L(B), it holds that
|A| ≤ |B|.

2.2 Liveness Languages

For a language R ⊆ Σ∗ of finite words, we use ∞R to denote the language of
infinite words that contain infinitely many disjoint infixes in R. Thus, w ∈ ∞R iff
there are infinitely many indices i1 ≤ i′1 < i2 ≤ i′2 < · · · such that w[ij , i′j ] ∈ R,
for all j ≥ 1. Dually, ¬∞R is the language of infinite words that eventually
contain only infixes in R. Thus, there is an index i such that for all j′ ≥ j ≥ 0
we have that w[i + j, i + j′] ∈ R. Note that ∞R = ¬∞R.

Consider a language L ⊆ Σω. We say that a finite word x ∈ Σ∗ is a bad
prefix for L if for all infinite words y ∈ Σω, we have that x · y �∈ L. Thus, there
is no way to extend x to a word in L. Dually, x is a good prefix for L if all its
extensions to an infinite word result in a word in L, thus x ·y ∈ L for all y ∈ Σω.
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We consider three levels of liveness. Consider a nonempty language L ⊆ Σω.

1. L is a Live1 language if it has no bad prefixes. Formally, for every finite word
x ∈ Σ∗, there is an infinite word y ∈ Σω such that x · y ∈ L.

2. L is a Live2 language if L = Σ∗ · L. Formally, for every finite word x ∈ Σ∗,
and infinite word y ∈ L, it holds that x · y ∈ L. Equivalently, every word that
has a suffix in L, is in L.

3. L is a Live3 language if L = ∞R, for some R ⊆ Σ∗. Thus, L consists of
words with infinitely many disjoint infixes in R.

It is not hard to see that Live3 ⊆ Live2 ⊆ Live1. The other direction is not
valid. For example, taking Σ = {a, b}, the language L1 = a · Σω + Σ∗ · a · a · Σω,
of words that start with a or contain the infix a · a, is Live1 and not Live2.
Indeed, the word b · a · bω is in (Σ∗ · L1)\L1. Then, L2 = Σ∗ · a · a · Σω is Live2
and not Live3.

Note that liveness languages need not be DBW-recognizable. For example,
the Live1 and Live2 language Σ∗ · bω is not DBW-recognizable [13]. As for
Live3 languages, if R is regular, then ∞R is DBW-recognizable [11].

We also consider languages that complement a liveness language, and say
that a language L is a Doom1 language if L is a Live1 language, and similarly
for Doom2 and Doom3 languages.

2.3 Graphs, Nice Graphs, and the Vertex-Cover Problem

We consider undirected graphs G = 〈V,E〉, with a finite nonempty set V of
vertices and a symmetric set E ⊆ V ×V of edges. For simplicity, we assume that
G has no loops or parallel edges. For a vertex u ∈ V , let η(u) denote the set of
u’s neighbors in G; that is, η(u) = {v ∈ V : E(u, v)}. Then, η(u) = V \η(u) =
{v ∈ V : ¬E(u, v)}. Note that since G has no self loops, then u ∈ η(u) for all
vertices u ∈ V . For a vertex u ∈ V and an edge e = 〈x, y〉 ∈ E, we say that e is
a neighbor of u if it at least one of its endpoints is a neighbor of u, thus E(u, x)
or E(u, y).

For two vertices u, v ∈ V , we say that u and v are separable if there is an
edge that is a neighbor of u but is not a neighbor of v, as well as an edge that
is a neighbor of v but is not a neighbor of u. We say that G is separable if every
two vertices u, v ∈ V are separable. Then, G is nice if it is connected, separable,
and for every vertex u ∈ V , there is a vertex v such that v �= u and v ∈ η(u). In
particular, every nice graph has at least two vertices.

A set C ⊆ V is a vertex-cover of G if each edge in G has at least one endpoint
in C; that is, if E(u, v), then u ∈ C or v ∈ C. In the vertex-cover problem, we
are given a graph G and an integer k ≥ 1, and we have to decide whether G has
a vertex-cover of size at most k.

In the rest of this section we prove that the vertex-cover problem is NP-hard
already for nice graphs. For this, we analyze the reduction from 3SAT to the
vertex-cover problem and argue that we can modify each 3CNF formula ϕ to an
equivalent 3CNF formula ϕ′ such that the graph that the reduction produces
from ϕ′ is nice.
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Consider a 3CNF Boolean formula ϕ over the set of variables X =
{x1, . . . , xn}. Let C = {c1, c2, . . . , cm} be the set of clauses in ϕ, with cj =
(lj1 ∨ lj2 ∨ lj3). The standard reduction from satisfiability of 3CNF formulas to
the vertex-cover problem generates, given ϕ, an undirected graph Gϕ = 〈V,E〉
that consists of two types of “gadgets”. For every variable xi ∈ X, we have a
variable-gadget consisting of two vertices xi and xi, connected by an edge. Then,
for each clause cj = (l1∨l2∨l3), we have a clause-gadget, which is a triangle with
three vertices, cj

l1
, cj

l2
, and cj

l3
. Each vertex cj

li
in the clause-gadget is connected

by an edge to the literal li in its variable-gadget. It is not hard to see that the
formula ϕ is satisfiable iff Gϕ has a vertex-cover of size at most n + 2m. Indeed,
each assignment induces a choice of one vertex from each variable-gadget, this
choice covers the edges in the variable gadgets. In addition, we need two ver-
tices to cover the edges in the triangles in the clause gadgets and we can choose
these vertices in a way that also covers the edges between the vertex and clause
gadgets iff the assignment is satisfying.

Theorem 1. The vertex-cover problem for nice graphs is NP-hard.

Proof. Consider a 3CNF formula ϕ with m clauses over the variables
{x1, . . . , xn}. We assume that every clause in ϕ includes literals referring to
three different variables. Note that otherwise, we can add variables and rewrite
ϕ so that it satisfies this property. We define ϕ′ = ϕ ∧ ∧

1≤i≤n(xi ∨ z1 ∨ ¬z2) ∧
(¬xi ∨¬z1 ∨ z2)∧ (xi ∨¬z1 ∨ z2)∧ (¬xi ∨ z1 ∨¬z2), where z1 and z2 are two new
variables. It is not hard to see that ϕ is satisfiable iff ϕ′ is satisfiable. Indeed,
a satisfying assignment for ϕ can be extended to a satisfying assignment for ϕ′

by assigning True to z1 and z2. Conversely, as ϕ′ implies ϕ, then a satisfying
assignment for ϕ′ also satisfies ϕ. Thus, ϕ is satisfiable iff the graph Gϕ′ contains
a vertex-cover of size at most (n + 2) + 2(m + 4n). In the full version, we prove
that Gϕ′ is nice. ��

3 Live1 Languages

In this section we study the minimization problem for deterministic and GFG
automata recognizing Live1 and Doom1 languages. For a graph G = 〈V,E〉,
we define the ω-regular language LG over the alphabet V as the set of infinite
words of the form

v0 · (η(v0))∗ · v1 · (η(v1))∗ · v2 · (η(v2))∗ · · · ,

where for all i ≥ 0, it holds that vi+1 ∈ η(vi). Thus, a word w ∈ LG corresponds
to an infinite path v0, v1, v2, . . . in G, where each vertex vi in the path contributes
to w an infix in vi · (η(vi))∗, which is followed by the infix induced by vi+1.

Note that every finite nonempty word x = u0·u1·u2 · · · ∈ V + induces a unique
finite path in G: the path starts in u0, and whenever it is in vertex v and the next
letter is ui, the path stays in v if ui �∈ η(v) and proceeds to ui if ui ∈ η(v). We
say that the word x leads to vertex v if the path induced by x leads to v. In other
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words, x leads to v if x ∈ v0 · (η(v0))∗ · v1 · (η(v1))∗ · v2 · (η(v2))∗ · · · vk · (η(vk))∗,
where vk = v and for all 0 ≤ i ≤ k − 1, it holds that vi+1 ∈ η(vi).

Example 1. Consider the graph G
appearing in Fig. 1. A nonempty word
of the form (v2 · v1)∗ leads to v1 and
a word of the form (v2 · v1)∗ · v2 leads
to v2. Accordingly, the word (v2 · v1)ω

is in LG. All the words of the form
v4 · (v2 · v1)∗ or v4 · (v2 · v1)∗ · v2 lead to
v4, and so the word v4 · (v2 · v1)ω is not
in LG.

Fig. 1. The graph G.

Lemma 1. For every nice graph G = 〈V,E〉, the language LG is Live1.

Proof. Consider a finite word x ∈ V +, and assume that x leads to vertex v.
Since G is nice, in particular connected and has at least two vertices, we get
that there is a vertex u ∈ η(v). Then, the word x · (u · v)ω is in LG. ��

Note that LG also has no good prefixes. Indeed, for every finite word x, the
word x · uω is not in LG, for every vertex u ∈ V .

3.1 Minimizing Automata for Live1 and Doom1 Languages

In this section we show that minimizing a GFG-NBW or a DBW that recognizes
LG, for a nice graph G, is NP-hard, and so is minimizing a GFG-NCW or a DCW
that recognizes LG. We conclude that the minimization problem is NP-hard
already for Live1 and Doom1 languages.

We start by defining a DBW that recognizes LG. Consider a nice graph
G = 〈V,E〉. As has been the case with Schewe’s language SG, it is easy to define
a tDBW for LG from G by replacing each edge 〈u1, u2〉 by a u2-transition from
u1 to u2, adding to each state v a self-loop labeled by all the letters in η(v), and
requiring a run to traverse infinitely many transitions induced by edges of G.
When considering DBWs, we define, for a subset of vertices S ⊆ V , the DBW
AG,S = 〈V, {q0} ∪ (V × {0}) ∪ (S × {1}), q0, δ, α〉, where α = S × {1}, and δ is
defined as follows (see Example 2): First, for all u ∈ V , we have δ(q0, u) = 〈u, 0〉.
Then, for all u ∈ V and v ∈ η(u), we have δ(〈u, 0〉, v) = 〈u, 0〉. In addition, if
u ∈ S, then δ(〈u, 1〉, v) = 〈u, 0〉. Finally, for all u ∈ V and v ∈ η(u), if v ∈ S,
then δ(〈u, 0〉, v) = 〈v, 1〉, and if v /∈ S, then δ(〈u, 0〉, v) = 〈v, 0〉. In addition, if
u ∈ S, then δ(〈u, 1〉, v) = δ(〈u, 0〉, v).

Thus, for every vertex v �∈ S, the DBW AG,S includes a “0-state” 〈v, 0〉, and
for every vertex v ∈ S, it includes both a “0-state” 〈v, 0〉 and a “1-state” 〈v, 1〉.
The 0-state 〈v, 0〉 has a self-loop labeled by letters in η(v). Reading a letter
u ∈ η(v) from 〈v, 0〉 or from 〈v, 1〉, the DBW moves to 〈u, 0〉 if u �∈ S and moves
to 〈u, 1〉 if u ∈ S. The 1-state 〈v, 1〉 does not have a self loop, and rather it moves
to 〈v, 0〉 with letters in η(v). As α = S ×{1}, the run of AG,S is accepting iff the
path induced by the input word traverses infinitely many edges with endpoints
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in S. Hence, AG,S captures infinitely many traversals of edges of G iff the set
S is a vertex-cover of G. Formally, we have the following (see proof in the full
version).

Lemma 2. L(AG,S) ⊆ LG, and LG ⊆ L(AG,S) iff S is a vertex-cover of G.

Example 2. Consider the graph G =
〈{v1, v2, v3}, E〉, appearing in Fig. 2.
Note that G is not nice, yet LG is
Live1. For the set S = {v1, v3}, the
DBW AG,S appears in Fig. 3.

Fig. 2. The graph G.

Fig. 3. The DBW AG,S .

While AG,S , for a minimal vertex cover S, is a natural candidate for a
minimal DBW that recognizes LG, a general result about minimization should
consider arbitrary DBWs and GFG-NBWs for the language. We continue and
specify properties of such automata. Consider a nice graph G = 〈V,E〉. Let
A = 〈V,Q, q0, δ, α〉 be a GFG-NBW that recognizes the language LG. For a ver-
tex v ∈ V and a state q ∈ Q, we say that q is a v-state if q is reachable from
q0 upon reading a finite nonempty word that leads to v. In particular, all the
v-successors of q0 are v-states.

Proposition 1. For every GFG-NBW A = 〈V,Q, q0, δ, α〉 that recognizes the
language LG, the following hold: (1) For every vertex v ∈ V , all the v-states are
equivalent. (2) For every two vertices u �= v ∈ V , the u-states are not equivalent
to the v-states. (3) The initial state q0 is not a v-state, for all vertices v ∈ V . (4)
|{q ∈ Q\α : qis av-state for some vertexv ∈ V }| ≥ |V |; that is, the number of
v-states not in α is at least |V |. (5) For every edge 〈u, v〉 ∈ E, there is a v-state
or a u-state in α.

Using the properties in Proposition 1 (see proof in the full version), we can
argue that a nice graph G has a vertex cover of size at most k ≥ 1 iff the DBW
AG,V , which recognizes LG, has an equivalent GFG-NBW or DBW with at most
|V | + k + 1 states. Hence, we can conclude with the following (see proof in the
full version).

Theorem 2. The minimization problem is NP-hard already for DBWs and
GFG-NBWs that recognize Live1 languages.

We continue to DCWs and GFG-NCWs that recognize Doom1 languages.
For DCWs, NP-hardness for minimization follows immediately from Theorem 2.
For GFG-NCWs, we have to carefully examine the proof of Proposition 1 and
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see that it stays valid in the dual setting. In the full version we describe the
proposition and its proof for the co-Büchi case, as well as its use in proving the
following, namely the co-Büchi counterpart of Theorem 2.

Theorem 3. The minimization problem is NP-hard already for DCWs and
GFG-NCWs that recognize Doom1 languages.

4 Live2 Languages

In this section, we study minimization for Live2 and Doom2 languages. Note
that the language LG used in Sect. 3 is not Live2. To see this, consider the graph
G from Example 1. Note that the word w = v4 · (v2 · v1)ω ∈ V ∗ · LG has the
suffix (v2 · v1)ω ∈ LG, yet w /∈ LG. In fact, for every nice graph G, we have that
LG is not Live2. Indeed, every nice graph G has at least two vertices u and v.
Then, as u and v are separable, there is an edge 〈u1, u2〉 ∈ E that is a neighbor
of u but not a neighbor of v. The word w = v · (u1 ·u2)ω ∈ V ∗ ·LG has the suffix
(u1 · u2)ω ∈ LG, yet w /∈ LG.

4.1 Minimizing DBWs and GFG-NBWs for Live2 Languages

In this section, we show that minimizing DBWs and GFG-NBWs that recognize
Live2 languages is NP-hard.

The idea behind our proof is as follows. We define an operation on ω-regular
languages, such that for every language L ⊆ Σω, and letter # /∈ Σ, the operation
constructs a language L# ⊆ (Σ ∪ {#})ω that is Live2. Then, we define two
operations on automata. The first is applied to a DBW A over the alphabet Σ
and it constructs a DBW A# over the alphabet Σ ∪ {#}, such that L(A#) =
L(A)#. The second operation is applied to a GFG-NBW A# over the alphabet
Σ ∪{#}, it constructs a GFG-NBW A over the alphabet Σ, and if L(A#) = L#

for some language L ⊆ Σω, then L(A) = L. Moreover, the construction preserves
determinization. The blow-up in both constructions is such that when we take
L to be the language LG from Sect. 3.1, we can replace the reduction there by a
reduction that seeks minimal automata for the language L#

G .
We first describe the operation on ω-regular languages. For L ⊆ Σω, let

L# = ((Σ ∪ {#})∗ · # · L) ∪ (∞#).

Thus, L# is defined over the alphabet Σ ∪ {#}, and it consists of all infinite
words that either have a suffix of the form # · L or contain infinitely many #’s.
It is not hard to see that L# = (Σ ∪ {#})∗ · L#, thus L# is Live2.

We continue with the operations on automata.

Theorem 4. Given a DBW A over Σ such that the initial state of A has no
incoming transitions, we can construct a DBW A# over Σ ∪ {#} such that the
following hold: (1) L(A#) = L(A)#. (2) If L(A) is Live1, then |A#| = |A|+1.
Otherwise, |A#| = |A|.
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Proof. Let A = 〈Σ,Q, q0, δ, α〉. If L(A) is Live1, then we define A# = 〈Σ ∪
{#}, Q ∪ {q0#}, q0#, δ#, α#〉, for q0# /∈ Q, and a transition function δ# defined as
follows (see an example in the full version). For every s ∈ Q and σ ∈ Σ, we
have δ#(s, σ) = δ(s, σ) and δ#(s,#) = q0. Then, for the state q0#, we have that
δ(q0#, σ) = q0# for all σ ∈ Σ, and δ(q0#,#) = q0. Thus, A# is obtained from
A by adding a new state q0# that has a Σ-labeled self-loop that goes with #
to the state q0, to which we move upon reading # from all states. In addition,
α# = α ∪ {q0}.

If L(A) is not Live1, then L(A) has at least one bad prefix, and so A must
contain a state q with L(Aq) = ∅. We assume w.l.o.g that q is a rejecting sink
in A, and define A# as above, except that instead of defining the state q0# as a
new state, we define q0# = q. Note that also in this case, the initial state q0# has
a Σ-labeled self-loop and a #-transition to q0.

In the full version, we prove that A# satisfies the two properties. ��
We continue to the reverse operation, where we start with a GFG-NBW.

Theorem 5. Given a GFG-NBW A# over Σ ∪{#} such that L(A#) = L# for
some L ⊆ Σω, we can construct a GFG-NBW A over Σ, such that the following
hold: (1) A recognizes L. (2) If A# is determinstic, then so is A. (3) If L is
Live1, then |A| ≤ |A#| − 1. Otherwise, |A| ≤ |A#|.
Proof. Let A# = 〈Σ ∪ {#}, Q, q0, δ, α〉, and let f : (Σ ∪ {#})∗ → Q be a
strategy witnessing the GFGness of A#. We obtain A from A# by removing all
#-transitions and choosing q# = f(#) to be its initial state. Clearly, A is over
Σ and determinization of A# is preserved in A. In the full version, we prove
that A is GFG and recognizes L. Moreover, if L is Live1, then we can remove a
state from A and get an equivalent automaton, resulting in an automaton with
at most |A#| − 1 states. Essentially, the strategy g : Σ∗ → Q that witnesses the
GFGness of A is such that for all x ∈ Σ∗, we have g(x) = f(# · x). ��

We can now use the operations in order to extend the reduction from Sect. 3.1
to Live2 languages. Essentially (see proof in the full version), we show that a
nice graph G = 〈V,E〉 has a vertex cover of size at most k ≥ 1 iff the DBW
A#

G,V , namely the DBW obtained by applying the construction from Theorem 4
on the DBW AG,V from Sect. 3.1, has an equivalent GFG-NBW or DBW with
at most |V | + k + 2 states.

Theorem 6. The minimization problem is NP-hard for DBWs and GFG-NBWs
that recognize Live2 languages.

4.2 Minimizing DCWs and GFG-NCWs for Doom2 Languages

We continue to co-Büchi automata for Doom2 languages. As has been the case
with Live1 languages, Theorem 6 implies that the minimization problem for
DCWs that recognize Doom2 languages is NP-hard, yet does not imply hard-
ness of minimizing GFG-NCWs that recognize Doom2 languages. Also, while
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Theorem 4 considers DBWs and can be dualized, Theorem 5 considers GFG-
NBWs, and thus its dualization requires a proof (see the full version):

Theorem 7. Given a GFG-NCW A# over Σ ∪{#} such that L(A#) = L# for
some L ⊆ Σω, we can construct a GFG-NCW A over Σ such that the following
hold: (1) A recognizes L. (2) If A# is determinstic, then so is A. (3) If L is
Doom1, then |A| ≤ |A#| − 1. Otherwise, |A| ≤ |A#|.

We can now use a reduction similar to the one in Theorem 6 and prove that
a nice graph G has a vertex-cover of size at most k ≥ 1 iff the DCW Ã#

G,V ,
which dualizes A#

G,V , has an equivalent GFG-NCW of size at most |V | + k + 2.
See proof in the full version.

Theorem 8. The minimization problem is NP-hard for DCWs and GFG-NCWs
that recognize Doom2 languages.

4.3 Minimizing Automata with Transition-Based Acceptance
for Live2 Languages

In this section, we show that minimizing GFG-tNBWs or tDBWs recognizing
Live2 languages is not easier than minimizing GFG-tNBWs or tDBWs, respec-
tively, recognizing general languages. Thus, while the complexity of minimization
of tDBWs and GFG-tNBWs is still open, it is sufficient to restrict attention to
transition-based Büchi automata recognizing Live2 languages.

The idea of our proof is to modify the constructions used in Sect. 4.1 to
GFG-tNBWs. Note that while Theorem 5 already considers GFG-NBWs, and
thus the extension only has to adjust the type of acceptance, which is easy, The-
orem 4 considers deterministic automata, and so the extension is more involved.
In particular, one has to show how a function that witnesses the GFGness of
A induces a strategy that witnesses the GFGness of A#. Formally, we have the
following (see proof in the full version).

Theorem 9. Given a GFG-tNBW A over Σ, we can construct a GFG-tNBW
A# over Σ ∪ {#} such that the following hold: (1) L(A#) = L(A)#. (2) If A
is determinsitic, then so is A#. (3) If L(A) is Live1, then |A#| = |A| + 1.
Otherwise, |A#| = |A|.

We can now reduce minimization of a general GFG-tNBW to minimization
of a GFG-tNBW for a Live2 language as follows. Given a GFG-tNBW A and
an integer k ≥ 1, our reduction returns the GFG-tNBW A# and the integer
k′ such that k′ = k + 1 if L(A) is Live1, and k′ = k otherwise (note that the
latter condition can be checked in polynomial time). In the full version we prove
that A has an equivalent GFG-tNBW of size at most k iff A# has an equivalent
GFG-tNBW of size at most k′, and similarly for tDBWs. Hence, we can conclude
with the following.

Theorem 10. Minimizing GFG-tNBWs or tDBWs recognizing Live2 lan-
guages is not easier than minimizing general GFG-tNBWs or tDBWs, respec-
tively.
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We continue to tDCWs and show that the reduction from Theorem 10 implies
that minimizing tDCWs recognizing Doom2 languages is not easier than mini-
mizing tDCWs recognizing general languages. Hence, we can conclude with the
following (see proof in the full version):

Theorem 11. Minimizing tDCWs recognizing Doom2 languages is not easier
than minimizing general tDCWs.

5 Live3 Languages

Recall that minimization of GFG-NCWs is NP-hard [21]. Moreover, by Theo-
rem 8, NP-hardness applies already to Doom2 languages. Our main result in
this section is that the transition from Live2 to Live3 languages is significant:
minimization of GFG-NCWs that recognize Doom3 languages can be done in
PTIME. We first argue that our result is surprising, in the sense that Live3
and Doom3 languages maintain the combinatorial richness of GFG automata.
Specifically, recall that GFG-NBWs and GFG-NCWs may not be determiniz-
able by pruning (DBP), and GFG-NCWs may be exponentially more succinct
than DCWs [3,8,10]. We show that these advantages of GFG automata are valid
already for Live3 and Doom3 languages. For the co-Büchi case, the languages
used in [8,10] are already Doom3. For the Büchi case, our example is new.

Theorem 12. There are GFG-NBWs and GFG-NCWs for Live3 and Doom3
languages that are not DBP. Moreover, GFG-NCWs for Doom3 languages may
be exponentially more succinct than DCWs.

Proof. It was shown [8,10] that GFG-NCWs may be exponentially more succinct
than DCWs. It is not hard to see that the languages used there are Doom3. The
latter implies also that GFG-NCWs recognizing Doom3 languages need not be
DBP. Also, while the results there are for automata with transition-based accep-
tance, they apply also in the state-based setting. Indeed, transforming an NCW
to an equivalent tNCW involves no blow-up, and transforming a tNCW to an
NCW at most doubles the state-space. Both transformation preserve determin-
ism, GFGness, and DBPness.

Fig. 4. The GFG-tNBW A for
∞R.

For Live3 languages and GFG-tNBWs, con-
sider the tNBW A = 〈Σ,Q, q0, δ, α〉 appear-
ing in Fig. 4 (in the figure, dashed transitions
are α-transitions). Let Rx = a+ · x · (x + y)∗,
Ry = a+ ·y ·(x+y)∗, and R = (Rx ·Rx+Ry ·Ry).
In the full version, we prove that A recognizes
the Live3 language ∞R, is GFG, yet not DBP.
In addition, we show that by duplicating the
state space of a GFG-tNBW A we can obtain an
equivalent GFG-NBW A′ such that A is DBP
iff A′ is DBP. Thus, the example applies also to
GFG-NBWs. ��
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We continue and show that minimizing GFG-NCWs that recognize Doom3
languages can in done in PTIME. The main idea behind the minimization process
is a construction that given a GFG-tNCW for a Doom3 language L, returns a
GFG-NCW for L with one additional state, along with an observation that for
every (non-trivial) Doom3 language L, a minimal GFG-NCW for L must be
strictly bigger than a minimal GFG-tNCW for L. Thus, it is possible to use
minimization of GFG-tNCWs, which can be done in PTIME [1].

Theorem 13. The minimization problem for GFG-NCWs recognizing Doom3
languages can be solved in PTIME.

Proof. Consider a GFG-NCW A = 〈Σ,Q, q0, δ, α〉 that recognizes a language of
the form ¬∞R, for some R ⊆ Σ∗, and consider the NCW B that is obtained
from A as follows (see Example 3).

1. Let U = 〈Σ,QU , q0U ,ΔU , αU 〉 be the GFG-tNCW obtained by applying the
minimization algorithm of [1] on the GFG-tNCW obtained from A by defining
all the transitions that leave an α-state as α-transitions.

2. If L(A) is trivial, then B can be defined as a one state DCW that is equivalent
to A. Otherwise, B = 〈Σ,QU ∪ {s}, q0U ,ΔB, αB〉, where αB = {s} and ΔB =
(ΔU\αU )∪{〈q, σ, s〉 : there exists q′ ∈ QU such that 〈q, σ, q′〉 ∈ αU}∪ ({s}×
Σ × QU ). Thus, B is obtained from U by adding the new state s, which is
the only state in αB, redirecting all the αU -transitions of U to s, and adding
σ-transitions from s to all the states of U , for all σ ∈ Σ.

In the full version we show that after applying a simple preprocessing step, we
can modify A so that it satisfies some simple syntactic and semantic properties.
Then, we prove that B is a GFG-NCW for L(A). Finally, a minimal GFG-tNCW
U recognizing a non-trivial Doom3 language, cannot have states such that all
cycles through them traverse transitions in αU . We show that this implies that
a minimal equivalent GFG-NCW must be strictly bigger than a minimal GFG-
tNCW, which implies the minimality of B. ��
Example 3. Consider the tNCW U below. The dashed transitions are α-
transitions. The tNCW U recognizes the Doom3 language L = ¬∞(a·(a+b)∗ ·b),
consisting of words with finitely many a’s or finitely many b’s. It is not hard to
see that by pruning out the α-self-loops, we get an equivalent tDCW, thus U
is DBP, in particular GFG. In addition, as there is no GFG-tNCW recognizing
L with a single state, then U is a minimal GFG-tNCW. The GFG-NCW B is
obtained form U by adding a new state s, directing the α-transitions to s, and
nondeterministically branching from s to all states, with all letters.



206 B. Abu Radi and O. Kupferman

References

1. Abu Radi, B., Kupferman, O.: Minimizing GFG transition-based automata. In:
Proceedings of 46th International Colloquium on Automata, Languages, and Pro-
gramming. LIPIcs, vol. 132, pp. 100:1–100:16. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2019)

2. Abu Radi, B., Kupferman, O., Leshkowitz, O.: A hierarchy of nondeterminism. In:
46th International Symposium on Mathematical Foundations of Computer Science.
LIPIcs, vol. 202, pp. 85:1–85:21 (2021)

3. Boker, U., Kuperberg, D., Kupferman, O., Skrzypczak, M.: Nondeterminism in
the presence of a diverse or unknown future. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 89–100.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2 11

4. Boker, U., Lehtinen, K.: Good for games automata: from nondeterminism to alter-
nation. In: Proceedings of 30th International Conference on Concurrency Theory.
LIPIcs, vol. 140, pp. 19:1–19:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019)

5. Colcombet, T.: The theory of stabilisation monoids and regular cost functions.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5556, pp. 139–150. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02930-1 12

6. Faran, R., Kupferman, O.: On (I /O)-aware good-for-games automata. In: Hung,
D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 161–178. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 9

7. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik,
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Abstract. Counterfactual reasoning is an approach to infer what causes
an observed effect by analyzing the hypothetical scenarios where a sus-
pected cause is not present. The seminal works of Halpern and Pearl
have provided a workable definition of counterfactual causality for finite
settings. In this paper, we propose an approach to check causality that
is tailored to reactive systems, i.e., systems that interact with their envi-
ronment over a possibly infinite duration. We define causes and effects as
trace properties which characterize the input and observed output behav-
ior, respectively. We then instantiate our definitions for ω-regular prop-
erties and give automata-based constructions for our approach. Checking
that an ω-regular property qualifies as a cause can then be encoded as a
hyperproperty model-checking problem.

1 Introduction

Causality plays an increasingly important role in computer science, e.g., to
explain the behavior of a system [3,4,7,9], to establish accountability in multi-
agent systems [10], or to solve challenging algorithmic problems [2,21]. These
approaches commonly draw upon the rich philosophical literature that has laid
the foundation for counterfactual reasoning [19,23], a method of establishing
causal relationships between events. According to this line of reasoning, a cause
is an event such that, if it had not happened, the effect would not have happened
either. A rigorous formalization of counterfactual causality has been proposed by
Halpern and Pearl [16]. This formalization is first and foremost concerned with
models that can be described by a finite set of variables. When naively applying
it to reactive systems that interact with their environment continuously, how-
ever, the analysis may infer that an infinite number of events (variable valuation
at time step) are causes for an observed effect, falling short of providing the
intended comprehensible explanation [17].

In this paper, we therefore propose an approach to causal analysis in reactive
systems that provides a symbolic description of causes. We define counterfactual
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causality on the basis of trace properties (Sect. 4), i.e., causes are properties of
a given input sequence, and effects are properties of the corresponding output
sequence, and apply this definition to ω-regular properties to obtain concrete
automata-based constructions (Sect. 5). As one of our building blocks, we adapt
counterfactual automata [9] so they generate all relevant counterfactual traces in
our setting. Our definitions are sufficiently general to be instantiated by a variety
of temporal logics, such as LTL [25] or QPTL [27]. This general approach allows
us to leverage the significant previous work on temporal logics and for the usual
trade-off between expressiveness and decidability.

Our notion of causality is an actual kind of causality in the spirit of Halpern
and Pearl [16]. This means we provide a precise description of the temporal
behavior responsible for the effect on a given, actual trace of the reactive system.
This actual trace can, for example, be provided as a counterexample by a model
checker, where the effect then is the violation of the specification. We define
what it means to intervene on the cause property of an actual trace, i.e., how to
modify the trace such that the property is not satisfied anymore, but the resulting
counterfactual trace is still sufficiently close to the actual trace to comply with
the closest possible worlds principle [23]. We then further allow for contingencies
as introduced by Halpern and Pearl [16], to isolate the exact causal behavior in
case of preemption of other potential causes.

Previous approaches to provide symbolic descriptions of counterfactual
causes use an event-based logic [6,22], which allows reasoning about the order
of events, but cannot, e.g., specify at which time step a causal input occurs. In
contrast, our framework is only limited by the expressiveness of the logic used to
describe the causal trace properties. We study a decidable instantiation of our
definitions with Quantified Propositional Temporal Logic (QPTL), an extension
of LTL with quantified atomic propositions. Causes can be identified as a tempo-
ral property (see Sect. 3 for an example). Moreover, the event-based approaches
are restricted to finitely observable effects [22] or define a system-level causality
that does not consider the causal dependencies on a given, actual trace [6]. In
comparison, our approach allows for a significantly more precise description of
the temporal causal behavior on an observed system trace.

As an intriguing theoretical result, we show that when a candidate cause for
an effect is given as a trace property, checking whether it is indeed the actual
cause on a trace of a system cannot be stated as a trace property, which formal-
izes previous observations on counterfactual causality [10]. The result motivates
us to consider causality as a hyperproperty [8] in our approach. In particular, we
show that verifying ω-regular causality on lasso-shaped traces is decidable via
HyperQPTL model checking.

2 Preliminaries

Systems and Traces. We model a reactive system as a (nondeterministic)
Moore machine [24] T = (S, s0,AP , δ, l) where S is a finite set of states, s0 ∈ S
is the initial state, AP = I ∪· O is the set of atomic propositions consisting of
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inputs I and outputs O , δ : S ×2I → 2S is the transition function determining a
set of successor states for a given state and input, and l : S → 2O is the labeling
function mapping each state to a set of outputs. A path s = s0s1 . . . ∈ Sω of T
is an infinite sequence with si+1 ∈ δ(si, Ii) for all i ∈ N and for some Ii ⊆ I, we
assume there exists such s′ ∈ δ(s, Y ) for all s ∈ S and Y ⊆ I. The corresponding
trace is π = π0π1π2 . . . ∈ (2AP )ω, such that πi = Ii ∪ l(si) for the Ii used by δ.
With traces(T ), we denote the set of all traces of T . For two subsets of atomic
propositions V ,W ⊆ AP , let V |W = V ∩W and π|W = π0|W π1|W . . . for some
trace π. We say a trace π is lasso-shaped, if there exist i, j = i + 1, k ∈ N such
that π = π0 . . . πi · (πj . . . πk)ω. For some subset A ⊆ AP , we call a set of traces
P ⊂ (2A)ω a trace property. A trace π satisfies P, denoted by π � P iff π|A ∈ P.

QPTL and HyperQPTL. HyperQPTL [26] is a temporal logic that can
express ω-regular hyperproperties. HyperQPTL is derived from linear-time tem-
poral logic (LTL) [25] by adding explicit quantification over atomic propositions
(leading to quantified propositional temporal logic (QPTL) [27]) and explicit
quantification over trace variables (for relating multiple traces):

ϕ ::= ∀π. ϕ | ∃π. ϕ | ∀q. ϕ | ∃q. ϕ | ψ

ψ ::= aπ | q | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

for a trace variable π ∈ V, fresh atomic proposition q �∈ AP, and atomic propo-
sition a ∈ AP. We also consider the usual derived Boolean (∨, →, ↔) and
temporal operators (ϕR ψ ≡ ¬(¬ϕU ¬ψ), ϕ ≡ true U ϕ, ϕ ≡ false Rϕ).
The semantics of HyperQPTL is defined with respect to a time point i, a set
of traces Tr and a trace assignment Π : V → Tr that maps trace variables
to traces. To update the trace assignment so that it maps trace variable π to
trace t, we write Π[π �→ t]. HyperQPTL introduces an auxiliary trace variable
πq for every quantified atomic proposition q. The semantics is as follows:

Π, i �Tr aπ iff a ∈ Π(π)[i]
Π, i �Tr q iff q ∈ Π(πq)[i]
Π, i �Tr ¬ϕ iff Π, i �Tr ϕ
Π, i �Tr ϕ ∧ ψ iff Π, i �Tr ϕ and Π, i �Tr ψ
Π, i �Tr ϕ iff Π, i + 1 �Tr ϕ
Π, i �Tr ϕU ψ iff ∃j ≥ i.Π, j �Tr ψ ∧ ∀i ≤ k < j.Π, k �Tr ϕ
Π, i �Tr ∀π. ϕ iff for all t ∈ Tr it holds that Π[π �→ t], i �Tr ϕ
Π, i �Tr ∃π. ϕ iff there is some t ∈ Tr such that Π[π �→ t], i �Tr ϕ
Π, i �Tr ∀q. ϕ iff for all t ∈ (2{q})ω it holds that Π[πq �→ t], i �Tr ϕ
Π, i �Tr ∃q. ϕ iff there is some t ∈ (2{q})ω it holds that Π[πq �→ t], i �Tr ϕ.

The semantics of a QPTL formula ϕ can be derived from HyperQPTL formula
∀π. ϕπ, where ϕπ is obtained by indexing all atomic propositions in ϕ with π.

Actual Causality. We shortly outline actual causality originally proposed by
Halpern and Pearl [16], in the version modified by Halpern [15]. A causal model
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M = (S,F) is defined by a signature S and set of structural equations F .
A signature S is a tuple (E ,V,R), where E is a set of exogenous variables, V is a
set of endogenous variables, and R defines the range of possible values R(Y ) for
all variables Y ∈ E ∪ V. For some context �u, the value of an exogenous variable is
determined by factors outside of the model, while the value of some endogenous
variable X is defined by the associated structural equation fX ∈ F .

Definition 1. �X = �x is an actual cause of ϕ in (M, �u), if the following holds.

AC1: (M, �u) � �X = �x and (M, �u) � ϕ, i.e., both cause and effect are true in
the actual world, and
AC2: There is a set �W of variables in V and a setting �x′ of the variables in �X
such that if (M, �u) � �W = �w, then (M, �u) � [ �X ← �x′, �W ← �w]¬ϕ, and
AC3: �X is minimal, i.e. no subset of �X satisfies AC1 and AC2.

Intuitively, AC2 means that after intervening on the actual world such that
the cause �X = �x is not satisfied, the effect is not satisfied either. AC2 allows
further modification through the notion of contingencies. The contingency �W
can, in the hypothetical world, be reset to the original value it takes in the
actual world, even when the intervention on �X may have altered it.

3 Motivating Example

As an illustration of our approach, we consider the problem of identifying a
spurious arbiter. The purpose of an arbiter is to organize mutually exclusive
access to a shared resource by eventually answering a request of this resource
with a grant. This may be achieved by simply giving grants in a round-robin
strategy, regardless of incoming requests. Such spurious and inefficient behavior
is unwanted in practice but may result from a sub-optimal specification as input
to a reactive synthesis procedure. Our causality-checking approach can identify
it by checking whether, e.g., a request r1 is a cause for a grant g1 by checking
whether the temporal property r1 causes the observed behavior described by
the temporal property g1 on a given trace π.

The causal analysis utilizes counterfactual reasoning: if on the traces π′ of the
system that are similar to π, but where the cause-property r1 is not satisfied,
the effect-property g1 also does not occur, we can infer a causal relation-
ship between the two properties on input and output sequence. As an exam-
ple, consider the following trace of the system depicted on the left in Fig. 1:
π1 = ({r1, g1}{r0, g0})ω. Counterfactual reasoning now requires us to consider
similar traces where no r1 occurs, i.e., the negation of the cause property, which
is ¬r1, holds. In particular, since we consider sequences that are still suffi-
ciently similar to π, we require that the sequence does not change the occur-
rences of r0. Consequently, the counterfactual trace we are interested in is given
by π′

1 = ({g1}{r0, g0})ω.
As we can see, the effect still occurs on π′

1, therefore r1 is not a cause
for g1 on π1 in the spurious arbiter. In contrast, consider the arbiter depicted
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Fig. 1. The models of a spurious (left) and non-spurious arbiter (right). Here, edges
are labeled with symbolic constraints, e.g., ¬r1 for all sets without r1.

on the right in Fig. 1, which works as expected, i.e., only gives out grants
upon receiving a request. Let us check whether the causal relationship between
the properties from above holds on the trace π2 = {r1} · ({r0, g1}{r1, g0})ω.
Here, applying the same counterfactual reasoning technique from before actu-
ally yields the following trace, which does not satisfy the effect property:
π′
2 = {} · ({r0}{g0})ω. Hence, we can infer that r1 is a cause for g1 on

π2.
Even in correct systems, our causal analysis allows further insight into which

exact behavior is responsible for a certain observed effect. In particular, con-
tingencies allow to isolate a cause in the presence of multiple potential causes
on the trace that were preempted. To illustrate, consider again the right arbiter
from Fig. 1 and the following trace: π3 = {r1}{r1, g1} · {}ω. We may now ask
whether it is the first or the second r1 that causes the effect g1 on π3. When
considering only the naive counterfactual trace π′

3 = {}{r1}{g1} · {}ω during
analysis of formula r1 a problem occurs. In π′

3, the second request takes effect
even though it had no effect in π3. Contingencies now allow us to reset certain
parts of the counterfactual trace back to the actual trace. In particular, we are
allowed to change the state and outputs at the third position to their value
in π3, which yields the following counterfactual trace under the contingency:
π′′
3 = {}{r1} · {}ω. Since π′′

3 does not satisfy the effect, the analysis establishes
a causal relationship between the property r1 of the input sequence and the
property g1 of the output sequence. Note that considering the alternative,
intuitively more precise effect-property g1 leads to the same result without the
need for contingencies. Hence, contingencies allow us to precisely infer the causal
behavior even if the effect is described in a more general manner.

4 Property Causality

In this section we lift the definitions of Halpern and Pearl to the setting of causes
and effects given as general trace properties. We define when some temporal
behavior on the input sequence of a reactive system is considered a cause for
some temporal behavior observed on the output sequence. We assume a cause
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C ⊆ (2I )ω to be a trace property reasoning only over the input variables of the
system and an effect E ⊆ (2O)ω to be a trace property ranging over the output
variables. We call such properties cause property and effect property, respectively.
In an abuse of notation, we will sometimes use QPTL formulas for C and E in
this section when we interpret their language as a trace property.

In order to lift Definition 1 to the setting of both infinite traces and infinite
sets of traces for cause and effect, we need to be able to reason about inter-
ventions (Sect. 4.1), i.e., how to modify the actual trace such that the cause
property does not hold anymore; and contingencies (Sect. 4.2), that allow to
infer the exact causal behavior when it preempts other potential causes. We
then can introduce our full definition for temporal causality in Sect. 4.3.

4.1 Interventions

Recall that at the core of counterfactual reasoning lies the idea that if the cause
had not appeared on the given trace, then the effect would not have happened
either. Hence, as a first step we need to define how the counterfactual traces,
i.e., the traces that are just like our given trace, but where the cause-property C
is not satisfied, look like. We follow the classic theory of closest possible worlds
introduced by Lewis [23] to characterize a set of counterfactual traces that lie
just outside of C. For that, we are interested in defining the minimal sets that
modify the given trace such that some cause-property C is not satisfied anymore.
We call such a set an intervention. Following Halpern and Pearl definition, a set
is minimal if none of its subsets alone suffice to change the evaluation of C on π.
However, for the case of general trace properties as cause and effect, this notion
would not allow us to find any minimal interventions.

Example 2. Consider again the non-spurious arbiter from Fig. 1 (right), the
cause C = r1 and the effect E = g1, and the trace π = {r1} · {r1, g1}ω.
Traces that falsify the effect are traces with only finitely many occurrences of
r1. However, if we follow the subset definition for minimal interventions (see
Definition 1), and values of atomic propositions at time point as the respec-
tive variables, we get that each trace of the form {r1}{r1, g1}k{g1} · {}ω has
a trace with less changes with respect to π, that also falsify the effect, e.g.,
{r1}{r1, g1}k+1{g1} · {}ω. Therefore, if we look for minimal interventions using
this naive reasoning, we will never find counterfactual traces.

As a solution, we link the satisfaction of the cause property to a distance
measure that partially orders counterfactual traces with respect to π. Because
this concept is applicable beyond the models and logics considered in this paper,
we give a general definition that can be applied to other domains as well.

Formally, we require the existence of a distance measure <C
π that conforms

with the underlying logic to detect minimal intervention traces. Such traces σ
are the closest to π according to <C

π that do not satisfy C, i.e., there is no ρ /∈ C
such that ρ <C

π σ. Generally, multiple traces might satisfy this criterion, so we
define a set of minimal interventions.



214 N. Coenen et al.

Definition 3 (Intervention Set). Let C be a cause property, let π � C be a
trace, and let <C

π be a distance measure that partially orders traces with respect
to π. The set V C

π of interventions on C with respect to π contains exactly all
minimal interventions with respect to π according to <π

C. That is

V C
π = {σ /∈ C | ∀ρ /∈ C. ρ �<C

π σ}.

4.2 Contingencies

Next, we discuss the treatment of contingencies in reactive systems. The moti-
vation behind contingencies is to isolate the truly causal behavior when there
is preemption of other potential causes on the actual trace. Contingencies allow
certain variables in the counterfactual trace to be reset to their value in the
actual trace, in this way mimicking the fact that the second potential cause
was preempted in the actual trace. To fully account for this preemption, it is
not sufficient that only the output value at a single position is changed to the
value in the actual trace: the future dynamics have to respect the contingency
by additionally changing the state the trace is in when a contingency is evoked.

For a given counterfactual trace, we inductively define the resulting contin-
gencies. Here, we assume a transition relation for the system that is not neces-
sarily memoryless, as we consider general trace logics for now. However, we do
assume that transitions only depend on the history of the trace and not on its
future. This corresponds to the non-recursive models assumed by Halpern and
Pearl. We thus extend the definition of transition function for Moore machines,
given in Sect. 2, to a transition function that relies on the whole sequence of
inputs and outputs observed so far.

Definition 4 (Contingency Set). Let δ∗ : (2I × 2O)∗ × 2I → 2O be a func-
tion that returns the possible next outputs (2O) according to the history of the
trace and the current input (2I), modeling the behavior of the system. Given an
intervention trace σ and an original trace π, we define the contingency set Cσ

π

where π′ = π′
0π

′
1 . . . ∈ (2I × 2O)ω is in Cσ

π if the following two conditions hold:

1. ∀j ∈ N: π′
j ∩ 2I = σj ∩ 2I ; That is, π′ has the same input sequence as σ.

2. ∀j ∈ N: (o ∈ π′
j ↔ o ∈ δ∗(π′

0 · · · π′
j−1 ·(π′

j∩2I)))∨(o ∈ πj); That is, the output
sequence of π′ is determined according to the behavior of the system, together
with“jumps” to the original trace π. Note that since the input sequence of σ
and π′ is the same, it holds that until the first jump to π, the output sequence
of σ and π′ is also the same.

Since a contingency only allows to reset outputs to their value in the actual
trace, the set of traces under a contingency is defined relative to the actual
trace π. The trace under the counterfactual input sequence σ, without modifica-
tions, is always part of the contingency set. Starting from this trace, contingencies
can be enforced at infinitely many positions.
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4.3 Actual Causality for Trace Properties

Minimality of the cause is defined simply based on strict set inclusion, and pro-
vides the last condition for our following definition of property-based causality.

Definition 5 (Property Causality). Let T be a system, π ∈ traces(T ) a
trace, C ⊆ (2I)ω a cause property, and E ⊆ (2O)ω an effect property. We say
that C is a cause of E on π in T if the following three conditions hold:

PC1: π � C and π � E, i.e., cause property and effect property are satisfied by
the actual trace.

PC2: For every counterfactual input sequence σ ∈ V C
π , there is some contin-

gency π′ ∈ Cσ
π s.t. π′

� E, i.e., the counterfactual trace under contingency
does not satisfy the effect property.

PC3: There is no C′ s.t. C′ ⊂ C and C′ satisfies PC1 and PC2.

As a consequence of our treatment of minimality, there is always a maximal
cause-property Cmax = (2I)ω that trivially satisfies PC1 and PC2. On the other
hand, the minimal relevant cause property for a given trace π is Cmin = {π|I},
i.e., the input sequence of the trace itself. This is because the empty set will
never qualify for PC1. However, this does not imply that there is a well-defined
minimal cause in all cases, because if the considered properties are expressive
enough, it may be possible to find a subset that satisfies PC1 and PC2 for any
candidate cause property, thus falsifying PC3.

It has been conjectured before that finding causes cannot be stated as a
trace property [10]. This hypothesis has intuitive appeal because most notions
of causality relate the actual world with counterfactual worlds based on certain
similarity metrics. For our proposed notion of trace-based causality, we answer
this intriguing question affirmatively in the following theorem and show that
even deciding whether a cause candidate is an actual cause cannot be stated as
a trace property.

Theorem 6. Given a cause-property C, an effect-property E, and some trace π,
there is no trace-property P such that for all systems T with π ∈ traces(T ) it
holds that T � P iff C is a cause for E on π in T .

Fig. 2. The systems T1 and T2 used in the proof of Theorem 6.
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Proof. By contradiction. Assume there is such a trace-property P for the cause-
property C = ¬a, the effect-property E = e, and the trace π = {}{e}ω.
Now, consider the two systems depicted in Fig. 2: T1 with I1 = {} and T2 with
I2 = {a}, and O1 = O2 = {e}. We have that C is a cause for E on π in T2,
because we can avoid E in this system with the counterfactual input sequence
σ = {a}{}ω ∈ V C

π . Note that contingencies do not matter in both systems
because they can only set the trace to a state which immediately satisfies E.
In T1, however, E cannot be avoided at all, hence C is not a cause for E in T1.
However, since traces(T1) ⊂ traces(T2), we have that T2 � P implies T1 � P. It
follows that C has to be a cause in T1, which contradicts the assumption. ��

In this section, we have presented a general framework that establishes causal
relationships between temporal properties given as sets of traces, on a given
actual trace. The key idea is to link satisfaction of the property to a distance
measure over potential counterfactual traces to obtain meaningful interventions,
and to allow for contingencies based on relaxing the dynamics of the model such
that it can jump back to states of the actual trace. The proposed concept can
conceivably be applied to a variety of models and corresponding logics with a
linear-time semantics. However, to allow algorithmic reasoning about the pro-
posed property causality, it is of course necessary to fix a finite representation
of the infinite traces and infinite sets, as we do in the following section.

5 Checking ω-Regular Causality

In this section we provide a decision procedure that allows us to check ω-regular
causes with respect to ω-regular effects, i.e., verify whether a given candidate
cause property is indeed a cause for an observed effect property on an actual
trace. We use causes and effects given in the logic QPTL (see Sect. 2), which is
equivalent to the class of ω-regular properties. Note that Linear Temporal Logic
(LTL), which is one of the standard specification languages for specifying tem-
poral properties in reactive systems, is subsumed by QPTL. We further assume
that our actual trace π is given in a finite, lasso-shaped representation (as defined
in Sect. 2). This is a common assumption when verifying LTL properties, since
if there exists a violation, in particular there exists also a lasso-shaped violation.
Model-checking tools (e.g. [18]) usually return such a structured trace. Due to
space constraints, we omit language-theoretic definitions in this section and pro-
vide definitions directly as HyperQPTL properties, as this allows us to directly
reason about their decidability.

5.1 Interventions

We now formalize our discussion of interventions from Sect. 4.1 for QPTL. Our
distance measure closely mirrors the original minimality criterion of Halpern and
Pearl over sets of variables (see Definition 1), i.e., a trace ρ is closer to the actual
trace π than some other trace σ if the events differing between π and ρ are a
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strict subset of the events differing between π and σ. We can formalize this with
the following HyperQPTL property.

ψmin(π, ρ, σ) =
( ∧

a∈I

(
(aρ �↔ aπ) → (aσ �↔ aπ)

))
∧

( ∨
a∈I

(aρ �↔ aσ)
)

However, to avoid the issue discussed in Example 2, we only order counter-
factual traces that share the same rejection structure with respect to the cause-
property C, i.e., if they satisfy the right-hand subformulas of every U (and the
derived temporal operators and ) appearing in ¬C at the same positions.1 To
formalize this requirement as a HyperQPTL property, let ϕU1

¬C(π), . . . , ϕUn

¬C(π) be
these subformulas appearing in ¬C, with their atomic propositions indexed by
the parameterized π. The two traces σ and ρ have the same rejection structure
with respect to C if they satisfy the following HyperQPTL property ψC

struct(ρ, σ).

ψC
struct(ρ, σ) =

∧
i∈[1,n]

(
ϕUi

¬C(ρ) ↔ ϕUi

¬C(σ)
)

Finally, we obtain an instantiation of the partial order <C
π for QPTL such

that for two traces σ, ρ: ρ <C
π σ iff ψmin(π, ρ, σ) ∧ ψC

struct(ρ, σ) holds. Note that
since we only compare traces with the same rejection structure, we can always
find minimal interventions, except if the cause property is a tautology.

Example 7. To illustrate how the above solves the problem raised in Example 2,
consider the traces σ = {r0, r1}k · {r0}ω and ρ = {r0, r1}k+1 · {r0}ω, both in
relation to π = {r0, r1}ω and the cause-property C = r1. While we still
have that ψmin(π, ρ, σ) holds, we have that ψC

struct(ρ, σ) does not hold because
σ and ρ satisfy ¬r1 at different positions. Hence, σ, ρ are not ordered by <C

π so
both are in V C

π . However, minimality still plays a key role such that we cannot
manipulate r0 in any valid intervention. Consider σ′ = {r1}k · {}ω. We have
that ψC

struct(σ
′, σ) holds since both traces have the same rejection structure with

respect to ¬C. However, the changes in σ imply changes in σ′, but not in the
other direction. Hence, ψmin(π, σ, σ′) and σ <C

π σ′, so only σ is in V C
π .

5.2 Contingencies

We formalize the behavior of contingencies for ω-regular properties using a gen-
eralization of counterfactual automata as introduced by Coenen et al. [9]. In
the original definition, they are restricted to systems whose states are uniquely
labeled and which have a state for every output combination. We avoid this
restriction by leveraging Halpern and Pearl’s thoughts on models in which there
exists no unique solution to the structural equations [16]. In these cases, they

1 This is related to the notion of acceptance for words in nondeterministic Büchi
automata [5], which recognize the class of ω-regular languages.
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Fig. 3. System T and the counterfactual automaton CT
π for π = {} · ({a}{a, e})ω.

propose to use existential quantification over the solutions. In the same manner,
we allow changing the underlying state of the trace to any state that is labeled
with the right outputs. Since this means there might be several successor states
for a given input and contingency combination, we formalize the counterfactual
automaton as a nondeterministic Moore machine.

Definition 8 (Counterfactual Automaton [9] for General Systems). Let
T = (S, s0,AP , δ, l) be a system and π = π0 . . . πi · (πj . . . πk)ω ∈ traces(T ) be
a lasso-shaped trace. The counterfactual automaton for π and T is a Moore
machine CT

π = (SC , sC
0 , IC ∪ O, δC , lC), such that:

– SC = S × {0 . . . k}, we have k copies of the original system;
– sC

0 = (s0, 0), paths start in the initial state of the first copy;
– IC = I ∪· {oC | o ∈ O}, additional inputs for setting an output as contingency;
– (s′, n′) ∈ δC((s, n), Y ) iff the following holds:

1. if n = k then n′ = j else n′ = n + 1, and
2. there is some s′′ ∈ δ(s, Y |I) such that for all oC ∈ Y : o ∈ l(s′) ↔ o ∈ πn

and for all oC �∈ Y : o ∈ l(s′) ↔ o ∈ l(s′′);
– lC((s, k)) = l(s), the labeling function is based on the original states.

The counterfactual automaton simulates arbitrary traces of the original sys-
tem T , which additionally can at every position choose to invoke a contingency
through the additional inputs in IC (see Condition 2), i.e., change the subsequent
path to a state whose label is as of the next state determined by the original
transition relation δ, but with all o ∈ O that have their corresponding input
oC ∈ IC enabled set to their value as in π. Since π is of a finite, lasso-shaped
form of length k + 1, we can construct this behavior based on k + 1 copies of
the original system and enforce that a path proceeds from one copy to the next
in every step (see Condition 1). In this way, the traces of the counterfactual
automaton describe the set of all possible counterfactual traces under arbitrary
contingencies. The idea is to then pick the subset of traces whose input behavior
corresponds to interventions as defined in the previous section.

Example 9. To illustrate the idea of counterfactual automata, consider system T
depicted in Fig. 3 and the trace π = {} · ({a}{a, e})ω. Since the trace has three
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positions, the counterfactual automaton CT
π consists of three copies of the original

system. It has a single additional input eC . Every step in CT
π moves through the

copies according to π’s lasso structure, e.g., the copies of the prefix are only
visited once on every path. If a trace does not set a contingency, it directly
corresponds to a trace in T , e.g., the trace π′ = {}ω is also a trace of CT

π .
However, setting contingencies allows to build traces in CT

π that do not have a
corresponding trace in T , e.g., π′′ = {} · ({eC}{e})ω �∈ traces(T ).

Note that there might be several states that satisfy Condition 2 in Defini-
tion 8. This means that the precision of our causal analysis depends on how much
state information the system exposes via its outputs: If every state is uniquely
labeled, then a contingency can only set the trace to the state as in the actual
trace and there is no ambiguity. Any system can be made amenable to this with
auxiliary output variables for the state space.

5.3 Minimality

Our approach to check the minimality of a given ω-regular cause property is
based on the observation that it suffices to find exactly one trace in C that can
be characterized by an ω-regular language R, which can be removed from C to
obtain a smaller ω-regular cause-property C′. This observation is formalized in
the following lemma.

Lemma 10. Let π be a trace and C a cause property that satisfies PC1 and PC2
for some effect-property E. Then, C satisfies PC3 if and only if ∀σ ∈ C,∀π′ ∈
Cσ

π . π′ � E and ∀σ ∈ C,∀σ′ ∈ V C
π . σ′ �<C

π σ.

Proof. “=⇒”: By contraposition. Let us distinguish two cases based on which of
the conjuncts is false. We show that in both cases we can remove some ω-regular
property R from C such that PC1 and PC2 still hold.

For the first case, assume there exist some σ ∈ C and π′ ∈ Cσ
π such that

π′ �� E. Since the quantified formula can be expressed as a HyperQPTL property
of CT

π , which encodes Cσ
π , we know that in particular there exists a witness σ that

can be characterized by an ω-regular property R = {σ}. We have σ �= π|I because
Cπ

π = {π} and π � E. Hence C′ = C\R, which is again an ω-regular property,
satisfies PC1, as π ∈ C′. For PC2, consider the set V ′ = {σ′ ∈ V C

π | σ <C
π σ′} of

intervention traces that follow the same structure as σ (and are less minimal).
If V ′ is not empty, we have V C′

π = (V C
π \V ′) ∪ {σ}, as σ is now a more minimal

intervention than traces in V ′. If V ′ is empty, we have V C
π = V C′

π . In both cases,
PC2 is still satisfied (as π′ serves as a contingency for σ in the former case)
which concludes this case.

For the second case, assume there exist some σ ∈ C and σ′ ∈ V C
π such that

σ′ <C
π σ holds. With the same reasoning as before, it follows that C′ = C\R with

R = {σ} is an ω-regular property. Note that V C
π = V C′

π , because the set V ′ above
has to be empty, as there is an intervention trace that is more minimal than σ.
Hence PC2 holds for C′. Also, π|I is by definition most minimal, hence σ �= π|I
and PC1 holds for C′.
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In both cases we have found a smaller ω-regular property C′ ⊂ C.
“⇐=”: By contraposition. Assume that there is some C′ ⊂ C that satisfies PC1
and PC2, and let σ ∈ C\C′. We distinguish between two cases, and show that in
any case one of the conjuncts is false.

First, assume V C
π = V C′

π . Therefore, as σ ∈ C, we have σ �∈ V C
π and thus

σ �∈ V C′
π . Now, consider all traces σ′ such that σ′ <C

π σ. There exists at least
one such σ′ with σ′ �∈ C′, otherwise σ ∈ V C′

π as a minimal intervention trace for
C′. Let σ′ be such a minimal trace, according to <C

π. Now, if σ′ was in C\C′,
then σ′ /∈ V C

π , but we would have σ′ ∈ V C′
π as a minimal intervention, again

a contradiction. Therefore, σ′ /∈ C, and since σ′ is minimal, we have σ′ ∈ V C
π .

Hence, we have found a σ for which there exists a σ′ ∈ V C
π such that σ′ <C

π σ,
thus the second conjunct is falsified.

For the second case, assume V C
π �= V C′

π . First, consider the case where there
is a trace σ′ ∈ V C′

π with σ′ �∈ V C
π . All traces σ′′ <C

π σ′ are in C′, and so they are
also in C as C′ ⊂ C. Then, σ′ ∈ C, as otherwise, as a minimal intervention for
C′, it would have also been a minimal intervention for C, and thus in V C

π . Then,
since C′ is a cause, there exists some contingency π′ for σ′, π′ ∈ Cσ′

π such that
π′ �� E, which concludes this case. For the other case, consider σ′ ∈ V C

π with
σ′ �∈ V C′

π . From σ′ ∈ V C
π we have σ′ �∈ C and thus σ′ �∈ C′. Since σ′ /∈ V C′

π , there
exists a more minimal trace σ′′ such that σ′′ ∈ C but σ′′ �∈ C′. Pick σ′′ as the
most minimal, hence we have σ′′ ∈ V C′

π . Since C′ is a cause, there exists some
π′′ ∈ Cσ′′

π such that π′′ �� E, which concludes this case. In both cases, we have
found a trace in C that has a contingency that avoids the effect, which falsifies
the first conjunct. ��

5.4 Deciding ω-Regular Causality

Putting everything together, we obtain that checking whether some C is a cause
for some E on a trace π in system T can be realized by checking whether the
counterfactual automaton CT

π satisfies a HyperQPTL property, as outlined in
the proof of the following theorem.

Theorem 11. The problem of verifying an ω-regular cause to an ω-regular effect
on a lasso-shaped trace is decidable as a HyperQPTL model-checking problem.

Proof. Assume ϕC and ϕE are QPTL formulas characterizing the cause and
effect properties, respectively, and let π be a lasso-shaped trace. We encode
the conditions PC1, PC2 and PC3 directly as a HyperQPTL formula PCC

E (π),
utilizing the insight from Lemma 10. The formula is parameterized by π for
brevity, however this can be translated to a proper HyperQPTL formula with
an additional universal quantifier and a QPTL formula enforcing equality with π.
This is possible because π has a lasso shape and can be characterized in QPTL.

In (1), we encode PC1: Both C and E have to be satisfied by the actual
trace π. In (2), we enforce that σ is a valid intervention trace with respect to π:
All other traces σ′ either satisfy C or are not more minimal with respect to π. We
then enforce PC2 and PC3. In (4) we state that all traces π′ in CT

π that satisfy
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C have to satisfy the effect, and in (3) we enforce that σ is not more minimal
than any trace σ′′ in C. Together this ensures PC3 due to Lemma 10. The left
part of (4) states that there must be a trace π′′ under contingency in CT

π that
violates E with the same input sequence as σ, which corresponds to PC2.

PCC
E (π) = ∀σ∀σ′∀σ′′∀π′∃π′′. ϕC(π) ∧ ϕE(π) ∧ (1)(

¬ϕC(σ) ∧
(
ϕC(σ′) ∨ ¬(ψC

struct(σ, σ′) ∧ ψmin(π, σ′, σ))
)

→ (2)
(
(ϕC(σ′′) → ¬(ψC

struct(σ
′′, σ) ∧ ψmin(π, σ, σ′′))) ∧ (3)

¬ϕE(π′′) ∧
∧
a∈I

(aπ′′ ↔ aσ)
))

∧ (ϕC(π′) → ϕE(π′)) (4)

We then model check the formula PCC
E against the counterfactual automaton

CT
π . Since model checking HyperQPTL is decidable [26], the theorem follows. ��

We conclude by demonstrating the usefulness of an expressive logic such as
QPTL for describing causes symbolically, as a similar expression of parity as in
the example below would not be possible with previous event-based logics [22].

Example 12. Consider the system T depicted in Fig. 3, the actual trace π =
{} · ({a}{a, e})ω, and the effect E = e. Disregarding contingencies, the effect
can only be avoided by never setting input a at all, i.e., with cause candidate C1 =

a and the resulting set of counterfactual traces V C1
π = {∅ω}. However, note

that the input a at every even position in the trace has no influence on the effect:
the system does not discern between the two input sequences {} · ({a}{a})ω and
{} · ({a}{})ω. However, that does not mean that the second a is not a potential
cause: in the input sequence σ = {} · ({}{a})ω it is the input that repeatedly
moves the trace to state labeled with e. In such situations as on the actual
trace π, we say that the second a was preempted by the first. Reasoning about
contingencies now allows us to find a more accurate cause for E on π. Consider
the cause-property C2 = ∃q.¬q ∧ ( q ↔ ¬q) ∧ (q → a), i.e., eventually a
holds at an odd position, we have V C2

π = {σ}. Following the above discussion
we have that the trace corresponding to the inputs of σ still satisfies the effect
property. However, in the counterfactual automaton we find a trace that agrees
with the inputs of σ but avoids the effect: π′ = {} · ({}{a, eC})ω ∈ traces(CT

π ).
We have π′ �∈ E. For a short argument why C2 is also minimal and therefore
the cause for E, consider what happens if we require a to appear at multiple
(or all) odd positions with C3 = ∃q.¬q ∧ ( q ↔ ¬q) ∧ (q → a). Now, valid
counterfactuals that negate C3 can be built by simply removing a at some, but
not all odd positions, e.g., σ′ = {}{a} · {}ω ∈ V C3

π . For these sequences, we
cannot find a trace in the counterfactual automaton that avoids the effect of the
remaining a’s at odd positions.
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6 Related Work

The increasing number of applications of causality to the formal analysis and
explanation of systems has been surveyed comprehensively by Baier et al. [3].
There are several works that define causality formally for computing systems.
Gössler and Métayer consider component-based systems and define causality on
the component level [12], which differs from our actual causality on the prop-
erty level. A general framework for counterfactual reasoning in multi-component
systems based on counterfactual builders has also been proposed [13], which in
particular highlights certain desirable properties of causal analyses. Groce et
al. use distance metrics to define the closest trace not producing the effect and
define the cause as the difference between the traces [14], which has similarities
to our definition of minimal interventions.

Related to our approach, Leitner-Fischer and Leue’s causality definitions offer
a symbolic description of counterfactual causes in Event Order Logic [22]. As
effects, they originally considered only violations of safety properties, but their
approach has been extended to LTL-definable effects [6]. In both works, the goal
of the symbolic causes is to give a high-level description of the orderings of events
that lead to a violation in the system, but less to give a precise characterization
of the causal input behavior on an observed, actual trace.

Coenen et al. [9] have considered the problem of identifying the actual cause
of a counterexample violating a hyperproperty. In their setting, the effect is a
hyperproperty while the cause is a concrete set of events appearing in a coun-
terexample. In this work, we consider symbolic causes given as trace properties,
and we adapt the counterfactual automata from this aforementioned work [9].

It has been noted before that probabilistic causality can be expressed as
a hyperproperty [1,11]. The considered version of probabilistic causation is
founded on the probability raising principle. However, this type of probabilistic
causation can also be expressed in branching-time temporal logics, as shown by
Kleinberg and Mishra [20]. For probabilistic systems, there has recently been
proposed a notion of causality that combines probability raising with the coun-
terfactuality principle [28]. To the best of our knowledge, the observation that
counterfactual causality is not a trace property [10] has not been formalized and
proven before.

7 Conclusion

Inspired by Halpern and Pearl’s definition of actual causality, we define causality
for reactive systems that gives symbolic descriptions of causal temporal behavior
as trace properties. We define interventions and contingencies to enable coun-
terfactual reasoning in this infinite setting. The key idea of our work is to link
satisfaction of a property with a distance measure over traces, to define the
closest counterfactual traces that do not satisfy the cause. We show that check-
ing causality for trace properties cannot itself be expressed as a trace prop-
erty but as a hyperproperty. Our definitions can be instantiated with explicit
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logics to express cause and effect properties. We present a decidable instantia-
tion with QPTL along with the corresponding automata-based constructions to
verify actual causes based on HyperQPTL model checking, covering the whole
practically relevant class of ω-regular properties. Future work includes examin-
ing ways of leveraging the existing research on hyperproperties when analyzing
causal relationships, and applying our conceptual framework to other domains.
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Abstract. We present PDAAAL, an open source C++ library and tool
for weighted reachability analysis of pushdown systems, including gen-
eration of both shortest and longest witness traces. We consider totally
ordered weight domains which have important applications, e.g. in net-
work verification, and achieve a speedup of two orders of magnitude
compared to the state-of-the-art tool WALi. Our tool further extends
the state of the art by supporting the generation of the longest trace in
case it exists, or reporting that no finite longest trace can be generated.
PDAAAL is provided both as a stand-alone tool accepting JSON files
and as a C++ library. This allows for integration in software pipelines as
well as in verification tools like AalWiNes.

1 Introduction

Pushdown automata are a fundamental model in computer science and they
are often used as an underlying formalism for data-flow analysis of recursive
programs [1,3,14,17], parsing of XML streams [11], modelling of network pro-
tocols [5,13] and others [9,12]. The verification questions on different types of
models can be reduced to reachability analysis for pushdown systems.

In order to support quantitative extensions of such systems, we need to study
weighted extensions of pushdown automata. In general, these weights are defined
over an idempotent semiring and we need to consider meet-over-all-paths values
for reaching certaing pushdown configurations. There is a rich literature of theory
showing the application of weighted pushdown automata [9,10,12,14] to various
application domains and several tools for the reachability analysis of pushdown
systems exist, including the tools Moped [16] used for the analysis of Java pro-
grams (in the jMoped framework [17]), WPDS++ [7] for program analysis as well
as its more recent successor WALi [8] employed in tools like ICRA [9] performing
interprocedureal compositional recurrence analysis and the static analysis tool
Phasar [14] for C/C++ programs.

We present an open source C++ library and stand-alone tool PDAAAL for
efficient reachability analysis of pushdown automata over the weight domain of
totally ordered idempotent semirings. The study of such totally ordered semir-
ings is fundamental and has important applications, e.g., in the context of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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verification of communication networks [5,13]. PDAAAL implements the clas-
sical pre∗ and post∗ saturation algorithms for unweighted pushdown systems,
including the new dual∗ algorithms [6] and extends these algorithms for weighted
reachability analysis, computing the weights of not only the shortest traces but
also the longest traces, while returning such trace witnesses in case they exist.
The study of longest traces is practically relevant, as it allows, for example, to
perform a worst-case analysis of the routing paths in a communication network,
e.g., in terms of delay or size of packet headers [5]. It is, however, also challenging
to analyze, as the longest trace may be unbounded and hence impossible to com-
pute directly. To the best of our knowledge, PDAAAL is the first tool providing
the exact computation of the longest traces as the debugging information.

We introduce the formalism of weighted pushdown systems (Sect. 2), present
the implemented algorithms and tool usage (Sect. 3) and compare the perfor-
mance of PDAAAL with the state-of-the-art tool WALi for weighted reacha-
bility analysis (Sect. 4) where we observe up to two orders of magnitude faster
performance. Finally, we elaborate on a specific use case in network verification
(Sect. 5) related to MPLS networks [5].

2 Weighted Pushdown Systems and Reachability

PDAAAL can accept weights from the domain of totally ordered idempotent
semirings S = (D,�,⊕,�,⊥). An example of a weight domain for computing
the shortest paths is S1 = (N ∪ {∞},min,+,∞, 0) where weights are natural
numbers including infinity, the weights are additive along a single path and
minimum is the meet-over-all-path operation. A domain for the computation of
the longest path is S2 = (Z ∪ {−∞},max,+,−∞, 0).

Definition 1. A Weighted Pushdown System (WPDS) over a weight semiring
S = (D,�,⊕,�,⊥) is a tuple (P, Γ,Δ) where P is a finite set of control loca-
tions, Γ is a finite stack alphabet, and the set of rules Δ is a finite subset of
(P × Γ ) × D × (P × Γ ∗), written 〈p, γ〉 d

↪−→ 〈p′, w〉, if ((p, γ), d, (p′, w)) ∈ Δ.

A configuration in a pushdown system is a pair 〈p,w〉 where p ∈ P is the
current control location and w ∈ Γ ∗ is the stack content (head of the stack on the
left). A WPDS induces a labelled transition system T = (P × Γ ∗,D,⇒), where
for all w′ ∈ Γ ∗ 〈p, γw′〉 d=⇒ 〈p′, ww′〉, provided that there is a pushdown rule

〈p, γ〉 d
↪−→ 〈p′, w〉. We write c0

d=⇒⊕cn if there is a path in the labelled transition
system c0

d1=⇒ . . .
dn=⇒ cn such that d = d1 ⊕ . . . ⊕ dn. The distance between two

configurations c and c′ is given by δ(c, c′) = ⊔{d | c
d=⇒⊕c′}. If S is a bounded

idempotent semiring (i.e. has no infinite descending chains), the distance is well
defined. If S is unbounded, the supremum may not be in the domain D; for
example in the semiring S2, the distance is ∞ if there is a positive-weight loop.

The problem solved by PDAAAL is: given a WPDS (P, Γ,Δ) and two regular
sets of configurations C,C ′ ⊆ P × Γ ∗, compute the distance ⊔{δ(c, c′) | c ∈
C, c′ ∈ C ′} and return a witness trace (if any) with this distance.
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3 Implemented Algorithms and PDAAAL Architecture

It is well known that the sets of all predecessors pre∗(C) and successors post∗(C)
of a regular set of pushdown configurations C are also regular [2]. The classical
pre∗ and post∗ saturation algorithms [1,4,15] solve reachability for pushdown
systems without weights. Schwoon [15] describes how to find a shortest wit-
ness trace for totally ordered weight domains by using a priority queue to select
the next step of the saturation. This is later generalized to bounded idempo-
tent semirings [12], and implemented in the tool WALi [8]. Here the saturation
algorithms use a workset where transitions may be added multiple times, hence
possibly loosing some efficiency compared to the priority queue that exploits
the total ordering. Extensions to unbounded semirings are considered in [10] by
detecting that exceeding a given number of iterations of the saturation algo-
rithm causes nontermination of the procedure. PDAAAL implements the ideas
from [10] to pre∗, post∗ as well as dual∗ (combination of the first two approches)
for unbounded but totally ordered weight domains.

To achieve a high performance, we employ numerous algorithmic optimiza-
tions. We extend the early termination and bidirectional-search (dual∗) tech-
nique from unweighted pushdowns [6] to shortest trace queries for weighted sys-
tems. The main challenge here is that the on-the-fly construction of the product
automata must keep track of the weight of the best path to any state, and the
saturation only terminates if the best weight of an accepting path is no higher
than the current weight in the priority queue in the saturation. For longest trace
queries the dual∗ approach simply interleaves the saturation of pre∗ and post∗

and returns when either of them terminates. We also efficiently handle rules that
apply to any top-of-stack label, using of a wildcard flag in the precondition, and
adapting the pre∗ and post∗ algorithms to efficiently handle wildcards.

PDAAAL is designed to be included as a library in other C++ projects, but
it also functions as a stand-alone tool with JSON parsers for pushdown systems
and P-automata (nondeterministic automata used to represent regular sets of
pushdown configurations). The tool has predefined weight domains for integers
and natural numbers as well as vectors of these. In all cases, the weight semiring
can either minimize or maximize the weight, depending on whether a shortest
or longest trace is required. Other weight domains can be defined by the user,
when PDAAAL is used as a C++ library.

As an example, a P-automaton for the following set of pushdown configu-
rations {〈p0, BA〉, 〈p0, A〉, 〈p1, A〉} can be defined either in JSON format, or by
using regular expressions for the stack, symbols ‘<’ and ‘>’ to denote configu-
rations, and the symbol ‘|’ to union multiple configuration sets: < [p0], [B]?
[A] > | < [p1], [A] >.

To run PDAAAL from the command line, an input file must be provided
along with the algorithm to use: -e 1 (post∗), -e 2 (pre∗), or -e 3 (dual∗) and
the trace type -t 0 (no trace), -t 1 (any trace), -t 2 (shortest trace), or -t 3
(longest trace). For instance to run the post∗ shortest trace algorithm: pdaaal
--input example.json -e 1 -t 2.
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Fig. 1. Performance plots of WALi (pre∗, post∗ and minimum of both) in thin lines,
compared to PDAAAL (pre∗, post∗ and dual∗) in thick lines; all instances on x-axis
are independently sorted by the increasing verification time that is plotted on y-axis
(log-scale) in seconds.

4 Comparison with State-of-the-Art

The first library for weighted pushdown systems, called WPDS [15], was provided
by Schwoon and used in Moped version 2. Later, WPDS++ [7] was developed by
Reps et al. and included further performance optimizations. The state-of-the-
art tool WALi [8] was developed as a successor of WPDS++ and it is used as a
backend in recent static analyzers ICRA [9] and Phasar [14].

We compare PDAAAL to WALi by running the shortest and longest trace
queries on weighted pushdown systems produced by AalWiNes [5] on a large
benchmark of real communication networks from ISP providers. All together,
we run 16,800 reachability queries on pushdown systems of varying sizes. WALi
does not support a generation of the longest traces, unless a bound on the weight
of the longest trace is known a priori. In order to enable this, we set the bound
to the highest possible value of 32bit integer. On contrary, the implementation
in PDAAAL is able to effectively compute a bound on the number of iterations,
and hence it guarantees the termination even for unbounded longest traces.

Figure 1 shows the results comparing WALi and PDAAAL. We consider both
the computation of shortest traces and longest traces where the weight domain
represents the latency (which is additive along a pushdown trace). PDAAAL
supports both pre∗, post∗ and dual∗ (interleaving of pre∗ and post∗), while WALi
does not support dual∗. We instead present the minimum of the verification
time of pre∗ and post∗, which shows an improvement on the largest instances for
the longest latency. For the shortest trace experiment, all variants of PDAAAL
saturation algorithms outperform WALi by several orders of magnitude. For the
longest traces, this is also the case for our dual∗ algorithm, even though the
post∗ algorithm times out about at the same instance as WALi. We can also
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observe that our pre∗ implementation is in general performing as good (or even
better) than our post∗, while this is not the case for WALi.

PDAAAL is available on https://github.com/DEIS-Tools/PDAAAL together
with specifications of input/output formats and how to run the tool. A repro-
ducibility package is available at https://doi.org/10.5281/zenodo.6833493.

5 Applications

Pushdown automata find broad and practical applications in many domains
where verification tasks are often reduced to a pushdown reachability analysis.
As an example, PDAAAL can be used to model MPLS networks, a popular
and widely-used type of communication network used by most Internet Service
Providers for efficient traffic engineering [5]. MPLS networks interconnect a set
of routers which forward packets, where packets contain stacks of labels which
can be pushed and popped, and the forwarding is based on the top-of-stack label.
Such networks can hence be modelled as pushdown systems.

PDAAAL can be used in combination with AalWiNes [5] as part of a what-if
analysis tool (behaviour under link failures) to ensure a dependable service and
policy-compliant routing. In particular, PDAAAL’s support for longest traces is
attractive to perform a worst-case analysis of the network’s routing behavior.
For example, PDAAAL can be used to compute the longest possible routes that
may occur under one or multiple link failures, both in terms of the number of
hops (which is directly related to the amount of bandwidth resources consumed
in the network) as well as in terms of the overall delay (an important metric for
latency-critical applications). Furthermore, PDAAAL can also be used to verify
further quantitative metrics of interest. An online demo is available at http://
demo.aalwines.cs.aau.dk.

Similar applications for the longest trace analysis also arise in other domains,
allowing to perform worst-case time analyses of possible control flows in recursive
programs or the execution of parsers of XML streams, shedding light on the
possible overheads of such operations.

6 Conclusion

We presented PDAAAL, a tool for reachability analysis of weighted pushdown
automata over possibly unbounded weight domains. Our tool can be used also
as a library, and it is integrated into a recent network analysis tool AalWiNes
that relies on pushdown systems produced from widely used MPLS networks.
Apart from being two orders of magnitude faster than the state-of-the-art com-
petitor, it supports the detection of the existence of longest traces which finds
practical applications in e.g., the analysis of network protocols. Our tool uses
unbounded but totally ordered weight domains but despite of this limitation,
it finds numerous applications and can in the case of totally ordered domains
replace the backend weighted engines like Moped, WPDS++ and WALi with a
generic, modern and efficient library.

https://github.com/DEIS-Tools/PDAAAL
https://doi.org/10.5281/zenodo.6833493
http://demo.aalwines.cs.aau.dk
http://demo.aalwines.cs.aau.dk
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Abstract. In active learning, an equivalence oracle is supposed to
answer whether a hypothesis model is equivalent to the system under
learning. Its implementation in real applications is considered a major
bottleneck for active automata learning. The problem is especially diffi-
cult in the context of learning timed automata due to the infinitely large
state space involved. In this paper, following the framework of combin-
ing mutation analysis and random testing, we propose an implementation
of equivalence oracle in the context of learning deterministic one-clock
timed automata (DOTAs). This includes two learning-friendly mutation
operators, a heuristic test-case generation method, and a score-based
test-case selection method. We implemented a prototype applying our
approach by extending an existing tool on active learning of DOTAs and
conducted extensive experiments. The results indicate that our method
improves upon existing methods on the rate of learning correct models,
the number of test cases required, and accumulated delay time in test
cases.

Keywords: Active learning · Timed automata · Model-based
mutation testing

1 Introduction

Active (model) learning [28] has emerged as a highly effective technique for learn-
ing the model of a system under learning (SUL). Most of active learning meth-
ods follow the L∗ framework proposed by Angluin [12]. The learning process to
achieve a hypothesis of the SUL can be viewed as an interaction between a learner
and a teacher, where the learner asks membership queries (MQs) and equivalence
queries (EQs) to a teacher who holds oracles to answer these queries. The former
corresponds to a single test of the SUL to check whether a sequence of actions
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can be executed. EQs check whether a learned hypothesis represents the SUL.
The teacher either answers affirmatively or generates a counterexample showing
the difference between the SUL and the hypothesis. Compared to active learning
of deterministic finite state automata (DFAs) [12], learning timed automata [7] is
much more complex since it involves an infinite set of timed actions and clock reset
information while the alphabets of DFAs is finite. Among the existing works [8–
10,16,17,29] on active learning of the different timed models, An et al. proposed
an active learning method for deterministic one-clock timed automata (DOTAs)
in [8]. Inherited from L∗, this method also assumes an ideal setting where the EQs
can be answered exactly by an oracle. However, exact equivalence oracles are usu-
ally unrealistic in most practical situations, which is a well-known problem that
learning methods based on L∗ in practice face and can be considered as “the true
bottleneck of automata learning” [13].

To address the issues mentioned above, various attempts have been carried
out. For real applications, one of the most widely studied approach for EQs
is conformance testing [1,13–15,22,25]. However, the size of the constructed
test suite is usually exponential in the number of states of the SUL, which
makes it inefficient in many industrial scenarios. Another limitation is that most
of the existing methods for timed systems do not consider the accumulated
delay time of test suites. Therefore, a new target for conformance testing is to
find counterexamples fast, rather than trying to prove equivalence [19]. Model-
based testing [27], a popular technique for automated test-case generation, can
be used as an approach for conformance testing. Commonly relying on some
coverage criterion, it produces new test cases until that criterion is satisfied.
Model-based mutation testing [2,3,23] uses faults as such a criterion: the original
model is modified by different fault injections, called mutation operators, which
results in a set of faulty models called mutants. In [6], Aichernig et al. combined
random testing and mutation analysis [11] to learn Mealy machines and show
their effectiveness. Here random testing is used to achieve high variability of
tests, while mutation analysis is used to ensure appropriate coverage.

In this paper, we propose a conformance testing approach combining random
testing and mutation-based testing to replace exact EQs in the active learning
of DOTAs. Even though many existing studies proposed mutation operators for
timed automata, which generate mutants covering specific faults [4,26,31], there
are many redundancies among these mutation operators, and the mutants gener-
ated by these operators are possibly non-deterministic. These make the existing
mutation operators not well-suited to the context of active automata learning.
Thus, we design two mutation operators to address DOTAs learning. The app-
roach we presented aims at finding counterexamples quickly, and reducing the
total amount of time of executing test cases, in addition to the reduction of tests
as in [6]. Moreover, to design the test suits, we take previous counterexamples
into consideration and the modifications between two successive hypotheses in
the learning procedure for DOTAs. Our contributions are summarized as follows.

– A heuristic algorithm for random test-case generation. We take counterexam-
ples into consideration and apply three heuristics to random testing, aiming
at generating more useful test cases.
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– Two learning-friendly mutation operators. In contrast to generating only first-
order mutants [4,26,31], which usually contain one fault, we take into account
the deterministic behaviours of the model and the modifications between two
successive hypotheses obtained in the learning process, so that more faults
are considered in the construction of mutants.

– A mutation and score-based selection of test cases. In addition to mutation
coverage, we also take the length and accumulated delay time of the test cases
into consideration to achieve faster testing.

– An implementation of our method. To investigate the effectiveness and effi-
ciency of our method, we extend the prototype tool for DOTAs learning [8]
and compare our method with various existing methods.

The rest of the paper is organized as follows. In Sect. 2, we review the learning
algorithm for DOTAs in [8] and the model-based mutation testing framework. In
Sect. 3, we describe the mutation-based testing in the context of active learning
of DOTAs in detail. In Sect. 4, we introduce two mutation operators used in
the mutation-based testing framework. The experimental results are reported in
Sect. 5. Finally, Sect. 6 concludes this paper.

2 Preliminaries

2.1 Deterministic One-Clock Timed Automata

In this paper, we consider a subclass of timed automata [7] that are deterministic
and contain only a single clock, called Deterministic One-Clock Timed Automata
(DOTAs). Let N be the natural numbers and R≥0 be the non-negative real
numbers. We use � to stand for true and ⊥ for false. Let B = {�,⊥}. Let
c be the clock variable, denote by Φc the set of clock constraints of the form
φ:: = � | c �� m | φ ∧ φ, where m ∈ N and �� ∈ {=, <,>,≤,≥}.

Definition 1 (One-clock timed automata). A one-clock timed automaton
(OTA) is a 6-tuple A = (Σ,Q, q0, F, c,Δ), where Σ is a finite set of actions,
Q is a finite set of locations, q0 is the initial location, F ⊆ Q is a set of final
locations, c is the unique clock and Δ ⊆ Q × Σ × Φc × B × Q is a finite set of
transitions.

A transition δ ∈ Δ is a 5-tuple (q, σ, φ, b, q′), where q, q′ ∈ Q are the source
and target locations respectively, σ ∈ Σ is an action, φ ∈ Φc is a clock constraint,
and b is the reset indicator. Such δ allows a jump from q to q′ by performing an
action σ if the current clock valuation ν satisfies the constraint φ. We also call φ
as a guard. Meanwhile, clock c is reset to zero if b = � and remains unchanged
otherwise. A clock valuation is a function ν : c 	→ R≥0 that assigns a non-
negative real number to the clock. For t ∈ R≥0, let ν + t be the clock valuation
with (ν + t) (c) = ν (c) + t. A state is a pair (q, ν), where q ∈ Q and ν is a clock
valuation. A timed action is a pair (σ, t) that indicates the action σ is applied
after t time units since the occurrence of the previous action. A timed trace is a
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sequence ω = (σ1, t1) (σ2, t2) . . . (σn, tn) of timed actions (σi, ti) ∈ Σ × R≥0. A
finite run ρ of A over a timed trace ω = (σ1, t1) (σ2, t2) . . . (σn, tn) is a sequence
of timed states and timed actions ρ = (q0, ν0)

σ1,t1−→ (q1, ν1)
σ2,t2−→ · · · σn,tn−→ (qn, νn)

where ν0 = 0, and for all 1 ≤ i ≤ n there exists a transitions (qi−1, σi, φi, bi, qi) ∈
Δ such that νi−1 + ti satisfies φi, and νi(c) = 0 if bi = �, νi(c) = νi−1(c) + ti
otherwise. Since time values ti represents delay times, we call such a timed trace
a delay-timed word. The delay-timed word is observed outside from the view of
the global clock. On the other hand, the behavior can also be observed inside
from the view of the local clock. This results in a logical-timed word of the form
γ = (σ1, μ1)(σ2, μ2) · · · (σn, μn) with μi = ti if i = 1 or bi−1 = �, otherwise
μi = μi−1 + ti. The time spent in a timed trace ω, denoted time(ω) is the sum
of all delays in ω, for example, time(ε) = 0 and time((a, 1.0)(b, 1.5)) = 2.5.

Definition 2 (Deterministic OTA). An OTA is a deterministic one-clock
timed automaton (DOTA) if there is at most one run for a given timed word.

A DOTA A is complete if for any location q and action σ, the constraints form
a partition of R≥0. Any incomplete DOTA A can be transformed into a com-
plete DOTA accepting the same timed language by adding a non-accepting sink
location qsink , and adding transitions to the sink location for each unavailable
action [8]. We therefore assume that we are working with complete DOTAs.

2.2 Active Learning Algorithm for DOTAs

In this section, we provide a brief description of the active learning algorithm [8]
for a black-box SUL which can be represented by a DOTA A. The existing
work distinguishes two learning scenarios: learning from a normal teacher or a
smart teacher. As the work in this paper concerns EQs only, it applies to both
normal teacher and smart teacher scenarios. For the experiments, we mainly
consider the case of smart teachers. In practical applications, this corresponds
to executing the test case, where information about clock-resets is known by
code instrumentation or watchdogs (refer to the concept of testable systems in
[15,18]). The learner maintains an observation table to collect the answers of
MQs. The table will be transformed to a DOTA H as a hypothesis if it satisfies
several preparedness conditions. The learner then performs an EQ by submitting
H to the teacher. In theory, we assume that the teacher holds an equivalence
oracle to answer EQs, returning whether the timed languages of H and A are
equivalent. If the answer is no, the teacher also returns a logical-timed word
with reset information as a counterexample. The learner then performs more
MQs guided by the counterexample. The learning loop terminates when an EQ
returns a positive answer. We refer to [8] for more details.

However, since such equivalence oracles may not exist in practical situations,
the equivalence oracle is often achieved through conformance testing, i.e., asking
a lot of MQs to answer a single EQ. If, for every MQ, the output produced
by the SUL is consistent with hypothesis H, the answer to the EQ is “Yes”.
Otherwise, the answer “No” is provided, together with a counterexample that
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indicates a difference between H and the SUL. In this paper, we address the
implementation of equivalence oracle through a combination of random testing
and mutation analysis.

2.3 Model-Based Mutation Testing

Model-based mutation testing [2,3,23] is a promising technique combining the
central ideas of mutation testing [21] and model-based testing [27]. By mak-
ing some adaptions, it can be regarded as an equivalence oracle in the context
of active learning. The process starts with the current hypothesis H. A set of
mutants from H are generated by mutation operators. Once all mutants are cre-
ated, the actual test suite generation starts. The original H is compared to each
mutant via an equivalence check (this can be done exactly since models for both
H and the mutant are available). If a mutant M is not equivalent to H, the
checking procedure returns a trace that serves as a witness, and this trace can
be converted into a test case.

The equivalence checks in the above process can be computationally expen-
sive. Therefore, the work in [6] considers a new model-based mutation testing
framework combined with random testing for learning Mealy machines, and the
experiments have demonstrated that a combination of random exploration and
mutation-based test-case generation is beneficial. Briefly, the framework includes
the following steps to generate test suites for conformance testing. First, it uti-
lizes random testing to generate a large set of test cases T. Then it analyzes
the mutation coverage of each test case in T, i.e., it executes each test case and
determines which of the mutants produces outputs different from H. Finally, the
test suite is created by selecting a subset of T based on the computed mutation
coverage. After that, the conformance testing between H and the SUL can be
conducted by executing test cases of the test suite on both respectively. The test
case producing different outputs between H and the SUL is a counterexample
to the equivalence, which is utilized to further refine the current hypothesis H.

3 Mutation-Based Testing for DOTAs

In this section, we introduce our mutation-based testing process for solving the
EQs in learning DOTAs. We first describe the whole process and then present
the heuristic method to generate test cases and the mutation-based selection of
the test suite. The details on the mutation operators and mutation generation
are described in Sect. 4.

3.1 The Process Overview

Following the idea in [6], we use a combination of random testing, to achieve
high variability of tests, and mutation analysis, to address coverage appropri-
ately. However, given the particular characteristics of DOTAs learning, that is,
counterexample processing will generate two kinds of modifications between two
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Fig. 1. The overview of mutation-testing-based equivalence checking for learning
DOTAs.

successive hypotheses, we have to design new mutation operators and adapt the
framework accordingly. The whole process is depicted in Fig. 1. The input for
this process is a hypothesis H, a learned intermediate DOTA, while the output
is the answer of an EQ.

1. From the model H, we first develop a heuristic test-case generation algorithm
to obtain a large set of test cases T (see Sect. 3.2).

2. Independently, we generate a set of mutants M from H based on the timed
mutation operator (see Sect. 4.1) and the split-location mutation operator
(see Sect. 4.2).

3. Using a score-based test-case selection method, together with mutation anal-
ysis, a subset Tsel of T is selected (see Sect. 3.3). The purpose is to select a
subset of test cases from T that are likely to distinguish between the original
hypothesis H and the mutants as the test suite to execute, i.e. to select the
test cases that cover the mutants.

4. Finally, we execute all test cases in Tsel on the hypothesis H and the SUL
respectively. A test case is a counterexample if producing different outputs
on the SUL and H. If such a counterexample is found, it is returned to the
learning algorithm. Otherwise, the EQ returns a positive answer.

Different from [6] using only one mutation operator for generating mutants,
we hereby use two mutation operators to cover the different possibilities of muta-
tions for timed automata. This produces a set of mutants helpful for generating
a more complete test suite that is able to find potential differences between H
and the SUL. Our experiments have shown that both mutation operators are
necessary for improving the rate of learning the correct model of the SUL. In
addition, to avoid interleaving complexity, instead of simultaneously using two
mutation operators to generate test cases, we divide the process into two phases
using two operators respectively. In our case, we choose to first use the timed
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Algorithm 1. Heuristic test-case generation

Input: hypothesis H = (Σ, Q, q0, F, c, Δ);
the previous counterexample ctx;
the maximal length len of “xy”
part of a test case; three probabi-
lity values pstart, pvalid and pstop.

Output: a test case t.

1: t ← ε;
2: qc ← q0; ν ← 0;
3: Qvisited ← ∅;
4: if prob(pstart) then t ← ctx;

5: for i ← 0 to |ctx| − 1 do

6: qc, ν ← execute((qc, ν), ctx[i]);
7: Qvisited ← Qvisited ∪ {qc};
8: while |t| < len do

9: if prob(pvalid) then
10: Δ′ ← {δ|δ = (q, σ, φ, b, q′) ∈

Δ ∧ q = qc ∧ q′ �= qsink};
11: else

12: Δ′ ← {δ|δ = (q, σ, φ, b, q′) ∈
Δ ∧ q = qc ∧ q′ = qsink};

13: if Δ′ �= ∅ then
14: (q, σ, φ, b, q′) ← getRandom(Δ′);
15: t ← getRandomDelay(ν, φ);

16: if t �= None then
17: t ← t · (σ, t);

18: qc, ν ← execute((qc, ν), (σ, t));
19: Qvisited ← Qvisited ∪ {qc};
20: if prob(pstop) then

21: break;

22: if Q\Qvisited �= ∅ then

23: qt ← getRandomLocation(Q\Qvisited);
24: ω ← findTimedTrace((qc, ν), qt);
25: if ω �= ε then

26: t ← t · ω;

27: return t;

mutation operator only, and if no counterexample is found, then use the split-
location mutation operator and repeat Step 2 to Step 4.

3.2 Heuristic Test-Case Generation

Random testing is a widely-used method and has been integrated in the learning
library LearnLib [20] as an EQ method for untimed models. In this section, we
apply three heuristics to generate test cases randomly, aiming at generating
more useful test cases. Algorithm 1 presents the generation process, containing
three main steps corresponding to the heuristics. The inputs include the current
hypothesis H and several relevant parameters, and the output is a test case
t ∈ (Σ × R≥0)∗ of the form xyz, where x is the prefix, y a random sequence of
timed actions, and z the suffix. Function prob(p) returns true with probability
p and false with probability 1 − p. The generation process is performed many
times to generate a large-size (can be parameterized by the user) test set T,
whose size is related to the number of actions and transitions, and the timing
parameters of H (see Sect. 5).

1. Firstly, according to our observation that a counterexample is often prefixed
with its previous counterexample, we reuse the previous counterexample ctx
as the prefix x with probability pstart (Line 4 to Line 7).

2. Then, consider for many reactive systems, from the current timed state, ran-
domly selecting an action is likely to transit to a sink location, since not all
timed actions can be executed or make sense at the current state. Therefore,
we prefer to explore non-sink locations with probability pvalid when using
random walking method to find timed actions (σ, t). Such timed actions form
the segment y extending the test case (Line 8 to Line 21). The parameter len



240 X. Tang et al.

Algorithm 2. Mutation and score-based test-case selection

Input: M; TM for all M ∈ M;
Vt for all t ∈ T.

Output: a subset of test cases Tsel .

1: Tsel ← ∅;
2: while M �= ∅ do
3: Mopt ← argminM∈M |TM|;

4: if TMopt �= ∅ and TMopt ∩ Tsel

= ∅ then
5: topt ← argmax t∈TMopt

Vt;

6: Tsel ← Tsel ∪ {topt};

7: M ← M\{Mopt};

8: return Tsel ;

limits the maximal length of the “xy” part. The exploring process stops with
probability pstop at the end of each round.

3. Finally, we add the path from the current location to a non-visited location
as suffix z to increase the coverage of each test case (Line 22 to Line 26).

3.3 Mutation and Score-Based Test-Case Selection

In order to improve the mutation coverage of test cases, we define a special
output function in response to a given delay-timed word. Let D = {+,−} be the
output domain, indicating whether the trace is accepted (+) or not (−).

Definition 3 (Output function). Given a test case (delay-timed word) t =
(σ1, t1) (σ2, t2) · · · (σn, tn) and a (complete) DOTA A = (Σ,Q, q0, F, c,Δ), cor-
responding a run ρ = (q0, ν0)

σ1,t1−→ (q1, ν1)
σ2,t2−→ · · · σn,tn−→ (qn, νn) in A, the output

function for the test case is defined as outA(t) = o1o2 · · · on, where oi = + if
qi ⊆ F and oi = − otherwise.

Given two models A1 and A2, we say t passes if outA1(t) = outA2(t), otherwise,
it fails and serves as a counterexample to the equivalence.

After the heuristic test-case generation described previously, we have
obtained a large-size test set T. However, it may contain just a small num-
ber of test cases that can be counterexamples due to the randomness. Therefore,
we further need to select a subset Tsel from T consisting of test cases that are
more likely to be counterexamples. Normally, the selection is based purely on a
kind of coverage, e.g. location or transition coverage. However, unlike testing for
Mealy machines [6,14] or other finite labeled transition systems, for timed sys-
tems, we should also consider the time elapsed in two consecutive input actions.
Therefore, the main objective in addition to the number of test cases is to reduce
the accumulated delay time of all test cases used in conformance testing, pro-
vided that the maximum mutant coverage is achieved. Our selection process is
based on a set of mutants of the hypothesis H. We leave the details of mutation
generation in Sect. 4 and suppose that a set of mutants M has been generated.

Algorithm 2 presents the mutation and score-based selection method, which
considers several factors of the test cases. At beginning, we need to prepare
the inputs. First, we associate each test case t ∈ T with a set of mutants Mt

covered by t, i.e. Mt = {M ∈ M | outH(t) �= outM(t)}, and associate each
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mutant M ∈ M with a set of test cases TM ∈ T that can cover M, i.e.
TM = {t ∈ T | outH(t) �= outM(t)}. Then, we use the following four attributes
to decide whether a test case t is selected: (1) time(t) is the total delay time
of t, (2) |t| is the length of t, (3) |Mt| is the mutation coverage of t, and (4)
|Ct| is the transition coverage of t. After normalization for the attributes, we
acquire the score Vt = a · (1− time(t)′)+b · (1−|t|′)+ c · |Mt|′ +d · |Ct|′, where
a,b, c,d are the weights. Upon obtaining TM for each mutant M and Vt for each
test case t, the algorithm follows the basic idea that the higher the score value,
the more likely the test case will be selected. So, at each round, first select the
mutant M covered by the least number of test cases (Line 3). If the currently
selected test cases Tsel cannot cover it, the test case t with the largest score Vt

is chosen from TMopt
and added to Tsel (Line 4 to Line 6). Then remove M

from M. The steps repeat until all mutants covered by at least one test case are
considered, i.e. the selected test cases have been able to achieve the maximum
possible coverage of the mutant set. Mutants that cannot be covered by any test
case are removed by constraint TMopt

�= ∅ in Line 4.

4 Learning-Friendly Mutation Operators for DOTAs

In order to provide the mutants of hypothesis H for the processes in Sect. 3, we
need to design suitable mutation operators for DOTAs. Considering the learning
method in [8], we find that counterexample handling will lead to generating two
kinds of modifications between the successive hypotheses H and H′. Similar
to the terms used in [24], the first is called expansive modification, which means
that H′ has more locations and/or transitions than H. While the second is called
non-expansive modification, which implies that only the timed constraints and/or
the reset indicators of some transitions differ between H and H′. Inspired by the
observations, we design two mutation operators. The first one is timed mutation
operator given in Sect. 4.1, which includes a series of mutation operations specific
to DOTAs learning, corresponding to the transition changes of the expansive and
non-expansive modification. The second, split-loaction mutation operator given
in Sect. 4.2, is closely related to [6], corresponding to the location change of the
expansive modification. In terms of the two designed operators, all the mutants
generated from H are still deterministic automata.

4.1 Timed Mutation Operator

Given the current hypothesis H, the timed mutation operator is conducted
on every transition in turn to generate mutants. Consider a transition δ =
(q, σ, φ, b, q′), the basic idea is as follows. For the timed interval φ, we will first
slice it into sub-intervals as a partition (see Definition 4), resulting in several
new transitions. Then we conduct two operations (see Definition 5) on each new
transition to generate mutants. One operation is to change the target location
of one transition, which helps us to modify the timed interval φ. The other oper-
ation is to change the reset indicator of one transition. Actually, we can also
apply the two operations to some transitions at the same time.
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Algorithm 3. Mutants generation via the timed mutation operator

Input: a DOTA H = (Σ, Q, q0, F, c, Δ);
the greatest integer constant B;
a slicing step w.

OUTPUT: a set of mutants M.

1: M ← ∅
2: for each δ = (q, σ, φ, b, q′) ∈ Δ do
3: Δs ← {(q, σ, φs, b, q

′) | φs ∈
Sg(φ, B, w)};

4: for each δs ∈ Δs do
5: Δm ← rt(δs) ∪ fl(δs)∪

fl ◦ rt(δs);
6: for each δm ∈ Δm do
7: M ← (Σ, Q, q0, F, c, Δ\{δ};

∪Δs\{δs} ∪ {δm});
8: M ← M ∪ {M};

9: return M;

Definition 4 (Slicing timed interval). Let B be the greatest integer constant
appearing in the DOTA to be learned (can also be set by the user), and w ∈ N>0

be the slicing step. Given a timed interval 〈α, β〉, where 〈∈ {(, [} and 〉 ∈ {), ]},
the slicing can generate a partition of 〈α, β〉 as follows:

– If β > B (including β = ∞), Sg(〈α, β〉, B,w)
= {〈α, α + w) | α + w ≤ B} ∪ {[α + w ∗ i, α + w ∗ i] | α + w ∗ i ≤ B, i ∈ N>0}
∪ {(α + w ∗ i, α + w ∗ (i + 1)) | α + w ∗ (i + 1) ≤ B, i ∈ N>0}
∪ {(α + w ∗ i, β〉 | α + w ∗ i ≤ B ∧ α + w ∗ (i + 1) > B, i ∈ N>0}

– If β ≤ B, Sg(〈α, β〉, B,w)
= {〈α, α + w) | α + w < β} ∪ {[α + w ∗ i, α + w ∗ i] | α + w ∗ i < β, i ∈ N>0}
∪ {(α + w ∗ i, α + w ∗ (i + 1)) | α + w ∗ (i + 1) < β, i ∈ N>0}
∪ {(α + w ∗ i, β〉 | α + w ∗ i < β ∧ α + w ∗ (i + 1) ≥ β, i ∈ N>0}

Therefore, for a transition δ = (q, σ, φ, b, q′) in H, φ is sliced into several
timed intervals Sg(φ,B,w). This implies that instead of δ, a new transition set
Δs = {(q, σ, φs, b, q

′) | φs ∈ Sg(φ,B,w)} with |Δs| = |Sg(φ,B,w)| is generated.
Obviously, if the slicing step w = 1, the intervals in Sg are regions [7].

Definition 5 (Timed mutation operations). Given a sliced transition δs =
(q, σ, φs, b, q

′) ∈ Δs, the timed mutation operator includes the following two oper-
ations: (1) Re-target: rt(δs) = {(q, σ, φs, b, q

′′) | q′′ ∈ Q\q′}; (2) Flop-reset:
fl(δs) = {(q, σ, φs, b

′, q′) | b′ ∈ B\b}.
Algorithm 3 presents the procedure generating mutants from H using the

timed mutation operator. First, for each transition δ, we build the sliced transi-
tion set Δs (Line 3). Second, for each sliced transition δs ∈ Δs, we conduct the
mutation operations rt and fl separately and both on it, and thus get a mutated
transition set Δm (Line 5). Then, for each mutated transition δm ∈ Δm, we can
build a mutant by removing δ, δs, and adding the new mutated transition δm

to the transition set (Line 7). Therefore, every mutant is obtained from H via
the options of changing the timed constraints, or flopping the reset indicator, or
adding new transitions, or a combination of the above three, so that the mutant
gets closer to the successor hypothesis H′. To simplify a mutant, we merge two
transitions if they have the same source location, target location, action, and
reset indicator respectively. For example, given two transitions (q, σ, [2, 4], b, q′)
and (q, σ, (4, 5], b, q′), the merged transition is (q, σ, [2, 5], b, q′).
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4.2 Split-Location Mutation Operator

The split-location mutation operator mainly involves modification on locations
while not the timed information on transitions, which was first introduced in
[6] for the learning of Mealy machines. To deal with DOTAs, we make some
modifications for the operator that includes the execution of the following steps:
(1) making abstraction from a DOTA to a DFA by labeling every transition with
a different abstract action u, (2) mutating the DFA using split-location operator
referring to [6], and (3) transforming the mutated DFA back to a DOTA as a
mutant of the original DOTA. In order to instantiate the split-location mutation
operator in our implementation and experiments, we also need two parameters:
nacc is an upper bound on the number of access sequences leading to a split
location and k is the length of a distinguishing sequence.

5 Implementation and Experiments

To further investigate the efficiency of the proposed method, we extend the exist-
ing DOTAs learning prototype tool in [8] with the proposed EQ implementation
and evaluate it on a set of DOTAs. The experiments are meant to check whether
the proposed technique is an effective implementation of equivalence oracle to
find counterexamples for incorrect hypotheses under the DOTAs learning set-
ting. The prototype tool and experiments are available on the tool page https://
github.com/Anna9697/mut learn DOTAs.

5.1 Case Studies

First, we evaluated the DOTAs learning with mutation-based testing on 18 ran-
domly generated DOTAs. We divided them into 6 groups depending on the
number of locations (|Q|), the number of untimed actions (|Σ|), and the max-
imum constant appearing in the models (B). In addition, there are also three
manually created examples from the real world: a lamp touch control model
(Lamp) from [5], a coffee vending machine model (Coffee) from [30], and the
model of TCP protocol (TCP) from [8].

For each case, we executed 15 times to acquire the average number of tests
(#tests) and actions (#actions), the average accumulated delay time in tests
(tdelay), and the number of correct models learned (nexact ). We used the same
exact equivalence oracle in [8] to judge whether the learned automata were com-
pletely correct or not. The related parameters to run the experiments are as
follows. To generate test cases via Algorithm 1, we set parameters pstart = 0.4,
pvalid = 0.8, pstop = 0.05 and len = 2·|Q|, where |Q| is the number of locations of
models in each group, and sampled delay-time value at a granularity of 0.5 with
the upper bound 1.5·B. We obtain a test suite T with size |T| = 30·|QH|·|ΣH|·B
by repeatedly calling Algorithm 1, where |QH| and |ΣH| are the number of loca-
tions and actions of the current hypothesis H respectively. In the mutation gener-
ation, for the timed mutation operator, we set the slicing step w to the minimal
duration of the constraints of the models1. While for split-location mutation
1 Set w = 1 if no additional information is known.

https://github.com/Anna9697/mut_learn_DOTAs
https://github.com/Anna9697/mut_learn_DOTAs
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Table 1. Experimental results of case studies.

Case ID Mutation new Mutants checking Heuristic random testing

#tests #actions tdelay nexact #tests #actions tdelay nexact #tests #actions tdelay nexact

6 2 10-1 443.1 2592.1 9012.3 15 2640.2 9295.9 28774.7 15 3372.0 14405.0 46005.1 15

6 2 10-2 559.9 3254.1 15934.2 15 3004.6 9141.6 36273.7 15 4204.3 20711.0 97402.2 15

6 2 10-3 967.1 6218.8 21540.9 15 9389.0 32769.5 94801.4 15 5640.5 34557.3 132976.6 12

6 2 20-1 1085.8 7475.5 41588.0 15 11616.6 42426.0 171239.0 15 6957.6 36032.3 206737.9 15

6 2 20-2 614.4 3669.9 21300.3 15 3572.5 13607.7 58794.7 15 6885.5 33562.3 181704.7 15

6 2 20-3 1428.3 8817.3 59688.2 15 12931.5 40198.2 233110.7 15 9529.8 53712.3 387141.1 15

6 2 30-1 859.6 6626.6 54486.0 15 4244.8 13544.9 100506.4 15 9238.7 61385.1 729274.2 15

6 2 30-2 2381.5 18481.1 181969.8 15 43635.6 155341.7 1236780.6 15 17205.5 112464.1 1346503.8 15

6 2 30-3 1321.1 7378.7 68047.2 15 9877.7 27839.6 259687.3 15 9600.3 41289.2 419800.6 15

6 4 10-1 1003.0 7129.3 24928.0 15 7582.0 19563.7 57116.9 15 6430.1 27362.5 90757.6 15

6 4 10-2 797.5 5618.1 15934.7 15 8857.2 24367.8 65591.0 15 6042.5 30837.7 103849.5 15

6 4 10-3 805.9 5299.8 18883.0 15 9668.0 27604.1 60054.4 15 6605.8 33476.7 124421.4 15

6 6 10-1 1052.0 5822.4 19984.1 15 13569.4 31987.9 70455.2 15 9058.4 40925.5 125318.0 15

6 6 10-2 956.8 5965.6 29055.3 15 16273.2 39944.4 151809.1 15 11260.3 50044.5 193209.0 15

6 6 10-3 1243.9 7204.4 25286.5 15 11422.4 25626.3 68280.0 15 9161.1 43958.1 166033.1 15

10 2 10-1 883.7 8550.7 24911.4 15 13000.7 61353.5 105297.1 15 5168.2 39441.7 128707.0 15

10 2 10-2 1512.5 12905.2 38655.8 15 5826.2 26173.5 50920.1 15 7016.8 50663.2 177461.2 15

10 2 10-3 1398.5 12173.1 49605.8 15 22901.7 96580.9 265156.0 15 8166.5 63442.1 253596.7 15

5 5 10-Lamp 568.3 3396.8 18240.8 15 3076.3 8113.6 31719.7 15 11776.9 51956.6 287967.0 15

4 7 10-Coffee 766.3 3585.8 12264.1 15 6329.7 13279.9 33141.1 15 7374.7 35100.8 126433.5 15

11 10 10-TCP 4525.6 26779.9 87720.3 15 160482.1 480235.5 841312.0 15 36427.1 206505.9 483336.1 15

operator, we set nacc = 8 and k = 1. In the mutation-based selection of test
cases, we set the weights with a = 0.4, b = 0.4, c = 0.6, and d = 0.2 to calculate
the scores.

We refer to our mutation-based testing for DOTAs learning as Mutation
new. We also set two baseline methods, Mutants checking and Heuristic ra-
ndom testing. In the former, we first generate mutants using the method in
Sect. 4 and then generate test cases by equivalence checking between the current
hypothesis and each mutant as introduced in [23]. Hence, a test case is a timed
word showing the violation of equivalence. In the latter, we directly use the test
cases T generated by repeating Algorithm 1 without any mutation or selection.
We compare our technique with the two baseline methods. To ensure the compa-
rability of the different techniques, the parameter settings are the same as those
mentioned previously.

The experimental results of the three methods are given in Table 1. It shows
that the three methods can learn the correct model in all cases except for one fail-
ure for Heuristic random testing on model 6 2 10-3. Our method takes the
least number of test cases, actions, and accumulated delay time on all cases,
beating the two baseline methods by about an order of magnitude. Among
the baseline methods, Mutants checking costs less on average than Heuris-
tic random testing, but the comparison is highly variable across cases. In
order to evaluate the quality of the incorrect learned model for 6 2 10-3, we ran-
domly generated extra 50000 test cases to test the learned model. The passing
rate is 99.27%. Additionally, we analyze why Heuristic random testing failed
once but Mutation new did not. As we know, for an EQ, Tsel is a subset of T.
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Fig. 2. Experimental results of the evaluation of improvements.

The found counterexamples for an EQ may be different using two methods, thus
leading to different hypotheses which will affect the learning process further.

5.2 Evaluation of Improvements

We continue to use the cases in Table 1 to evaluate the improvements of the
three main contributions in the context of learning: heuristic test-case generation
method, two special mutation operators, and score-based test-case selection. The
following three experiments are conducted:

E1. Comparison of the heuristic test-case generation and the baseline.
E2. Comparison of the algorithm with and without the two mutation operators.
E3. Comparison of the mutation and score-based test-case selection, the greedy

test-case selection, and without selection.

E1. Evaluation of the Heuristic Test-Case Generation. The quality of the test
cases T obtained using heuristic test-case generation is critical, as the test cases
we execute on the system are selected from T. In order to evaluate our heuris-
tic test-case generation method, we compare it with a purely random method
(randomly select actions and delay times to form timed traces) and the A&T’s
method (another random testing approach discussed in [6]). In other words, in
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the whole testing process, the experiments conducted only differ in the test-case
generation method. For A&T’s method, we set values to the parameters in the
method as pretry = 0.9, pstop = 0.05, linfix = |Q|/2, and maxSteps = 2 · |Q|. For
each case, the original test suites generated by the three methods are of the same
size. Still, for each case, we learn the models 15 times respectively using each
method and observe the times of the correct models are learned. The results are
shown in Fig. 2(a). It can be found that our heuristic method performs much
better than the other two methods on learning out correct models.

E2. Evaluation of the Two Mutation Operators. As described in Sect. 3.1, during
the process of mutation-based testing for DOTAs, we design and adopt two
kinds of mutation operators to generate mutants: timed mutation operator and
split-location mutation operator. We would like to evaluate the efficiency of the
two operators. For each case, we learn the models 15 times respectively using
only the timed mutation operator, or only the split-location operator, or both to
generate mutants, and observe the times of the correct models are learned. The
results, given in Fig. 2(b), shows that although for some cases we are able to learn
correct models 15 times using a single mutation operator, using two operators
together gives a significant improvement on the rate of learning correct models.
Therefore, it is necessary to use both operators in mutation-based testing in the
context of DOTAs learning.

E3. Evaluation of the Mutation and Score-Based Test-Case Selection. Our
mutation-score-based test-case selection algorithm considers various attributes
and guarantees mutation coverage at the same time. We compared the method
with a greedy test-case selection method [6] which only guarantees that the test
suite selected provides maximum coverage of the mutants. The experiments are
conducted differently only in the selection of test cases. Running all cases with-
out any test-case selection procedure is as the baseline. We run each experiment
for 15 times on each case and the results are shown in Fig. 2(c). Considering the
number of times the correct model is learned, both selection methods performed
better than the baseline (this is because the found counterexamples for an EQ
are different by different methods, which lead to different hypotheses and will
affect the learning process further). On most cases, our selection approach has
the least accumulated delay time except for case 6 6 10-3 and case 11 10 10-
TCP. However, for these two cases, we can still achieve better results than the
greedy test-case selection method by adjusting parameters.

6 Conclusion

We presented a conformance testing approach combining random testing and
model-based mutation testing, which can be used for EQs in the active learning
of DOTAs. The experimental results show the effectiveness and efficiency of our
two learning-friendly mutation operators and several heuristics in the generation
and selection of test cases. Since the performance depends on the instantiation
of parameters and we set parameters according to our experience, one possible
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future work is to determine automatic methods for setting or online adaption of
parameters according to the learning scenarios.
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Abstract. Active automata learning in the framework of Angluin’s L∗ algorithm
has been applied to learning many kinds of automata models. In applications to
timed models such as timed automata, the main challenge is to determine guards
on the clock value in transitions as well as which transitions reset the clock. In
this paper, we introduce a new algorithm for active learning of deterministic one-
clock timed automata and timed Mealy machines. The algorithm uses observation
tables that do not commit to specific choices of reset, but instead rely on constraint
solving to determine reset choices that satisfy readiness conditions. We evaluate
our algorithm on randomly-generated examples as well as practical case studies,
showing that it is applicable to larger models, and competitive with existing work
for learning other forms of timed models.

Keywords: Active learning · Timed automata · Constraint solving

1 Introduction

Within Angluin’s L∗ framework [7], active learning is a type of model inference to
learn an unknown language by making queries to a teacher. There are two kinds of
queries: membership queries and equivalence queries. For a membership query, the
teacher answers whether the queried word is in the target language. Usually, the learner
collects query results in an observation table. When the observation table satisfies some
readiness conditions, it can be transformed to a candidate automaton for an equiva-
lence query. The teacher answers whether the candidate automaton recognizes the tar-
get language, and returns a counterexample if the answer is negative. In recent decades,
the core algorithm has seen many technical improvements, has been extended to learn
different kinds of models, and has been applied to many realistic settings. We refer
to [17,20] for surveys.

For timed systems, timing constraints play a key role in the correctness of the sys-
tem. In general, automata learning of timed systems require learning a timed model
from either passive or active observations of the system, consisting of a collection of
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time-event sequences. The learned model should describe these timing behaviors cor-
rectly. Timed automata [2], extending DFAs with clock variables, is a popular formal
model of timed systems. However, there are several obstacles to active learning of timed
automata. Since the transitions of timed automata contain both timing constraints that
test the values of clocks, and resets that update the clocks, we need to determine (1)
the number of clocks, (2) the reset information, and (3) the timing constraints, none of
which are directly observable from time-event sequences. Hence, existing work con-
sider timed automata with different restrictions. Among them, An et al. introduced
an active learning algorithm for deterministic one-clock timed automata (DOTAs) [4].
They first suppose that the teacher can return reset information in the queries, then
the assumption is dropped by allowing the algorithm to search through possible com-
binations of reset information. However, this search process results in an exponential
blow up, limiting the scalability of the algorithm in practical applications. Vaandrager
et al. [21] considered a different class of timed models called Mealy machines with one
timer, and proposed a learning algorithm with polynomial complexity.

In this paper, we present a new active learning algorithm for deterministic one-clock
timed automata1. The main innovation of the algorithm is to maintain all available
observations in a single observation table, without committing to a particular choice
of resets. The readiness conditions of the observation table, such as closedness, con-
sistency, etc., are encoded as formulas in terms of variables for reset information and
location assignments. These constraints are then solved using SMT solvers to deter-
mine feasible assignments of resets and locations that make the observation table ready,
and from which a candidate automaton can be constructed. The learning algorithm is
guaranteed to terminate and return a correct automaton. While the theoretical worst-
case complexity of the algorithm is still exponential, by leveraging the efficiency of
SMT solvers, it is much more efficient than the algorithm in [4] in practice. In order to
apply the algorithm to learning real-time reactive systems, we extend it to timed Mealy
machines, which can be considered as an extension of Mealy machines with one clock,
or extension of deterministic one-clock timed automata to include inputs and outputs.

The algorithm is implemented and evaluated on a number of randomly generated
models and four models from practical applications. The experimental results show
that our algorithm is scalable to much larger models compared to [4]. Additionally, our
method successfully learns all four models from practical applications, with costs that
is competitive against algorithms designed for other forms of models.

The organization of the paper is as follows. We give some background material in
Sect. 2. The algorithm for learning DOTAs is described in Sect. 3, and its extension to
timed Mealy machines in Sect. 4. We describe the implementation and experiments in
Sect. 5, and finally conclude in Sect. 6.

Related Work. Active learning of timed systems has been studied on many kinds of
models with different restrictions. In [10,11], Grinchtein et al. proposed learning algo-
rithms for event-recording automata (ERAs) [3], a kind of timed automata associating
every action a with a clock xa that records the length of time since the last occurrence
of a. Henry et al. considered in [12] reset-free ERAs, where some transitions may reset

1 The full version is available at https://arxiv.org/abs/2208.00412.
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no clocks. An et al. introduced a learning algorithm for deterministic one-clock timed
automata (DOTAs) in [4], but due to the brute-force search over choice of resets, the
algorithm is limited to timed automata with a small number of locations. For real-time
automata (RTA) [8], efficient learning algorithms have been designed in both the deter-
ministic [5] and nondeterministic case [6]. Recently, Vaandrager et al. introduced a new
kind of timed models named Mealy machine with one timer (MM1T), and proposed an
efficient active learning algorithm for such models [21]. It extends Mealy machine with
a single timer which can be set to an integer value at transitions.

Passive learning has also been investigated for learning timed automata based on
different methods [1,18,22–24]. Constraint solving has been used extensively in pas-
sive learning. For example, Smetsers et al. used this technique in passive learning of
DFAs, Mealy machines and register automata [16], by encoding the existence of an
automaton with n locations consistent with a set of observations in a logical formula.
Recent work [19] also applied constraint solving to passive learning of timed automata.
Compared to these works, we remain in the active learning setting, encoding constraints
for the readiness of observation tables rather than consistency with a set of observations.
Our work demonstrates that constraint solving can be fruitfully applied in active learn-
ing, determining not only location assignments but also other hidden parts of the model
such as clock-reset information.

2 Preliminaries

In this section, we introduce several concepts of one-clock timed automata. Let R≥0 and
N be the set of non-negative reals and natural numbers, respectively. The set of boolean
values is denoted as B = {�,⊥}, where � stands for true and ⊥ for false.

Let c be the single clock variable, denote by Φc the set of clock constraints of the
form φ:: = � | c �� m | φ ∧ φ, where m ∈ N and �� ∈ {=, <,>,≤,≥}. Since there
is only one clock, a clock constraint can be represented as an integer-bounded interval
whose endpoints are in N ∪ {∞}. For example, c ≤ 5 ∧ c > 4 is represented as (4, 5],
c = 6 as [6, 6], and � as [0,∞). We will use inequality and interval representations
interchangeably in this paper. Let the finite set of actions Σ be fixed.

Definition 1 (One-clock timed automata [4]). A one-clock timed automaton (OTA) A
is a 6-tuple (Σ,Q, q0, F, c,Δ), where Σ is a finite set of actions, called the alphabet;
Q is a finite set of locations; q0 ∈ Q is the initial location; F ⊆ Q is a set of accepting
locations; c is the unique clock; and Δ ⊆ Q × Σ × Φc × B × Q is a finite set of
transitions.

A transition δ = (q, σ, φ, b, q′) allows a jump from the source location q to the target
location q′ by performing the action σ ∈ Σ if the guard φ ∈ Φc is satisfied. Meanwhile,
clock c is reset to zero if b = �, and remains unchanged otherwise. Clock valuation is
a function ν : c → R≥0 that assigns a non-negative real number to the clock. A state of
A is a pair (q, ν), where q ∈ Q and ν is a clock valuation.

Given an OTA A, with κ being the maximum constant appearing in the guards, then
the clock valuations can be divided into regions, where each region is of the form [n, n]
for n ≤ κ, or (n, n + 1) for n < κ, or (κ,∞). This gives a partition of R≥0. For clock
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valuation ν, we denote by �ν� the region containing it. Regions are commonly used in
algorithms for analyzing timed automata, making the state space essentially finite.

Given a timed word ω = (σ1, t1)(σ2, t2) · · · (σn, tn) ∈ (Σ × R≥0)∗, where ti rep-
resents the delay time between two actions σi−1 and σi, there is a run of A such that

ρ = (q0, ν0)
t1,σ1−−−→ (q1, ν1)

t2,σ2−−−→ · · · tn,σn−−−→ (qn, νn), where ν0(c) = 0, only if
(1) (qi−1, σi, φi, bi, qi) ∈ Δ, (2) νi−1(c) + ti satisfies φi, (3) νi(c) = νi−1(c) + ti
if bi = ⊥ and νi(c) = 0 otherwise, for all 1 ≤ i ≤ n. Let |ω| denote its length.
When the timed automaton A is known, each timed word ω can be extended by
including the reset information bi, indicating whether there is a reset after taking
the transition for (σi, ti). We denote the corresponding reset timed word as ωr =
(σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn). If qn ∈ F , then ω is an accepting timed word
of A. The (recognized) timed language L(A) is the set of accepting timed words of A.

Fig. 1. An example of complete
DOTA

An OTA is a deterministic one-clock timed
automaton (DOTA) if there is at most one run for
any timed word (equivalently, if the guards of tran-
sitions from any location under the same action do
not intersect each other). Two DOTAs are equivalent
if they recognize the same timed language. A DOTA
is complete if for any q ∈ Q and action σ ∈ Σ, the
corresponding guards form a partition of R≥0. This
means any given timed word has exactly one run.
Any DOTA A can be transformed into a complete
DOTA (COTA) accepting the same timed language
by introducing a non-accepting “sink” location and
letting all invalid or non-described behaviors go to the sink. We therefore assume that
we are working with complete DOTAs. Figure 1 shows a DOTA A, with q2 added as
the sink location to make it complete.

The classic method of active learning is L∗ algorithm [7] which can be regarded
as an interaction between a learner and a teacher, where the teacher can answer mem-
bership and equivalence queries. In a membership query, the learner can ask if a word
belongs to the target language, or if a constructed automaton accepts that language as
an equivalence query. The teacher can answer “yes” or “no” for the queries and return
counterexamples for the equivalence queries. The learner collects query results and
counterexamples in the observation table consisting of three sets of words: a prefix-
closed set S, a set R and a suffix-closed set E. Each word in S corresponds to a unique
location. Words in R can be considered the “boundary” of S, and E contains suffixes
to distinguish different words in S ∪ R.

An et al. [4] described an active learning algorithm for DOTAs. Inherited from L∗,
in a membership query, the teacher is given a timed word. We use MQ : (Σ ×R≥0)∗ →
{+,−} to denote the function mapping timed words to + if it is accepted, and − other-
wise. In an equivalence query, the teacher receives a hypothesis DOTA H, and return a
counterexample in the negative case in addition. In that work, a “smart” teacher is first
assumed, who also returns the reset information for any timed word given as member-
ship query. With this reset information, an observation table can be maintained where
each row in S ∪ R and each column in E is a logical timed word, which contains the
clock valuation after each transition rather than the delay times. When the observation
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table satisfies readiness conditions, a candidate automaton is constructed in a manner
similar to the learning of symbolic automata [9]. Next, in the “normal” teacher setting,
where the teacher does not return reset information, the algorithm searches over all
possible choices of resets for timed words in S ∪ R, constructing one observation table
for each. Due to the large time and memory requirements, the algorithm has limited
scalability (up to six locations for the randomly constructed examples in the paper).

3 Learning Algorithm

In this section, we describe a new algorithm for active learning of DOTAs by incor-
porating constraint solving using SMT solvers. The main idea of the algorithm is to
maintain a single observation table that collects all results from previous membership
queries, rather than one observation table for each possible choice of resets. Instead, the
reset information is encoded as boolean variables with unknown values. At any time,
the observation table may be ready for some choice of resets, but not for others. We
encode the readiness conditions for the observation table as a formula on the variables
for reset information, as well as for the location assignments of rows in the table. An
SMT solver is then used to solve these constraints, returning a choice of resets that make
the table ready, as well as a candidate automaton that can be sent for equivalence query.

Several difficulties must be addressed in order to realize this idea. In particular,
whether two rows in the observation table are distinguishable is no longer clear-cut, but
may depend on the choice of resets. This also means the partition of rows into S and R
in the traditional L∗ algorithm need to be extended, by adding a category S+ of rows
that are distinguishable from rows in S only for some choice of resets, that are needed
for building candidate automaton.

In the remainder of this section, we first discuss comparison of timed words without
being certain of clock-reset information, then extensions made to the observation table,
method of encoding readiness constraints, and finally the main algorithm together with
termination and complexity analysis.

3.1 Alignment and Comparison of Timed Words

In the L∗ framework, one key step is to determine if two words w1 and w2 belong
to different equivalence classes of the target regular language, i.e., arrive at different
locations of the underlying target DFA A. It is achieved by membership queries via
testing words w1 and w2 after appending some suffix e. If w1 · e is an accepting word
and w2 · e is not (or vice versa), then w1 and w2 must arrive at different locations.

In our case, suppose A is the target DOTA to be learned. Given two timed words ω1

and ω2, we wish to determine whether they arrive at different locations of A. However,
since the reset information is not observable when running timed words ω1 and ω2, the
values of the clock at the end is unknown. If the values of the clock are not the same,
the result of running ω1 · e and ω2 · e may be different even if ω1 and ω2 arrive at the
same location. In order to effectively test using the suffix e, we need to suppose that
the last time when the clock resets in ω1 and ω2 are known, and then align the values
of the clock before executing the suffix e. We state these concepts more formally in the
following definitions.
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Definition 2 (Last reset of a timed word). Given a timed word ω = (σ1, t1)(σ2, t2)
· · · (σn, tn), and DOTA A. Let ωr = (σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn) be the reset
timed word that results from running ω on A. The last reset kA(ω) is defined to be 0 if
bi = ⊥ for all 1 ≤ i ≤ n, and kA(ω) = i if bi = � and bj = ⊥ for all j > i.

Suppose the last reset kA(ω) is known for a timed word ω, then we can compute
the value of clock after executing ω on A. Let νc(ω, i) be the value of clock after
executing ω if the last reset equals i. This is computed as the sum of ti+1 to tn, where
n is the length of ω (if i = n, for the case where the last reset occurs after (σn, tn),
then νc(ω, i) = 0). Hence, given two timed words ω1 and ω2 with known values of last
resets i1, i2, it is possible to align the two timed words for testing a suffix e.

Definition 3 (Alignment for testing on a suffix). Consider two timed words ω1, ω2,
and suppose their last resets are i1, i2 respectively. Let e = (σ1, t1)(σ2, t2) · · · (σm, tm)
be a nonempty suffix. Let ν1 = νc(ω1, i1) and ν2 = νc(ω2, i2). Then form the suffixes
e1, e2 depending on the following cases:

– If ν1 > ν2, then let e1 = e and e2 = (σ1, t1 + (ν1 − ν2)) · (σ2, t2) · · · (σm, tm).
– If ν1 < ν2, then let e1 = (σ1, t1 + (ν2 − ν1)) · (σ2, t2) · · · (σm, tm) and e2 = e.
– If ν1 = ν2, then let e1 = e2 = e.

Define a test T (ω1, ω2, i1, i2, e) between ω1 and ω2 with suffix e and last resets i1, i2
as follows. If e is nonempty, then the test compares results for two membership queries
ω1 · e1 and ω2 · e2. The test succeeds, i.e. T (ω1, ω2, i1, i2, e) = �, if MQ(ω1 · e1) =
MQ(ω2 ·e2). Otherwise T (ω1, ω2, i1, i2, e) = ⊥. If e is empty, the test simply compares
the results for membership queries ω1 and ω2.

It is clear that with the definition of e1 and e2, the value of clock when executing
the first timed action of e1 and e2 during the tests must be the same. Hence, if ω1 and
ω2 arrive at the same location, then the behavior on e1 and e2 must be the same as well.
Hence, we obtain the following lemma.

Lemma 1 (Distinguishable timed words). If the test T between ω1 and ω2 with suffix
e and last resets i1, i2 fails, then for any DOTA A such that i1 = kA(ω1) and i2 =
kA(ω2), the timed words ω1 and ω2 must arrive at different locations in A.

Example 1. Consider two timed words ω1 = (a, 4) and ω2 = ε. They are both accepted
by A in Fig. 1. Consider suffix e = (a, 5.5). If the last resets are i1 = 0 and i2 = 0
(the correct reset for A), then e1 = (a, 5.5) and e2 = (a, 9.5), and MQ(ω1 · e1) =
+, MQ(ω2 · e2) = −, so they can be distinguished, and indeed ω1 and ω2 arrive at
different locations as required by Lemma 1. If the last resets are i1 = 1 and i2 = 0,
then e1 = e2 = (a, 5.5), and MQ(ω1 · e1) = MQ(ω2 · e2) = +, so they cannot be
distinguished. Hence, when we do not know the true reset information, whether ω1 and
ω2 are distinguishable by e = (a, 5.5) depends on the choice of resets. �

Since A is unknown during learning, we need to iterate over all possible combina-
tions of last resets. For two timed words ω1 and ω2, we define the set of valid combina-
tions of last resets as follows.
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Definition 4 (Valid combinations of last resets). Consider two timed words ω1, ω2

and suppose the length of the longest common prefix of ω1 and ω2 is m. Then the set
C(ω1, ω2) of valid combinations of last resets is

C(ω1, ω2) = {(i1, i2) | 0 ≤ i1 ≤ |ω1|∧0 ≤ i2 ≤ |ω2|∧(i1 ≤ m∧i2 ≤ m ⇒ i1 = i2)}.

Example 2. Suppose ω1 = (a, 4) and ω2 = (a, 4)(a, 5.5), then m = 1, and the set
of valid combinations are C(ω1, ω2) = {(0, 0), (0, 2), (1, 1), (1, 2)}. In particular (0, 1)
or (1, 0) are not allowed, since they give contradicting reset choices for the transition
taken by (a, 4). �

3.2 Timed Observation Table

Definition 5 (Observation table). An observation table O = (S, S+, R,E, f,N) is a
6-tuple, satisfying the following conditions:

– S, S+, R are disjoint finite sets of timed words called prefixes. S ∪ S+ ∪ R is prefix-
closed and ε ∈ S. If ω ∈ S ∪ S+ and σ ∈ Σ, then ω · (σ, 0) ∈ S ∪ S+ ∪ R.

– E is a finite set of timed words called suffixes, with ε ∈ E.
– f is a function mapping pairs ω1, ω2 ∈ S ∪ S+ ∪ R and (i1, i2) ∈ C(ω1, ω2) to B,

indicating whether ω1 and ω2 are currently distinguished under last resets i1, i2.
– N is the current limit on the number of locations in the candidate automaton.

The value f(ω1, ω2, i1, i2) is computed as follows. For each suffix e ∈ E, test the
pair ω1, ω2 under last resets i1, i2 and suffix e as in Definition 3. If T (ω1, ω2, i1, i2, e) =
� for all e ∈ E, then f(ω1, ω2, i1, i2) = �, otherwise f(ω1, ω2, i1, i2) = ⊥.

Definition 6 (Certainly distinct rows). Given an observation table O, two rows
ω1, ω2 are certainly distinct if f(ω1, ω2, i1, i2) = ⊥ for all i1, i2 ∈ C(ω1, ω2).

We first explain the different components of O in an intuitive way. The set S con-
tains timed words that are certainly distinct from each other. The set S+ are additional
rows in the observation table that are distinct from rows in S under some choice of
resets, that are required to be in the interior for some candidate automata. The set R
is the boundary of the observation table as usual for L∗ algorithms. The condition that
ω · (σ, 0) ∈ S ∪ S+ ∪ R is analogous to the condition that ω · σ ∈ S ∪ R in the DFA
case. It enforces that information is available to construct the transitions in the candidate
automaton for each location and action σ ∈ Σ.

Fig. 2. Left: an instance of observation table O during learning of A in Fig. 1; Right: candidate
DOTA constructed from the table after moving (a, 4)(a, 5.5) to S+.
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Example 3. Figure 2 shows an instance of the observation table. The rows of the table
are timed words in S, S+ and R (here S+ is empty). The columns of the table are
indexed by the same timed words. Each cell in the table summarizes when two timed
words are distinguished (the function f ), using formulas in terms of reset variables
b introduced in Sect. 3.3. The table also shows the list of suffixes E. For example,
for timed words (a, 4) and ε, we need to compare them on suffix (a, 5.5) after align-
ment. According to the analysis in Example 1, we have f((a, 4), ε, 0, 0) = ⊥ and
f((a, 4), ε, 1, 0) = �. This is summarized as the expression b3. �

The main difference between the observation table defined here and the usual ones
for L∗ algorithms is that we do not record a particular query result for each prefix in
S ∪ S+ ∪ R and suffix E, as these results cannot be used effectively without knowing
reset information. In contrast, we maintain which pairs of rows can be distinguished
for each possible choice of reset information. This can be contrasted with the approach
in [4]. Rather than maintaining a copy of the observation table for each combination of
reset information, our method records all information obtained so far in a single table,
with reset information determined by constraint solving.

3.3 Encoding of Readiness Constraints

To obtain a hypothesis DOTA H from observation table O, we should provide an assign-
ment for the location and reset information of each timed word in S ∪ S+ ∪ R, which
ensure readiness conditions for the table, such as closedness and consistency. The main
idea is to encode such readiness conditions as formulas in terms of location and reset
assignments, and then use SMT solvers to find feasible solutions to these constraints or
prove that they are not satisfiable. The constraints are stated in terms of two variables
for each row ω ∈ S ∪ S+ ∪ R: an ending reset variable bω and a location variable qω .

Definition 7 (Ending reset variable and location variable). Given a timed word ω =
(σ1, t1) . . . (σn, tn) ∈ S ∪ S+ ∪ R, define the ending reset variable bω ∈ {�,⊥} to
denote whether clock resets after running the final timed action (σn, tn) (for the empty
timed word ε, we declare bε = �). Define the location variable qω ∈ {1, . . . , N} to
represent the location after running ω in the candidate automaton.

Since the set of timed words S ∪ S+ ∪ R is prefix-closed, the ending reset variables
{bω}ω∈S∪S+∪R in fact determine whether the clock resets after each timed action for
each row in S ∪S+ ∪R. In particular, we can encode the last reset for ω in terms of the
ending reset variables.

Definition 8 (Encoding of last reset). Given ω = (σ1, t1)...(σn, tn) ∈ S ∪ S+ ∪ R.
Let ω|i for 0 ≤ i ≤ n be the prefix of ω with length i. Since S ∪S+ ∪R is prefix-closed,
we have each ω|i ∈ S ∪ S+ ∪ R as well. Let lr(ω, i), encoding the condition that the
last reset of ω equals i, be defined as follows.

lr(ω, i) � bω|i ∧
∧

i<j≤n

¬bω|j .
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For each pair of rows ω1, ω2 ∈ S ∪ S+ ∪ R and each pair of last resets (i, j) ∈
C(ω1, ω2), the condition that the last resets of ω1, ω2 equal i, j respectively is encoded
as follows.

LR(ω1, ω2, i, j) � lr(ω1, i) ∧ lr(ω2, j).

Based on the encoding of last reset, the readiness constraints for the observation
table can be encoded in terms of the above variables as follows.

Constraint 1 (Distinctness of rows). Given timed words ω1, ω2 ∈ S ∪ S+ ∪ R, and
last resets i, j ∈ C(ω1, ω2), suppose f(ω1, ω2, i, j) = ⊥ (meaning ω1 and ω2 can be
distinguished under last resets i, j in the observation table), then we have the following
constraint, indicating ω1 and ω2 cannot be assigned to the same location.

C1(ω1, ω2, i, j) � LR(ω1, ω2, i, j) ⇒ qω1 = qω2 .

Define the constraint C1 to be the conjunction of all C1(ω1, ω2, i, j), for all pairs of
rows and valid last resets that can be distinguished.

C1 �
∧

ω1,ω2∈S∪S+∪R,
(i,j)∈C(ω1,ω2),
f(ω1,ω2,i,j)=⊥

C1(ω1, ω2, i, j).

Constraint 2 (Consistency). Given timed words ω1, ω2 ∈ S ∪ S+ ∪ R and last resets
i, j ∈ C(ω1, ω2). Suppose ω′

1 = ω1 · (σ, t1) and ω′
2 = ω2 · (σ, t2) also appear in

S ∪ S+ ∪ R, for some σ ∈ Σ and t1, t2 ∈ R≥0. Suppose that under the last resets i, j,
the value of clock after executing last timed action of ω′

1, but before possible resets, is
in the same region as that for ω′

2, then if ω1 and ω2 also go to the same location, the
transition to be carried out for the last timed action of ω′

1 and ω′
2 must be the same.

Hence both ending reset and location for ω′
1 and ω′

2 must be the same. This is encoded
as constraints as follows.

C2(ω1, ω2, i, j, σ, t1, t2) � qω1 = qω2 ∧LR(ω1, ω2, i, j) ⇒ bω′
1
= bω′

2
∧ qω′

1
= qω′

2
.

It is added as a constraint only if �νc(ω1, i) + t1� = �νc(ω2, j) + t2�, and if
f(ω1, ω2, i, j) = �. We define constraint C2 to be the conjunction of all such con-
straints.

C2 �
∧

ω1,ω2∈S∪S+∪R,
ω1·(σ,t1),ω2·(σ,t2)∈S∪S+∪R,
(i,j)∈C(ω1,ω2),f(ω1,ω2,i,j)=
,
�νc(ω1,i)+t1�=�νc(ω2,j)+t2�

C2(ω1, ω2, i, j, σ, t1, t2).

Constraint 3 (Closedness). The closedness condition for usual L∗ algorithms states
that each row in R must be represented by a row in S. In our case, we require that each
row in R is represented by a row in S ∪ S+. This translates to the constraint that each
location in the candidate automaton must be represented by a row in S ∪ S+, encoded
as follows (recall N is the current limit on the number of locations).

C3 �
∧

1≤i≤N

∨

ω∈S∪S+

qω = i ∧ C ′
3 where C ′

3 �
∧

ω∈S∪S+∪R

1 ≤ qω ≤ N.
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During the algorithm, we also make constraint solving queries where the closedness
condition is not enforced. Then only the second part C ′

3 is used.

Constraint 4 (Special assignments). In order to speed-up constraint solving, we
directly make assignments to the location variables of rows in S. Order the rows of
S as S = {ω1, ω2, . . . , ω|S|}, then the special assignments are encoded as follows.

C4 �
∧

1≤i≤|S|
qωi

= i.

In the main learning algorithm, we will use SMT solvers to attempt to find solutions
to these constraints. The algorithm will first attempt to find a solution using C3 together
with C1, C2 and C4. If a solution is found, it proceeds to hypothesis construction as
described in Sect. 3.4. Otherwise, it attempts to find a solution using C ′

3 or by increasing
N . The details are described in Sect. 3.5.

3.4 Hypothesis Construction

Once the SMT solver gives a model satisfying constraints in Sect. 3.3, we can build
a hypothesis DOTA H = (Σ,QH, qH

0 , FH, c,ΔH) from observation table O =
(S, S+, R,E, f,N) and assignments bω and qω to ending reset variable and location
variables in the model. We define location set QH = {qω | ω ∈ S∪S+}, initial location
qH
0 = qε, and accepting locations FH = {qω | MQ(ω) = + ∧ ω ∈ S ∪ S+}. Next, we

describe how to construct the transitions ΔH.
Given two rows ω1, ω2 ∈ S ∪S+∪R such that ω2 = ω1 ·(σ, t), we can construct an

auxiliary transition δ′ = (qω1 , σ, ψ,bω2 , qω2) with ψ = ν(ω1) + t where ν(ω1) is the
value of clock after executing ω1. Since the table is prefix-closed, the reset information
for every timed action in ω1 has been determined. Therefore, we can determine ν(ω1).
We collect all such auxiliary transitions as the set Δ′.

For any q ∈ QH and σ ∈ Σ, let Ψq,σ = {ψ | (q, σ, ψ, b, q′) ∈ Δ′} be the list of
clock values on auxiliary transitions from q and with action σ. We sort Ψq,σ and apply
the partition function P (·) to obtain m intervals, written as g1, · · · , gm, satisfying ψi ∈
gi for any 1 ≤ i ≤ m, where m = |Ψq,σ|; consequently, for every (q, σ, ψi, b, q

′) ∈ Δ′,
a transition δi = (q, σ, gi, b, q

′) is added to ΔH. This determines the transitions between
locations in H and hence finishes the construction. The partition function P (·) is taken
from [4], and also similar to that used for learning symbolic automata [9]. Note the
condition ω · (σ, 0) ∈ S ∪ S+ ∪ R in Definition 5 enforces μ0 = 0 below.

Definition 9 (Partition function). Given a list of clock valuations � = μ0, μ1, · · · , μn

with 0 = μ0 < μ1 · · · < μn, and �μi� = �μj� if μi, μj ∈ R≥0\N and i = j for all
1 ≤ i, j ≤ n, let μn+1 = ∞, then a partition function P (·) mapping � to a set of
intervals {g0, g1, . . . , gn}, which is a partition of R≥0, is defined as

gi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[μi, μi+1), if μi ∈ N ∧ μi+1 ∈ N;
(�μi�, μi+1), if μi ∈ R≥0\N ∧ μi+1 ∈ N;
[μi, �μi+1�], if μi ∈ N ∧ μi+1 ∈ R≥0\N;
(�μi�, �μi+1�], if μi ∈ R≥0\N ∧ μi+1 ∈ R≥0\N.
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Algorithm 1: Learning DOTA using constraint solving
input : an observation table O = (S, S+, R, E, f, N), the alphabet Σ.
output: an automata H recognizing the target language L.

1 S ← {ε}, S+ ← ∅, R ← {(σ, 0) | σ ∈ Σ}, E ← {ε}, N ← 1 ; // initialization
2 while 
 do
3 O ← move to S(O);
4 flag , M ← SMT(C1 ∧ C2 ∧ C3 ∧ C4) ; // solve constraints to get model M
5 if flag = 
 then
6 H ← build hypothesis(O, M ) ; // build H from table O and model M
7 equivalent , ctx ← equivalence query(H);
8 if equivalent = 
 then
9 return H ; // success

10 else
11 O ← ctx processing(O, ctx ) ; // counterexample processing

12 else
13 flag , M ′ ← SMT(C1 ∧ C2 ∧ C′

3 ∧ C4) ; // solve relaxed constraints
14 if flag = 
 then
15 O ← move to S+(O, M ′) ; // modify table O guided by solution M ′

16 else
17 N ← N + 1 ; // try for larger number of locations

Since the table O with the feasible assignments satisfies the readiness constraints,
the constructed hypothesis is a deterministic one-clock timed automaton, and agrees
with accepting information for rows in S ∪ S+ ∪ R. This is stated as the following
theorem.

Theorem 1. Given observation table O = (S, S+, R,E, f,N) and feasible assign-
ments to bω and qω , the hypothesis H = (Σ,Q, q0, F, c,Δ) is deterministic. For each
row ω ∈ S ∪ S+ ∪ R, H accepts the timed word ω iffMQ(ω) = +. Finally, for any two
rows ω1, ω2 ∈ S ∪ S+ ∪ R, if the value of f on ω1, ω2 and the setting of reset variables
b is ⊥, then qω1 = qω2 , and the two rows reach distinct locations in H.

After the hypothesis H is built, it is sent for an equivalence query. If the teacher
returns a counterexample ctx, the learner adds all prefixes of ctx to R during coun-
terexample processing.

3.5 Main Algorithm and Correctness

The overall procedure of the algorithm is given in Algorithm 1. The observation table
O = (S, S+, R,E, f,N) is initialized with S = {ε}, S+ = ∅, R = {(σ, 0) | σ ∈ Σ},
E = {ε}, and N = 1. The function move to S tests each row in R to see if it is certainly
distinct (according to Definition 6) from each row in S. If so the certainly distinct row
is moved to S. For each row ω moved to S, ω · (σ, 0) is added to R for every σ ∈ Σ
(Line 3). After that, the formula C1 ∧ C2 ∧ C3 ∧ C4 is built and sent to an SMT
solver (Line 4). If a solution M is found for the ending reset and location variables,
then a hypothesis H is constructed from the table O and the solution M (Line 6), and
an equivalence query is performed to determine whether the hypothesis H is correct. If
the answer is positive, the algorithm returns with automaton H (Line 9). Otherwise, the
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learner updates the table O by adding all prefixes of the returned counterexample ctx
to R (Line 11), and begins a new iteration starting from finding certainly distinct rows
(Line 3) and updating constraints. Note that new suffixes may be added to E during the
computation of constraint C2. If two timed words ω1 · (σ, t1) and ω2 · (σ, t2) end in
the same region under some choice of resets, ω1 and ω2 are currently indistinguishable
under this choice, but ω1 · (σ, t1) and ω2 · (σ, t2) can be distinguished with suffix e ∈ E,
then the timed word (σ,min(t1, t2)) · e is added to E. This allows us to distinguish ω1

and ω2 directly using (σ,min(t1, t2)) · e ∈ E. After new suffixes are added to E, the
entire observation table need to be updated, with possible new distinguishable pairs and
new rows added to S.

If there is no solution to C1 ∧ C2 ∧ C3 ∧ C4, then the learner first relaxes C3 to C ′
3

(Line 13). It is now permitted that some rows in R are assigned to a location different
from any row in S ∪ S+. If there is a solution for the relaxed condition, it indicates that
some row in R may represent a new location, even though it is not certainly distinct
from all rows in S. The function move to S+ moves such rows from R to S+, and add
ω · (σ, 0) to R for each σ ∈ Σ and each ω moved to S+ (Line 15). If there is no solution
even for the relaxed constraints, the learner increases N by 1 (Line 17), attempting to
find a model with larger size.

Example 4. In the observation table in Fig. 2, each cell at row ω1 and column ω2 records
at which choice of resets ω1 and ω2 cannot be distinguished, as an expression in terms
of bω’s. For example, the expression � means ω1 and ω2 cannot be distinguished for
all choice of resets, while ⊥ means ω1 and ω2 are certainly distinct.

Constraint 3 (Closedness) requires that each row in R is represented by some row
in S ∪ S+. Although ω3 = (a, 4) or ω5 = (a, 4)(a, 5.5) can be represented by ε by
setting b3 = � or b5 = ⊥, they are known to be certainly distinct from each other
(indicated by the red ⊥ in the table), so they cannot be both represented by ε. This means
C1 ∧ C2 ∧ C3 ∧ C4 is not satisfiable, so we relax the constraint to C1 ∧ C2 ∧ C ′

3 ∧ C4.
This is solvable by setting b3 = �, and let ω5 represent an additional location. Then ω5

is moved to S+, and the candidate DOTA at the right of Fig. 2 can be constructed from
the updated observation table. �

Analysis of the Algorithm. The algorithm is sound since it returns an automaton only if
it passes equivalence queries. The termination of the algorithm can be explained through
a comparison with a brute-force search version of the algorithm similar to the normal
teacher case in [4]. The brute-force search constructs a binary tree of observation tables,
with each branching corresponds to a choice of reset for some row in S ∪R (here S+ is
not needed since reset information is now certain). Our algorithm simulates a breadth-
first search on the tree based on the number of locations. Rows in S+ can be viewed
as rows that are added to S in some (but not all) branches of the search tree. A simple
estimate for the number of rows in S ∪ S+, and hence in R gives an exponential worst-
case bound in terms of N . However, in practice it usually increases slowly as shown in
our experiments.

Theorem 2 (Correctness and termination). Algorithm 1 always terminates and
returns a correct DOTA recognizing the underlying target timed language.
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4 Extension to Deterministic Timed Mealy Machines

For practical applications on real-time reactive systems with input/output behavior, we
consider a timed version of Mealy machines. Inspired by Mealy machine with one timer
(MM1T) [21], we divide the actions in Σ into input and output actions. The special
empty action ε represents the invisible action or nothing happening. We assume that
there is a pair of input and output actions on each transition. Hence, the model can also
be viewed as a Mealy machine with one clock.

Definition 10 (Timed Mealy Machines). A timed Mealy machine (TMM) is a 6-tuple
M = (Q, I,O, q0, c,Δ), where Q is a finite set of locations; I is a finite set of inputs,
containing the special empty action ε; O is a finite set of outputs, containing the special
empty action ε; q0 is the unique initial location; c is the single clock; and Δ ⊆ Q× I ×
O × Φc × B × Q is a finite set of transitions.

A transition δ = (q, i, o, φ, b, q′) allows a jump from q to q′ and generates an output
o when provided input i ∈ I and if φ ∈ Φc is satisfied. Meanwhile, clock c is reset
to zero if b = �, and remains unchanged otherwise. Given a timed word over inputs
ω = (i1, t1)(i2, t2) · · · (in, tn) ∈ (I × R≥0)∗, a deterministic timed Mealy machine
(DTMM) M returns at most one output sequence M(ω) = o1o2 · · · on. Given two
DTMMs M1 and M2, for any timed word ω over inputs I , if the output sequences of
two DTMMs are equal, i.e., M1(ω) = M2(ω), then the two DTMMs are equivalent,
denoted as M1 ≈ M2. We modify the learning algorithm to take into account of
inputs and outputs. By the same argument as for DOTAs, we can show correctness and
termination of the learning algorithm for DTMMs.

Theorem 3 (Correctness and termination for learning DTMMs). The learning
algorithm for DTMMs always terminates and returns a correct DTMM.

5 Implementation and Experiments

To investigate the efficiency and scalability of our methods, we implemented a proto-
type in Python named SL for both DOTAs and DTMMs based on the tool provided
in [4]. We use Z3 [14] as the constraint solving engine. We describe some detailed
aspects of the implementation below. The implementation and models used for experi-
ments are available at https://github.com/Leslieaj/DOTALearningSMT.

Incremental solving Our implementation takes advantage of incremental SMT solv-
ing functionality in Z3. This allows Z3 to reuse information from previous calls to
accelerate the solving process. For each query, we push a backtracking point after
adding all new constraints in C1 ∧ C2 ∧ C4, then insert the constraints C3 or C ′

3

depending on the stage of the algorithm. After the query finished, we pop to the
previous backtracking point, hence removing C3 or C ′

3 before the next query.
Sink location We use a sink location to denote timed behaviors that are invalid or non-

described, and it is sometimes possible for membership queries to return whether
a timed word reached a sink location. Our implementation takes advantage of this
information when it is available. This results in a significant acceleration of the learn-
ing process. The technique has been introduced in the previous work [4].

https://github.com/Leslieaj/DOTALearningSMT
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Table 1. Experimental results on DOTAs.

Group |Δ| Method #Membership #Equivalence |QH| #Learnt t(s)

Nmin Nmean Nmax Nmin Nmean Nmax

6 2 10 11.9 DOTAL 73 348.3 708 10 16.7 30 5.6 7/10 39.88

SL 104 1894.8 3929 11 20.8 35 5.6 10/10 0.78

4 4 20 16.3 DOTAL 231 317.0 564 27 30.8 40 4.0 6/10 100.22

SL 1740 3497.7 5329 24 32.8 42 4.0 10/10 1.42

7 4 20 26.0 SL 6092 9393.3 15216 44 51.5 69 7.0 10/10 2.90

10 4 20 39.1 SL 8579 16322.3 23726 59 76.5 93 10.0 10/10 5.89

12 4 20 47.6 SL 13780 20345.5 29011 70 88.0 102 12.0 10/10 10.05

14 4 20 58.4 SL 18915 28569.0 40693 92 110.6 126 14.0 10/10 14.69

AKM (17 12 5) 40.0 SL 3453 3453.0 3453 49 49.0 49 12 1/1 7.19

TCP (22 13 2) 22.0 SL 4713 4713.0 4713 32 32.0 32 20 1/1 19.04

CAS (14 10 27) 23.0 SL 4769 4769.0 4769 18 18.0 18 14 1/1 126.30

PC (26 17 10) 42.0 SL 10854 10854.0 10854 28 28.0 28 25 1/1 109.01

Group: each group has ID of the form |Q| |Σ| κ, where |Q| is the number of locations, |Σ| is the size of the
alphabet, and κ is the maximum constant appearing in the clock constraints. |Δ|: average number of transitions
of a DOTA in the corresponding group. Method: DOTAL and SL represent the method in [4] and our method
respectively. #Membership & #Equivalence: number of membership and equivalence queries, respectively.
Nmin: minimal, Nmean: mean, Nmax: maximum. |QH|: average number of locations of the learned automata for
each group. #Learnt: the number of the learnt DOTAs (learnt/total). t: average wall-clock time in seconds.

Equivalence query Equivalence between timed automata with one clock is decidable.
We implemented an equivalence query oracle based on [15], but simplified for the
deterministic case. In actual applications when the target automaton is unknown, this
can be usually replaced by techniques based on conformance testing.

We evaluated our prototype tool on two benchmarks that are previously used in [4]
and [21]. They respectively contain hundreds of randomly generated DOTAs and sev-
eral models from practical applications which are in the form of DOTAs and MM1Ts.
The models from practical applications consist of the abstract automata of an Authenti-
cation and Key Management service of the WiFi (AKM), the functional specification of
TCP protocol, a car alarm system (CAS), and a particle counter (PC). All experiments
have been carried out on an Intel Core i7-9750H @ 2.6 GHz processor with 16 GB
RAM running Ubuntu 20.04 Linux system.

5.1 Experiments on DOTAs

We first compared the performance of our learning algorithm SL with the algorithm
DOTAL of [4] in the normal teacher setting (see Sect. 2). In [4], the generated random
DOTAs are up to 14 locations, but the algorithm only managed to learn automata with
up to 6 locations. The examples are divided into different groups depending on the
number of locations, number of actions, and maximum clock value in guards. Each
group contains ten automata. Moreover, we tested translations of practical models to
DOTA provided in [21]. The experimental results are shown in Table 1.

The algorithm DOTAL fails in all of the larger examples due to time and mem-
ory limits. Hence, we omit them in the table. In the two groups of smaller examples
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Table 2. Experimental results on DTMMs and MM1Ts.

Case DTMM SL MM1T MM1T-L∗
M [21]

|Q| |I| |Δ| #M #E t(s) |Q| |I| |Δ| #R #I t(s)

AKM 5 5 28 691 34 2.6 4 5 24 5361 29693 5070.4

TCP 11 8 19 751 10 1.9 11 8 19 401 1868 65.7

CAS 8 4 17 1654 21 17.1 8 4 17 494 2528 79.5

AKM 8 8 24 1194 27 6.8 8 8 24 392 1864 85.1

6 2 10 and 4 4 20, the algorithm DOTAL can learn some of the cases. In the compar-
ison between number of membership and equivalence queries, we see that SL takes
about the same number of equivalence queries, and several times more membership
queries. This is likely due to the fact that we exhaustively test all pairs of rows in the
table under all reset conditions. However, the algorithm SL is scalable to much larger
examples than DOTAL. SL also successfully learns the DOTA models of four practical
applications which are all bigger than the randomly generated DOTAs, and far above
the ability of the DOTAL algorithm. This shows the potential of SL in real applications.

5.2 Experiments on TMMs

We also evaluated our learning algorithm for timed Mealy machines. We first trans-
formed the four MM1T models to DTMMs. As shown in Table 2, for each practical
application, its DTMM model is more succinct than the corresponding DOTA model
in Table 1. The size of the DTMM model is also comparable to the size of the MM1T
model (the two are equal except the AKM case).

We then run our learning algorithm SL on these models. Compared to learning
the corresponding DOTA, learning DTMM takes fewer membership and equivalence
queries, except for taking more equivalence queries in the case CAS. Hence, we find
DTMMs to be more suitable for learning timed reactive systems than DOTAs. We also
run the experiment on MM1T using the algorithm MM1T-L∗

M . As reported in [21], the
performance is evaluated according to the total number of resets to the system under
learning (SUL) #R and the total number of the performed input actions #I. As these
are not directly comparable to number of membership and equivalence queries, we list
the results side-by-side in the table. Note also that their implementation is based on
LearnLib [13] and uses a random word equivalence oracle with 1000 tests, while we
conduct an exact equivalence checking. The computation time is listed to show that our
method can learn the examples efficiently, but the computation times are not directly
comparable across methods with different ways to conduct equivalence queries. We
also note that [21] showed experimentally that the algorithm MM1T-L∗

M compares
favorably against heuristic learning methods based on genetic programming [1,18].

6 Conclusion

In this paper, we proposed a new algorithm for active learning of deterministic one-
clock timed automata and timed Mealy machines, using constraint solving based on
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SMT solving to determine resets and location assignments. This takes advantage of the
ability of SMT to solve large constraint systems efficiently, allowing the algorithm to
scale up to much larger timed automata models.

In future work, we wish to consider extension of the algorithm to learning timed
automata with multiple clocks as well as the non-determinstic case. We wish to also
consider incorporating ideas from algorithms such as TTT in order to improve effi-
ciency, in particular reducing the number of membership queries.
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Abstract. Traditional automata classify words from a given alphabet as either
good or bad. In many scenarios, in particular in formal verification, a finer classi-
fication is required. Fully-ordered lattice automata (FOLA) associate with every
possible word a value from a finite set of values such as {0, 1, 2, . . . , k}. In
this paper we are interested in learning formal series that can be represented by
FOLA. Such a series can be learned by a straight forward extension of the L∗

algorithm. However, this approach does not take advantage of the special struc-
ture of a FOLA. In this paper we investigate FOLAs and provide a Myhill-Nerode
characterization for FOLAs, which serves as a basis for providing a specialized
algorithm for FOLAs, which we term FOL∗. We compare the performance of
FOL∗ to that of L∗ on synthetically generated FOLA. Our experiments show that
FOL∗ outperforms L∗in the number of states of the obtained FOLA, the number
of issued value queries (the extension of membership queries to the quantitative
setting), and the number of issued equivalence queries.

1 Introduction

Automata, being a simple computational model on which many operations (such as
union, intersection, complementation, emptiness, equivalence) can be efficiently com-
puted, have found usages in many applications including pattern matching, syntax anal-
ysis, and formal verification. Traditional automata are Boolean in the sense that they
associate with any given word one of two possible values. In many applications, such
as biology, physics, cognitive sciences, control, and linguistics, it is desired to associate
with any given word one of many possible values. These motivated the study of richer
types of automata such as weighted automata in which a word is associated with a value
from a given semiring over a large range of values [22].

Focusing on formal verification, of particular interests are semirings that form a
(distributive) lattice. A lattice L = 〈A,≤〉 is a partially ordered set in which every two
elements a, b ∈ A have a least upper bound (a join b) and a greatest lower bound (ameet
b). Lattices offer generalization for multi-valued logics, and as such arise in quantitative
verification [6,12,15,18,21], abstraction methods [13], query checking [10,16], and
verification under inconsistent view-points [17,29].

In recent years, model learning emerged as a useful technique in formal verifica-
tion [30]. Model learning, roughly speaking, refers to the task of learning a black-box
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system, implemented by some automaton, by querying it with sequences of input and
observing the received sequences of outputs. Model learning can be achieved using
learning algorithms that ask membership and equivalence queries, as does the clas-
sical L∗ algorithm developed by Angluin for learning regular languages represented
by DFAs [2]. To this aim, the verification community seeks for query leaning algo-
rithms for the automata types in use. Angluin-style algorithms have been developed
for many automata types such as tree-automata [27], non-deterministic and alternating
finite automata [4,9], Mealy machines [28], I/O-Automata [1], modular visibly push-
down automata [19], ω-automata [5], symbolic automata [11], strongly unambiguous
Büchi automata [3], and structurally unambiguous probabilistic grammars [25].

In this work we are interested in learning fully-ordered lattice automata. A
fully-ordered lattice automata (FOLA) is a lattice automata over a fully-ordered set
{0, 1, . . . , k} where min and max are the meet and join operations, respectively.

Fig. 1. A FOLA A

Roughly speaking a FOLA extends a DFA by annotating the
transitions and states with values from the given lattice, as
shown for instance in Fig. 1. The value the FOLA gives an
input word is computed as the meet of all the lattice values
read along the run as well as the lattice value of the final state
(a formal definition is provided in Sect. 2). Thus the FOLA A
of Fig. 1 gives the word b the value 2 ∧ 1 = 1, and the word
ba the value 2 ∧ 2 ∧ 2 = 2.

We consider the active learning setting in which the algorithm can use value queries
(VQ) (the extension of membership queries to the quantitative case) and equivalence
queries (EQ). We focus on FOLAs, since besides nicely modeling multi-valued logics,
they posses a polynomial minimization algorithm, while the minimization problem for
general lattice automata is NP-complete [14]. Thus, assuming P�=NP general lattice
automata cannot be polynomially learned, since the learning algorithm can act as a
minimization procedure.

Fig. 2. A FOLA for Ln.

In a FOLA, both transitions and states are annotated with
values l from the given lattice L. The value the automaton pro-
vides for a word depends on both the values traversed during
the run, and the value of the state at the end of the run. If all
transition values are the maximal value (thus do not affect the
final value), the FOLA, is said to be a simple FOLA, abbrevi-
ated, SFOLA. A FOLA of size n over a lattice L can be sim-
ulated by an SFOLA of size n × |L|. This blowup is tight in
the sense that there exists a family of languages {Ln}n∈N over
Σ = {a, b} and lattice of size n which can be implemented
by a FOLA with n states but there is no SFOLA with less than
n× (n− 1) states. A FOLA for Ln is provided in Fig. 2 and an
equivalent SFOLA is given in Fig. 10 in App.A.1

1 The reason for the quadratic blowup can be understood by noticing that states of the SFOLA
are required to record the traversal value up to that state (since all transitions values are �), and
for any l ∈ {2, 3, . . . , n} the FOLA needs to check whether an a will follow n consecutive
b’s (which requires of course n states), so in total (n − 1) × n states are required.
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SFOLAs can be polynomially learned using a straight forward extension of the L∗

algorithm.2 It is therefore desired that the developed algorithm for FOLAs would per-
form better. However, we cannot expect the algorithm to have better worst-case com-
plexity analysis since there are families of languages for which the minimal size of a
FOLA is the same as the minimal size of a SFOLA. For instance this is the case for
the family {L′

n}n∈N over lattice L = {0, . . . , n−1} which returns the size of the word
modulo n. We do, however, expect a specialized algorithm can take into account the
special structure of FOLAs and work better in practice.

In [8] an algorithm for learning multiplicity automata, an algebraic generalization
of automata, that works with respect to a given field was developed. This algorithm was
deployed by [7] to learn weighted automata, under the assumption that the semiring is a
field. While a (distributive) lattice is a special case of a semiring, a lattice is not a field,
since the property that every element a ∈ A has an additive (and/or multiplicative)
inverse may not hold. It follows that the algorithm for learning multiplicity automata
cannot be deployed for learning lattice automata. FOLAs can be learned using a learn-
ing algorithm for automata based on a monoid action, called writer automata in [31],
however the complexity of this algorithm for the case of FOLA is the same as using the
extension of L∗ to learn SFOLAs.

In order to obtain an algorithm that in practice would perform better on FOLAs than
L∗ for SFOLA, we must understand FOLAs better. To this aim, building on the work
of Halamish and Kupferman [14] who studied minimization of FOLAs, we reveal: an
equivalence relation for FOLAs; a canonical minimal FOLA; and a respective Myhill-
Nerode characterization for FOLAs. Section 3 is devoted for this investigation.

The provided characterization and insights allow us to design a specialized algo-
rithm for FOLAs; this is the topic of Sect. 4. Section 5 compares the performance of
FOL∗ with that of the L∗ algorithm on synthetically generated FOLAs. The experi-
ments shows a clear advantage to our algorithm, with up to an |L| blowup. Section 6
concludes. Due to space restrictions some proofs are deferred to the appendix of the full
version.

2 Preliminaries

Words, Languages, Formal Series. We use Σ for an alphabet i.e. a finite non-empty
set of symbols. The set of word over Σ is denoted Σ∗. The length of a word w =
σ1σ2 . . . σm, denoted |w| is m. The prefix of w up to position i, namely σ1σ2 . . . σi, is
denoted w[..i]. Similarly the suffix of w starting at position i, namely σiσi+1 . . . σm,
is denoted w[i..]. A language is a subset of Σ∗. A formal series f is a function f :
Σ∗ → A mapping each word to a value in A, where A is some set. Such a formal
series f is sometimes called an A-language. Note that a language is a special case of a
formal series. That is L ⊆ Σ∗ can be thought of as a formal series fL : Σ∗ → B where

2 In this extension, the observation table matrix holds values in the lattice instead of {0, 1}, that
is, the entry (i, j) holds the result of the value query for the word si · ej where si is the title of
row i and ej the title of row j. Two rows in the observation table are considered equivalent if
they are exactly the same. These are the only changes required w.r.t. to L∗ for DFAs.
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B = {0, 1}. In this work we are interested in formal series that map words to a value in
a fully ordered set {0, 1, . . . , k}.
Lattice. Let L = 〈A,≤〉 be a partially ordered set. An element a ∈ A is an upper
bound on A (denoted 
) if b ≤ a for all b ∈ A. An element a ∈ A is a lower bound
on A (denoted ⊥) if a ≤ b for all b ∈ A. A partially (or fully) ordered set 〈A,≤〉 is a
Lattice if for every two elements a, b ∈ A both the least upper bound, denoted as a ∨ b,
and the greatest lower bound, denoted as a ∧ b, of {a, b} exist. A lattice is complete if
for every subset A′ ⊆ A the least upper bound and the greatest upper bound exist. In a
complete lattice 
 denotes the join of all elements in A and ⊥ denotes their meet.

Lattice Automata. Lattice automata are a generalization of finite-state automata [20].
Their deterministic version is defined as follows. A deterministic lattice automaton
(LDFA) A is a tuple 〈L, Σ,Q, q0, δ, η, F 〉 where L is a complete lattice; Σ is the alpha-
bet; Q is a finite set of states; q0 ∈ Q is the initial state; δ : Q × Σ → Q is the state
transition function; η : Q × Σ → L is the transitions value function associating with
every transition (from a state q on letter σ) a value � from the lattice; and F : Q → L is
the state-value function associating with each state a value form the lattice.

A run of A on a word w = σ1σ2 · · · σn is a sequence r = q0 . . . qn of n + 1 states.
The traversal value of r on w, denoted trvl(w) is the meet of all transitions involved,
i.e., if η(qi−1, σi) = �i then trvl(w) =

∧n
i=1 �i. The value of r on w is defined as

val(w) = trvl(w) ∧ F (qn). Namely it is the meet of the traversal value and the state-
value of the last state of the run.3 The extension of δ from letters to words is denoted δ∗

(i.e., δ∗(q, ε) = q, and δ∗(q, uσ) = δ(δ∗(q, u), σ) for u ∈ Σ∗ and σ ∈ Σ). The formal
series defined by A is denoted �A�, and �A�(w) denotes the value A gives to word w.

A fully-ordered lattice automaton (FOLA) is a lattice automaton over a fully-
ordered set {0, 1, . . . , k} wheremin andmax are the meet and join operations, respec-
tively.

Example 1. Recall the FOLA A over the lattice L = {0, 1, 2} and the alphabet Σ =
{a, b} from Fig. 1. Consider the word w = baa. The run of A on w is the sequence
ρ = q0q1q0q1. Its traversal-value is trvl(w) = η(q0, b)∧η(q1, a)∧η(q0, a) = 2∧2∧1.
The value of A on w is val(w) = trvl(w) ∧ F (q1) = 1 ∧ 1 = 1.

3 A Myhill-Nerode Characterization for FOLAs

For a language L ⊆ Σ∗, one defines the equivalence relation ≡L⊆ Σ∗ ×Σ∗ as follows
x ≡L y iff for every z ∈ Σ∗ it holds that xz ∈ L ⇐⇒ yz ∈ L. The celebrated Myhill-
Nerode theorem states that (i) L is a regular iff ≡L has a finite index (i.e. ≡L induces
a finite number of equivalence classes), (ii) there is a one-to-one relation between the
states of a minimal DFA for L and the equivalence classes of ≡L, and (iii) all DFAs
with a minimal number of states are isomorphic to each other, or put otherwise there is
a unique minimal DFA [23,24]. Many automata learning algorithms, including L∗, rely

3 In non-deterministic lattice automata, there may be several runs on a given word, and each run
may have a different value. In this case the value of the automaton on the word is the join of
the values of all of its runs on that word.
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on the correspondence between the equivalence classes and the states of the minimal
representation. Therefore, we seek for a similar correspondence between an adequate
equivalence relation for formal-series defined by FOLAs and minimal FOLAs.

3.1 No Unique Minimal FOLA

We first note that unlike the situation in regular languages, for formal series represented
by FOLAs there may exists two FOLAs with a minimal number of states that are not
isomorphic to each other. Figure 3 depicts two minimal distinct FOLAs, A1 and A2,
implementing the formal-series f : {a}∗ → {0, 1} that gives 1 iff the length of the
word is at most one.

Fig. 3. Two minimal
FOLAs for the same
formal series.

Let us examine this closely. Let A = 〈L, Σ,Q, q0, δ, η, F 〉
be a FOLA. It induces an equivalence relation ≡A between
pairs of words, defined as follows. For x, y ∈ Σ∗ we have
x ≡A y iff the run of A on x ends in the same state as the
run of A on y. In the case of regular languages, if A1 and A2

are two minimal DFAs for the same language L, then ≡A1 and
≡A2 are exactly the same relation as ≡L.

Figure 3 shows that in the case of languages accepted by
FOLAs, this is not necessarily the case. Indeed, while the
FOLAs A1 and A2 define the same function, and are both min-
imal in the number of states, the induced equivalence relations
are different: for ≡A1 we have E0 = {ε} and E1 = Σ+,
whereas for ≡A2 we have E0 = {w : |w| mod 2 = 0} and E1 = {w : |w|
mod 2 �= 0} where Ei describes the equivalence class of state qi.

3.2 Difficulties in Defining ≡f

Fig. 4. A FOLA B

Investigating minimization of FOLAs, Halamish and Kupfer-
man [14] explain the difficulty in finding an equivalence relation for
FOLAs. Their first observation is that the natural extension x ≡1

f y
iff for every z ∈ Σ∗ it holds that f(xz) = f(yz) is too refined,
as for the FOLA B over Σ = {a, b, c} and L = {0, 1, 2} depicted
in Fig. 4 it will consist of three equivalence classes, while one suf-
fices. Yet, this definition holds under the assumption that all tran-
sition values are 
. As mentioned earlier, FOLAs admitting this
restriction are called simple FOLAs or in short SFOLAs.

Their second observation concerns the following definition x ≡2
f y which states

that x ≡2
f y iff for every z ∈ Σ∗ exists �z ∈ L such that f(xz) = f(x) ∧ �z and

f(yz) = f(y)∧ �z . This definition seems intuitive for FOLAs for which all acceptance
values are 
, however, it does not work in this case as well. The main problem with this
definition is that it is not transitive and thus it is not an equivalence relation, as shown
in Example 2.
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Fig. 5. The definition ≡2
f breaks transitivity [14]

Example 2 ([14]). To see that transitivity does not hold for ≡2
f consider the FOLA C

given in Fig. 5. It defines a function from words over Σ = {a, b, c,#}∗ to values in
lattice L = {0, 1, 2, 3}. The proposed definition satisfies that a ≡2

f b and b ≡2
f c yet

a �≡2
f c. Indeed the FOLAs C1 and C2, depicted in Fig. 5, are equivalent to C and each

makes a different choice regarding equivalence of the string b.

3.3 Defining the Equivalence Relation

The relation ≡L for a regular language L captures that two words reach the same state
of the minimal DFA. The relation ≡f for a formal series f should capture that two
words reach the same state of a minimal FOLA. To define it we make use of the notion
of a Hankel Matrix. With every formal series f : Σ∗ → L we can associate its Hankel
Matrix Hf . The Hankel Matrix has infinitely many rows and infinitely many columns.
The entry (i, j) has the value f(wi ·wj) where wi and wj are the i-th and j-th words in
an agreed enumeration of Σ∗. Consider the Hankel Matrix for a regular language L and
two words w1, w2. The rows of w1 and w2 in HL are exactly the same iff w1 ≡L w2.
This is since if w1 �≡L w2 then there exists a word z ∈ Σ∗ s.t. w1z ∈ L and w2z /∈ L or
vice versa, thus HL(w1, z) �= HL(w2, z). To define ≡f we need to understand how do
two rows of words w1 and w2 resemble if w1 and w2 reach the same state of a minimal
FOLA. Clearly they need not be exactly the same, since f(w1z) relies also on the values
traversed while reading w1.

We use the term observation table for any sub-matrix of Hf . Two subsets S and E
of Σ∗ define the observation table T = (S,E, T ) where T : S × E → L is defined as
T (s, e) = f(s · e) for every s ∈ S and e ∈ E. We will define relations for an arbitrary
observation table; when applied to the full Hankel Matrix, it will convey the desired
equivalence relation. The algorithm will use the definitions for a finite observation table.

We say that the row-potential of a row s (or simply its potential) is l if there exists a
column e ∈ E such that T (s, e) = l and there is no e′ ∈ E such that T (s, e′) > l. This
means that the traversal value of the correct automaton on reading s cannot be smaller
than l as otherwise for no extension the value l can be obtained. However, according to
the observed data, there is no reason to assign it a value greater than l.

Definition 3 (Row Potential). Let T = (S,E, T ) be an observation table, and s ∈ S.
The row-potential of s, denoted potT (s), ismax{T (s · e) : e ∈ E}.
For every value l ∈ L and every pair of rows whose potential is at least l we would
like to ask whether they should be distinguished according to the data. The following
definitions make this precise.
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Definition 4 ( �∼l
T , �≈l

T , �≈T ). Let l ∈ L and s, s′ ∈ S.

1. We use s �∼l
T s′ if potT (s) ≥ l, potT (s′) ≥ l and ∃e ∈ E s.t. T (s, e) ≥ l and

T (s′, e) < l or vice versa.
2. We use s �≈l

T s′ if for some l′ ≤ l we have s �∼l′
T s′.

3. We use s �≈T s′ if s �∼l
T s′ for some l ∈ L.

It is easy to see that x ≈l
T y implies x ≈l−1

T y and that x ≈T y iff x ≈k
T y where

L = {0, 1, . . . , k}.
The following claim states that if we have two rows s1 and s2 such that in one col-

umn e the entry for T (s1, e) is strictly bigger than T (s2, e) whereas in another column
e′ the entry for T (s1, e′) is strictly smaller than T (s2, e′), then s1 �≈T s2.

Claim 5. Let T = (S,E, T ). Let s1, s2 ∈ S and e1, e2 ∈ E. If T (s1, e1) < T (s2, e1)
while T (s1, e2) > T (s2, e2) then s1 �≈T s2.

We claim that if s �≈T s′ then strings s and s′ cannot reach the same state of a
FOLA for the respective formal series.

Lemma 6. Let T = (S,E, T ) be an observation table for formal series f , and let
s, s′ ∈ S. If s �≈T s′ then in no FOLA for f the words s, s′ reach the same state.

Proof. From s �≈T s′ it follows that exists l ∈ L such that s �∼l
T s′. From the defi-

nition of �∼l
T it follows that potT (s) ≥ l, potT (s′) ≥ l and ∃e ∈ E s.t. T (s, e) ≥ l

and T (s′, e) < l or vice versa. Let A = 〈L, Σ,Q, q0, δ, η, F 〉 be a FOLA for f . The
traversal value of s in A must be at least l, as otherwise for every z, A(sz) < l but
potT (s) ≥ l implies there exists a z ∈ E for which T (s, z) ≥ l so Af disagrees with
T . The same argument shows that the traversal value of s′ in A must be at least l.
Assume towards contradiction that A upon reading s or s′ reaches the same state qs.
Let qe be the state that A reaches upon reading se (or s′e as this must be the same state).
The traversal value of e starting from the state q must be at least l and F (qe) must be
at least l as otherwise A will be wrong regarding s · e. But if this is the case then A is
wrong regarding s′ · e. Contradiction. ��

Fig. 6. s1 ≈T s2
and s2 ≈T s3
but s1 �≈T s3

While the relation ≈T differentiates words that do not reach the
same state, it is not an equivalence relation. The reason is that it does
not satisfy the transitivity requirement as shown by Fig. 6. The fol-
lowing claim will help us strengthen it to get the desired equivalence
relation.

Claim 7. Let s1, s2, s3 ∈ S. If s1 ≈T s2, s2 ≈T s3, s2 �T s1 and
s2 �T s3 then s1 ≈T s3.

If we would like to pick one of a set of non-distinguishable words
to be a representative, following Claim 7 it makes sense to choose one with the highest
potential. Since there could be several such, we define an order between two rows in
the table. We use the shortlex order between strings, denoted ≤slex.4

4 The shortlex order (aka the length-lexicographic order) stipulates that string w1 is smaller than
string w2, denoted w1 <slex w2 if |w1| < |w2| or |w1| = |w2| and w1 precedes w2 in the
lexicographic order.
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Definition 8 (Rows order). Let T = (S,E, T ) be an observation table and s, s′ rows
in S. We say that s �T s′ if either [potT (s) ≥ potT (s′)] or [potT (s) = potT (s′) and
s ≤slex s′] (where ≤slex is the shortlex order).

The representative for a set S′ ⊆ S of rows that cannot be distinguished from one
another is chosen to be the minimal element in the shortlex order, among those in S′

with the highest potential. That is, the set of representatives of an observation table T
is defined as follows.

Definition 9 (reps(T ), repT s, ≡T ). Let T = (S,E, T ) be an observation table.

– The set of representatives of the table is defined as reps(T ) = {s ∈ S | ∀s′ ≈T
s. s �T s′}.

– For a row s ∈ S we use repT (s) for the row s∗ ∈ reps(T ) such that s ≈T s∗ and
for every s′ ∈ reps(T ) satisfying s′ ≈T s we have s∗ �T s′.

– Let s, s′ be rows in S. We use s ≡T s′ to denote that repT (s) = repT (s′). That is,
two rows are equivalent if they have the same representative.

Given a formal series f : Σ∗ → L let Tf = (Σ∗, Σ∗, Tf ) be the Hankel Matrix
for f . Let reps(f), repf (w) and potf (w) abbreviate reps(Tf ), repTf

(w) and potTf
(w).

Likewise, let ∼l
f , ≈l

f , ≈f , and ≡f abbreviate ∼l
Tf
, ≈l

Tf
, ≈Tf

, and ≡Tf
.

We show that ≡f is an equivalence relation on Σ∗ and a right congruence relation.

Claim 10. The relation ≡f is an equivalence relation.

Claim 11. The relation ≡f is a right congruence relation. That is, x ≡f y implies
xz ≡f yz for all z ∈ Σ∗.

Note that if s∗ is the representative of s, then for every e ∈ E we have that T (se) ≤
T (s∗e) and more precisely T (se) = T (s∗e) ∧ potT (s).

Claim 12. Let T = (S,E, T ) be an observation table, s ∈ S and s∗ = repT (s). Then
for all e ∈ E (i) T (s, e) ≤ T (s∗, e) and moreover (ii) T (s, e) = T (s∗, e) ∧ potT (s).

Proof. Assume towards contradiction that ∃e ∈ E s.t. T (s, e) > T (s∗, e). Assume
T (s, e) = l. Then T (s∗, e) < l ≤ potT (s) ≤ potT (s∗). Therefore, according to
Definition 4, s �∼l

T s∗ which contradicts that s∗ is the representative of s (Definition 9).
This proves item (i).

For item (ii), assume toward contradiction that ∃e ∈ E for which T (se) �= T (s∗e)∧
potT (s). It is clear that T (se) ≤ potT (s) and from item (i) we know that T (se) ≤
T (s∗e). Applying these conclusions, we get that T (se) < T (s∗e) ∧ potT (s), which
implies that T (se) < T (s∗e) and T (se) < potT (s). Let � ∈ L be the minimal element
for which � > T (se). Hence, potT (s), potT (s∗) ≥ �, and T (s∗e) ≥ �, but T (se) < �.
Thus, according to Definition 4, s∗ �≡ s reaching a contradiction. ��
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3.4 The Correspondence Between ≡f and a Minimal FOLA

Next we prove that for every formal series f defined by a FOLA the induced equivalence
relation ≡f has a one-to-one correspondence with a minimal FOLA for f .

Utilizing the provided definitions, we can associate with a given formal series f :
Σ∗ → {0, 1, . . . , k}, a specific FOLA which we denote Af .

Definition 13 (The FOLA Af ). Let f : Σ∗ → {0, 1, . . . , k} be a formal series. Let
reps(f) = {r0, r1, . . . , rn}. The FOLA Af = (Σ,Q, q0, δ, η, F ) is defined as follows:
Q = reps(f), q0 = repf (ε), F (ri) = f(ri), δ(ri, σ) = repf (ri · σ) and η(ri, σ) =
potf (ri · σ).

We claim in Theorem 17 that Af recognizes the formal series f .
To prove it we associate with the formal series f a tree Tf , whose nodes are set of

words, defined as follows.

Definition 14 (The tree Tf , the sets W� ). Let f : Σ∗ → {0, 1, . . . , k} be a formal
series. Let W� = {w | potf (w) ≥ �}. The tree Tf has k + 1 layers. The set of nodes in
layer � consists of the equivalence classes of ≈�

f intersected with W�. There is an edge
from node N in layer � to node N ′ in layer � + 1 iff N ⊇ N ′.

Note that W0 = Σ∗ and ≈0
�=∼0

f has a single equivalence class. Thus, the first layer
consists of a single node (the root) which is the set Σ∗. Note also that the nodes of
layer � partition the set W� (i.e. their union is this set, and they are pairwise disjoint).
Moreover, if two words are in the same node of layer � then they are also in the same
node of layer � − 1 (since x ≈�

f y implies x ≈�−1
f y). It follows that a node in layer

� + 1 is connected to a single node in layer �. Thus Tf is indeed a tree.

Example 15. Consider the FOLA D depicted in Fig. 7 implementing a formal series
fD : {a, b}∗ → {0, 1, 2, 3, 4}. In Fig. 7 we show the tree TfD . The first layer, layer 0,
of TfD , as always consists of a single node W0 = Σ∗. Layer 1 of TfD also consists of a
single node Σ∗ since according to fD the potential of all words is at least one. That is,
W1 = Σ∗. Layer 2 of TfD consists of two nodes W2a = {ε} and W2b = aΣ∗. Indeed
the word ε is differentiated from all words in aΣ∗ by∼2

f as evident by the word b. To see
why note that the potential of both ε and a (for instance) is 4 ≥ 2 and f(ε · b) = 1 < 2
while f(a · b) = 3 ≥ 2. Observe that W2 = W2a ∪ W2b = W1 \ bΣ∗, since no
word starting with b has a potential of 2 or more. Layer 3 of TfD consists of four nodes
W3a = {ε}, W3b = a(ba∗bΣ)∗, W3c = a(ba∗bΣ)∗ba∗ and W3d = a(ba∗bΣ)∗ba∗b.
Note that W3 = W2 \ a(ba∗bΣ)aΣ∗, since once the a transition from q2 to q4 is
taken the potential drops to 2. Layer 4 of TfD consists of two nodes W4a = {ε}, and
W4b = {a}, since once the b transition from q2 to q3 is taken the potential drops to 3.
The representatives are shown below the leaves.

Claim 16 connects ≡f and the tree Tf , and consequently the FOLA Af and Tf .

Claim 16. Let L be a leaf in layer l of Tf and let u be the biggest word in L according
to the �f order. Then L = {u′ | u′ ≡f u} ∩ Wl.
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Fig. 7. A FOLA D, and the tree TfD induced by FOLA D

Let leaves(Tf ) = {L0, L1, L2 . . . , Ln} be the leaves of Tf . It follows that there
exists a one-to-one mapping h : reps(f) → leaves(Tf ) satisfying that h(ri) = Li for
Li = {w | w ≡f ri} ∩ Wpotf (ri). Since the states of Af are reps(f), this shows there
is a one-to-one mapping between the states of Af and the leaves of Tf . Moreover, the
representative of a word u ∈ Σ∗ can be found by searching for the deepest node N
in the tree to which u belongs. This node is unique since nodes in the same layer are
disjoint, and a node is subsumed by its parent. If N is a leaf, then the smallest word
in N in the shortlex order is its representative. Otherwise let L1, . . . , Lk be the deepest
leaves in the sub-tree rooted byN . Then the smallest word in the shortlex order amongst
L1, . . . , Lk is its representative.

Theorem 17 states that the desired relation between Af and f holds. Its correctness
follows from the stronger inductive claim, Claim 18.

Theorem 17. The FOLA Af of Definition 13 correctly computes f . That is, f(w) =
Af (w) for every w ∈ Σ∗.

Claim 18. Let f : Σ∗ → {0, . . . , k} be a formal series, and let Af be the FOLA from
Definition 13. Let u ∈ Σ∗. Then repf (u) = ri iff δ∗(q0, u) = ri and Af (u) = f(u).

4 The Learning Algorithm

The learning algorithm FOL∗ tries to distinguish the equivalence classes of ≡f . It does
so by maintaining an observation table which keeps track of queried words. Starting
with S = {ε} ∪ Σ and E = {ε} it fills the missing entries of the table using value
queries. This is done by procedure Fill. To extract a FOLA from a table, it is necessary
to have for every distinguished equivalence class s, and any letter σ of the alphabet, a
row for s · σ. When this criterion holds we say that the table is closed as defined next.

Definition 19 (Closed Table). An observation table T = (S,E, T ) is termed closed if
for every s ∈ reps(T ) and every σ ∈ Σ there exists s′ ∈ reps(T ) such that s′ ≈T sσ.

After extracting a FOLA the algorithm asks an equivalence query (EQ).5 If the answer
is “yes” the algorithm terminates. Otherwise the algorithm adds all suffixes of the coun-

5 An EQ receives as an argument a FOLAA, and checks if �A� = f where f is the target formal
series. If so it returns “yes”, otherwise, it returns “no” with a counterexample, a word w such
that �A�(w) �= f(w). A value query (VQ) receives as an argument a word w and returns f(w).
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terexample w to the columns of the table and fills the table using value queries (VQ) s
and repeats the process as specified in Algorithm 1. We show in Theorem 22 that the
addition of the suffixes to the columns guarantees the learner makes progress towards
identifying the correct formal series.6

For each sσ that is added to S (for s ∈ S∗, σ ∈ Σ), the algorithm checks (in lines 5-
8) whether sσ should be a new representative. There are three options to consider:

1. If for every s′ ∈ S∗ we have sσ �≈T s′, then sσ is indeed a new representative, and
the algorithm sets S∗ ← S∗ ∪ {sσ}

2. If there exists s′ ∈ S∗ such that s′ �T sσ and sσ ≈T s′ then no update needs to be
done (and practically the algorithm defines repT (sσ) = s′).

3. Otherwise, there exists s′ ∈ S∗ such that sσ �T s′ and sσ ≈T s′. In this case sσ
replaces a current representative: S∗ ← (S∗ \ {s′}) ∪ {sσ}. Note that there exists
exactly one row s′ as such in the current case, as we prove in Claim 20.

Algorithm 1. FOL∗

1: S := {ε} ∪ Σ, E := {ε}, S∗ = {ε}, T := (S, E, T ), Fill(T )
2: while True do
3: if exists s ∈ S∗ and σ ∈ Σ such that s · σ /∈ S then
4: S := S ∪ {s · σ}, Fill(T )
5: if sσ �≈T s∗ for all s∗ ∈ S∗ then
6: S∗ ← S∗ ∪ {sσ} � a new equivalence class is discovered
7: else if sσ ≈T s∗ for some s∗ ∈ S∗ and sσ 	T s∗ then
8: S∗ ← (S∗ \ {s∗}) ∪ {sσ} � the potential of an equivalence class increased

9: A = ExtractAut(S, E, T ) � the procedure ExtractAut applies Definition 13 on ≡T
10: if EQ(A) = (“no”, w) then � w is the counterexample
11: E := E ∪ Suffs(w), Fill(T )
12: else
13: return A

A running example is provided in App.C.
The following claim asserts that S∗ never contains two representatives of the same

class. Since the observation table T at every step of the algorithm is a subset of the
Hankel Matrix Hf of the target series f , the size of S∗ is bounded by n, the index
of ≡f .

Claim 20. In every step of the algorithm, ∀s, s′ ∈ S∗ we have s �≈T s′.

The following lemma asserts that if the algorithm terminates, it returns a minimal
FOLA.

Lemma 21. Let T = (S,E, T ) be a closed observation table, and let S∗ = reps(T ).
Any FOLA consistent with T must have at least |S∗| states.

6 The proof shows that Rivest and Schapire’s optimization of adding just one of these suf-
fixes [26] is possible here as well.
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Termination follows from the following theorem, that guarantees that when a counterex-
ample is received, the algorithm makes progress towards inferring the target series. It
shows that either a new pair of rows is differentiated, namely a new equivalence class
has been discovered, or the potential of one of the equivalence classes increases.

Theorem 22. Let T = (S,E, T ) be an observation table, and let T ′ = (S′, E′, T ′) be
the table after processing the counterexample (i.e. after line 11). Then either ∃s, s′ ∈ S
such that s ≡T s′ and s �≈T ′ s′ or ≡T ′ is the same as ≡T and ∃s ∈ S for which
potT ′(repT ′(s)) > potT (repT (s)).

Proof. Let w = σ1σ2 . . . σm be the counterexample received for a FOLA A extracted
from the table T . Let si = δ(s0, w[..i]), that is, si is the state reached by the constructed
FOLAAwhen reading the prefix ofw of length i. Consider the following sequence (and
recall that the states si of A are also strings).

r0 = VQ(s0 · w[1..])
r1 = potT (s0 · σ1) ∧ VQ(s1 · w[2..])
r2 = potT (s0 · σ1) ∧ potT (s1 · σ1) ∧ VQ(s2 · w[3..])

...
rm = potT (s0 · σ1) ∧ potT (s1 · σ2) ∧ . . . ∧ potT (sm−1 · σm) ∧ VQ(sm · ε)

Note that r0, the result of the first line in the sequence, is f(w) since s0 = ε and
w[1..] = w, hence r0 = VQ(w). While rm, the result of the last row, is A(w) because
rm corresponds exactly to the returned value of A on w. Since w is a counterexample
r0 �= rm. Consider the first i for which ri �= r0. Let r0 = ri−1 = � and ri = �′. I.e.

� = ri−1 = potT (s0 · σ1) ∧ . . . potT (si−2 · σi−1) ∧ VQ(si−1 · w[i..])
�′ = ri = potT (s0 · σ1) ∧ . . . potT (si−2 · σi−1) ∧ potT (si−1 · σi) ∧ VQ(si · w[i+1..])

There are two cases to consider.

1. Case �′ > �:
Since all components of the row ri−1 but the last one are also components of the
row ri, their value must be at least �′ (as otherwise the value of ri will be less than
�′). It follows that the value of the last component of ri−1, namely VQ(si−1 ·w[i..]),
is exactly � (since �′ > �, and VQ(si−1, σi) is the only component in ri−1 that is not
in ri). While the values of potT (si−1 · σi) and VQ(si · w[i+1..]) must be at least
�′. Consider the words s = si−1σi and s′ = si. In T the row si was the represen-
tative of si−1σ (as per ExtractAut, namely Definition 13), i.e., si−1σi ≡T si. From
potT ′(si−1σi) ≥ �′ and repT (si−1σi) = si we get that also potT ′(si) ≥ potT (si) ≥
potT (si−1σi) ≥ �′. Recall that we added all suffixes of w as columns in T ′. Consid-
ering the column w[i+1..] we have that T ′(si−1σi, w[i+1..]) = T ′(si−1, w[i..]) = �
while T ′(si, w[i+1..]) ≥ �′ > �. Therefore si−1σi �∼�′

T ′ si proving si−1σi �≈T ′ si.
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2. Case �′ < �:
Since all but the last two components of row ri are also in row ri−1 their values
must be at least � (as otherwise the value of ri−1 will be less than �). The value of
the last two components must be at least �′, and at least one should be exactly �′. We
investigate both cases.

(a) Case VQ(siw[i + 1..]) = �′.
Consider rows si−1σi and si. From VQ(si−1w[i..]) ≥ � we get that T (si−1σi,
w[i+1..]) ≥ � > �′ while T (si, w[i+1..]) = �′. Since si is the representative of
si−1σi in T , we know from Claim 12 that for all columns e ∈ E (before adding
the suffixes of the counterexample) we have T (si, e) ≥ T (si−1σi, e).
(i) If for one of the columns the relation is strict, namely T (si, e) >

T (si−1σi, e) then since in column w[i + 1..] we have the opposite relation
by Claim 5 si �≈T ′ si−1σi so the claims hold since we separated states.

(ii) Otherwise if the relation is = in all columns e ∈ E then potT (si) =
potT (si−1σi).
– If potT (si−1σi) = potT (repT (si−1σi)) < � then the potential
increased since now potT ′(repT ′(si−1σi)) ≥ �.

– Otherwise potT (si−1σi) ≥ �. Since potT (si) ≥ � we get that si �∼�
T ′

si−1σi (as evident by column w[i + 1..]).
(b) Case VQ(siw[i + 1..]) > �′ and potT (si−1σi) = �′.

Since s1 is the representative of s0σ1 we get that T (s1, w[2..]) ≥ �. This in turn
implies from the same reasoning that T (s1σ2, w[3..]) ≥ � and T (s2, w[3..]) ≥
�. If we keep going on this way we get that T (siσi−1, w[i + 1..]) ≥ �. The
potential of si−1σi in T is �′ < �. If the potential of its representative si was
also �′ then the potential of this equivalence class in T ′ increased since it is now
at least � > �′. If the potential of si is more than �′ then si �∼�′+1 si−1σi since
the potential of both is at least �′ + 1 and in column w[i+ 1..] only one of them
is less than �′ + 1. ��

Corollary 23. Let FOLA be the class of languages represented by FOLAs. The algo-
rithm FOL∗ terminates and correctly learns any target language L ∈ FOLA.

Following Theorem 22 we can bound the number of equivalence queries, call it mEQ

by n|L|, since every counterexample either reveals a new equivalence class, or provides
evidence that the potential of a class is higher. The number of VQs is bounded by the
size of the obtained table. The table has at most n|L| + n|L||Σ| rows since a new row
is added to S∗ only if it revealed a new equivalence class or it increased the potential of
a known class, and when a row is added to S∗ all its one letter extensions are added to
S. The number of columns is bounded by c times mEQ where c is the size of the longest
counterexample.7 While these theoretical bounds are the same as L∗ for SFOLA, as
discussed in page. 3 they cannot be better, and as we show in Sect. 5, in practice the
number of EQ and VQ issued by our algorithm is significantly smaller than that by L∗.

7 This can be strengthened to log(c) times mEQ using the optimization that finds one suffix to
add to the columns, as described in the proof of Theorem 22.
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5 Empirical Results

We implemented the algorithm and compared its performance on randomly generated
FOLAs against the straightforward extension of L∗ to learn SFOLAs.8 We compared
them in terms of (a) the number of states obtained (b) the number of issued value
queries and (c) the number of issued equivalence queries. We used a binary alphabet
Σ = {a, b}, the number of states N was chosen uniformly at random amongst the val-
ues {1, ..., 70} and the size of the lattice K was chosen uniformly at random amongst
{2, ..., 70} (i.e. L = {0, ...,K}). For each state q and letter σ, the state to transit to was
chosen uniformly at random amongst {1, ..., N} and the transition value was chosen
uniformly at random amongst {1, ...,K}. The initial state was fixed to be 1. Finally, for
each state the state-value was chosen uniformly at random amongst {1, ...,K}.

Note that the generated automata may not necessarily be minimal in terms of
the number of states, and may not utilize all the available K + 1 lattice values. We
thus define n to be the number of states in the minimal FOLA for the formal series
f : Σ∗ → {0, ...,K} computed by the generated automaton, and k as the num-
ber of values that are possible outputs of this automaton, meaning k = |Image(f)|.9
In addition, we define ns to be the number of states in the minimal SFOLA for
that language. The implementation of the algorithm and the tests are available in
https://github.com/sagisaa/Learning FOLA.

We generated 10334 automata as specified, and ran both algorithms L∗ and FOL∗

on the languages induced by these automata. A VQ for a word w was answered by run-
ning the word on the generated automata, and the EQs were answered using a complete
equivalence check, as specified in [14]. The gray bars on the graphs show the number of
samples for a certain x, (denoted ‘Count’) and their scale is placed on the right y-axis.
Each point on the graphs indicates the average result of the samples with the same x.

The graphs are organized as three pairs, measuring number of states of the resulting
automaton, number of issued VQ, and number of issued EQ. The upper row measures
these with respect to the actual number of states (n), and the lower row with respect to
the actual lattice size (k).

The first pair of graphs (a) and (d) provide the number of states of the resulting
automaton in L∗ vs FOL∗ measured with respect to n and k, resp. Recall that the output
of L∗ is an SFOLA and the output of FOL∗ is a FOLA, and both algorithms return the
minimal one. These graphs show that the number of states in SFOLA is about k times
bigger than the minimal FOLA. This conclusion is supported with regression testing on
the relation between k and the number of states in each type given in App.D.

The second pair of graphs (b) and (e) provide the number of VQs issued by L∗ vs
FOL∗ measured with respect to to n and k, resp. These graphs show that the relation
between the number of states in the minimal matching representation and the number of
VQs is roughly quadratic. This result is compatible with the structure of the algorithm,

8 In this extension the observation table has answers to value queries (as in FOL∗) but two rows
are determined equivalent iff they are exactly the same. All transitions values are set to �, and
the state values are determined by the value of the respective row in the column ε.

9 Note that k, the number of lattice values occurring in transitions or state-values, is bounded by
n + n|Σ| where n is the number of states. Thus, for a constant-size alphabet it is O(n).

https://github.com/sagisaa/Learning_FOLA
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Fig. 8. L∗and FOL∗comparison: Number of states, VQs, EQs

since the data of the VQs is organized in a table in which the number of rows and the
number of columns are O(n) each.10

Fig. 9. EQs in relation to k

Last important factor we looked at is the number
of EQs required in order for the algorithm to con-
verge. The third pair of graphs (c) and (f) provide
the number of EQs issued by L∗ vs FOL∗ measured
with respect to n and k, resp. These graphs show that
the number of EQs required by the FOL∗algorithm
decreases when the lattice size k increases. This can
be explained by the fact that the higher the lattice
size is, the easier it is to distinguish between rows.
With that said, less EQs are needed since states are discovered sooner when closing the
table. To make sure of that result, we use confidence interval method (CI) of 99% to
distinguish between the 2 methods, see Fig. 9.

6 Conclusions

We provided a definition of equivalence classes for a formal series recognizable by a
FOLA, which yields a canonical minimal FOLA and a Myhill-Nerode theorem, namely
a one-to-one relation between the equivalence classes and the canonical FOLA. Based
on it we designed a specialized learning algorithm that outputs the canonical FOLA
and compared it against L∗ on synthetically generated FOLAs. Our experiments show
a clear advantage to using FOL∗ as it outperforms L∗ in the number of states of the
obtained FOLA, the number of issued VQs, and the number of issued EQs.

10 The number of columns is bounded by nc where c is the size of the longest counterexample.
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Abstract. While value iteration (VI) is a standard solution approach to
simple stochastic games (SSGs), it suffered from the lack of a stopping
criterion. Recently, several solutions have appeared, among them also
“optimistic” VI (OVI). However, OVI is applicable only to one-player
SSGs with no end components. We lift these two assumptions, making
it available to general SSGs. Further, we utilize the idea in the context
of topological VI, where we provide an efficient precise solution. In order
to compare the new algorithms with the state of the art, we use not
only the standard benchmarks, but we also design a random generator
of SSGs, which can be biased towards various types of models, aiding in
understanding the advantages of different algorithms on SSGs.

1 Introduction

Stochastic games (SGs) are a standard model for decision making in the
presence of adversary and uncertainty, by combining two (opposing) non-
determinisms with stochastic dynamics. Thus, they extend both Markov decision
processes (MDPs), the standard model for sequential decision making and prob-
abilistic verification, and 2-player graph games, the standard model for reactive
synthesis. Simple stochastic games (SSGs) [13] form an important special case
where the goal is to reach a given state. In technical terms, an SSG is a zero-
sum two-player turn-based game played on a graph by Maximizer and Minimizer,
who choose actions in their respective vertices (also called states). Each action is
associated with a probability distribution determining the next state to move to.
The objective of Maximizer is to maximize the probability of reaching a given
target state; the objective of Minimizer is the opposite. The interest in SSGs
stems from two sources. Firstly, solving an SSG is polynomial-time equivalent to
solving perfect information Shapley, Everett and Gillette games [1] and further
important problems can be reduced to SSGs, for instance parity games, mean-
payoff games, discounted-payoff games and their stochastic extensions [7]; yet,
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the complexity of solving SSGs remains a long-standing open question, known
to be in UP ∩ coUP [21], but with polynomial-time algorithm staying elu-
sive. Secondly, the problem is practically relevant in verification and synthesis in
stochastic environments, with many applications, e.g., [6,10,11,25], surveyed in
detail in [28]. Consequently, heuristics improving performance of the algorithms
for solving SSGs are also practically relevant.
Algorithms used to (approximately) solve SSGs can be divided into several
classes, most notably quadratic programming (QP) and dynamic programming,
the latter comprising strategy iteration (SI) and value iteration (VI). For their
practical comparison, see the recent [22].

On the one hand, only when exact solutions are required, SI is mostly used.
It provides a sequence of improving strategies and, accompanied by evaluation
of Markov chains via systems of linear equations, can yield the precise result. On
the other hand, approximate solutions (with a certain imprecision) are faster to
compute and often sufficient. For this reason, VI is the technique used in practice
the most, e.g., in PRISM-games [23], although not necessarily always the best.
It gradually approximates (from below) the optimal probability to reach the
target from each state. Interestingly, until very recently no means were known
to determine the current precision, and so standard implementations terminating
whenever no significant improvements occur can be arbitrarily wrong [18]. More
surprisingly, this was even the case for MDPs, i.e., SSGs with a single player.

In 2014 [5,18], the first stopping criterion for MDPs was given, quantifying
precision of the current approximation by providing also a sequence converging
to the optimal probabilities from above. The difficulty to obtain such converging
upper bound arises from cyclic dependencies of the optimal probabilities in so-
called end components (ECs). For instance, an action surely self-looping on a
state trivializes the equations, stating only that the probability in this state
is simply equal to itself, yielding an infinity of solutions, not just the optimal
one. This issue has been solved for MDPs [5,18] by “collapsing” these ECs into
single states with no loops, which corresponds to identifying cyclically dependent
variables into a single one.

In 2018 [17], the idea was finally extended to SSGs, giving rise to bounded
value iteration (BVI) with the first stopping criterion for SSGs. Note that the
MDP solution could not be directly used since the analog of ECs in SSGs is
more complex: different states in an EC in an SSG can have different optimal
probabilities and thus cannot be merged. Instead, “deflating” manipulates the
values in smaller and dynamically changing “simple ECs”.

Since the first VI stopping criterion was given for MDPs, several alternatives
have been proposed, most notably sound VI (SVI) [27] and optimistic VI (OVI)
[19]. However, the termination proofs of both require the MDP to contain no
ECs. They achieve this by collapsing ECs, which is not applicable to SSGs.
Our Contribution. In this paper, we extend the idea of OVI in two ways so
that we obtain algorithms for SSGs.

First Algorithm. The idea of OVI [19] is to run VI (converging from below) until
changes are small, then to guess slightly larger values and check whether they
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form an upper bound. If not, the process continues. To overcome the requirement
that there is no EC, we complement the procedure of [19] with the deflating
of [17]. However, to ensure monotonicity of the Bellman operator, the so-called
“simple” ECs must be computed differently from [17]. While the rest of the proof
is analogous to [19], we try to make it simpler and more elegant by separating
the core idea from the practical improvements. As a result, we obtain an OVI
algorithm for SSGs.

Second Algorithm. We consider the classic “topological” optimization of VI [16],
where the system is analyzed per strongly connected component (SCC) in the
bottom-up order. While such decomposition often leads to savings in runtime
and memory, also when expected accumulated rewards are considered [4], the
imprecisions from lower SCCs propagate to the upper ones, yielding the method
useless whenever the system is too deep (with as few SCCs in a row as 20)
even for Markov chains, see Example 1. We fix this issue by precise and fast
computations in each SCC as follows. First, we quickly obtain an approximate
solution by VI, then we optimistically guess the solution, but in contrast to OVI
which guesses values, we guess optimal strategies, which turns out to require
orders of magnitude fewer guesses. If the guess is not correct, a step of SI can
be cheaply performed. This version of OVI can thus be also seen as a possible
warm start for SI.

Comparison and Model Generation. We compare the resulting approaches to
BVI and a more recent SSG solution called “widest path” [26] (WP). While
there is no clear winner, we provide insights as to which algorithm to use in
different settings. As noticed already in [22], the performance of SSG algorithms
is extremely sensitive to the structure of the models. Unfortunately, there are
too few realistic case studies and thus a very limited number of model structures.
Consequently, in order to be able to experimentally compare our algorithms in a
reasonable way, we propose an approach for random SSG generation. While we
prove that our approach can generate every SSG, it skews towards certain types
of models. Hence we provide means for the user to skew towards model structures
that they are interested in, e.g., increasing or decreasing the number of SCCs.
This helps to find out which algorithms are sensitive to which model parameters,
e.g., amount of SCCs. While this is only the first step towards filling this gap
of random SSG (and MDP) generation, we hope to encourage more research on
the topic through this effort.
Our contribution can be summarized as follows:

– We design an extension of OVI to SSGs. As a side effect, we extend OVI on
MDPs, lifting the requirement of no ECs (Sect. 3).

– We extend the landscape by providing an efficient VI-based approach for pre-
cise solutions, using the OVI idea on strategies, rather than values (Sect. 4).

– We provide and evaluate a random generator of SSGs, which can be biased
towards various types of models (Sect. 5).

– We compare the resulting methods to the state of the art (BVI, WP, SI)
experimentally (Sect. 6).
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Related Work. Closest to our work, in the case of SSGs, is the work of [17]
where the first stopping criterion for VI was given. It extends both normal
BVI [18] and its learning-based counterpart [5] from MDPs by incorporating
the so-called deflating procedure as part of their computation. Recently, another
BVI variant for SSGs was proposed which introduces a global propagation of
upper bounds [26]. Also, the simpler case of an SSG with one-player ECs is
discussed in [29].

In general, the tools which are available for solving SGs are limited. PRISM-
games [23] implements the standard VI algorithms, and it also considers other
objectives apart from reachability, such as mean-payoff and ratio reward. Fur-
ther, GAVS+ [12] is an algorithmic game solver with support for solving SSGs,
and GIST [9] allows for the qualitative verification of SGs.

Fig. 1. An example of an SG with S = {s0, s1, f, z}, S� = {s1, f}, S© = {s0, z}, the
initial state s0 and set of actions A = {a, b, c, d, e}; Av(s0) = {a} with δ(s0, a)(s1) = 1;
Av(s1) = {b, c} with δ(s1, b)(s0) = 1 and δ(s1, c)(f) = δ(s1, c)(z) =

1
2
. For actions with

only one successor, we do not depict the transition probability 1.

2 Preliminaries

2.1 Simple Stochastic Games

A probability distribution on a finite set X is a mapping δ : X → [0, 1], such
that

∑
x∈X δ(x) = 1. The set of all probability distributions on X is denoted by

Dist(X).

Definition 1. (Stochastic game (SG), e.g., [14]). A stochastic turn-based
two-player game is defined by a tuple G = 〈S,S�,S©, s0,A,Av, δ〉 where S is
a finite set of states partitioned into a set of Minimizer (S©) and Maximizer
(S�) states, respectively. s0 ∈ S is the initial state. A is a finite set of actions.
Av : S → 2A assigns to every state a set of available actions. Finally, δ : S×A →
Dist(S) is the transition function.

Note that a Markov decision process (MDP) is a special case of an SG where
either S© = ∅ or S� = ∅ and a Markov chain is a special case of an MDP where
in each state there is only one available action.

Without loss of generality, we assume SGs to be non-blocking, i.e., for all
s ∈ S : Av(s) �= ∅. For convenience, we use the following notation: Given a
state s ∈ S and an action a ∈ Av(s), the set of successor states is denoted as
Post(s, a) := {s′ | δ(s, a, s′) > 0}. For a set of states T ⊆ S, we use T� = T ∩ S�
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to denote all Maximizer states in T , and dually for Minimizer. Figure 1 shows
an example SG.
Semantics: Paths, Strategies and the Value. Formally, an infinite path ρ
is defined as ρ = s0a0s1a1... ∈ (S × A)ω, such that for every i ∈ N, ai ∈ Av(si)
and si+1 ∈ Post(si, ai). The set of all paths in an SG G is denoted as PathsG . A
finite path is a prefix of an infinite path ending in a state s.

A Maximizer strategy is a function σ : S� → A such that σ(s) ∈ Av(s) for
all s; Minimizer strategies τ are defined analogously. We restrict attention to
memoryless deterministic strategies, because they are sufficient for the objective
we consider [13]. By fixing both players’ choices according to a pair of strategies
(σ, τ), we turn an SG G into a Markov chain G(σ,τ) with state space S and the
transition function δσ,τ (s, s′) = δ(s, σ(s), s′) for Maximizer states s and dually
for Minimizer with σ replaced by τ . Given a state s, the Markov chain G(σ,τ)

induces a unique probability distribution Pσ,τ
s over the set of all infinite paths [3,

Sect. 10.1].
Since we consider SSGs, we complement an SG with a set of goal states

F ⊆ S and formalize the objective of reaching F, as follows: we denote as ♦F :=
{ρ | ρ = s0a0s1a1... ∈ PathsG ∧ ∃i ∈ N.si ∈ F} the (measurable) set of all paths
which eventually reach F. We are interested in the value of every state s, i.e., the
probability that s reaches a goal state if both players play optimally. Formally,
for each s ∈ S, its value is defined as

V(s) := sup
σ

inf
τ

Pσ,τ
s (♦F) = inf

τ
sup

σ
Pσ,τ

s (♦F), (1)

where the equality follows from [13]. We use V : S → R to denote the function
that maps every s ∈ S to its value. When comparing functions f1, f2 : S → R, we
use point-wise comparison, i.e., f1 ≤ f2 if and only if for all s ∈ S : f1(s) ≤ f2(s).

2.2 Value Iteration and Bounded Value Iteration

To compute the value function V for an SSG, the following partitioning of the
state space is useful: firstly the goal states F, secondly the set of sink states that
do not have a path to the target Z = {s ∈ S | �ρ = s0a0s1a1... ∈ PathsG : s0 =
s ∧ ρ ∈ ♦F}, and finally the remaining states S?. For F and Z (which can be
easily identified by graph-search algorithms), the value is trivially 1 respectively
0. Thus, the computation only has to focus on S?.

The well-known approach of value iteration leverages the fact that V is the
least fixpoint of the Bellman equations, cf. [8]:

V(s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if s ∈ F

0 if s ∈ Z

maxa∈Av(s)

(∑
s′∈S δ(s, a, s′) · V(s′)

)
if s ∈ S?

�

mina∈Av(s)

(∑
s′∈S δ(s, a, s′) · V(s′)

)
if s ∈ S?

©

(2)



290 M. Azeem et al.

Now we define1 the Bellman operator B : (S → R) → (S → R):

B(f)(s) =
⎧
⎨

⎩

maxa∈Av(s)

(∑
s′∈S δ(s, a, s′) · f(s′)

)
if s ∈ S�

mina∈Av(s)

(∑
s′∈S δ(s, a, s′) · f(s′)

)
if s ∈ S©

(3)

Value iteration starts with the under-approximation

L0(s) =

{
1 if s ∈ F

0 otherwise

and repeatedly applies the Bellman operator. Since the value is the least fixpoint
of the Bellman equations and L0 ≤ V is lower than the value, this converges to
the value in the limit [8] (formally limi→∞ Bi(L0) = V).

While this approach is often fast in practice, it has the drawback that it is
not possible to know the current difference between Bi(L0) and V for any given i.
To address this, one can employ bounded value iteration (BVI, also known as
interval iteration [5,17,18]) It additionally starts from an over-approximation
U0, with U0(s) = 1 for all s ∈ S. However, applying the Bellman operator to this
upper estimate might not converge to the value, but to some greater fixpoint
instead, see [17, Sect. 3] for an example. The core of the problem are so called
end components.

Definition 2 (End component (EC)). A set of states T with ∅ �= T ⊆ S is an
end component if and only if there exists a set of actions ∅ �= B ⊆ ⋃

s∈T Av(s)
such that:

1. for each s ∈ T , a ∈ B ∩ Av(s) we have Post(s, a) ⊆ T .
2. for each s, s′ ∈ T there exists a finite path w = sa0...ans

′ ∈ (T × B)∗ × T .

An end component T is a maximal end component (MEC) if there is no
other EC T ′ such that T ⊆ T ′.

Intuitively, ECs can be problematic, because the over-approximation U is
higher in the EC than the value. Thus, Maximizer prefers staying in the EC and
keeping the illusion of achieving the high U; it is an illusion, because staying will
never reach a target, and Maximizer actually has to use some exit of the EC.
The solution proposed in [17] explicitly identifies these situations and forces all
states in the EC to decrease their U by making it depend on the best exit of
the EC. This operation is called deflating, to evoke the impression of releasing
the pressure in an EC that is bloated by having too high estimates. To define
deflating more formally, we need two definitions from [17]:

1 In the definition of B, we omit the technical detail that for goal states s ∈ F, the value
has to remain 1. Equivalently, one can assume that all goal states are absorbing, i.e.,
only have self looping actions.
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Definition 3 (Best exit). Given a set of states T ⊆ S and a function f : S →
R, the best exit according to f from T is defined as:
bexitf (T ) = max

s∈T�,a∈Av(s)

Post(s,a)�T

( ∑

s′∈S

δ(s, a, s′) · f(s, a)
)
,

with the convention that max∅ = 0.

Definition 4 (Simple end component (SEC)). An EC T is a simple end
component (SEC) if for all s ∈ T , V(s) = bexitV(T )

In SSGs, states in an EC can have different values. Thus, it is necessary to find
the SECs. In these simple sub-parts of the EC all states have the same value,
namely that of the best exit. By setting the over-approximation to bexitU(T )
for each SEC T (additionally to applying B), we ensure that it converges to
the value [17]. As a final complication, computing SECs is difficult, since they
depend on the value V that we want to compute. The solution of [17] is to use
the current under-approximation L to guess which states form a SEC and as L
converges to V in the limit, eventually we guess correctly.

Thus, we can augment the Bellman operator with additional deflating and
define an operator BD

L : (S → R) → (S → R). Note that it depends on an L to
guess the SECs. Given a function U, it proceeds as follows:

– Apply a Bellman update B(U).
– Guess the SECs according to L by using [17, Algorithm 2].
– For each SEC T and all states s ∈ T , set U(s) = min(U(s), bexitU(T )). The
min is only to ensure monotonicity.

In summary, BVI computes two sequences: the sequence of lower bounds
Li = Bi(L) for i ∈ N and an additional sequence of upper bounds Ui = (BD

L )
i(U).

Note that for the i-th application of BD
L , it uses the current lower bound Li. Both

sequences converge to the value V in the limit [17, Theorem 2]. This allows to
terminate the algorithm when the difference between the lower and upper bound
is less than a pre-defined precision ε and obtain an ε-approximation of the value.

3 Optimistic Value Iteration

The idea of optimistic value iteration (OVI, [19]) is to leverage the fact that
classic VI (only from below) typically converges quickly to the correct value.
Indeed, the following “naive” stopping criterion results in an approximation that
is ε-close in all available realistic case studies: stop when for all s ∈ S applying the
Bellman update does not result in a big difference, i.e., diff(L(s),B(L)(s)) < ε,
where we use diff(old,new) = new−old to denote the absolute difference between
two numbers2. However, the naive stopping criterion can also terminate early
when the estimate still is arbitrarily wrong [18].

OVI first performs classic VI with the naive stopping criterion, optimistically
hoping that it will terminate close to the value. Additionally, it uses a verification
2 One can also use the relative difference, i.e., diff(old, new) = new−old

new .
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phase, where it checks whether the result of VI was indeed correct. If it was, OVI
terminates with the guarantee that we are ε-close to the value. Otherwise, if the
result of VI cannot be verified, OVI continues VI with a higher precision ε′. By
repeating this, at some point ε′ is so small that when VI terminates, OVI can
verify that the result is ε-precise.

Our version of OVI for SSGs is given in Algorithm 1. Lines 2–3 are the
classic VI, Lines 4–9 the verification phase. Concretely, in the verification phase
we first guess a candidate upper bound U (Line 4), so that the difference between
L and U is small enough that, if U indeed is an upper bound, we could terminate.

Formally, for all s ∈ S, U(s) = diff+(L(s)), where diff+
ε (x) =

{
0 if x = 0
x + ε otherwise

for absolute difference3. Then we apply the Bellman operator once (Line 6) and
check whether BD

L (U) ≤ U (Line 7). If that holds, we know (by arguments from
lattice theory) that V ≤ U, i.e., that U is a valid upper bound on the value.
Thus, since L and U are ε-close to each other and L ≤ V ≤ U, we return an ε-
approximation of the value (Line 8). The key difference between the original
algorithm for MDPs and the extension to SSGs is that we do not use B in
Line 6 any more, but the Bellman operator with additional deflating BD. On
MDPs, the termination of OVI relied on the assumption that there were no
ECs. This is justified, since in MDPs one can remove the ECs by “collapsing”
them beforehand, cf. [5,18]. On SSGs, collapsing is not possible [17], which is
why we need the new operator.

We have addressed the case that the guessed U can indeed be verified as an
upper bound. In the other case where we are not (yet) able to verify it, Algorithm
1 continues applying BD

L for a finite number of times (we chose 1
ε′ , Line 5). If

for all iterations we cannot verify U as an upper bound, the precision ε′ for the
naive stopping criterion is increased (we chose ε′

2 ) and we start over (Line 10).

Theorem 1. Given an SSG G and a lower bound L0 ≤ V, OVI(G, L0, ε, ε) ter-
minates and returns (L,U) such that L ≤ V ≤ U and diff(U(s), L(s)) ≤ ε for all
s ∈ S.

Our formulation of Algorithm 1 is simpler than [19, Algorithm 2], since we
include only the key parts that are necessary for the proof of Theorem 1 (provided
in [2, App. B]). Below we comment on three ways in which our algorithm can
be changed, following the ideas of [19, Algorithm 2]. All these changes are not
necessary for correctness or termination, but they can practically improve the
algorithm.

1. We can include a check BD(U) ≥ U. It allows to detect whether U ≤ V, i.e.,
U actually is a lower bound on the value. In that case, one can immediately
terminate the verification phase and use U as the new L. We include this
improvement in our implementation, and it is used in almost every unsuc-
cessful verification phase.

3 diff+
ε (x) = x ∗ (1 + ε) for relative difference.
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Algorithm 1. Optimistic value iteration for SSGs.
Input: SSG G, lower bound L ≤ V, precision ε > 0 and naive precision ε′ > 0
Output: (L, U) such that L ≤ V ≤ U and diff(U(s), L(s)) ≤ ε for all s ∈ S
1: procedure OVI(G, L, ε, ε′)

� Classic VI with naive convergence criterion
2: while for some state s ∈ S : diff(L(s), B(L)(s)) > ε′ do
3: L ← B(L)

� Verification phase
4: U ← {s �→ diff+

ε (L(s)) | s ∈ S} � Guess candidate upper bound
5: for 1

ε′ times do
6: U′ ← BD

L (U)
7: if U′ ≤ U then
8: return (L, U) � Found inductive upper bound
9: For all s ∈ S? : U(s) ← min(U(s), U′(s)) � Ensure monotonicity

10: return OVI(G, L, ε, ε′
2
) � Try again with more precision

2. The original version continues to update the lower bound during the verifi-
cation phase. This is used for an additional breaking condition if the lower
bound crossed the upper bound in some state. For clarity of presentation,
we chose to separate concerns and only update the upper bound in the ver-
ification phase. This improvement never made a significant difference in our
experiments.

3. The original version used Gauß-Seidel VI, cf. [19, Sect. 3.1], for both the lower
and the upper bound. Our implementation allows the user to select whether
to use classic or Gauß-Seidel VI.

4 Precise Topological Value Iteration

Topological value iteration (TVI, [16]) is a variant of VI that does not solve
the whole game at once, but rather proceeds piece by piece. This can speed up
convergence and help with memory issues. Concretely, it uses the insight that
the strongly connected components (SCCs) of an SSG always form a directed
acyclic graph. Thus, one can first solve the bottom SCCs, i.e., the last in the
topological ordering, and then proceed backwards one SCC by the next, relying
on the results of the already computed successor SCCs. This idea is not restricted
to VI algorithms, but can also be used for other solutions methods like strategy
iteration (SI) and quadratic programming [22].

The evaluation of [22] showed that this can be quite useful in some cases, but
also much slower in other, possibly even running into time outs on models where
the normal algorithms succeed. The reason for this is a complex problem that did
not occur in the proof of correctness, as it is related to machine precision: SCCs
are not solved precisely, but only with ε-precision. That means that SCCs which
are considered later in the computation have suboptimal information about their
exits. This not only slows down convergence, but can even aggregate and lead
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Algorithm 2. Precise topological value iteration
Input: SSG G
Output: The precise value V for all states in G
1: procedure PTVI(G)
2: for every SCC T in reverse topological ordering do
3: Select arbitrary ε
4: L, U ← computed by some VI-algorithm with precision ε
5: Compute strategies σ, τ which are optimal according to L and U
6: Precisely compute the value VG(σ,τ) of T in the Markov chain G(σ,τ)

7: if For all s ∈ T :

{
σ(s) ∈ argmaxa∈A(s) VG(σ,τ)(s, a) if s ∈ S�
τ(s) ∈ argmina∈A(s) VG(σ,τ)(s, a) if s ∈ S©

then

8: Return VG(σ,τ) as value for T .
9: else

10: Apply strategy iteration, using σ or τ as initial strategy.

to precision problems and non-termination when there is a chain of many SCCs,
as we show in the following example.

Example 1. To exemplify TVI and show when its precision problems occur, we
consider an SSG that is a chain of n SCCs, each with one state. Every state
either loops or continues to the next state, both with probability 0.5. At the end
of the chain, we go to the goal with 0.6 and to the sink with 0.4.

Formally, S = S� = {t, z, s0, s1, . . . , sn}, where s0 is the initial state and
t ∈ F is the only goal state. There only is one action a, so Av(s) = A = {a} for
all states s ∈ S. For every si with i < n, we have δ(si, a, si) = δ(si, a, si+1) = 0.5
and for sn, we have δ(sn, a, t) = 0.6 and δ(sn, a, z) = 0.4. Both states t and z
are absorbing, so they loop with probability one.

Running topological bounded VI on this SSG, we first solve the bottom SCCs,
i.e., t and z, and (by graph algorithms) infer their values of 1 and 0, respectively.
Then we solve the SCC {sn} and set both its bounds to 0.6. Next, for the SCC
{sn−1} bounded VI returns an ε-precise result, as with the self-loop the precise
value is only obtained in the limit. Using precision of ε = 10−6, the resulting inter-
val is [0.5999994277954102, 0.6000003814697266]. Now the imprecisions start to
add up: when solving the next SCC {sn−2}, we depend on the imprecise bounds for
{sn−1}. Thus, the progress we make in every Bellman update is smaller. This not
only slows down convergence, but it also leads to the first ε-precise interval being
[0.5999994099140338, 0.6000003933906441]. So when BVI for the SCC {sn−2} ter-
minates, both the lower and the upper bound are less precise than in the previous
SCC. In state sn−19, this imprecision has aggregated such that the computation is
stuck at the interval [0.5999994000000000, 0.6000004000000001], where the differ-
ence is larger than ε. Even though theoretically we make progress with a Bellman
update, this progress is smaller than machine precision, so practically we can nei-
ther converge nor terminate.

Note that the SSG in this example is a Markov chain, so this problem occurs
not only in SSGs, but already in Markov chains and MDPs. �
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We address this problem by introducing the precise-topological-optimization
(PTVI, see Algorithm 2). The idea of PTVI is that, after an SCC has been
solved with ε-precision (Line 4), we first extract the strategies for both players
from the result (Line 5) and then compute the exact value of all states in the
SCC under this pair of strategies (Line 6). Finally, we use a simple local check
to verify that this is indeed the optimal value (Line 7). If it is, we return the
precise values that the next SCCs can safely depend on (Line 8). If it is not,
then we have to continue with some precise solution method (Line 10). Since we
have just extracted near-optimal strategies, it makes sense to continue with SI,
see e.g., [22, Sect. 3.2]. For details on the selection of the strategies and the proof
of Theorem 2, see [2, App. B].

Theorem 2. Algorithm 2 returns the precise solution V.

The strength of PTVI is the simple local check that allows it to conclude that
the estimates for an SCC are precise. It relies on guessing both strategies. This
differs from guessing an upper bound, as OVI does; or guessing one strategy, as
in SI with a warm start [22, Sect. 4.3]. We emphasize that even using the classical
naive stopping criterion in Line 4, this local check succeeded on more than 99% of
the case studies, and thus the additional steps of Line 10 are almost never neces-
sary. Using bounded VI in Line 4, we immediately succeeded on all case studies. In
contrast, the first verification phase of OVI—having the same estimates and thus
“information” as PTVI has when performing the local check—succeeded only for
15% of the random case studies; in 85% of the random cases as well as several
larger real case studies OVI had to perform additional verification phases.

Note that PTVI can be seen from different directions: (i) it is a practical fix of
TVI [16]; (ii) it is a new way to make classical VI return a precise result, which is
more efficient than running for an exponential number of steps and rounding as
described in [8]; (iii) it is a warm start for SI, in the seldom case that the SI phase of
the algorithm (Line 10) is necessary; and (iv) just like OVI, it optimistically iter-
ates the lower bound and then uses guessing to verify this guess. However, unlike
OVI it produces a precise result, albeit at the cost of solving a Markov chain pre-
cisely, and it uses the information available at the time of guessing more efficiently,
succeeding on the first check more often than OVI.

5 Random Generation of Simple Stochastic Games

In order to properly evaluate and compare our algorithms, we need a diverse set
of benchmarks. However, to the best of our knowledge, there are only 12 SSG case
studies modelling real world problems and 3 handcrafted models for theoretical
corner cases. Since the underlying structure of a model greatly affects the runtime
of algorithms [22], only scaling these few models is insufficient. Thus, we propose
an algorithm for random generation of SSG case studies, which enables us to test
our algorithms on a broader spectrum of models.

Moreover, as we are interested in the relation between our verification algo-
rithms and certain features of the model structure, our implementation also
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allows for skewing the probability distribution towards models that exhibit cer-
tain features. This is very useful, since it allows us to test our algorithms on
models whose features were not considered before (e.g., large number of actions
per state, etc.). In particular, we provide: (i) parameters to tune features that
can be affected by parameters of single states (e.g., the size, percentage of Mini-
mizer states, actions per state, etc.). For example, if for each state the probability
of being a Maximizer or Minimizer state is equal, we get 50% Minimizer states
on average. Similarly, by choosing a high probability of adding another action
to a state during the generation, we obtain states with up to 90 actions and an
average around 7; (ii) more involved guidelines to affect features which depend
on the interactions of several states (e.g., the number and size of SCCs and ECs,
etc.). Intuitively, to obtain an SCC or MEC of a certain size n, we have to restrict
the choice of successors during the transition or action generation to ensure that
there are n strongly connected states.

We provide a detailed description of our random generation algorithm in [2,
App. C]. There, we prove that it can generate every possible SSG with positive
probability, and also describe and discuss the aforementioned guidelines. Addi-
tionally, we give a detailed analysis of model features for all random case studies
used in the evaluation, as well as a comparison to the features of the real case
studies in [2, App. D].

6 Experiments

In this section we talk about the practical evaluation of our algorithms and
the comparison to the state of the art. First, we describe the setup in Sect. 6.1.
Then we give a general overview in Sect. 6.2 before analyzing the algorithms’
performance in more detail in Sects. 6.3 and 6.4.

6.1 Experimental Setup

Algorithms. Our implementation is based on PRISM-games [23] and available
at https://github.com/ga67vib/Algorithms-For-Stochastic-Games.

We compare to the following algorithms from related work: classical value
iteration (VI, [8]), bounded value iteration (BVI, [17]) and the improvement
of bounded value iterations based on widest paths (WP, [26]). Moreover, as a
representative of a competitor yielding a precise result, we implemented a precise
variant of strategy iteration (SI), which relies on linear programming for solving
the opponent MDP.

The new algorithms are optimistic VI (OVI, Sect. 3) and the precise topo-
logical version of VI (Sect. 4). For the latter, we give two variants with differ-
ent stopping criteria in Line 4 of the algorithm: PTVI uses the naive criterion
and PTBVI the ε-guaranteed one. Finally, we consider several optimizations,
but their analysis is delegated to [2, App. E.1] due to space constraints. Quite
surprisingly, for all optimizations, their impact can be positive or negative on
different models.

https://github.com/ga67vib/Algorithms-For-Stochastic-Games
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Case Studies. We consider case studies from three different sources: (i) all real
case studies that were already used in [22], and are mainly part the PRISM
benchmark suite [24]; (ii) several handcrafted corner case models: haddad-
monmege (the adversarial example from [18]), BigMec and MulMec (a single
big MEC or a long chain of many small MECs from [22]), as well as two new
models to analyze the behavior of OVI and one large model with many SCCs;
(iii) randomly generated models as discussed in Sect. 5. Note that throughout
our experiments, we omitted models solved by pre-computations.
Technical Details. We conducted the experiments on a server with 64GB
of RAM and a 3.60GHz Intel CPU running Manjaro Linux. We always use a
precision of ε = 10−6. The timeout was set to 15min and the memory limit was
6 GB for all models except for large models (≥1,000,000 states). For the large
models, the timeout was set to 30min and the memory limit to 36 GB.

6.2 Overview

Fig. 2. Overview of the performance of the main algorithms on the real and random
case studies. See Sect. 6.2 for a description.

Figure 2 gives an overview of the performance of the algorithms on the real
and random case studies. The plots depict the number of solved benchmarks
(horizontal axis) and the time it took to solve them (vertical axis). For each
algorithm, the benchmarks are sorted in ascending order by verification time. A
line stops when no further benchmarks could be solved. Intuitively, the further
to the bottom right a line extends, the better. The algorithms shown in the
legend on the right are sorted based on their performance, in descending order.
Note that these plots have to be interpreted with care, as they greatly depend
on the selection of benchmarks.

The precise algorithms provide harder guarantees, so we expect them to be
slower. This is visible for PTBVI, which is slower and solves less benchmark
than others. Still, PTBVI is optimal on certain kinds of models, as we detail in
Sect. 6.3. Surprisingly, SI performed very well, even competing with the approx-
imate algorithms BVI, OVI and WP. However, this comes from the model
selection, particularly of the random models. Firstly, they exhibit very small
transition probabilities, since we wanted the models to be hard for VI so that
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Fig. 3. PTBVI compared to SI and WP on all datasets.

we can distinguish the different stopping criteria. This slows down convergence
of VI, but does not affect SI. Secondly, they contain few states, so using a linear
program is feasible. In [2, App. E.4], we show that as model size increases, SI
becomes less viable.

The algorithms giving ε-guarantees are overall quite comparable. This was
also the case in the evaluation of [19], where the authors note that “for probabilis-
tic reachability, there is no clear winner”. In Sect. 6.4, we give more details on
how the performance of certain algorithms is affected by the structural features
of a case study. Note that we included classical VI as a baseline, even though it
gives no guarantees. It returned wrong results on two random models as well as
the handcrafted haddad-monmege and MulMec.

Finally, it is important to note that random models of size 10,000 were already
very hard for all algorithms, while some real models with more than 100,000
states could be solved quickly. This confirms the hypothesis of [22] that the
graph structure of an SG (e.g., number of actions per state, depth of topological
ordering, connectedness) is more important than its pure size.

6.3 Detailed Analysis of Precise Algorithms

PTVI and PTBVI are able to solve the chain of SCCs MulMec where normal
topological VI [22] was stuck, so we achieved our original goal.

We use scatter plots to evaluate the algorithms’ performance in detail. Each
point in a scatter plot denotes a model. If a point is below the diagonal, the
algorithm on the horizontal axis required more time to solve it than the corre-
sponding algorithm on the vertical axis and vice versa. The two lines next to the
diagonal mark the case where one algorithm was twice as fast as the other.

Figure 3 shows a scatter plot of PTBVI (which performed better than PTVI)
versus the precise SI and the approximate, but very performant WP. While on
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Fig. 4. OVI compared to BVI and WP on all datasets.

smaller models PTBVI does not perform very well (Fig. 3(a)), on larger models
it often outperforms SI, in many cases halving the runtime or even reducing
it by an order of magnitude, as shown in Fig. 3(b). We conjecture that this
comes from the fact that SI has to solve a linear program multiple times, while
PTBVI only guesses the optimal strategies once and then solves a single Markov
chain. We emphasize that PTBVI never had to resort to actually performing
strategy iteration, because it guessed the correct strategies in all case studies.
Moreover, PTBVI even beats the best approximate method, WP, in sufficiently
large instances that contain multiple chained SCCs. In summary, PTBVI is a
promising alternative to SI when needing precise solutions, especially on large
models with chains of SCCs.

6.4 Detailed Analysis of Approximate (ε-Precise) Algorithms

All ε-precise algorithms perform similarly well. WP has the smallest accumu-
lated runtime (Fig. 2), no models where it is significantly worse than BVI ([2,
App. E.2]) and only few models where it is significantly worse than OVI (Fig. 4).
As already observed in [26], it is particularly good when there are several or many
MECs (especially on the handcrafted MulMec). Thus, it is a valid initial choice
except when the models are large with a chain of big SCCs, where we concluded
in Sect. 6.3 that PTBVI is better.

We analyzed OVI in more detail to find our what features of the model
affect its performance. Details validating the following statements are provided
in [2, App. E.3]. Intuitively, OVI outperforms the other algorithms when the
lower bound quickly converges, but the upper bound does not. Dually, if the
lower bound converges slowly, this is problematic for OVI. Note that there are
many hyper-parameters of OVI, for example the number of steps in the verifi-
cation phase or the modification of the precision after a failed verification phase.
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We conjecture that these parameters affect the runtime and the choice can be
improved; however, it is unlikely that there are parameter choices suitable for
all kinds of models.

7 Conclusion

We extended optimistic VI from MDPs to SSGs. Moreover, using the “optimistic”
idea, we fixed the issue of topological VI, so that it works even in the case of
deeper models with more SCCs arranged in longer chains in the topological
order. Besides, this fix also makes the method return the exact result. While
this may be at the cost of a higher runtime, it becomes the only option when
the overall model is very large, so that per-SCC analysis becomes unavoidable,
and deep, so that precise values must be computed to converge at all. PTVI can
be viewed as a separate algorithm or as an optimization on top of any approach
from which a strategy can be extracted.

The experimental results show that the algorithms are of comparable perfor-
mance, especially on real models from the standard benchmark sets. However,
an in-depth analysis of the handcrafted and random models reveals that the per-
formance of these algorithms is often sensitive to the underlying graph structure
and, thus, their performance can vary accordingly. While we discuss some rules
of thumb as to which algorithm is to be used for a particular benchmark, a part
of the future work is to provide clearer and more algorithmic recommendations.
An interesting direction here might also be to apply machine learning to rec-
ommend the most appropriate algorithm, as done for software model checkers
already a few years ago, e.g., [15].

Moreover, we introduced a random generator, capable of producing various
patterns even to extreme degrees. While this is very useful to find bugs and corner
cases, many of the patterns need not be realistic. Consequently, we introduce a
powerful set of tools to bias the generation. Nevertheless, future work shall amend
this spectrum of tools with further hyper-parameters and approaches. We hope to
hereby establish the platform for the community to contribute, complementary
to benchmark sets [20,24].
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Abstract. When omega-regular objectives were first proposed in model-free
reinforcement learning (RL) for controlling MDPs, deterministic Rabin automata
were used in an attempt to provide a direct translation from their transitions to
scalar values. While these translations failed, it has turned out that it is pos-
sible to repair them by using good-for-MDPs (GFM) Büchi automata instead.
These are nondeterministic Büchi automata with a restricted type of nondetermin-
ism, albeit not as restricted as in good-for-games automata. Indeed, deterministic
Rabin automata have a pretty straightforward translation to such GFM automata,
which is bi-linear in the number of states and pairs. Interestingly, the same cannot
be said for deterministic Streett automata: a translation to nondeterministic Rabin
or Büchi automata comes at an exponential cost, even without requiring the target
automaton to be good-for-MDPs. Do we have to pay more than that to obtain a
good-for-MDPs automaton? The surprising answer is that we have to pay signif-
icantly less when we instead expand the good-for-MDPs property to alternating
automata: like the nondeterministic GFM automata obtained from deterministic
Rabin automata, the alternating good-for-MDPs automata we produce from deter-
ministic Streett automata are bi-linear in the size of the deterministic automaton
and its index. They can therefore be exponentially more succinct than the minimal
nondeterministic Büchi automaton.

1 Introduction

Omega-automata [18,27] have found renewed interest—often as the result of translat-
ing a formula in LTL [20]—as specifications of qualitative objectives in reinforcement
learning (RL) [26]. The acceptance condition of an ω-automaton determines the reward
whose cumulative return the learning agent strives to maximise. The relation between
the automaton and the reward signal should ensure that a strategy that maximises the
expected return also maximises the probability to realise the objective. This so-called
faithfulness requirement [10] restricts the type of ω-automaton that can be used to rep-
resent the objective, and this paper concerns how to find the right type of ω-automata.
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Deterministic automata with various types of acceptance conditions have been
used in model checking and strategy synthesis [2]; notably, Büchi, parity, Rabin,
and Streett. While deterministic Büchi automata—including generalised deterministic
Büchi automata—do not accept all ω-regular languages, deterministic parity, Rabin, and
Streett automata do; therefore, they are employed in the formulation of general solutions
to synthesis problems. In addition, maximising the chance of meeting a parity and Rabin
winning conditions in a game can be obtained using positional strategies, while Streett
winning conditions require finite additional memory. This means that a positional strat-
egy for a Markov decision process (MDP) or a stochastic game endowed with a parity
or Rabin objective can be turned into a positional strategy to resolve nondeterministic
choice. Strategy computation methods for both Rabin and Streett automata have been
studied extensively [1,4,19]. These methods, however, are not applicable in RL. In order
to apply RL to the computation of optimal strategies for ω-regular objectives, we have
to devise a scheme for doling out rewards that, for generality, depend on the given ω-
automaton, and perhaps on some hyperparameters of the learning algorithm, but not on
the MDP—or the stochastic game—for which a control strategy is sought.

Two features of RL algorithms significantly affect the choice of translation from
acceptance condition to rewards: 1) they require positional optimal strategies after the
translation to rewards, as they learn values of states and transitions, and 2) the same
transitions will always be optimal once a property is translated into scalar rewards. This
appears to effectively exclude using Streett conditions directly [13], as optimal con-
trol requires memory for Streett objectives. This is regrettable, as Streett objectives do
occur in practice. GR(1) [3] conditions, for example, translate smoothly into Streett
objectives (in the pure original form, to one pair Streett objectives), such that a conjunc-
tion of GR(1) objectives will always have a natural representation as a deterministic
Streett automaton. Likewise, each strong fairness requirement produces a Streett pair.
Moreover, minimising the chance of satisfying a Rabin condition given as a determin-
istic Rabin automaton (DRA) is also equivalent to maximising the chance of satisfying
the Streett condition given by its dual.

A natural way to move to simpler acceptance conditions requires some form of
nondeterminism. Full recourse to nondeterminism, however, is not compatible with the
computation of optimal strategies for MDPs or stochastic games. If we want to move
away from using deterministic automata to describe the objective, we therefore need
to impose restrictions on the automaton’s nondeterminism. The precise nature of these
restrictions depends on the type of environment interacting with the agent, whose con-
trol strategy we want to build. If the environment is a Markov decision process [21], the
automaton needs to be good-for-MDPs (GFM) [11] (previously used automata [5,8,28]
have this property) while, for stochastic games, with two strategic players, the stronger
requirements of good-for-games automata [15] must be satisfied. GFM automata have
the advantage that they can use simpler acceptance mechanisms. In particular, the GFM
automata developed so far are nondeterministic Büchi automata, and being able to use
a simple acceptance mechanism like Büchi is quite beneficial for RL [9,11]—though it
is possible to use parity automata, using them comes at a cost [12].

When starting with a deterministic Streett automaton (DSA), a translation to a
nondeterministic Büchi automaton (NBA) [23], or even to a nondeterministic Rabin
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automaton [23], comes at the cost of an exponential blow-up, even without the restric-
tion to GFM automata. This raises the question of whether or not there is a different
way to efficiently translate the DSA into a suitable automaton. Our main result is that
alternating GFM automata can be exponentially more succinct than general non-
deterministic Büchi automata.

Intuitively, this should not be possible: the reason for the exponential blow-up from
DSAs to NBAs (and even NRAs) is that one will either need some form of memory,
such as a latest appearance record (LAR [6,7]), or a nondeterministic guess as to which
way each Streett pair is satisfied in. Recall that a Streett pair consists of a green and a
red set of states or transitions, and it is satisfied if no entry of the red set or some entry of
the green set occurs infinitely often; a nondeterministic automaton can guess, for each
pair, to validate either of these conditions. The intuitive effect of this blow-up would be
that starting with DSAs is something that efficient RL approaches will struggle with.

The key message of this paper is that one can trade-off alternation for memory in
computing an optimal strategy by moving to alternating GFM automata instead of tra-
ditional nondeterministic ones. Here is the interesting bit: while we do, unsurprisingly,
need a latest appearance record in the control strategy we develop, the blow-up due to
the LAR is not necessary while learning the optimal strategy!

2 Preliminaries

A probability distribution over a finite set S is a function d : S→[0, 1] such that we
have

∑
s∈S d(s) = 1. Let D(S) denote the set of all probability distributions over S.

We say a distribution d ∈ D(S) is a point distribution if d(s) = 1 for some s ∈ S. For
d ∈ D(S) we write supp(d) for {s ∈ S : d(s) > 0}.

2.1 Stochastic Game Arenas and Markov Decision Processes

A stochastic game arena G is a tuple (S, s0, A, T, SMax, SMin, AP,L), where S is a
finite set of states, s0 ∈ S is the initial state, A is a finite set of actions, T : S × A −⇁
D(S) is the probabilistic transition (partial) function, {SMax, SMin} is a partition of the
set of states S, AP is the set of atomic propositions, and L : S → 2AP is the labeling
function. For s ∈ S, A(s) denotes the set of actions enabled in s. For states s, s′ ∈ S
and a ∈ A(s) we write p(s′|s, a) for T (s, a)(s′).

A run of G is an ω-word 〈s0, a1, s1, . . .〉 ∈ S × (A×S)ω such that p(si+1|si, ai+1)
> 0 holds for all i ≥ 0. A finite run is a finite such sequence, that is, a word in S ×
(A × S)∗. For a run r = 〈s0, a1, s1, . . .〉 we define the corresponding labeled run as
L(r) = 〈L(s0), L(s1), . . .〉 ∈ (2AP )ω . We write RunsG (FRunsG) for the set of runs
(finite runs) of the SGA G and RunsG(s) (FRunsG(s)) for the set of runs (finite runs)
of the SGA G starting from state s. We write last(r) for the last state of a finite run r.

A game on an SGA G is played between two players, Max and Min, by moving a
token through the states of the arena. The game begins with a token in an initial state
s0; players Max and Min construct an infinite run by taking turns to choose enabled
actions when the token is in a state controlled by them, and then moving the token to
a successor state sampled from the selected distribution. A strategy of player Max in



306 E. M. Hahn et al.

G is a partial function π : FRuns −⇁ D(A), defined for r ∈ FRuns if, and only if,
last(r) ∈ SMax, such that supp(σ(r)) ⊆ A(last(r)). A strategy σ of player Min is
defined analogously. We drop the subscript G when the arena is clear from the context.
Let ΣG and ΠG be the sets of all strategies of player Max and player Min, respectively.

A memory structure for G is a tuple M = (M,m0, αu) where M is a finite set
of memory states, m0 ∈ M is the initial state, and αu : M×2AP → M is the mem-
ory update function. The extended memory update α̂u : M×(2AP )∗ → M can be
defined in the usual manner. A finite memory strategy of player Max in G over a
memory structure M is a Mealy machine (M, αx) where αx : SMax×M → D(A)
is the next action function that suggests the next action based on the SGA and the
memory state. The semantics of a finite memory strategy (M, αx) is given as a strat-
egy σ ∈ ΣG such that for every r ∈ FRuns with last(r) ∈ SMax, we have that
σ(r) = αx(last(r), α̂u(m0, L(r))).

A strategy σ is pure if σ(r) is a point distribution wherever it is defined; otherwise,
σ is mixed. We say that σ is stationary if last(r) = last(r′) implies σ(r) = σ(r′)
wherever σ is defined. A strategy is positional if it is both pure and stationary. We
write ΣG and ΠG for the sets of all positional strategies of player Max and player Min,
respectively.

Let RunsG
σ,π(s) denote the subset of runs RunsG(s) starting from state s that

are consistent with player Max and player Min following strategies σ and π, respec-
tively. The behaviour of an SGA G under a strategy pair (σ, π) ∈ ΣG × ΠG
is defined on the probability space (RunsG

σ,π(s),FRunsG
σ,π(s),PrG

σ,π(s)) over the

set of infinite runs RunsG
σ,π(s), where FRunsG

σ,π(s) is the standard σ-algebra over

them. Given a random variable f : RunsG → R over the infinite runs of G, we
denote by E

G
σ,π(s) {f} the expectation of f over the runs in the probability space

(RunsG
σ,π(s),FRunsG

σ,π(s),PrG
σ,π(s)).

We say that an SGA is a Markov decision process if A(s) is a singleton for every
s ∈ SMin and is a Markov chain if A(s) is singleton for every s ∈ S. To dis-
tinguish an MDP from an SGA, we denote an MDP by M and write its signature
M = (S, s0, A, T,AP,L) by assigning the (choiceless) states of player Min to player
Max. The notions defined for SGAs naturally carry over to MDPs.

2.2 Omega-Automata

An alphabet is a finite set of letters. We write B for the binary alphabet {0, 1}. A finite
word over an alphabet Σ is a finite concatenation of symbols from Σ. Similarly, an
ω-word w over Σ is a function w : ω → Σ from the natural numbers to Σ. We write
Σ∗ and Σω for the set of finite and ω-words over Σ.

An ω-automaton A = (Σ,Q, q0, δ, α) consists of a finite alphabet Σ, a finite set
of states Q, an initial state q0 ∈ Q, a transition function δ : Q × Σ → 2Q, and an
acceptance condition α : Qω → B. A deterministic automaton is such that δ(q, σ) is a
singleton for every state q and alphabet letter σ. For deterministic automata, we write
δ(q, σ) = q′ instead of δ(q, σ) = {q′}.

A run of an automaton A = (Σ,Q, q0, δ, α) on word w ∈ Σω is a function ρ : ω →
Q such that ρ(0) = q0 and ρ(i+1) ∈ δ(ρ(i), w(i)). A run ρ is accepting if α(ρ) = 1. A
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word w is accepted by A if there exists an accepting run of A on w. The language of A,
written L(A), is the set of words accepted by A. The set of states that appear infinitely
often in ρ is written inf(ρ). A deterministic automaton D has exactly one run for each
word in Σω. We write infD(w) for the set of states that appear infinitely often in the
unique run of D on w; when clear from the context, we drop the superscript and simply
write inf(w).

Several ways to give finite presentations of the acceptance conditions are in use. The
ones relevant to this paper are listed below.

– A Büchi acceptance condition is specified by a set of states F ⊆ Q such that

α(ρ) = [ inf(ρ) ∩ F 	= ∅ ].

– A Rabin acceptance condition of index k is specified by k pairs of sets of states,
{(Ri, Gi)}1≤i≤k, and intuitively a run should visit at least one set of Red (ruinous)
states finitely often and its corresponding Green (good) set of states infinitely often.
Formally,

α(ρ) = [∃ 1 ≤ i ≤ k. inf(ρ) ∩ Ri = ∅ and inf(ρ) ∩ Gi 	= ∅ ].

– A Streett acceptance condition of index k is specified by k pairs of sets of states,
{(Gi, Ri)}1≤i≤k, and intuitively a run should visit each Red set of states finitely
often or its corresponding Green set of states infinitely often. Formally,

α(ρ) = [∀ 1 ≤ i ≤ k. inf(ρ) ∩ Ri = ∅ or inf(ρ) ∩ Gi 	= ∅ ].

We also allow for moving the acceptance condition from states to transitions. For
a Büchi acceptance condition, this means defining a set F ⊆ Q × Σ × Q of final
transitions, where the ith transition for a run ρ of a word w is t(i) =

(
ρ(i), w(i), ρ(i +

1)
)
, inft(ρ,w) is the set of transitions that occur infinitely often, and a run ρ is accepting

for w if inft(ρ,w) ∩ F 	= ∅.

2.3 Semantic Satisfaction: Optimal Strategies Against ω-Automata

Given an MDP M = (S, s0, A, T,AP,L) and an ω-automaton A = (2AP , Q, q0, δ, α),
we are interested in strategies that maximise the probability that the labels of a run of
M form an ω-word in the language of A. A strategy σ ∈ ΣM and initial state s ∈ S
determine a sequence Xi of random variables denoting the ith state of the MDP, where
X0 = s.

We define the optimal satisfaction probability PSemM
A (s) as

PSemM
A (s) = sup

σ∈ΣM
Pr M

σ (s) {〈L(X0), L(X1), . . .〉 ∈ L(A)} .

We say that a strategy σ ∈ ΣM is optimal for A if

Pr M
σ (s) {〈L(X0), L(X1), . . .〉 ∈ L(A)} = PSemM

A (s)

for all s ∈ S.
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Fig. 1. Syntactic and Semantic Probabilities Differ. A nondeterministic Büchi automaton Aϕ

(top left) that recognises the language of infinitely many g’s or infinitely many b’s (which accepts
all ω-words) and a Markov decision process M, whose set of actions is a singleton (a Markov
chain). Note that double edges mark accepting transitions. Notice that the MDP M satisfies the
property with probability 1. Their product is shown on the right side, where there is no accept-
ing end-component. Hence, the probability of reaching an accepting end-component (under any
strategy) is 0.

2.4 Good-for-MDPs Automata

Given an MDP M = (S, s0, A, T,AP,L) and automaton A = (2AP , Q, q0, δ, α), the
probabilistic model checking problem is to find the optimal value PSemM

A (s0) and an
optimal strategy in ΣM. An intuitive way to compute PSemM

A (s0) is to build the syn-
chronous productM×A ofM andA and compute the optimal probability to satisfy the
acceptance condition in the product (we will name this syntactic satisfaction probability
PSynM

A (s0, q0)) and a strategy that maximises the probability of satisfying the accep-
tance condition. If these values PSemM

A (s) and PSynM
A (s) coincide for all possible M,

then the automaton is said to be good-for-MDPs [11].
The synchronous product is an MDPM×A = (S×Q, (s0, q0), A×Q,T×, AP,L),

where

T×((s, q), (a, q′))(s′, q′′) =

⎧
⎪⎨

⎪⎩

T (s, a)(s′) if q′ ∈ δ(q, L(s)) and q′′ = q′

0 if q′ ∈ δ(q, L(s)) and q′′ 	= q′

undefined otherwise .

A strategy σ ∈ ΣM×A and initial state (s, q) ∈ S × Q determine a sequence (Xi, Qi)
of random variables denoting the ith state of the product MDP, where X0 = s and
Q0 = q. The syntactic probability is defined to be

PSynM
A (s, q) = sup

σ∈ΣM×A
E

M×A
σ (s) {α(〈Q0, Q1, . . .〉)} .

An automaton is good-for-MDPs if PSemM
A (s, q0) = PSynM

A (s) for all MDPs M and
states s ∈ S. Figure 1 shows an example of an ω-automaton with Büchi acceptance
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Fig. 2. Syntactic and Semantic Probabilities Agree. A deterministic Büchi automatonAϕ (left)
that recognises the language of infinitely many g’s or infinitely many b’s (accepts all ω-words)
and an MDPM (center), whose set of actions is singleton (a Markov chain). Again double edges
mark accepting transitions. Notice that the MDP M satisfies the property with probability 1.
Their product is shown on the right side where the whole MDP is one accepting end-component.
Hence, the probability of reaching the end-component (under any strategy) is 1.

condition that is not GFM, while Fig. 2 shows an automaton that is GFM (since every
deterministic ω-automaton is GFM.).

The advantage of being able to work on the syntactic product MDP is that the goal
turns into reaching an accepting end-component (an end-component is a region of the
MDP that, once entered, can be covered—each state visited infinitely often—almost
surely while surely never leaving it; for Markov chains, these are the accepting leaf
components) [11].

2.5 GFM Büchi Automata and Reinforcement Learning

The limit reachability technique [9] reduces the model checking problem for givenMDP
and GFM Büchi automaton to a reachability problem by slightly changing the structure
of the product: one adds a target state t that can be reached with a given probability
1−ζ whenever visiting an accepting transition of the original product MDP. This reduc-
tion avoids the identification of accepting end-components and thus allows a natural
integration to a wide range of model-free RL approaches. Thus, while the proofs do
lean on standard model checking properties that are based on identifying winning end-
components, they serve as a justification not to consider them when running the learning
algorithm.

For any ζ ∈ (0, 1), the augmented MDP Mζ is an MDP obtained from M×A by
adding a sink state t with a self-loop to the set of states of M×A, and by making t a
destination of each accepting transition τ of M×A with probability 1− ζ. The original
probabilities of all other destinations of an accepting transition τ are multiplied by ζ.
An example of an augmented MDP is shown in Fig. 3. With a slight abuse of notation,
if σ is a strategy on the augmented MDP Mζ , we denote by σ also the strategy on
M×A obtained by removing t from the domain of σ. The following result shows the
correctness of the construction.

Theorem 1 (Limit Reachability Theorem [9,11]). If A is GFM, then there exists
a threshold ζ ′ ∈ (0, 1) such that, for all ζ > ζ ′ and every state s, any strategy σ
that maximises the probability of reaching the sink in Mζ is (1) an optimal strategy in
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Fig. 3. Adding transitions to the target in the augmented product MDP.

M × A from s and (2) induces an optimal strategy for the original MDP M from s
with the objective to produce a run in the language of A. Moreover, M produces such
a run almost surely if, and only if, the sink is almost surely reachable in Mζ for all
0 < ζ < 1.

Theorem 1 leads to a very simple model-free RL algorithm for GFM Büchi automata.
The augmented product is not built by the RL algorithm, which does not know the tran-
sition structure of the environment MDP. Instead, the observations are used to drive
the objective automaton. When the automaton reports an accepting transition, the inter-
preter tosses a biased coin to give the learner a reward with probability 1 − ζ. The
interpreter also extracts the set of actions for the learner to choose from. If the automa-
ton is not deterministic and it has not taken the one nondeterministic transition it needs
to take yet, the set of actions the interpreter provides to the learner includes the choice
of special “jump” actions that instruct the automaton to move to a chosen accepting
component. When the automaton reports an accepting transition, the interpreter gives
the learner a positive reward with probability 1 − ζ. When the learner actually receives
a reward, the training episode terminates. Any RL algorithm that maximises this prob-
abilistic reward is guaranteed to converge to a policy that maximises the probability of
satisfaction of the objective.

3 Alternating GFM Automata

Before giving a translation from Deterministic Streett automaton (DSA) to a good-for-
MDPs (GFM) alternating Büchi automaton (ABA), let us see how simple the translation
is for its dual, a Deterministic Rabin Automaton (DRA). When we start with a DRA R,
the translation to a GFM Nondeterministic Büchi Automaton (NBA) [11] is straightfor-
ward as shown next.

Definition 1 (DRA to GFM NBA). For a given deterministic Rabin automaton R =
(Σ,Q, q0, δ, {〈Ri, Gi〉 | i ∈ {1, . . . , k}}), we construct a nondeterministic GFM
automaton B = (Σ,Q × {0, . . . , k} ∪ {⊥}, (q0, 0), δ′, F ) where:

δ′(q̂, a) =

⎧
⎪⎨

⎪⎩

{δ(q, a)} × {0, . . . , k} if q̂ = (q, 0)
{(δ(q, a), i)} if q̂ = (q, i),i 	= 0, and q /∈ Ri

⊥ otherwise.
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and F = {(q, i) | i ∈ {1, . . . , k} and q ∈ Gi}.

The resulting NBA makes only a single guess: it guesses when an accepting end-
component is reached in the product MDP M × R (noting that the 0-copy is congruent
to the original automaton), and then moves to a copy i, whose pair makes this end-
component accepting. It is easy to see that this automaton is language equivalent to R
and good-for-MDPs (e.g., it satisfies the simulation condition from [11]). For k pairs,
this creates only k+1 copies, and thus a small overhead; and it allows one to then use
standard reward translation techniques for Büchi acceptance conditions [9] in RL.

The question of how to maximise the probability to satisfy a Streett condition (or,
likewise, how to minimise the probability to satisfy a Rabin condition) is more challeng-
ing. Broadly speaking, the translation of a Rabin acceptance condition is simplified by
the fact that the nondeterministic choices of an NBA can easily handle the resolution
of the disjunction of the acceptance condition on pairs, and resolving nondeterminism
is something that always needs to be done when analysing an MDP. However, it is
harder to accommodate for a conjunction of the acceptance condition on pairs, as in a
Streett acceptance condition. As a consequence, the translation of a deterministic Streett
automaton to a nondeterministic Rabin automaton (without a restriction to GFM) leads
to a blow-up that results in 2θ(n) states [23], while a translation to an NBA requires
n2θ(k) states [23], even without the restriction to GFM.

Surprisingly, there is a way to exploit alternating good-for-MDPs automata with a
small blow-up of k+2 for k pairs.

As Büchi games can be handled with similar techniques as for Büchi MDPs
(Sect. 2.5) in model-free reinforcement learning (cf. [12]), the alternation itself does not
create problems during learning; still, it is quite surprising that such a method works.
This is partly because of the exponential memory requirement for Streett conditions,
and partly because the acceptance player for the MDP would not have access to deci-
sions the rejection player has made in the resulting game. However, while the automaton
is small, the memory we infer from the winning strategy of this small automaton can be
exponentially larger.

An optimal strategy in the resulting game does not in itself constitute a strategy for
controlling the MDP for a given DSA. This is because different strategic choices of the
antagonistic rejection player will lead to different positions in the game, and there is no
guarantee that a consistent positional strategy for all of these positions exists. Moreover,
the strategic choices of an antagonistic rejection player have no direct relation to the
observable history. We show, however, that the history can be used to identify a state in
the game, whose decisions the acceptance player should follow.

The need for memory is, therefore, not gone. Instead, the control strategy we con-
struct in the correctness proof for the resulting alternating GFM Büchi automaton is
only one part of the control strategy used for the MDP. The other is a latest appear-
ance record (LAR), which is kept in addition to the constructed game. The LAR will
determine the state, from a family of equivalent states, whose strategy will be followed.



312 E. M. Hahn et al.

3.1 Alternating GFM Automata

There is a number of mildly different definitions of alternating automata, and we can
use the simplest one, where the states are partitioned into nondeterministic and universal
states.

Definition 2. An alternating ω-automaton A = (Σ,Qn, Qu, q0, δ, α), with Q = Qn ∪
Qu, is an automaton such that (Σ,Q, q0, δ, α) is a nondeterministic automaton, and
Qn and Qu are disjoint sets of nondeterministic and universal states, respectively.

A run tree of an alternating automaton A = (Σ,Qn, Qu, q0, δ, α) on word w ∈ Σω

is a family of functions {ρj : ω → Q | j ∈ J} for some non-empty index set J such
that

– ρj is a run for all j ∈ J , and
– if ρj has a universal state q′ at a position i ∈ ω (ρj(i) = q′∈Qu), then, for all

q ∈ δ
(
q′, w(i)

)
, there is a jq ∈ J such that ρjq

(k) = ρj(k) for all k ≤ i, and
ρjq

(i + 1) = q.

A run tree is accepting if all of the runs of {ρj : ω → Q | j ∈ J} are accepting.
A minimal such family of runs can be viewed as a tree, where nondeterministic

states have one successor, while universal states have many, namely all those defined by
the local successor function. Alternatively, a family of runs can be viewed as a game,
where an angelic acceptance player chooses the successor for a nondeterministic state,
while an antagonistic rejection player selects the successor for a universal state. This
way, they successively construct a run, and acceptance is decided by whether or not this
run accepts.

We extend the product construction from Sect. 2.4 to produce a Büchi game from the
product M×A of an MDP M with an alternating Büchi automaton A, where the deci-
sions of the rejection player are simply the decision to resolve the nondeterminism from
the universal states, while resolving the nondeterminism from the MDP and resolving
the nondeterminism from the nondeterministic automata states are left to the acceptance
player. Both players have positional optimal strategies (where, for the rejection player,
positionality includes the state and the choice made by the acceptance player1) in this
game [17].

We refer to the probability, with which the acceptance player can win this product
game from a product state (s, q) as

PSynM
A (s, q) = sup

σ∈ΣM×A
inf

π∈ΠM×A
E

M×A
σ,π (s, q) {α(〈X0,X1, . . .〉)} ,

where α is the Büchi condition and Xi is the random variable corresponding to the state
of the automaton at the i-th step.

Definition 3 (Alternating GFM Automata). An alternating automaton A is good-for-
MDPs if, for all MDPs M, PSynM

A (s0, q0) = PSemM
A (s0) holds, where s0 is the initial

state of M.

1 In a product of an MDP state with a universal automaton state, there needs to be a fixed order
of who chooses first. It is common (and more natural) in RL to first resolve the choice of the
action selected in the MDP.
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3.2 Construction of the Alternating Büchi Automaton

The motivation for the translation of a deterministic Streett automaton to a GFM
automaton is similar to that for Rabin: when having nondeterministic power, we can
use it to guess when we have reached an accepting end-component that we plan to
cover completely (i.e., we will almost surely visit every state and every transition in the
end-component infinitely often).

While covering an accepting end-component may require memory (or randomisa-
tion), its properties with respect to the Streett condition are straightforward: for every
Streett pair 〈G,R〉, if the end-component contains a red state q ∈ R then it must also
contain a green state q′ ∈ G from the same pair, which should (almost surely) be visited
after every visit of q.

Definition 4 (DSA to Alternating GFM Büchi). For a given deterministic Streett
automaton S = (Σ,Q, q0, δ, {〈Gi, Ri〉 | i ∈ {1, . . . , k}}), where we assume with-
out loss of generality that Gi ∩Ri = ∅ for all i = 1, . . . , k, we construct an alternating
Büchi automaton A = (Σ,Q,Q × {0, . . . , k}, q0, δ

′, F ) where:

– First, for every state q ∈ Q, we let Iq = {0} ∪ {i | q ∈ Ri}.
– We now define, for every state q ∈ Q and letter a ∈ Σ, where q′ = δ(q, a):

• δ′(q, a) = {q′, (q′, 0)} and,
• for all i = 0, . . . , k, δ′((q, i), a) = {q′} × (Iq′ � {i}) if q′ ∈ Gi and

δ′((q, i), a) = {q′} × (Iq′ ∪ {i}) if q′ /∈ Gi, using G0 = ∅.
– Finally, we set the set of final transitions to F = {(q, i), a, (q′, j) | i 	= j or i = j =

0}.

Note that the projection on the state of S is not affected by this translation.
The intuition for this translation is that the acceptance game starts in the original

copy of the states—the nondeterministic statesQ. From there, the acceptance player can
declare when he has reached an accepting end-component, moving from the original
copy to the 0-copy of the game. The rejection player can henceforth, whenever a state
from the ith red set Ri is seen, move from a j-copy to the i-copy, which can be viewed
as a claim that the requirement on the ith Streett pair is not fulfilled (finitely many Ri

or infinitely many Gi states). She therefore challenges the acceptance player to visit
a state from the ith green set Gi (an i-challenge for short). When the game is in the
j-copy, the game moves back to the 0-copy when no new challenge is made and a state
in Gj is visited. Otherwise, the game stays in the j-copy.

The acceptance player wins if the rejection player makes infinitely many challenges
(the i 	= j part of the final transitions) or if the game stays infinitely often in the 0-copy
(the i = j = 0 part of the final states). The rejection player wins if the acceptance player
never declares, or if she makes only finitely many challenges, and her last challenge is
never met.

To keep the definition simple, we have allowed the rejection player to always with-
draw a challenge by moving back to the 0-copy without reason. This is never an attrac-
tive move for her (so long as she has other options), and can therefore be omitted in an
implementation.

An illustrative example can be found in the full version of this paper [14].
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Before proving that the resulting automaton is good-for-MDPs in the next section,
we would like to point out that it is not good-for-games in general. An example for this
is provided again in [14].

4 Correctness of the Construction

In order to prove that this alternating Büchi automaton is good-for-MDPs, we first show
that using this automaton provides at least the same syntactic probability to win as using
the deterministic Streett automaton S.
Lemma 1. Let S be a deterministic Streett automaton and A the alternating automaton
from above constructed from S. Then, for every MDP M, M×A has at least the same
winning probability as M × S.

Proof. We first observe that the acceptance player (as the Streett player in a finite state
Streett game) has an optimal pure finite state memory strategy σ for M×S. Let (M×
S)σ be the Markov chain obtained by using this optimal control.

In (M × S)σ , we will almost surely reach a leaf component, and the chance of
winning is the chance of reaching an accepting leaf component (i.e., a leaf component
where the Streett condition is almost surely satisfied).

For M × A, we now define a pure finite state strategy τ for the acceptance player
from σ and (M × S)σ as follows. Outside the accepting leaf components, we follow
σ and stay in the original copy. When entering an accepting leaf component, we move
to the 0-copy, but otherwise make the same decision as for σ. Henceforth, we make the
same decision that σ would make on the history obtained by ignoring in which i-copy
we are. (Note that the decision on making an i-challenge, and hence on which i-copy
should be visited, rests with the rejection player.)

As this was an accepting leaf component in (M × S)σ , if there is, for any pair
〈Gi, Ri〉, a (red) state in Ri in the leaf component, there is also a (green) state in Gi,
and this state is almost surely visited infinitely often. Consequently, every challenge
will, almost surely, eventually be met, and the acceptance player will win almost surely
from these positions, regardless of how the rejection player plays. Thus, τ provides (at
least) the same probability to win in M × A as σ provides for M × S. ��

Different to the case of nondeterministic good-for-MDPs automata originally sug-
gested in [11], we also have to show that the probability of winning for A cannot exceed
that for S.
Lemma 2. Let S be a deterministic Streett automaton and A the alternating automaton
from above constructed from S. Then, for every MDP M, M × S has at least the same
winning probability as M × A.

Before starting the proof, we define useful terminology, and make the assumption,
for simplicity, that a positional optimal strategy σ for the acceptance player on M × A
has been fixed.

We call two states ofM×A related, if they refer to the same vertex ofM and S, but
possibly to different copies of this state in A. For such related states, it is obviously the
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case that the probability to win from the 0-copy is at least as high as the probability to
win from any other i-copy, as the acceptance player can just play as if he started in that
i-copy until the time where the first challenge is made. (The only difference with respect
to acceptance from the i-copy is then that paths where no challenge is made become
winning, such that the probability to win can only go up.) We further observe that the
probability to win from the original copy is always at least as high as the probability to
win from the 0-copy, as the acceptance player can always declare.

We therefore coin the term “good copy” of a state: a copy of a state is good if, and
only if, the probability of winning from this copy is as high as the probability of winning
from the original copy. A good copy is called reachable if it is reachable in (M × A)σ .
The oldest reachable good copy of a state (relative to a history) is the good copy i, for
which the last visit to Gi is longest ago, where the higher number is given preference as
a tie breaker. The 0-copy is only the oldest reachable copy, when it is the only reachable
good copy different to the original copy. If no other reachable copy is good, the original
copy is the oldest reachable good copy. Naturally, all σ-successors of a reachable good
copy are reachable good copies.

Note that the property of being the oldest reachable good copy is relative to the his-
tory; a latest appearance record (also known as index appearance record) [7,16,24,25]
is a standard memory structure of size k! for keeping track of all information required
for determining the oldest copy for a given history. Let MS be such a memory structure.

Proof. Let σ be an optimal positional strategy of the acceptance player in the Büchi
game M × A, and let S ′ = S × MS be S equipped with a latest appearance record
with > as a tie breaker. We use this to construct the positional strategy τ for M × S ′ as
the strategy that makes the same choice σ makes for the oldest reachable good copy of
that state in the S projection of S ′.

It now suffices to show that the rejecting leaf components of (M × S ′)τ refer to
states of M × A, whose good copies have a winning probability of 0.

We first assume that there is a reachable leaf component that contains a state, where
the oldest reachable good copy is the original copy. Note that this implies that the orig-
inal copy is the only reachable good copy of that state. Naturally, the successor of a
reachable good copy under σ is a reachable good copy, so every predecessor of the orig-
inal copy, and by induction the complete leaf component, consists of states, where the
original copy is the only good reachable copy. Thus, this leaf component in (M × S)τ

projects into an end-component in (M × A)σ , where the rejection player has no deci-
sions, and where no final transition occurs. The winning probability of all states in this
end-component is 0.

We now assume that the rejecting leaf component contains only states with the same
oldest reachable copy i ≥ 1. Then the leaf component follows the positional strategy
for the i-copy in (M × A)σ; note that this entails that it does not contain a state in
Gi. Therefore the rejection player surely wins in the i-copy of this end-component in
(M × A)σ by never changing her challenge.

Let us finally turn to the case where a leaf component in (M × S)τ contains only
states, where all oldest reachable good copies are not the original copy, and that these
copies are different, or all 0. We assume for contradiction that the leaf component is
rejecting. Then there must be an index i such that there is a (red) state from Ri in the
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leaf component, but not a (green) state from Gi. Moreover, there must be an i∗ with this
property where, in the given history, the last occurrence of Gi∗ is longest ago, using
> as tie breaker. Further, let us consider a path through this leaf component that visits
states from all (green) sets Gi′ represented in this leaf component.

Let us now consider a (red) state in Ri∗ in the leaf component. If the j-copy is
not the i∗-copy, then, as the rejection player can make an i∗ challenge, the i∗-copy (as
a viable successor under the optimal strategy) must be a reachable good copy of the
state, too, and therefore, by our assumption, the oldest reachable good state. Thus, we
move on to the i∗-copy, and henceforth never leave it, contradicting the assumption that
we are in a leaf component that contains different copies, or only the 0-copy, as oldest
reachable states.

We have shown that we almost surely reach a leaf component, where the probability
of winning all related states is 0 inM×A, or where the chance of winning is 1. Together
with the local consistency of the probabilities, we get the claim. ��

The two lemmas from this section imply that the syntactic and semantic probability
to win are the same for all MDPs—in short, that A is good-for-MDPs. This in particular
implies language equivalence on ultimately periodic words (which are a special case of
Markov chains, where every state has only one successor), and therefore on all words,
as two ω-automata that accept the same ultimately periodic words recognise the same
language.

Moreover, we have provided a translation of an optimal strategy obtained forM×A
into a strategy for M × S with (at least, and then with Lemma 1 precisely) the same
optimal probability to win in the proof of Lemma 2.

Corollary 1. The alternating Büchi automaton A that results from the construction
of Sect. 3.2 from a DSA S is a good-for-MDPs automaton that recognises the same
language as S. Moreover, we can infer an optimal control strategy for the acceptance
player for M × S from an optimal strategy of the acceptance player in M × A. ��

An example of adding LAR memory can be found in [14].
We note that the memory we actually need is often smaller than the LAR we have

mentioned, as the order can be mangled finitely often. That would, for example, allow
us to only keep the order in some SCCs, namely those where we might get stuck in (with
probability 	= 0)—and, of course, only for those indices that occur in states within these
SCCs.

Note that the definition relative to reachability under σ is not required for correct-
ness, but it provides the required connection to learning: when learning an optimal strat-
egy in the game, the bit that is reachable under the optimal strategy we have learned is
enough for constructing a pure finite state strategy.

Succinctness. Corollary 4 shows that the alternating Büchi automaton A that results
from the construction of Sect. 3.2 from a DSA S is a good-for-MDPs automaton that
recognises the same language as S, and the number of states of A is merely O(kn),
where n and k are the number of states and Streett pairs of S. At the same time, the
translation of a deterministic Streett automaton to a nondeterministic Rabin automaton
(without a restriction to GFM) leads to a blow-up that results in 2θ(n) states [23], while
a translation to an NBA requires n2θ(k) states [23], even without the restriction to GFM.
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This immediately provides the following theorem.

Theorem 2. Alternating GFM Büchi automata can be exponentially more succinct
than (general) nondeterministic Büchi and Rabin automata. ��

5 Discussion

When ω-regular objectives were first used in model checking MDPs, deterministic
Rabin automata were used to represent the objectives. The same has been attempted
by the reinforcement learning community: when they first turned to ω-regular objec-
tives, they tried the tested route through deterministic Rabin automata [22], but that
translation fails as shown in [9]. Of course, with the current state of knowledge of good-
for-MDPs automata, it is not hard to translate deterministic Rabin automata to nonde-
terministic Büchi automata that are good-for-MDPs, and then to analyse the product of
such a Büchi automaton and the MDP in question.

While MDPs with Büchi conditions are a (relatively) easy target for RL methods
(like Q-learning [9,11]), a similar translation of Streett automata (or for minimising
the chance of meeting a Rabin objective) appears prohibitive. This is because every
translation from DSAs to nondeterministic Büchi (or even to Rabin) automata incurs
an exponential blow-up in the worst case. Surprisingly, we found a way to allow even
this accepting condition to be efficiently used in reinforcement learning by generalising
the property of being good-for-MDPs to alternating automata, and by constructing an
equivalent good-for-MDPs alternating Büchi automaton with linear overhead.
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Abstract. We present PET, a specialized and highly optimized frame-
work for partial exploration on probabilistic systems. Over the last decade,
several significant advances in the analysis of Markov decision processes
employed partial exploration. In a nutshell, this idea allows to focus
computation on specific parts of the system, guided by heuristics, while
maintaining correctness. In particular, only relevant parts of the system
are constructed on demand, which in turn potentially allows to omit
constructing large parts of the system. Depending on the model, this
leads to dramatic speed-ups, in extreme cases even up to an arbitrary
factor. PET unifies several previous implementations and provides a flex-
ible framework to easily implement partial exploration for many fur-
ther problems. Our experimental evaluation shows significant improve-
ments compared to the previous implementations while vastly reducing
the overhead required to add support for additional properties.

Keywords: Markov system · Markov decision processes · Probabilistic
verification · Partial exploration

1 Introduction

Stochastic systems such as Markov chains (MC) [2] and Markov decision pro-
cesses (MDP) [13] are a widely used formalism for modelling and analysing
probabilistic processes, potentially involving non-determinism. Classical objec-
tives such as reachability or mean payoff can be solved by a variety of approaches.
From a theoretical perspective, linear programming (LP) is most appealing, since
it yields precise answers in polynomial time. Yet, in practice, LP approaches often
are only able to deal with small systems of at most a few hundred thousand
states. In contrast, dynamic programming approaches such as value iteration
(VI) and strategy iteration (SI) turn out to be quite performant, despite their
exponential worst-case complexity. Indeed, (a variant of) value iteration is the
default method of the widely used model checkers PRISM [9] and Storm [4].

However, systems with significantly more than a few billion states remain
out of reach also for these approaches, not only due to timeouts but also simply
because of memory constraints. In some cases, techniques such as abstraction
or symbolic representation may mitigate these issues. Over the last decade, yet
another technique gained popularity, namely to restrict computation to specific
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bouajjani et al. (Eds.): ATVA 2022, LNCS 13505, pp. 320–326, 2022.
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Fig. 1. Example system to motivate partial exploration.

Algorithm 1. PartialExploration
Input: MDP M with initial state ŝ, Query Q
Output: Answer to Q
1: while Q not answered by bounds for ŝ do
2: path ← GetStates � Select states to update
3: explored ← explored ∪ path � Mark states explored
4: UpdateECs(M, explored) � Identify and collapse explored end components
5: for s in path do
6: Update / propagate lower and upper bounds for s

7: return Answer for Q

parts of the system. Inspired by asynchronous VI and the BRTDP algorithm
[11], specialized techniques arose for reachability [3] and mean payoff [1]. In
turn, these two works resulted in a more fundamental analysis of partial explo-
ration, resulting in the notion of cores [7], which comprise the “relevant” part
of a probabilistic system. For an intuitive example demonstrating partial explo-
ration, consider Fig. 1. In order to determine that state s1 can be reached with
a probability between 0.49 and 0.51 in this system we do not need to construct
the “cloudy” part of the system at all (which could comprise millions of states).

This idea of only considering relevant parts of the system lies at the heart
of all mentioned partial exploration approaches: While the approaches of [1,3,7]
all deal with different problems, their algorithms and, in particular, their imple-
mentation share a significant number of concepts. Indeed, all these algorithms
essentially are adaptations of Algorithm 1. Intuitively, they work as follows: As
long as we cannot yet answer the given query, we select parts of the system to
update, e.g., by sampling a path, potentially guided by a heuristic. This may
explore new parts of the system. Since end components introduce fix points of
the value propagation, we repeatedly check if the part of the system explored so
far contains problematic components and, if so, collapse them. Finally, the states
along the sampled path are updated, using value iteration. In a nutshell, as long
as GetStates repeatedly yields all “relevant” states and all end components
which could cause issues are collapsed, the bounds of the initial state eventually
converge due to classical results on value iteration and we can answer the query.
Note that classical interval iteration [5] can essentially be obtained by letting
GetStates always yield all states of the system.

PET unifies these previous approaches, providing a stable and correct foun-
dation, and easing development of future partial exploration implementations.
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Capabilities. At its heart, PET provides central concepts of partial exploration
approaches as an extensible, efficient framework. The implementations of [1,3,7]
each required several thousand lines of code. Through distilling the common
concepts into suitable abstractions, each of these previous approaches can in
contrast be implemented with a few dozen lines while being applicable to a much
wider variety of problem instances as well as achieve a significant improvement
in performance. Aside from efficient implementation, PET additionally comes
with several “quality of life” and engineering improvements, easing development.
Finally, we also fixed several subtle errors of previous implementations.

Availability. PET is written in Java and is continuously developed further, serving
as the basis for several other projects. It is available under the MIT licence and
can be obtained from the artefact [12] or the development GitLab1.

2 Capabilities

In the interest of space, we only briefly highlight some key features of PET.

Models and Properties. PET supports parsing probabilistic models, reward struc-
tures, and properties given in PRISM’s modelling language. The details of
PRISM are abstracted, and the underlying probabilistic-models library can
easily be extended to support other formalisms. For example, the generator for
a model only needs to provide (i) the set of initial states and (ii) for a given
state, the set of available actions and their respective successor distributions.

Currently, PET supports (discrete-time) Markov chains and Markov
decision processes, as well as continuous time Markov chains (through
embedding/uniformization). In terms of properties, PET currently supports
(i) (un)bounded reachability, (ii) mean payoff queries, and (iii) (un)bounded
cores.

On-the-fly Collapsing. A substantial technical contribution of [3] and elemen-
tary partial exploration in general is the so-called on-the-fly detection of end
components and their collapsing, i.e. replacing them with a single representative
state. PET provides an optimized implementation of Tarjan’s SCC decomposition
algorithm and custom end component detection, as well as an involved, tailored
implementation of a dynamic quotient model.

Separation of Concerns. As mentioned above, a key goal of PET is to separate and
abstract the elementary concepts of partial exploration. As hinted by Algorithm
1, obtain the states to update, i.e. GetStates, how (and when) to identify end
components, how values are propagated, and when the bounds are sufficient to
answer the query are all largely independent of each other, which is reflected in

1 https://gitlab.lrz.de/i7/partial-exploration.

https://gitlab.lrz.de/i7/partial-exploration
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the abstractions of PET. For example, we completely isolate the sampling mech-
anism GetStates from the exact property or type of model being dealt with
and vice versa. As such, a “naive” implementation of GetStates which returns
all available options or selects a random one requires less than a dozen lines of
code. Similarly, the partial exploration specific parts of [1,3,7], i.e. (unbounded)
reachability, mean payoff, and cores, require approximately 60, 200, and 50 lines
of code, respectively (excluding some boilerplate code for CLI etc.). Moreover, all
implementations transparently support both qualitative queries (e.g. “is the value
larger than threshold t?”) and quantitative queries (“what is the optimal value up
to a precision of 10−6?”) without additional effort.

Data Structures and Libraries. Aside from algorithm-specific improvements,
PET leverages high-performance data structures and libraries, in particular
naturals-util2, a library for efficiently dealing with natural numbers initially
designed for PET, backed by Roaring Bitmaps [10] and fastutil3. The model
representation library probabilistic-models4, which comprises the majority of
the code, is agnostic of partial exploration and is available separately for reuse
in other projects dealing with probabilistic systems. Further, we took care to
perform computations in a numerically stable way without overly compromising
performance, e.g. by using Kahan summation whenever applicable.5

Usability and Extensibility. PET comes with a descriptive CLI provided by pic-
ocli6. Additional “quality of life” features include a common output format (in
JSON), utilities for analysing a given system, informative statistics during and
after execution, a vast amount of assertions throughout the code, and extensi-
ble integration testing. A modern infrastructure, such as Gradle build scripts
and static analysis tools, facilitates easy development. Finally, PET uses modern
features of Java, e.g. lambdas, records, and sealed classes, improving readability.

3 Evaluation

In this section, we present a comparison of PET to the respective implementations
of [1,3,7], which we denote by Learn7, OVI, and Core. For completeness, we
furthermore ran PRISM [9] (version 4.7) with both explicit and hybrid engine
on applicable instances, denoted PRISMe and PRISMh, to demonstrate the overall
performance of partial exploration (on suitable models).

2 https://github.com/incaseoftrouble/naturals-util.
3 https://fastutil.di.unimi.it/.
4 https://gitlab.lrz.de/i7/probabilistic-models.
5 Unfortunately, Java does not allow to specify the IEEE 754 rounding mode for

floating point operations, which would further increase numerical stability, see [6].
6 https://picocli.info/.
7 The implementation is not available from the URL mentioned in [3], we obtained

the sources from the authors and include it in our artefact.

https://github.com/incaseoftrouble/naturals-util
https://fastutil.di.unimi.it/
https://gitlab.lrz.de/i7/probabilistic-models
https://picocli.info/
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Table 1. Comparison on selected benchmarks, with reachability on top, mean payoff
bottom left, and cores bottom right. For each tool, we list the time until conver-
gence (seconds) and required memory (megabytes). Timeouts are denoted by T/O
and memouts by M/O. All properties were computed with a precision requirement of
ε = 10−6.The † symbol indicates a wrong result of the tool.

Model Property PRISMe PRISMh Learn PET

firewire(36,200) elected max 4.4 (362) 13 (213) 1.3 (113) 0.9 (72)

firewire(36,200) elected min 5.5 (339) 12 (195) M/O 34 (383)

pacman(20) crash 25 (950) 84 (864) 5.3 (233) 2.0 (140)

pacman(40) crash M/O T/O M/O 22 (333)

wlan(6,6) collisions M/O 61 (263) M/O 44 (370)

zeroconf (1000,14) correct max M/O 271 (843) 5.0 (202) 1.1 (117)

Model Rewards OVI PET

mer(3) grants 279 (355)† 6.6 (160)

mer(4) grants T/O 36 (308)

pacman(10) default 4.4 (183) 1.7 (142)

pacman(20) default M/O 7.3 (177)

virus(3) attacks T/O 1.3 (126)

Model Core PET

mer(3) 12 (150) 5.7 (155)

mer(4) 183 (227) 32 (258)

sensors(2) 4.3 (162) 2.8 (137)

sensors(3) T/O 15 (224)

wlan(6,6) 33 (381) 29 (380)

Setup. We ran our experiments in a Docker container with an AMD Ryzen 5
3600 CPU, using Benchexec 3.11 [15] to obtain reliable measurements. Each run
is restricted to a single core, 1000 MB of memory, and a 5 min time limit. (We
deliberately chose reasonably sized models to ease evaluation.)

Models. We used a variety of PRISM models, picked from the PRISM benchmark
suite, the examples provided with PRISM, and from the evaluation sets of the
previous implementations. Due to space constraints, we omit a discussion of each
model and refer the reader to the mentioned sources and our artefact for further
information. For each comparison, we selected “sensible” models. For example,
when computing cores, it is not informative to compare strongly connected /
communicating models, as outlined in [7]: In this case, no non-trivial core exists.

Results. We present a subset of our evaluation results in Table 1, the full eval-
uation, further data, and replication instructions can be found in the artefact
[12]. In summary, we observe that for all comparisons, our new implementation
achieves significant savings in both time and memory compared to the previous
implementations of [1,3,7]. We mention that performance of PET and Core is sim-
ilar on a number of models. This is to be expected, since the codebase of Core
actually forms the foundations of PET. Nevertheless, PET still achieves noticeable
improvements on several shown models through, e.g., further optimizations in
the computation and representation of end components.

We emphasize that the improvements are due to careful engineering and spe-
cialized data structures; the underlying theory remains the same. In particular,
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on some models, PET is outperformed by PRISM simply due to the particular
model being unsuitable to partial exploration (see [7] for further discussion).

4 Conclusion and Future Work

We present PET, an efficient framework for partial exploration on Markov sys-
tems. PET implements several previous partial exploration approaches and pro-
vides significant improvements compared to their original versions, while dras-
tically reducing the specific implementation effort. Moreover, PET transparently
supports a wider range of inputs (both in terms of models and properties) and,
due to carefully chosen abstractions, is easily extensible.

For future work, we plan to incorporate algorithms related to stochastic
games. Moreover, for algorithmic improvements, specialized MEC decomposi-
tion algorithms could improve performance of the quotient model if applicable.
Thirdly, we want to integrate Owl [8] for LTL model checking, essentially pro-
viding the features of MoChiBa [14] in combination with partial exploration.
Finally, compilation to an executable through GraalVM may provide further
speed ups.

Acknowledgements. We thank Pranav Ashok and Maximilian Weininger for their
contributions to spiritual predecessors of PET as well as motivating the initial develop-
ment of this tool.
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Abstract. We present the new co-simulation and synthesis integrated-
framework STOMPC for stochastic model-predictive control (MPC) with
Uppaal Stratego. The framework allows users to easily set up MPC
designs, a widely accepted method for designing software controllers in
industry, with Uppaal Stratego as the controller synthesis engine,
which provides a powerful tool to synthesize safe and optimal strategies
for hybrid stochastic systems. STOMPC provides the user freedom to
connect it to external simulators, making the framework applicable across
multiple domains.

1 Introduction

Controller software has become increasingly dominant in cyber-physical systems.
Functionality that previously was implemented by hardware is now being shifted
towards software. Often cyber-physical systems are safety-critical, hence strong
safety-related requirements are formulated for them. At the same time, quality
objectives need to be considered, such as being as fast as possible or minimizing
resource usage. Designing safe and optimal controller software manually is a chal-
lenge, and several formal methods have been developed to synthesize controller
strategies automatically [1,14,15].

For stochastic hybrid systems, the tool Uppaal Stratego [5,10] is the newly
emerged branch of the leading tool Uppaal that can automatically synthesize
safe and near-optimal controller strategies. It combines statistical model check-
ing, synthesis for timed games, and reinforcement learning. Uppaal Stratego
has been applied successfully to several case studies [3,6,8,11,12].

Within industry, model predictive control (MPC) is a widely adopted method
for designing controllers [7]. MPC schemes are popular as they yield high-
performing control systems without expert intervention over long periods of
time. This is achieved by periodically using a model to predict the system’s

This work is partly supported by the Villum Synergy project CLAIRE and the ERC
Advanced Grant LASSO.
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A. Bouajjani et al. (Eds.): ATVA 2022, LNCS 13505, pp. 327–333, 2022.
https://doi.org/10.1007/978-3-031-19992-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19992-9_21&domain=pdf
http://orcid.org/0000-0002-0641-7240
http://orcid.org/0000-0002-9320-9991
https://doi.org/10.1007/978-3-031-19992-9_21


328 M. A. Goorden et al.

future behavior and calculate an optimal control strategy for the next time-
bounded period [4]. Therefore, MPC schemes are also called online control, as
they can adapt control strategies while the system is running.

Uppaal Stratego conceptually fits well within MPC designs. Yet it lacks
the ability to periodically update the model’s state and synthesize a new strat-
egy. In previous work [11], bash scripts are created utilizing the command line
interface of Uppaal Stratego to do all the calculations periodically. Unfortu-
nately, these bash scripts are very case specific and not well adaptable to other
case studies. Furthermore, we noticed that for each new case study, researchers
were repeatedly rediscovering MPC schemes for Uppaal Stratego.

We present the co-simulation and synthesis integrated-framework STOMPC,
which implements a basic MPC scheme using Uppaal Stratego as the core
engine for synthesizing the strategies. With this framework, we aim to greatly
simplify the setup for different case studies by implementing standard functional-
ities for MPC schemes with Uppaal Stratego in Python classes. Furthermore,
STOMPC can be connected to external, domain specific, simulators (or in fact
again Uppaal Stratego) that represent the real world. This makes the frame-
work applicable to cases from different domains. Our framework is accessible on
GitHub1, can be installed through pip, and its documentation is available2. An
artifact for evaluation can be downloaded from Zenodo3.

2 Framework Overview

MPC captures a particular way of designing controllers for a broad range of
systems and processes. It has the following three characteristics [4]: a model,
which is used to predict the future of the system within a certain horizon, the
calculation of a control sequence (or strategy) that optimizes some objective, and
a receding approach, where all calculations are repeated after executing the first
control action from the sequence and observing the true state as a consequence
of that.

Figure 1 provides a conceptual overview of the key ingredients of MPC that
are implemented by STOMPC. Up to time t = k, we have observed the true state
of the system x and provided control input u to it. Using a model of the system,
we can predict the future state x̂k within the control horizon. The evolution of
the state depends on the control sequence being applied ûk, where the applied
control action can be switched after each control period. To determine which
control sequence to choose, the objective is optimized. Often the objective is to
minimize the difference between the state of the system and a reference signal.

Once the optimal control sequence is obtained, the first control action of this
sequence is applied. When the end of the control period is reached, the process
mentioned above is repeated. At time t = k + p, where p is the duration of the
control period, the true value of the state of the system x(k + p) is observed,
1 https://github.com/DEIS-Tools/strategoutil.
2 https://strategoutil.readthedocs.io/en/latest/.
3 https://doi.org/10.5281/zenodo.6519909.

https://github.com/DEIS-Tools/strategoutil
https://strategoutil.readthedocs.io/en/latest/
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Fig. 1. Conceptual overview of model predictive control. In blue (dashed line) is the
continuous evolution of the state in the past x and for the future x̂, while red (dotted
line) shows the periodically switched control signal in the past u and for the future û.
(Color figure online)

Fig. 2. Global architecture of STOMPC, where the MPC setup starts a new step at
time t = k. After each step, k is replaced by k + p and everything is repeated.

which, most likely, is different from the predicted state x̂k(k+ p). Repeating the
calculation with the new true state x(k + p) might result in a different control
sequence ûk+p than the one calculated before ûk.

STOMPC implements this MPC scheme using Python, hiding as much details
as possible, such that a user can focus more on the application itself. Figure 2
shows the architecture of STOMPC. It provides the component MPC setup,
which orchestrates the MPC scheme. At time t = k for some k, it supplies the
current true state of the system x(k) to Uppaal Stratego. It does this by
inserting the state values into the Uppaal Stratego model. Subsequently, the
MPC setup runs Uppaal Stratego with this model to calculate the optimal
control strategy. From the report generated by Uppaal Stratego, the MPC
setup identifies the calculated control action ûk(k) for the next control period.

After this, the MPC setup switches to the simulator. This simulator can
be again Uppaal Stratego or an external, domain specific one (see Sect. 3 for
examples), or the actual physical system. The MPC setup supplies the simulator
with the calculated control action ûk(k) for the next control period and, for
memory-less simulators, also the last recorded true state x(k) from which the
simulator should continue. Subsequently, the simulator returns the true state
x(k+p) at the end of the control period. After that, the above procedure repeats
until the end of the experiment.

More information on the setup of the tool, including a detailed example, can
be found in the tool’s documentation4.

4 https://strategoutil.readthedocs.io.

https://strategoutil.readthedocs.io
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3 Use Cases

An advantage of STOMPC is its general applicability across different application
domains. We now discuss three use cases from different application domains:
floorheating in a family house, storm water detention ponds, and traffic light
control.

3.1 Floorheating in a Family House

The MPC scheme from Sect. 2 is in collaboration with the company Seluxit
applied to controlling floor heating in a family house located in Northern Jutland,
Denmark. Figure 3 shows a screenshot of a digital twin of the house, displaying
all its 10 rooms and the water pipes supplying heat to the rooms. Each room
has its individually controlled target temperature (the upper digits in the rooms)
and the thermodynamic equations used in the model consider the heat exchange
between the rooms, between the rooms and their outside envelope, as well as the
heat exchange from the water pipes passing under rooms.

Fig. 3. Digital twin of a floor heating system

In each 15min period, temper-
ature sensors in each room report
the current readings to the cen-
tral control unit. During the fol-
lowing 15min, the server gathers a
24-h weather forecast and computes
an optimal control strategy for the
next 75min using Uppaal Strat-
ego. The computed strategy opti-
mizes the comfort in each room.

Simulations on the digital twin
using the Uppaal Stratego online
controller (where the real house behavior is replaced by a Simulink model) show
an average 40% improvement in comfort, compared to the controller that was
used in the house before. As a side effect of the predictive control, the new Upp-
aal Stratego control saves about 10% of energy. Further details about this
concrete application of MPC can be found in [2,11].

3.2 Stormwater Detention Ponds

Stormwater Detention Ponds are critical real-time control assets in urban
stormwater management systems. They reduce the considerable hydraulic
impact towards the natural stream, as well as avoid significant pollutant loads
being discharged. However, only passive control of the stormwater pond outlet
valves is currently used in Danish engineering practice.

We implement a co-simulation by combining Uppaal Stratego with the
domain specific simulator EPA-SWMM [9], as shown in Fig. 4. EPA-SWMM
is an open-source physical-based dynamic rainfall-runoff model that has been
implemented for decades in the urban stormwater management [9].
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Fig. 4. Digital twin of an urban stormwa-
ter management system

Pyswmm [13], a python interface
wrapper, is used for the interfacing of
EPA-SWMM with STOMPC. In each
15min control period, EPA-SWMM
extracts the current water level in
stormwater ponds, and feeds it towards
Uppaal Stratego. From thereon
until the end of the upcoming con-
trol horizon (48 h), Uppaal Strat-
ego synthesizes the optimal control
strategy for the outlet valves taking
weather forecasting data into account.
Two objectives are involved: guaran-
tee the safe operation of the stormwa-
ter pond without any overflow and
maximize the sedimentation process to
improve the water quality. Our approach increased the control performance by
22%. Further details can be found in [8].

3.3 Traffic Light Control

The application of MPC is widespread in the domain of traffic control. Recently
Uppaal Stratego has been successfully used to minimize the delays, queue
lengths, number of stops, and fuel consumption of vehicles traveling on the arte-
rial street Hobrovej in Aalborg simulated in VISSIM [6]. The street consists of
4 signalized intersections as shown in Fig. 5. The original traffic light controllers
are pre-timed or detector time-gap based.

Fig. 5. Intersections optimized by Uppaal
Stratego at Hobrovej, Aalborg

Every second Uppaal Strat-
ego is called to solve a traffic
light configuration sequence plan-
ning problem that minimizes the
total intersection delay. The vehi-
cle information communicated to
Uppaal Stratego are the esti-
mated times of arrival extracted
from VISSIM’s area sensors for
each vehicle within 200m of the
intersection. The first step in the resulting optimal control sequence is then sent
back to VISSIM. Compared to the original control, and considering an inter-
section with smallest improvements, the described MPC approach manages to
reduce the delays by 27%, queue lengths by 42%, number of stops by 20% and
fuel consumption by 19%.

In the original paper the data exchange between Uppaal Stratego and
VISSIM was established using a Python script. STOMPC can with minimal
adjustments wrap the complexity of the communication between those two pieces
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of software and let the user focus on the more high-level problems such as the
definition of input data, objective function, and MPC parameters.
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Abstract. We propose an algorithmic approach for synthesizing linear
hybrid automata from time-series data. Unlike existing approaches, our
approach provides a whole family of models with the same discrete struc-
ture but different dynamics. Each model in the family is guaranteed to
capture the input data up to a precision error ε, in the following sense:
For each time series, the model contains an execution that is ε-close to
the data points. Our construction allows to effectively choose a model
from this family with minimal precision error ε. We demonstrate the
algorithm’s efficiency and its ability to find precise models in two case
studies.

Keywords: Synthesis · Hybrid automata · Time series

1 Introduction

Mathematical models are ubiquitous across all sciences [11], from systems biol-
ogy [23] to epidemiology [43] to cyber-physical systems [25]. The construction of
such models is a central challenge in science [38]. One main benefit of mathemati-
cal models is the clearly defined semantics, which make these models amenable to
automatic analysis (such as simulation [9,22] and verification [1,6,34]). Another
main benefit that is usually desired is interpretability for high-level reasoning.

Hybrid automata [2,17] are a prominent class of interpretable models with
mixed continuous and discrete behavior. They are particularly suitable in biolog-
ical domains [27,39], where systems typically evolve continuously but are subject
to internal and external events, and in cyber-physical domains [21], where phys-
ical entities interact with digital devices. In a nutshell, the evolution of a hybrid
automaton follows a differential equation associated with one of several locations
(or modes), until a discrete event leads to a different location.

In this paper we address the problem of synthesizing a linear hybrid automa-
ton (LHA) [2] from a set of time series. The informal goal of model synthesis is

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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that the model captures the data well. What it means to “capture well” is diffi-
cult to formalize. Here we adopt the recent notion of ε -capturing from García et
al. [12,13], which requires that, for each time series in the input data, the LHA
must expose an execution that stays ε-close to all data points (see Fig. 2 for an
illustration). In [12,13], the value of ε is fixed in the problem input. Here we
consider ε a parameter, which we associate with a family of parametric models:
LHA whose continuous dynamics are not fixed yet. Each possible fixation of the
continuous dynamics corresponds to an instantiated LHA. All instantiated LHA
associated with a concrete value of ε have the property that they ε-capture the
data. We can then effectively search for an ε-capturing LHA with the minimal
value of ε, whose behavior intuitively best resembles the data.

Our algorithm consists of two phases. In the first phase we synthesize the
discrete structure of the LHA by fixing the set of locations and mapping data
points in the time series to the locations. We propose an algorithm to obtain this
mapping based on clustering. In the second phase we construct the parameter
space, which is a polyhedron that associates ε to all possible instantiated LHA
(i.e., fixations of continuous dynamics) that ε-capture the data. We select a
concrete LHA by minimizing the value of ε, for which we solve a linear program.

We evaluate the algorithm in two case studies. In the first case study we
investigate the scalability in terms of the different input parameters; we can
synthesize a seven-dimensional model with 15 locations from 12,000 data points
in 15min, which shows that the algorithm is applicable in practice. In the second
case study we use the algorithm to synthesize a model for a biological system
(regulation of a cell cycle) in less than half a minute.

Related Work. Synthesizing models is known to different communities as sys-
tem identification, process mining, or model learning. Models that are akin to
hybrid automata have been studied extensively in control theory; while the
main aim in control theory is to find a controller for a system, which is out-
side the scope of the present paper, there is still a large body of works on system
identification [14,33]. Many of these approaches focus on input-output models,
such as autoregressive exogenous (ARX) models and in particular the switched
(SARX) [16,32] and piecewise (PWARX) [5,8,19,30,37] versions, and focus on
single-input single-output (SISO) systems, but there are also works on multiple-
input multiple-output (MIMO) systems [3,18,42]. SARX and PWARX models
can be seen as restricted linear hybrid automata where the locations form a
state-space partition and the switching behavior is deterministic. This allows to
reduce the synthesis problem to a parameter-optimization problem. The second
phase of our algorithm also uses a reduction to parameter optimization, but the
parameter space is different and our model class is more general.

In computer science, several approaches learn hybrid automata from input-
output traces or time series. Similar to our approach, the works in [4,29] first use
clustering to learn the discrete structure, but they employ different techniques,
such as Angluin’s algorithm for learning a finite automaton, and do not pro-
vide minimality guarantees for the result. Other approaches construct automata
whose discrete structure is acyclic [31] respectively cyclic [15], or a deterministic
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model with urgent transitions [24]. The work in [40] exhaustively constructs all
possible models for optimizing a cost function, while in our approach the enumer-
ation is only symbolic and we choose a model by solving a linear program, which
scales favorably. A recent work shows that timed automata can be effectively
learned from traces with a genetic algorithm [41]; learning timed automata has
orthogonal challenges: they form a subclass of LHA where all variables are clocks
with constant rate 1 and hence no continuous dynamics need to be learned, but
the discrete dynamics are more complex than in this work. The work in [44]
provides a framework for identifying deterministic models with affine dynamics
from input-output traces, while we identify nondeterministic models. Our works
in [12,13] proposed the notion of ε-capturing that we adopt here; those works
synthesize a model from single traces online, but the algorithms are not scalable
for offline usage of realistic dimension and size.

Outline. In Sect. 2 we fix the terminology. In Sect. 3 we formalize the synthesis
problem and describe our solution on a high level. The low-level descriptions of
the two phases of the algorithm follow in Sect. 4 and Sect. 5. We evaluate the
algorithm in Sect. 6 and conclude in Sect. 7.

2 Terminology

Euclidean Sets. We write x for points (x1, . . . , xn) in R
n and consider the infinity

norm ‖x‖ = maxxi
|xi|. The ball of radius ε ∈ R≥0 around a point x ∈ R

n is
Bε(x) = {y ∈ R

n : ‖x − y‖ ≤ ε}. The ε-bloating of X ⊆ R
n is X ⊕ Bε(0) =

{x + y : x ∈ X , ‖y‖ ≤ ε}. A polyhedron over R
n is a finite intersection of

constraints aTx ≤ b where a ∈ R
n and b ∈ R. Let Pn be the set of all n-

dimensional polyhedra. An interval is written [a, b] = {x : a ≤ x ≤ b} ⊆ R.

Functions. Given a function f : A → B, let dom(f) ⊆ A denote its domain.
Let f �D denote the restriction of f to set D ⊆ dom(f). A continuous func-
tion f : [0, T ] → R

n is a piecewise-linear (PWL) function with k pieces if
there exists a triple (I,M,x0) where I is a k-tuple of consecutive time inter-
vals [t0, t1], [t1, t2], . . . , [tk−1, tk] with [0, T ] =

⋃
1≤i≤k[ti−1, ti], M is a k-tuple

of slope vectors mi ∈ R
n, and x0 ∈ R

n is the initial state f(t0) = x0, such
that each f �[ti−1,ti] is a solution of the differential equation ẋ(t) = mi, for all
i = 1, . . . , k. We refer to the line segments f�[ti−1,ti] as the pieces of f . A time-
series s : D → R

n maps time points t from a finite set D ⊆ R≥0 to data points
s(t). There is a one-to-one correspondence between PWL functions and time
series: A PWL function f over I = ([t0, t1], [t1, t2], . . . , [tk−1, tk]) induces a time
series as the restriction s = f�D to time points D = {t0, t1, . . . , tk}, and s induces
f as the piecewise-linear interpolation of the data points. Thus we may refer to,
e.g., the pieces of a time series. The distance between a PWL function f and a
time series s with dom(f�dom(s)) = dom(s) is d(f, s) = maxt∈dom(s) ‖f(t) − s(t)‖.
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Linear Hybrid Automata. An n-dimensional linear hybrid automaton (LHA)
[2,17] is a tuple H = (Loc,E,Flow, Inv,Grd), where 1) Loc is the finite set of
locations, 2) E ⊆ Loc × Loc is the transition relation, 3) Flow : Loc → R

n is
the flow function, 4) Inv : Loc → Pn is the invariant function, and 5) Grd :
E → Pn is the guard function. Our LHA model does not have assignments along
the transitions and is also called switched linear system [26]. We also consider
partially defined hybrid automata without flows, invariants, or guards assigned.
This discrete structure Hd = (Loc,E) only consists of locations and transitions.

The semantics of LHA are described by the set of executions. A state of an
LHA is a pair (�,x) of a location � ∈ Loc and a point x ∈ Inv(�) in the invariant.
An execution σ of an LHA evolves continuously according to the flow function
in each location. The execution starts in some state (�1,x1) and the continuous
evolution follows the constant differential equation ẋ = Flow(�1) while satisfying
the invariant Inv(�1) for some dwell time δ ∈ R≥0. The execution can instanta-
neously switch locations, from a state (�1,x2) to another state (�2,x2), if there
is a transition (�1, �2) ∈ E and the guard Grd(�1, �2) contains x2. The projection
of an execution σ to the second component is a PWL function, which we denote
by σπ. We use the following compact notation for executions, where δi ∈ R≥0

(for i ≥ 1) denotes the duration of a dwell action and jmp denotes a switch:
σ ≡ (�1,x1)

δ1−→ (�1,x2)
jmp−−→ (�2,x2)

δ2−→ (�2,x3)
jmp−−→ (�3,x3) · · ·

3 Synthesis of ε-Close Linear Hybrid Automata

In this section we formalize the synthesis problem that we address in this paper
and give a high-level overview of our approach to solve it. Given a time series,
we want to construct an LHA that captures the data up to a given precision.
We first formalize the notion of capturing.

Definition 1 (ε-capturing [13]). Given a time series s and a value ε ∈ R≥0,
we say that an LHA H ε -captures s if there exists an execution σ of H such
that d(σπ, s) ≤ ε. We also say that s and σπ (resp. s and σ) are ε -close.

Our goal is to construct an LHA that ε-captures several time series.

Problem 1 (ε-close synthesis [13]). Given a finite set of time series S and a value
ε ∈ R≥0, construct an LHA H that ε-captures each s in S.

As we observed in [13], it is straightforward to find a solution to the problem
even for ε = 0 by simply introducing a fresh location for each piece of the time
series. Such a model does not aggregate nor generalize the information in the
data and is hence of little use. To obtain a reasonable model, one needs to add
another bound to the problem, e.g., by fixing the discrete structure.

We address this observation in a two-phase algorithm. In the first phase we
fix the discrete structure Hd of the LHA, where we try to reuse the locations
for multiple time series (or pieces therein). In the second phase we instantiate
the model for the smallest possible value of ε under the given discrete structure.
Thus in this paper we consider a synthesis problem where we do not fix the value
of ε and rather find a sufficiently small value for ε automatically.
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Fig. 1. Left: A hybrid automaton. Right: Two time series (triangle markers) obtained
from sampling two executions of the automaton, and induced PWL functions.

Problem 2 (ε-minimal synthesis). Given a finite set of time series S and a dis-
crete structure Hd, find the minimal value ε ∈ R≥0 and an instantiation H of
Hd such that H ε-captures each s in S.

3.1 Synthesis Algorithm

In the next two sections we describe our algorithm to solve the above synthesis
problem, but first we give a high-level overview of the algorithm. Our algorithm
computes a parametric family of LHA that all ε-capture the given data. The
LHA share the same discrete structure but differ in the continuous dynamics.
Since ε itself is a parameter of that construction, we can then choose an LHA
with a minimal value for ε (which is not necessarily unique) from that family.

Our goal is that the final LHA has an ε-close execution for each time series.
To simplify the theoretical presentation, we will use the following conceptual
view on our algorithm. Instead of synthesizing an LHA directly, we synthesize
ε-close executions. These executions then induce an LHA.

As mentioned, our algorithm proceeds in two phases. In the first phase we
fix the discrete structure of the executions (and thus of the resulting LHA). In
the second phase we construct the space of continuous dynamics to be assigned
to the locations, depending on the value ε. For LHA, this space is a polyhedron,
which we call the flow polyhedron. We then choose concrete continuous dynamics
from the flow polyhedron to instantiate concrete executions (and thus an LHA).
We explain each step of the algorithm using the following running example.

Example 1 (running example). We consider two time series in one dimension:

t1 = (0.00, 0.76, 1.59, 2.32, 3.15, 3.79, 5.00)
d1 = (68.91, 72.41, 75.00, 70.44, 66.90, 65.00, 71.81)
t2 = (0.0, 0.75, 1.61, 2.33, 3.16, 3.76, 5.00)
d2 = (68.16, 71.85, 74.70, 70.22, 66.75, 65.00, 71.92)

We obtained the time series from two random trajectories of a hybrid automaton
modeling a simple thermostat controller, all given in Fig. 1. Note that the origi-
nal continuous dynamics are described by an affine differential equation, which
cannot be expressed with an LHA. (We round all numbers to two digits, which
explains small inconsistencies over the course of this running example.) �
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4 Synthesis Algorithm, Phase 1: Discrete Structure

In this section we describe Phase 1 of the synthesis algorithm. The input is a
finite set of time series. The output is a mapping from each piece of the time
series (resp. the induced PWL functions) to a symbolic location (i.e., a location
label). Together with the order of the pieces in the time series, as we explain
below, this mapping already fixes the discrete structure Hd of the LHA.

4.1 Simplification of the Time Series

In the first step of our algorithm, we preprocess the time series by removing some
data points for better stability of the second step (we explain this connection
later). Note that for Phase 2 we again use the original time series, so correctness
is not affected. The goal is to merge consecutive pieces in the time series with
similar slopes, i.e., such that the linear interpolation is a good approximation. In
our implementation we use a variant of the Ramer-Douglas-Peucker algorithm [7,
36] where we consider time as another dimension. We shortly recall this algorithm
but refer to the literature for details. Following a divide-and-conquer scheme, the
algorithm starts with only the first and last point of the time series, connects
them with a line segment, finds the point x with the largest distance from the line
segment, and, unless this distance is small enough, repeats the process recursively
for the corresponding two parts before and after x.

4.2 Assignment of Symbolic Locations

The goal of the first phase is to determine the discrete structure Hd of the
resulting LHA. For each time series with p pieces we synthesize a corresponding
symbolic execution of the prospective LHA. These are executions that do not yet
contain information about the continuous state, but the discrete state is already
determined, i.e., we fix the sequence of visited locations �1, . . . , �p together with
the points in time when the execution switches to a new location. (Here we
restrict ourselves to switching in synchrony with the time series.) Thus each
symbolic execution consists of a (timed) sequence of symbolic locations. It is
easy to see that, by ignoring time, these sequences induce the discrete structure
Hd of an LHA: the set of locations is the union of all locations occurring in
the sequences, and there is a transition for each consecutive pair of locations.
Formally, for a symbolic execution associated with a time series with p pieces,
the discrete structure Hd = (Loc,E) is given by Loc = {�1, . . . , �p} and E =
{(�i, �i+1) : i = 1, . . . , p−1}, and the generalization to sets of symbolic executions
consists of the union of these locations and transitions.

Given a time series with p pieces and a set of symbolic locations {�1, . . . , �λ},
a symbolic execution as described above is merely a mapping from the pieces
to location labels, which we call M : {1, . . . , p} → {1, . . . , λ}. Our algorithm
is parametric in the concrete way to obtain this mapping. Typically we are
interested in finding an LHA with a small number of locations. Thus the implicit
requirement for the mapping is to share locations for multiple pieces.
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Algorithm 1. Assignment of a symbolic location to each piece of a set of time
series. Line 1 is optional and can be implemented with the identity. Line 2 can
be implemented with k-means, which can also provide a good value for λ (= k)
if not specified in the input (as described in Sect. 4.2).
Input: A set of time series S = {s1, . . . , sr} and optionally a number of locations λ
Output: A mapping from the pieces to symbolic locations and a number of locations
1: S ′ := simplify(S) {see Sect. 4.1}
2: M, λ := assign_location_labels_to_pieces(S ′, λ) {see Sect. 4.2}
3: return M, λ

In our implementation we obtain the mapping using a variant of the k-means
clustering algorithm [28]. The input to the clustering algorithm are the slopes of
the PWL functions induced by the time series. The k-means algorithm requires
to specify upfront the number of clusters k, which corresponds to the number of
locations in our setting. If the intended number of locations is already known in
advance, this algorithm can be used directly. Otherwise, to find a good value of k
automatically, we use a common refinement loop by starting with some value for
k (e.g., k = 1) and then increasing k until the clustering error (which is defined
as the sum of the squared Euclidean distance of each point to its associated
cluster center) does not decrease substantially anymore.

The k-means algorithm is sensitive to the initial choice of the cluster centers.
The preprocessing step proposed in Sect. 4.1 increases the stability in this regard.
As initial candidates for the cluster centers we choose the first k slopes induced
by the simplified time series. This choice results in candidates that are sufficiently
different in practice and thus k-means yields more robust clusters.

We summarize the main steps of Phase 1 in Algorithm 1.

Example 2 (cont’d) . The input to the clustering algorithm are the slope values
of the two time series. In the table below we list the clustering cost for different
numbers of clusters k, together with the relative improvement compared to k−1:

Clusters (k) 1 2 3 4 5 6 7 8
Cost 259.76 17.07 11.80 2.46 0.78 0.09 0.04 0.01
Rel. [%] – 0.93 0.31 0.79 0.68 0.89 0.60 0.61

The table suggests that good values for k are 2, 4, or 6. To obtain a small
model, here we settle for k = 2 locations. The associated (one-dimensional)
cluster centers (representing slopes) are 4.53 and −4.46. For both time series,
the assigned clusters are (1, 1, 2, 2, 2, 1), corresponding to the symbolic location
�1 for the pieces 1, 2, 6 and symbolic location �2 for the other three pieces. �
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5 Synthesis Algorithm, Phase 2: Continuous Dynamics

In this section we describe Phase 2 of the synthesis algorithm. The input is a
finite set of time series together with a discrete structure Hd obtained in Phase 1,
which is represented by the mapping M assigning a symbolic location to each
piece of the time series. The output is an LHA H and a value for ε such that H
ε-captures the time series. As mentioned before, we describe how to obtain an
ε-close corresponding execution for each time series.

5.1 Construction of the Flow Polyhedron

In the first step, we construct the flow polyhedron P , which represents the set
of all possible continuous dynamics such that the corresponding executions are
ε-close to the time series. Here ε itself is a dimension of P . For technical reasons,
we construct a new flow polyhedron for each time series.

Assume that we have n-dimensional data in the form of r time series and we
want to synthesize an LHA with λ locations. Say that we consider a time series
with p pieces. Then P is a polyhedron with λn + rn + 1 dimensions. The first
λn dimensions represent the location slopes. The next rn dimensions represent
the coordinates of the initial states x(j)

0 of the j-th execution. (These x(j)
0 are

auxiliary dimensions which we are not interested in.) The last dimension is ε.
Next we describe the constraints of P . These constraints express that the

distance between the time series and the execution is less than ε (and thus the
execution ε-captures the time series). We need to express the symbolic value of
the execution, xk, at each time point tk of the time series. Let qk be the k-th
data point of the time series, starting at k = 0. For each data point we have
2n constraints (i.e., 2n(p + 1) constraints in total) to express the requirement
xk ∈ Bε(qk). In n = 1 dimension, for each k we express the requirement with
the two constraints xk − ε ≤ qk and xk + ε ≥ qk. In n > 1 dimensions we have
such constraints in each dimension.

It remains to explain how to express the term xk. For k = 0 we represent x0

with the dedicated variables x
(·)
0 . For k > 0 we rewrite xk using the following

identity: xk = x0+
∑k

j=1(tj − tj−1)m(j). The time points tj are known constants
and the m(j) are the slope variables for the j-th piece (recall that we have
associated the pieces with locations in advance).

Below we formalize the flow polyhedron for r = 1 time series.

Definition 2. Given a time series s with p pieces and an associated mapping
M : {1, . . . , p} → {1, . . . , λ}, the flow polyhedron Ps is defined as

{(m1, . . . ,mλ,x0, ε) ∈ R
λn+n × R≥0 | x0 ∈ Bε(s(t0)),

x0 + (t1 − t0)mM(1) ∈ Bε(s(t1)),
x0 + (t1 − t0)mM(1) + (t2 − t1)mM(2) ∈ Bε(s(t2)),

...
x0 + (t1 − t0)mM(1) + . . . + (tp − tp−1)mM(p) ∈ Bε(s(tp))}.
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Example 3 (cont’d). Our example has n = 1 dimension, λ = 2 locations, and r =
2 time series. The flow polyhedron consists of five variables (m1,m2, x

(1)
0 , x

(2)
0 , ε).

Here m1 and m2 represent the slopes of the two locations, x
(1)
0 and x

(2)
0 represent

the initial state of the first resp. second execution, and ε represents the allowed
distance between the time series and the executions. Below we show the 14
constraints for the first execution:

x
(1)
0 − ε ≤ 68.91

0.76m1 + x
(1)
0 − ε ≤ 72.41

1.59m1 + x
(1)
0 − ε ≤ 75.00

1.59m1 + 0.72m2 + x
(1)
0 − ε ≤ 70.44

1.59m1 + 1.55m2 + x
(1)
0 − ε ≤ 66.90

1.59m1 + 2.20m2 + x
(1)
0 − ε ≤ 65.00

2.80m1 + 2.20m2 + x
(1)
0 − ε ≤ 71.81

− x
(1)
0 − ε ≤ −68.91

−0.76m1 − x
(1)
0 − ε ≤ −72.41

−1.59m1 − x
(1)
0 − ε ≤ −75.00

−1.59m1 − 0.72m2 − x
(1)
0 − ε ≤ −70.44

−1.59m1 − 1.55m2 − x
(1)
0 − ε ≤ −66.90

−1.59m1 − 2.20m2 − x
(1)
0 − ε ≤ −65.00

−2.80m1 − 2.20m2 − x
(1)
0 − ε ≤ −71.81 �

Note that, for multiple time series, each flow polyhedron only constrains n

dimensions of the rn dimensions reserved for the initial states x
(·)
0 . The need for

the separate dimensions will become clear when we aggregate the different flow
polyhedra in the next step. Any feasible point inside the polyhedron P represents
a concrete execution in an LHA that ε-captures the time series. We formalize
this statement after defining the corresponding LHA in the next step.

5.2 The Common Solution Space

In the first phase we implicitly fixed the discrete evolution of the executions,
which also induced the discrete structure of the LHA we want to synthesize. In
the previous step we obtained the flow polyhedra Ps, one for each time series
s. In the next steps we combine these results to obtain concrete executions by
assigning the continuous states. The concrete executions also induce the final
LHA, i.e., we assign continuous dynamics, invariants, and guards.

Since we want to obtain one LHA to ε-capture all time series, we need to
find compatible values for the dynamics and ε. For that purpose we can just
intersect all flow polyhedra. Let PH =

⋂
s∈S Ps be the polyhedron resulting

from this intersection. Note that, since we used disjoint dimensions for the x(·)
0

for different executions, the initial states are not shared in PH. (We note that
intersecting polyhedra in constraint representation is a constant-time operation.)

5.3 Choice of Minimizing Parameters

Now we have to choose any feasible point p in PH. We argue that the most
interesting points are those that minimize ε, since they correspond to executions
that are closest to the original data. (In applications where further constraints
should be considered, other choices are possible.) Minimizing a polyhedron in the
dimension of ε means to solve the corresponding linear program with objective
function ε, which is efficient in practice. We remark that PH is bounded in the
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Algorithm 2. Synthesis algorithm.
Input: A set of time series S = {s1, . . . , sr}, a number of locations λ, and a mapping

from the pieces of each time series to symbolic locations M
Output: An LHA H and a minimal value ε such that H ε-captures all elements of S
1: for s ∈ S do
2: Ps := flow_polyhedron(s, M, λ) {see Sect. 5.1}
3: end for
4: PH :=

⋂r
s∈S Ps {see Sect. 5.2}

5: slopes, ε := choose_minimizing_point(PH) {see Sect. 5.3}
6: H := construct_automaton(S, M, slopes, ε) {see Sect. 5.4}
7: return H, ε

dimension of ε from below by 0, so this minimization always returns a proper
solution p = (m1, . . . ,mλ,x(1)

0 , . . . ,x(r)
0 , ε). The point p contains a number for

each dimension. The first λn numbers are the slope values for the locations, in
the order they have been specified. The next rn numbers are the values of x(·)

0

for the different executions (note again that we do not need these numbers). The
last number is the corresponding value for ε.

5.4 Construction of the Final LHA

Next we describe, for a given time series si over time instants t0, t1, . . . , tp, the
execution that is induced by the above point p. Let m1, . . . ,mλ be the slopes
taken from the point and M be the mapping from the pieces of si to the asso-
ciated location (e.g., �M(1) is the location for the first piece, with slope mM(1))
obtained in Algorithm 1. The execution is a PWL function whose pieces have
the same duration as the pieces of si. As defined before, the execution starts at
x0 = x(i)

0 and the end point of the k-th piece is xk = x0+
∑p

j=1(tj −tj−1)mM(j).

(�M(1),x0)
t1−t0−−−→ (�M(1),x0 + (t1 − t0)mM(1))
jmp−−→ (�M(2),x0 + (t1 − t0)mM(1))
t2−t1−−−→ (�M(2),x0 + (t1 − t0)mM(1) + (t2 − t1)mM(2))

...
tp−tp−1−−−−−→ (�M(p),x0 +

p∑

j=1

(tj − tj−1)mM(j))

We have not yet described the invariants and guards of the resulting LHA.
We say that a data point in the time series is associated with a location if the
preceding or the succeeding piece in the time series is assigned that location in
the mapping from Algorithm 1. Similarly, a data point is associated with the
transition (�i, �j) if the preceding piece is associated with �i and the succeeding
piece is associated with �j . A sufficient condition for our construction to be cor-
rect is: define the invariant of each location as the ε-bloated convex hull around
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Fig. 2. Left: The first time series (triangle markers) inside an ε-tube (green) and the
corresponding induced execution (red), for two locations. Right: The synthesized LHA.
(Color figure online)

all data points associated with it, and define the guard of each transition as the
ε-bloated union around all data points associated with it. In our implementation
we use the ε-bloated interval hull in both cases. That is, we take the smallest
box around all data points as defined above and then extend the box in each
direction by ε. We summarize the main steps of Phase 2 in Algorithm 2.

Example 4 (cont’d). We intersect the two flow polyhedra and minimize the
resulting polyhedron in the dimension of ε to receive the following point: m1 =
4.31,m2 = −4.27, x(1)

0 = 67.90, x(2)
0 = 67.63, ε = 1.24. Thus we have synthesized

the following execution for the first time series: (�1, 67.90)
0.76−−→ (�1, 71.18)

jmp−−→
(�1, 71.18)

0.84−−→ (�1, 74.80)
jmp−−→ (�2, 74.80)

0.72−−→ (�2, 71.72)
jmp−−→ (�2, 71.72)

0.83−−→
(�2, 68.18)

jmp−−→ (�2, 68.18)
0.64−−→ (�2, 65.44)

jmp−−→ (�2, 65.44)
1.21−−→ (�1, 70.66). The

execution and the final LHA are depicted in Fig. 2. �

5.5 Correctness

We show that the algorithm produces an LHA that ε-captures the given data.

Lemma 1. For every time series s that is input to Algorithm 2, the induced
execution ε-captures s, where ε is obtained in Line 5.

Proof. The constraints of the flow polyhedron Ps corresponding to s enforce that
the induced execution is ε-close to all data points of s. This even holds for any
point in Ps. Since the concrete choice of the point in Line 5 is taken from PH,
which is a subset of Ps, the claim follows.

Theorem 1. The LHA H synthesized in Algorithm 2 ε-captures all time series,
where ε is obtained in Line 5. Furthermore, Algorithm 2 solves Problem 2 in
polynomial time.

Proof. Lemma 1 ensures that the induced executions ε-capture the time series.
It remains to show that these induced executions belong to H. This holds by
construction of H; we only sketch the main arguments. Each execution follows
the slopes of the associated locations. For each location switch there exists a
transition in H. The executions always stay in ε-proximity to the data points, and
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Fig. 3. The first time series (triangle markers) from Fig. 2 inside other ε-tubes (green)
and the corresponding induced executions (red). Left: The result obtained for four
locations (ε = 0.38). Right: The result obtained for six locations (ε = 0.15). (Color
figure online)

hence they stay inside the invariants at all times. Similarly, since the executions
change the location at time points of the data, the guards are satisfied. The
solution to Problem 2 follows from the minimization of ε in Line 5. For the
polynomial complexity, observe that the flow polyhedron’s size is polynomial in
the input and that the minimization can be implemented polynomially [20].

We remark that the number of locations λ and the sequence of locations
obtained from Algorithm 1 influence the quality of the LHA resp. the size of ε
but not the validity of the theorem (correctness of Algorithm 2). If these inputs
are unsuitably chosen, the algorithm just returns a larger value for ε.

Example 5 (cont’d). Figure 3 shows the synthesized executions and correspond-
ing values of ε for the first time series with λ = 4 and λ = 6 locations. �

6 Evaluation

In this section we describe our implementation and present experimental results.
Our implementation in the Julia programming language is available at https://
github.com/HySynth/HySynthParametric. To generate time series, we imple-
mented a simulator of hybrid automata based on the ODE toolbox Differential-
Equations.jl [35]. For polyhedral computations we use LazySets.jl [10].

We evaluate our algorithm in two case studies. In the first case study we inves-
tigate the scalability. In the second case study we synthesize an LHA model on
data obtained from a model of a biological system. We note that all experiments
are fully automatic with no human involved in the annotation or modeling.

Scalability. In the first case study we measure the scalability of the algorithm in
four different input dimensions: the data dimension n, the number of time series
r, the number of data points per time series p, and the number of locations in
the final automaton λ. Here we do not use the preprocessing from Sect. 4.1 for
better comparability between different runs. The majority (>90%) of the run
time is spent in solving the linear program (Line 5 in Algorithm 2).

https://github.com/HySynth/HySynthParametric
https://github.com/HySynth/HySynthParametric
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Fig. 4. Scalability in four different algorithm parameters. Each parameter varies
between four values. In each of the four plots we vary one parameter and fix the remain-
ing three. Each plot shows four graphs with indices i = 1, . . . , 4, where for graph i we
fix the parameters to their i-th value (which are also given in the legend).

To obtain the time series, we instantiate a parametric version of the thermo-
stat model (our running example) with n independent thermostats running in
parallel. We obtain r random simulations of time duration T = 40, which are rep-
resented as time series, and then choose the first p data points from them. Since
we fix λ, we pass it to Algorithm 1, which then skips the refinement procedure
for k-means clustering in Line 2 and directly uses λ clusters.

We consider the following combination of parameters: n ∈ {1, 3, 5, 7}, r ∈
{1, 20, 40, 60}, p ∈ {50, 100, 150, 200}, and λ ∈ {1, 5, 10, 15}. To examine the
scalability in these four dimensions, we fix three parameters and plot the run
time for varying only one of the parameters in Fig. 4.

From the results we observe that the input parameters n and r have the main
influence on the complexity of the problem (the corresponding graphs have the
steepest growth). The parameter p is less influential, and the parameter λ has
almost no influence (the corresponding graphs barely grow and are not even
monotonic). While λ influences the dimension of the flow polyhedron P , the
different constraints are weakly coupled in these additional dimensions and thus
the linear program is not substantially harder to solve.

In practice, when the data comes from experiments, the problem dimension
n is fixed, and so is p if the data points are obtained from periodic measure-
ments of fixed duration. Increasing r corresponds to additional experimental
runs. The parameter λ can be freely chosen, but since a major benefit of hybrid
automata is that they are interpretable models, we argue that λ should not be
too large. Hence we believe that the algorithm is efficient enough to be used for
real applications. We substantiate this claim in the next case study.
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Fig. 5. The first two variables of the cell-cycle regulation with the ε-tube induced by
the first time series (ε = 3.15, green), the corresponding induced execution (red), and
three random simulations of the synthesized model (orange). (Color figure online)

Regulation of a Cell Cycle. We consider the hybrid-automaton model of the
regulation of a mammalian cell cycle from [39]. The cell cycle is modeled in nine
phases. The model has one location for each phase, affine differential equations
(ẋ = Ax+b), and assignments associated with some transitions. There are three
main dimensions (CycA, CycB, and CycE), one secondary dimension for the
mass of the cell, and time as auxiliary dimension for time-triggered transitions.

We run our synthesis algorithm on 20 time series obtained from random sim-
ulations of the model proposed in [39]. In total these time series consist of 3,557
data points. Before passing them to the algorithm, we project out the time vari-
able. Hence our model cannot reason about time-dependent behavior. We used
the refinement process for choosing the number of locations (λ) automatically.
After 26 s we obtain an LHA with nine locations and a precision value ε = 3.15.
In Fig. 5 we show the ε-tube around the first time series together with three
random simulations of the synthesized LHA. The ε-tube looks reasonably tight
for the CycA dimension but wider for the CycB dimension, which is because the
value of ε is the same in all dimensions, but the plot scales differ.

7 Conclusion

We have presented a synthesis algorithm to obtain a linear hybrid automaton
from a set of time series. The algorithm uses two independent phases. In the first
phase it constructs the discrete structure of the automaton. In the second phase
it constructs the parameter space of all possible solutions and then selects an
automaton by solving a linear program. The automaton is guaranteed to contain
executions that are ε-close to the time series, where ε is minimal for the discrete
structure chosen in the first phase. The algorithm is polynomial and scales to
thousands of data points, but it also works with scarce data.

We see several directions for future work. The choice of the discrete structure
in the first phase is important. We have proposed a heuristic implementation
based on clustering that does not take the number of transitions into account.
Reducing that number can remove unwanted behavior in the resulting model.

By minimizing ε we only minimize the maximum deviation of the executions
from the data points. One can encourage the solver to find executions that stay
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close to the data points (the middle of the ε-tube in the plots). This can be
encoded in the linear program by associating a cost to the sum of the deviation.

A more challenging extension is to use other classes of dynamics such as
affine differential equations. The (exponential) solutions for such systems still
have a closed form. Thus, instead of a linear program, we can solve a general
optimization problem as in [12]. The difficult part is how to select the appropriate
symbolic dynamics for the different parts of the time series.

Finally, in this paper we have only considered the automatic aspects of the
algorithm. However, we believe that truly useful modeling ultimately requires
interaction with a human in the loop. The separation of concerns – first finding
a suitable discrete structure and formulating a parametric solution for finding
suitable continuous dynamics – allows scientists to incorporate domain knowl-
edge, e.g., by adding further modeling constraints beyond ε-capturing. A key
question is how to refine the model if the results are not accepted.
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Abstract. This paper presents an optimization based framework to
automate system repair against omega-regular properties. In the pro-
posed formalization of optimal repair, the systems are represented as
Kripke structures, the properties as ω-regular languages, and the repair
space as repair machines—weighted omega-regular transducers equipped
with Büchi conditions—that rewrite strings and associate a cost sequence
to these rewritings. To translate the resulting cost-sequences to eas-
ily interpretable payoffs, we consider several aggregator functions to
map cost sequences to numbers—including limit superior, supremum,
discounted-sum, and average-sum—to define quantitative cost seman-
tics. The problem of optimal repair, then, is to determine whether traces
from a given system can be rewritten to satisfy an ω-regular property
when the allowed cost is bounded by a given threshold. We also consider
the dual challenge of impair verification that assumes that the rewritings
are resolved adversarially under some given cost restriction, and asks to
decide if all traces of the system satisfy the specification irrespective of
the rewritings. With a negative result to the impair verification prob-
lem, we study the problem of designing a minimal mask of the Kripke
structure such that the resulting traces satisfy the specifications despite
the threshold-bounded impairment. We dub this problem as the mask
synthesis problem. This paper presents automata-theoretic solutions to
repair synthesis, impair verification, and mask synthesis problem for limit
superior, supremum, discounted-sum, and average-sum cost semantics.

1 Introduction

Given a Kripke structure and an ω-regular specification, the model checking
problem is to decide whether all traces of the system satisfy the specification.
Vardi and Wolper [17] initiated the automata-theoretic approach to model-
checking by reducing the ω-regular model checking problem to the language
inclusion problem. If the system violates the specification, this approach returns
a simple lasso-shaped counterexample demonstrating the violation. While these
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counterexamples often aid the designer in manually repairing the system, this
repair process can be exhausting and error-prone. Moreover, different repair
policies may incur different costs rendering the repair problem a non-trivial opti-
mization problem. This paper investigates a range of problems in synthesizing
optimal repair policies against ω-regular specification.

As a concrete motivation for various repair problems, we consider secu-
rity issues (confidentiality and availability) in manufacturing. It is well docu-
mented [7] that acoustic side-channels leak valuable intellectual property infor-
mation during the manufacturing process. Consider a 3D printer which can print
either squares or triangles. Since the movement of the stepper motors of the
printer vary based on the design, this difference in movement leads to the printer
producing different sounds. Thus, an intruder may be able to discern the shape
being printed by observing the audio output of the system as it acts as an acous-
tic side-channel. One can model such a system as a Kripke structure: a mockup
of such systems is represented in Fig. 1a where the label corresponds to the state
being idle (⊥), printing squares (�), or printing triangles (�).

Suppose that the system designer wishes to protect the information that a
given printer prints only a fixed number of objects of one shape, or the sequence
in which these shapes appear, from an eavesdropper. This specification, and a
rich class of similar specifications on the observations, can be captured using ω-
regular languages (see the Büchi automaton of Fig. 1b which requires that both
shapes are printed infinitely often), and one can verify if the system satisfies
such a specification using classical model checking. It is easy to see that our
system does not satisfy this property for all traces. To repair this situation,
we may wish to add spurious motor rotations to mimic the other shape, but
adding such rotations comes with a cost (say energy or time overheads). The
choices and cost available for repair can intuitively be expressed as a repair
machine (a weighted nondeterministic transducer) given in Fig. 1c. For example,
the label �|��, 3 represents the situation where the repair machine modifies the
observation corresponding to a square shape by appending a spurious rotation
mimicking a triangle shape with an extra cost of 3 units.

Fig. 1. (a) Krikpe structure representing the 3D printer system, (b) Büchi automaton
B specifying the property, and (c) Repair machine
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A key synthesis problem, then, is to compute a minimum cost repair strategy
to add these spurious rotations such that the system after repair satisfies the
specification. The cost of an ω-sequence can be aggregated using discounted-sum,
average-sum, liminf, limsup, inf, or sup. We call this problem the repair synthesis
where the goal is given an aggregator and cost threshold, design a strategy on the
nondeterministic transducer such that every trace of the system can be written
to satisfy the specification with cost bounded by the given threshold.

Example 1. Consider the repair machine T from Fig. 1c with the average-sum
cost semantics and a threshold of 2. For every spurious motor rotation, T incurs
a cost of 3 units of power. Note that a strategy of replacing every � with ��,
maps ⊥�ω to ⊥(��)ω which is accepted by B. The mean cost of this rewrite
is 3 and is above threshold. However, there exists a strategy that rewrites ⊥�ω

to ⊥(����)ω that is accepted by B, with a mean cost equal to 1.

A related problem is that of impair verification that is connected to availabil-
ity vulnerabilities. Consider an attack model in the aforementioned 3D manufac-
turing setting where an attacker with bounded capabilities controls the rewriting
process (by introducing subtle undetectable changes in the manufacturing pro-
cess) and intends to rewrite the traces in such a way that the resulting trace
satisfy some undesirable behavior (to make the acoustic profile violate some
regulatory norms) with a cost bounded below a threshold. Such undesirable
rewritings may impair the capabilities of the system and render it unavailable
for normal use. The impair verification problem is to verify whether the system
is safe from such adversarial rewritings.

If the system is found to be vulnerable to impair and the system designer
has no control over the rewriting process, a viable mitigation approach is to
minimally restrict the behavior of the system to harden it against the adversarial
rewriting. We formalize this problem as the mask synthesis problem.

Contributions. We consider repair machines to be specified as weighted ω-
transducers and study various optimal repair problems for different aggregator
functions. As we deal with reactive systems, we consider cost semantics that
aggregate infinite sequence of costs to a scalar via aggregator functions dis-
counted sum, average sum, limit superior, and supremum. We formalize and
study the following problems related to optimal repair:

– Repair Synthesis. Given a system, an ω-regular specification, a repair
machine, and a cost semantics, decide whether there exists a strategy to rewrite
traces of the system to satisfy the specification within a given threshold.

– Impair Verification. Given a system, an ω-regular property capturing the
undesirable behaviors, a repair machine, a cost semantics, decide whether
there exist a trace of the system that satisfy the undesirable behavior under
adversarial rewritings within a given threshold.

– Mask Synthesis. Given a system, an ω-regular property (undesirable behav-
iors), a repair machine, a cost semantics, find a minimal restriction of the
system such that no remaining trace of the system satisfy the undesirable
behavior under any adversarial rewritings within the threshold.
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Our work is inspired by the idea of weighted transducers studied in [10] for finite
strings. The notions of robust verification and kernel synthesis studied in [10]
are templates for the impair verification and mask synthesis problems studied
here, but the present setting requires extension of those results to the setting of
ω-words: this is one of the secondary contributions of this paper.

Our results imply that the results presented in [10] carry over to the setting of
ω-words for the discounted-sum and mean cost-semantics, the robust verification
problem for both of these can be decided in P (cf. Theorems 5 and 6), while
the robust kernel for discounted-sum cost-semantics is ω-regular if the language
of the Kripke structure is a cut-point language (cf. Theorem 8). Furthermore,
the notion of repair synthesis, to the best of our knowledge, is yet unexplored.
We characterize the complexity of repair synthesis (Theorems 2–4) and impair
verification problems (Theorems 5–7), and for the mask synthesis problem we
discuss which aggregators allow ω-regular mask (Theorems 8–9).

Proofs of the theorems can be found in the technical report [9].

2 Preliminaries

Let Σ denote a finite alphabet. We write Σω and Σ∗ for the set of infinite and
finite words over Σ. We denote an empty string by ε.

Kripke Structures. A Kripke structure is a tuple K = (S, ↪→, S0, AP,L) where
S denotes a set of states, ↪→⊆ S × S is the transition relation, S0 ⊆ S is the
set of initial states, AP is the set of atomic propositions, and L : S → 2AP

denotes the labeling function. An infinite sequence of states π = s0s1 . . . ∈ Sω

is said to be a path of the Kripke structure if (si, si+1) ∈↪→ for all i ∈ N. Let
Σ = 2AP . The labeling function applied to a path π = s0s1 . . . ∈ Sω defines
traces L(π) = a0a1 . . . ∈ Σω of K where for each i ≥ 0 we have that ai = L(si).
We use TK to indicate the set of all traces of K.

Omega-Regular Specifications. A non-deterministic Büchi automaton
(NBA) over Σ is a tuple A = (Q,Σ,Q0, Qf , δ), where Q is a finite set of states,
Q0 ⊆ Q is the set of initial states, Qf ⊆ Q is the set of final states, Σ is the
finite input alphabet, and δ ⊆ Q × Σ × Q denotes the transition relation. We
define the extended transition relation ̂δ ⊆ Q×Σ∗×Q in the standard fashion,
i.e. (q, ε, q) ∈ ̂δ for q ∈ Q and ax ∈ ΣΣ∗ we have (q, ax, q′) ∈ ̂δ if there exists
q′′ ∈ Q such that (q, a, q′′) ∈ δ and (q′′, x, q′) ∈ ̂δ.

A run ρ over a word w = w0w1 . . . ∈ Σω is an infinite sequence of states
q0, q1 . . . such that (qi, wi, qi+1) ∈ δ. A run ρ is accepting iff some final state
from Qf occurs infinitely often in ρ. The language defined by the automaton
A, denoted as L(A), is the set of words w over Σω such that there exists an
accepting run of w by A.

Cost Aggregation Semantics. An aggregator function ⊕ : Nω → Q≥0 maps
infinite sequences of numbers to a scalar. Let τ = τ1τ2 · · · ∈ N

ω with each τi ∈ N.
We consider the following aggregators:
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– DSumλ
def= τ 	→ limn→∞

∑n
i=1 λi−1τi, with discount factor 0 ≤ λ < 1,

– Mean
def= τ 	→ lim supn→∞(1/n) ·

∑n
i=1 τi,

– Sup
def= τ 	→ sup{τi | i ∈ N}, and

– LimSup
def= τ 	→ lim sup{τi | i ∈ N}.

Quantitative Games. A game arena G = (G,VMin, VMax) consists of a graph
G = (V,E,w) where V is a finite set of vertices, E ⊆ V × V is the set of
edges, w : E → N is the weight function. The sets VMax and VMin characterize
a partition of the vertex set V such that player Min controls the edges from
vertices in VMin, while Max controls the vertices in VMax.

A play of the game G is an infinite sequence of vertices π = 〈v0, v1, . . .〉
such that (vi, vi+1) ∈ E for all i ∈ N. A finite play is a finite such sequence,
that is, a sequence in V ∗. We denote by last(π) the final vertex in the finite
play π. We write PlayG and FPlayG for the set of infinite and finite plays of the
game arena G, respectively. A strategy of player Min in G is a partial function
σ : FPlay → V defined over all plays π ∈ FPlay with last(π) ∈ Vmin, such that
we have (last(π), σ(π)) ∈ E. A strategy χ of player Max is defined analogously.
We say that a strategy σ is positional if last(π) = last(π′) implies σ(π) = σ(π′).
Strategies that are not positional are called history dependent. Let ΣMin and
ΣMax be the sets of all strategies of player Min and player Max, respectively.
We write ΠMin and ΠMax for the set of positional strategies of player Min and
player Max, respectively. For a game arena G, vertex v of G and strategy pair
(σ, χ) ∈ ΣMin×ΣMax, let Playσ,χ(v) be the infinite play starting from v in which
player Min and Max play according to σ and χ, respectively.

The weight function w : E → N can be naturally extended from edges to
plays as w : PlayG → N

ω as π 	→ c0c1 . . . where ci = w(vi, vi+1) for all i ∈ N.
Given an aggregator function ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, we define the
payoff of player Min to player Max for a play π as ⊕(w(π)). Depending on the
choice of the aggregator function ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, we refer to
the game as ⊕-game. In a ⊕-game, the goal of player Min is to choose her actions
in such a way so as to minimize the payoff, while the goal of player Max is to
maximize the payoff. For every vertex v ∈ V , define the upper value Val⊕(G, v) as
the minimum payoff player Min can ensure irrespective of player Max’s strategy.
Symmetrically, the lower value Val⊕(G, v) of a vertex v ∈ V is the maximum
payoff player Max can ensure irrespective of player Min’s strategy.

Val⊕(G, v)= inf
σ∈ΣMin

sup
χ∈ΣMax

⊕(w(Playσ,χ(v)))

Val⊕(G, v)= sup
χ∈ΣMax

inf
σ∈ΣMin

⊕(w(Playσ,χ(v))).

The inequality Val⊕(G, v) ≤ Val⊕(G, v) holds for all two-player zero-sum games.
A game is determined when, for every vertex v ∈ V , the lower value and upper
value are equal. In this case, we say that the value of the game Val⊕ exists with
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Val⊕(G, v) = Val⊕(G, v) = Val⊕(G, v) for every v ∈ V . For strategies σ ∈ ΣMin

and χ ∈ ΣMax of players Min and Max, we define their values Valσ and Valχ as

Valσ⊕ : v 	→ sup
χ∈ΣMax

⊕(w(Playσ,χ(v))) and

Valχ⊕ : v 	→ inf
σ∈ΣMin

⊕(w(Playσ,χ(v))).

A strategy σ∗ of player Min is called optimal if Valσ∗⊕ = Val⊕. Likewise, a strategy
χ∗ of player Max is optimal if Valχ∗

⊕ = Val⊕. We say that a game is positionally
determined if both players have positional optimal strategies.

Theorem 1 [4,19]. For ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, ⊕-games are deter-
mined in positional strategies. The complexity of solving is in NP ∩ co-NP for
DSumλ-games and Mean-games, and, is in P for Sup-games and LimSup-games.

The goal of the player Min in a Büchi game [6] over a game arena G and a
set F ⊆ V is to choose her actions in such a way that some vertex vf ∈ F occurs
infinitely often in the play, while the goal of the Max player is to prevent this.
We note from [4] that LimSup-games generalize Büchi games. For Theorem 1 it
follows that the winning region, i.e. the set of vertices where the player Min has
a strategy to win can be computed in P.

3 Problem Definition

Just as weighted transducers extend finite state automata with outputs and
costs on transitions, NBAs can be extended to weighted non-deterministic Büchi
transducers by adding an output word and costs to transitions. We define a repair
machine as a weighted non-deterministic Büchi transducer equipped with a cost
aggregation. We introduce repair machines and their computational problems.

Definition 1. A repair machine (RM) T is a tuple (Q,Σ,Q0, Qf , Γ, δ,⊕) where
Q is a finite set of states, Q0 ⊆ Q is the set of initial states, Qf ⊆ Q is the set
of final states, Γ is the output alphabet, δ ⊆ Q×Σ ×Q×Γ ∗ ×N is the transition
relation, and ⊕ is the cost aggregator function.

For a given aggregator function ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, we refer to a
repair machine as DSum-RM, Mean-RM, Sup-RM, LimSup-RM.

A transition (q, a, q′, w, c) ∈ δ indicates that, the transducer on reading the
letter a ∈ Σ in state q, transitions to state q′, and outputs a word w ∈ Γ ∗,

incurring a cost c for rewriting a to w. We write q
a/w−−→c q′ if (q, a, q′, w, c) ∈ δ. A

run ρ of T on u = a1a2 · · · ∈ Σω is a sequence 〈q0, (a0, w0, c0), q1, (a1, w1, c1), . . .〉
where for every i ≥ 0 we have that q0 ∈ Q0 and qi

ai/wi−−−−→ci qi+1. Let Runs(T, u)
be the set of runs of T on u. We write O(ρ) and C(ρ) for the projection on the
outputs and cost sequences, i.e. O(ρ) = w0w1 . . . and C(ρ) = c0c1 . . ., of a run ρ
of T . We say that a run of T is accepting if states from Qf are visited infinitely
often. We write dom(T ) for the set of all words which have an accepting run.
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We define three different semantics for T . The function [[T ]](u) returns the
set of all pairs of outputs and cost sequences over the word u ∈ Σω; the function
[[T ]]⊕∗ (u, v) returns the optimal rewriting cost w.r.t the aggregator function ⊕
over T for a rewriting of u to v; and [[T ]]⊕τ (u) returns the set of all rewritings of
a word u with cost bounded by a threshold τ ∈ R.

[[T ]](u) = {(O(ρ), C(ρ)) : u ∈ dom(T ) and ρ ∈ Runs(T, u)} ,

[[T ]]⊕∗ (u, v) = inf {⊕(C(ρ)) : ρ ∈ Runs(T, u) and O(ρ) = v} ,

[[T ]]⊕τ (u) =
{

O(ρ) : ρ ∈ Runs(T, u) and [[T ]]⊕∗ (u,O(ρ)) ≤ τ)
}

.

Problems of Optimal Repair. Given the Kripke structure K representing the
system, the ω-regular specification specified by the language L ⊆ Γω, a RM T , a
cost semantics ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, and a threshold τ ∈ Q≥0, the
repair synthesis problem asks if there exists a strategy of rewriting every trace
t ∈ TK to some word w ∈ L using T such that cost is at most τ .

We restrict the repair policies where Player Min is restricted to rewrite a
letter of the trace based on history and not to rely on a lookahead. We give a
game semantics to the repair synthesis problem as a turn-based two player game
between players Min and Max that proceeds as follows. The game begins with
player Max selecting the initial state s0 ∈ S0 of the Kripke structure and ends
her turn. Player Min, starts from the initial state q0 of the RM and then selects a
valid rewriting wi of L(s0) such that (q0,L(s0), q′

i, wi, c) ∈ δ is a valid transition
for some c ∈ N and changes the state of the RM to q′

i, she then ends her turn.
The game continues in this fashion, where player Max selects the next state s′

i

of the Kripke structure and Player Min selects a valid rewriting and thus the
next state of the repair machine. This turn based game proceeds indefinitely and
results in Player Max selecting a trace t ∈ TK and player Min selecting a word
w ∈ N

ω. Player Min wins the game if w ∈ [[T ]]⊕τ (t), and w ∈ L, otherwise player
Max wins the game. The existence of a winning strategy for Player Min implies
the existence of a repair strategy.

Definition 2 (Repair Synthesis). Given a Kripke structure K representing
the system, an ω-regular specification L, a repair machine T , a cost semantics
⊕ ∈ {DSumλ,Mean,Sup, LimSup}, and a threshold τ decide whether there exists
a strategy to rewrite every trace t ∈ TK to some word w ∈ L with a cost of at
most τ , and if so synthesise this strategy.

We also consider the dual challenge of impair verification where the system
is subjected to adversarial rewritings. This setting has applications in, among
others, availability vulnerability detection. We consider an attack model where
the rewritings given by the repair machine are resolved adversarially but are
restricted to be within a given cost. The verification problem is to decide if
there exists traces of the system that satisfy an ω-regular property capturing
the undesirable behaviors for some such rewritings. The game semantics for the
impair verification problem are similar to that of repair synthesis, however in
the case of impair verification the player Max not only controls the selection of
the next state s′

i, but also decides the rewriting by selecting the word w′
i as well.
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Definition 3 (Impair Verification). Given a structure K representing the
system, an ω-regular language L capturing the undesirable behavior given as an
NBA A, repair machine T , a cost semantics ⊕ ∈ {DSumλ,Mean,Sup, LimSup},
and a threshold τ ∈ Q≥0, the impair verification problem fails if there exists a
trace t ∈ TK that can be rewritten to some word w ∈ L with a cost of at most τ
under an adversarial strategy.

When one may not be able to pass the impair verification problem, it may
be desirable to design a way to minimally mask the Kripke structure such that
the resulting system satisfies the specifications despite the threshold-bounded
impairment. In such a case, we wish to find the maximal subset N ′ of traces
which, even under adversarial rewrites, satisfy the ω-regular specification L.

Definition 4 (Mask Synthesis). Given a Kripke structure K representing the
system, an ω-regular language L capturing the undesirable behavior given as an
NBA A, repair machine T , a cost semantics ⊕ ∈ {DSumλ,Mean,Sup, LimSup},
and τ ∈ Q≥0, the problem of mask synthesis is to find a maximal subset N ′ ⊆ TK

such that all traces t ∈ N ′ pass the impair verification.

The next three sections present our results on these three problems.

4 Repair Synthesis

To solve the problem of repair synthesis, we reduce it to a related problem
of threshold synthesis. Threshold synthesis asks for a partition of the rational
numbers Q≥0 into sets G (good) and B (bad) sets such that the repair synthesis
problem can be solved for all good thresholds τ ∈ G. Given a system K, the
specification L ⊆ Γω represented by an NBA B, a repair machine T , and a cost
semantics ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, we focus on the threshold synthesis
problem: find a partition of Q≥0 into two sets G and B such that the policy
synthesis can be solved for all τ ∈ G. We note that in the case of policy synthesis,
the sets G and B are upward and downward closed respectively. If player Min
has a winning strategy for some τ ∈ Q≥0 then she may use the same strategy for
all τ ′ ≥ τ . Let the infimum value τ for which player Min wins be denoted as τ∗,
then G = [τ∗,∞) and B = [0, τ∗). We call this value τ∗ the optimal threshold.

4.1 Solving the Büchi Games

Our approach to compute the optimal threshold is to first restrict the choice of
player Min to those where she has a strategy to win with respect to the Büchi
objective, irrespective of the choices of Player Max on the Kripke structure. If
Player Min has no valid strategy to rewrite a trace of the system to satisfy the
Büchi objective, then the optimal threshold τ∗ = ∞. We thus consider the case
when τ∗ �= ∞ by playing a Büchi game on a game arena and then pruning it.

To construct the game arena, we first construct the synchronized product
K×T×B of K, T , and B. Intuitively, K×T×B accepts those traces of the sys-
tem, which have some rewriting that is in L.
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Definition 5. The synchronized product K×T×B of the Kripke Structure K =
(S, ↪→, S0,L), the repair machine T = (Q,Σ,Q0, Qf , Γ,Δ,C) and the NBA B =
(P, Γ, P0, Pf , δ) is a weighted (directed) graph G× = (V,E,W, VI , VF ), where:

– V = S ×Q×P ×{1, 2} is the set of vertices consisting of states of the system
K, repair machine T , and NBA B, and a counter that tracks the visitation
of accepting states of T and B (like the degeneralization construction for the
generalized Büchi automata)

– E ⊆ V × V is such that ((s, q, p, i), (s′, q′, p′, i′)) ∈ E if (s, s′) ∈↪→ is a
transition in K, for some w ∈ Γ ∗ and c ∈ N transition (q,L(s), q′, w, c) ∈ Δ

is in T , and (p,w, p′) ∈ ̂δ is a transition in B, and one of the following holds:
• i = i′ = 1 and q′ /∈ Qf

• i = i′ = 2 and p /∈ Pf

• i = 1 and i′ = 2 and q′ ∈ Qf

• i = 2 and i′ = 1 and p ∈ Pf

– W : E → N is the weight function such that

W ((q, s, p, i), (q′, s′, p′, i′)) = min {c : (q,L(s), q′, w, c) ∈ Δ} ;

– VI ⊆ V = Q0 × S0 × P0 × {1} is the set of initial vertices; and
– VF ⊆ V = Q × S × Pf × {2} is the set of final vertices.

To distinguish the choice of player Max and Min, we define a game structure
G× on the product graph G× by introducing intermediate states by appending
another layer to the track counter. The formal construction is shown next.

The game graph G× = ((V ,E,W, VI , VF ), V Min, V Max) for product G× =
(V,E,W, VI , VF ) is such that:

– V = S × Q × P × {1, 2, 3};
– E is such that for e = ((s, q, p, i)(s′, q′, p′, i′)) ∈ E we have two edges to

separate the choice of the RM and the NBA from the Kripke structure:
• e1 = ((s, q, p, i), (s, q′, p′, 3)) ∈ E and
• e2 = ((s, q′, p′, 3)(s′, q′, p′, i′)) ∈ E;

with the weights W (e1) = W (e) and W (e2) = 0;
– V Min = S × Q × P × {1, 2}; and
– V Max = S × Q × P × {3}.

Note that the first choice is made by player Max in choosing the starting state of
the Kripke structure, and in the subsequent transitions player Min reads those
states and makes a choice over the rewrites. For this reason, the choice of player
Max appear to be lagging by one.

We play the Büchi-game on G× with the set of accepting states as VF . We
then prune the arena to contain only those states that are in the winning region
of player Min with respect to the Büchi objective, that is, the set of states where
player Min has a strategy to enforce visiting Büchi states irrespective of the
strategy chosen by the player Max. We denote this pruned game arena as G.



Optimal Repair for Omega-Regular Properties 363

4.2 Optimal Threshold for DSum-RM

We reduce the problem of finding the optimal threshold τ∗ for a DSum-RM to
the problem of finding the value of a DSum-game on the game arena G. As such
we reduce the choices of selecting a trace by player Max and that of selecting a
rewriting by player Min in the context of repair synthesis to choices made by the
players in a DSum-game over an arena G. In particular, we have the following.

Theorem 2. The optimal threshold τ∗ for the DSum-RM can be computed in
NP ∩ co-NP via solving a DSum-game on G.

Proof (Sketch). We solve the DSumγ game on G with γ =
√

λ, the value of this
game corresponds to the optimal threshold τ∗, as each edge of the synchronized
product is captured by a pair of edges in G. For any ε > 0, Player Min has a
strategy of following this DSum strategy, and then following the strategy of the
Büchi-game such that the cost of this rewriting is τ∗ + ε.

4.3 Optimal Threshold for Mean-RM

Similar to the case of the DSum-RM, in the case of the Mean-RM, we reduce the
problem of finding the optimal threshold τ∗ to the problem of finding the value
of a Mean-game on a game arena G. However we note that unlike the case of
the DSum-RMs we also need to ensure that the mean cost cycle is co-accessible
from the accepting vertices. In particular we have the following result.

Theorem 3. The optimal threshold τ∗ for the Mean-RM can be computed in
NP ∩ co-NP via solving a Mean game on G.

Proof (Sketch). The proof of this theorem is similar to that of Theorem 2. Here,
we first find a least cost mean cycle that is co-accessible by Player Min from
the winning strategy of the Büchi-game on G (either a cycle following some
Mean-game or the Büchi cycle itself). To do so we determine vertex that is co-
accessible along the Mean-game over G as well as the Büchi-game. Player Min
then alternates between two strategies in rounds, the first, where she follows
the strategy of the Mean-game and the second to where she follows the strategy
of the Büchi-game. At any round i, she follows the strategy of the Mean-game
until she cycles on the co-accessible vertex 2i many times and then follows the
strategy of the Büchi-game once to return to this vertex. As the least cost-cycle
has twice the number of edges of the synchronized product we divide the value
of the Mean-game by two to determine the optimal threshold. We note that
the above strategy relies on infinite memory, however Player Min can restrict
the number of rounds for any ε > 0, and so she has a finite memory policy to
guarantee repair for any threshold of τ∗ + ε.

4.4 Optimal Thresholds for Sup-RMs and LimSup-RMs

In the case of the Sup aggregator function we first order the edges of G× in the
descending order of their weights and remove them in stages from the largest to
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the smallest. If, at any stage, the removal of edge e, leads to a failure of satisfying
the Büchi condition, we infer that e is necessary to satisfy the Büchi condition
for some state in G. We claim that the weight of the edge e is τ∗.

Similar to the Sup aggregator function, we start removing edges of G× in the
descending order of their weights only if they are present in an accepting cycle
in the case of theLimSup aggregator function. Then, if at any stage, the removal
of edge e, leads to a failure of satisfying the Büchi condition, we infer that the
τ∗ = W (e) and conclude that we can safely remove edges with a higher weight.

Theorem 4. Computing optimal threshold τ∗ for Sup and LimSup-RMs is in P.

Proof (Sketch). Note that the removal of any edge e from the synchronized
product that causes the Büchi-objective to no longer be satisfied guarantees that
all the rewrite strategies for at least one trace do not satisfy the Büchi objective.
Hence the removal prevents the satisfaction of either the acceptance of RM T
or the NBA B, and in either case, leads to a trace of the Kripke structure that
cannot be rewritten to some word that is accepted by the NBA B.

5 Impair Verification

Given the Kripke structure K representing the system, the ω-regular language
L capturing undesirable behavior, represented as an NBA B, a repair machine
T , and a cost semantics ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, we reduce the impair
verification problem to the threshold verification problem. The threshold verifi-
cation problem is to find a partition of Q≥0 into two sets G and B, such that
none of the traces to system can be rewritten to a word that is in the language
of B for all v ∈ G. Let τ∗ denote the infimum value for which a trace t ∈ TK

can be rewritten to some word w ∈ Γω such that w ∈ L. Then, the threshold
verification problem is solved for any τ < τ∗, as [[T ]]⊕τ (t) �⊆ L for every trace
t ∈ TK . Thus the set G = (0, τ∗) and the set B = [τ∗,∞) and problem reduces
to finding the optimal threshold τ∗.

In order to find the optimal threshold τ∗, we construct the synchronised
product G× = K ×T × B as detailed in Definition 5. We prune G× to keep only
those states from where player Max has a winning strategy against the Büchi
objective. The construction is similar to Büchi games, except that the opponent
has no choice. In the following, we refer to this pruned graph as G.

5.1 Optimal Threshold for DSum-RM

In the case of a DSum-RM, we show that the optimal threshold τ∗ is the minimum
infinite discounted cost path in G. While it may not be possible to achieve this
cost, for any ε > 0 we show the existence of a finite memory strategy of player
Max that guarantees that some rewriting with threshold of τ∗ + ε is in L.

We claim that the optimal threshold τ∗ is the minimum discounted cost
in G. To find this value, we associate a variable Vs, to each vertex v ∈ V ,
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characterizing minimum discounted cost among all paths starting from the state
s. The minimum discounted values can then be characterized as [15]:

Vv = min
(v,v′)∈E

{W (v, v′) + λ · Vv′}

This equation can be computed by solving the following LP.

max
∑

v∈V

Vv subject to: Vv ≤ W (v, v′) + λVv for all (v, v′) ∈ E.

v0 v1 v2
1 1

0 1A positional discount-optimal strategy can be com-
puted from the solutions of these equations simply by
picking a successor vertex minimizing the right side of
the optimality equations. Observe, however, that the
resulting path may not satisfy the Büchi condition. Consider the graph shown
in the inset (right). In order to satisfy the Büchi objective, a run must visit
the state v2, while to minimize the discounted cost the strategy is to cycle in
the state v1 getting a discounted sum of 1. While it is possible to achieve an ε-
optimal discounted cost and satisfy the Büchi objective by looping on v1 for an
arbitrary number of steps before moving to the state v2, no strategy satisfying
the Büchi objective can achieve a DSum cost of 1.

Theorem 5. The optimal threshold τ∗ for DSum-RMs can be computed in P.

5.2 Optimal Threshold for Mean-RM

In the case of the Mean aggregator function, we note that only those edges
that are visited infinitely often have an effect on the cost. We say that a
cycle is accepting if there exists some vertex v ∈ VF that occurs in the
cycle. We let C1 denote the least average cost cycle that can be reached and
is reachable from some accepting cycle C2. We use d1 and d2 to denote the
total cost of these cycles and n1 and n2 to be the number of edges in each
of them respectively. We then show that τ∗ is the mean value of cycle C1.

v0 v1

1

1

10
We observe that a strategy to determine this optimal threshold
requires infinite memory. However for any ε > 0, there exists
a finite memory strategy that is ε close to τ∗. Consider the
graph shown in the inset (right) and the following strategy
adopted by Player Max. Player Max cycles between v0 and v1
in rounds. At any given round i, Player Max cycles on v0 for 2i times, and then
moves and cycles once in v1 and returns to v0. Observe this strategy ensures
that the Büchi objective is satisfied while also ensuring the Mean cost to be 0
but requires infinite memory to keep track of the rounds. However, Player Max
can achieve a ε-optimal mean cost by limiting the number of rounds.

Theorem 6. The threshold τ∗ for Mean-RMs can be computed in P.
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5.3 Optimal Thresholds for Sup-RMs and LimSup-RMs

For the Sup aggregator function, let S be the set of values ci such that ci is the
supremum of the cost of some lasso that starts from some vi ∈ VI and cycles
in a loop containing some vf ∈ VF . Let k be the least element in S. We claim
τ∗ = k. Similar to the Sup aggregator function, we consider the set S to contain
the values ci such that ci is the supremum of the costs of the edges in the cycles
that visit some vf ∈ VF in the case of the LimSup aggregator function. We then
take the least of these to be the optimal threshold for the LimSup-RMs.

Theorem 7. The threshold τ∗ for Sup and LimSup-RMs can be computed in P.

6 Mask Synthesis

Given a Kripke structure K representing the system, an ω-regular language L
capturing the undesirable behavior given as an NBA B, repair machine T , a cost
semantics ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, and τ ∈ Q≥0, the problem of mask
synthesis is to find a maximal subset N ′ ⊆ TK such that all traces t ∈ N ′ pass
the impair verification.

It is well known that every Kripke structure admits an ω-regular language N
such that a word u ∈ N if and only if u ∈ TK . Let the ω-regular language of K
be N . To solve the mask synthesis problem, we restrict the domain of the repair
machine T to N by constructing a repair machine T ′ using product construction
and give our results on the repair machine T ′.

6.1 Mask Synthesis for DSum-RMs

We show that the maximal subset N ′ for isolated cut-point languages [3] is ω-
regular. Given a threshold τ ∈ Q, the maximal subset N ′, is the set of all words
u ∈ dom(T ′), such that for every word w′ ∈ [[T ]]DSum

τ (u) we also have w /∈ L. A
threshold τ is ε-isolated for RM T ′, if for ε > 0 and all accepting runs r of T ′,

[[T ′]]DSum
∗ (r, w) ∈ [0, v−ε] ∪ [v+ε,∞).

It is isolated if it is isolated for some ε. To prove that N ′ is ω-regular for such
thresholds, we first note that isolated-cut point languages are ω-regular in the
context of weighted automata [11]. We follow a similar strategy to [10], and
slowly unroll our synchronous product. We note that since the repair machine
is over ω strings, there must exist some n such that

DSum(w0w1 . . .) ≤ DSum(w0 . . . wn) + Bn,

where Bn = V λn

1−λ , where V is the largest cost that is not ∞. Therefore if
DSum(w0, w1, . . .) ≤ v−ε+Bn we can conclude that DSum(w0, . . . , wn) ≤ v−ε.

Lemma 1. Let T ′ be a DSum repair machine and τ ∈ Q. If τ is ε-isolated for
some ε, then there is n∗ ∈ N such that any partial run r of length at least n∗

satisfies one of the following properties:
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1. DSum(r)≤τ−ε and DSum(rr′)≤τ−ε for every infinite continuation r′ of r.
2. DSum(r)≥τ+ ε

2 and DSum(rr′)≥τ+ε for every infinite continuation r′ of r.

Here, for finite r, DSum(r) is defined in the usual fashion except that the sum-
mation will be upto the length of r.

Theorem 8. Let T ′ be a DSum repair machine, v ∈ Q, and L an ω-regular
language given by an NBA. For all n, we can construct an NBA An such that
L(An) ⊆ L(An+1) and L(An) ⊆ N ′ ∩dom(T ′). Moreover, if τ is ε-isolated, there
exists n∗ such that L(An∗) = N ′ ∩ dom(T ′).

For the construction of An in Theorem 8, a notion of bad and dangerous runs
are defined. Intuitively, The bad runs are all those runs which are accepting with
cost ≤ τ , such that the output word is not in L. The dangerous runs are the
finite partial runs which can be extended to bad runs. The idea for construction
of An is to identify all the finite partial runs r of length n which can later be
extended to bad runs. This way we can construct a sequence of Büchi automata
that better under approximate the automata for the non-robust words in the
domain. Thanks to Lemma 1, we can assure that there exists a fixed point at n∗

such that An∗ recognizes all the non-robust words from T ′.

6.2 Mask Synthesis for Mean-RMs

The mask synthesis problem for Mean-RMs is already undecidable for finite
words [10, Theorem 17] and this result carries over to the case of ω-words.

6.3 Mask Synthesis for Sup-RMs and LimSup-RMs

For the Sup-RMs, we can construct an NBA recognizing all output words with
a cost greater than τ and show that the maximal subset N ′ is ω-regular. The
results for Sup-RMs can be extended carefully to only account the costs occurring
in accepting loops and be used for the LimSup-RMs as well.

Theorem 9. Let T ′ be a Sup-RM, τ ∈ Q and L be a ω-regular language. The
language of N ′ is ω-regular and we can effectively construct an NBA for it.

7 Related Work

Our work is closest to the idea of weighted transducers as studied in [10] for finite
strings. We extend the known results of [10] in the context of robust verification
and kernel synthesis from finite strings to infinite strings.

D’Antoni, Samanta, and Singh [8] presented Qlose, a program repair app-
roach with quantitative objectives. The Qlose approach permits rewriting syn-
tactical expressions with arbitrary expressions while keeping the control struc-
ture of the program intact. In comparison, our approach permits modification of
the control structure albeit with a finite set of expressions (encoded as a finite
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alphabet) considered for rewriting. Consequently, our setting remains decid-
able as opposed to repair with Qlose that is, in general, undecidable, and for
tractability it restricts the correctness criterion to being correct over a given set
of input-output examples. Similarly Samanta, Olivo, and Emerson [16], consid-
ered cost-aware program repair for Turing-complete programs through the use
of predicate abstraction. However, their cost function is dependent only on the
program location as opposed to more general ω-traces as proposed in our work.

Jobstmann, Griesmayer, and Bloem [13], and von Essen and Jobstman [18],
studied program repair as a two-player game with qualitative ω-regular objec-
tives. Our work, in contrast, allows quantitative notions of repair costs.

Cerny and Henzinger [2] championed for the need of partial program synthe-
sis, which can be thought of as a repair, though its aim is to complete the given
partial program, with respect to the specification. Although not directly related
to repair, the framework of model measuring [12] presents a notion of distance
between models; it studies the problem that given a model M and specifica-
tion find the maximal distance such that all models within that distance from
M satisfy the specification. Bansal, Chaudhuri, and Vardi [1] study comparator
automata that read two infinite sequences of weights and relate their aggregate
values to compare such quantitative systems. Kupferman and Tamir [14] con-
sider the problem of cheating, where they use weighted automata and a penalty
function to determine if the environment is cheating. The penalty function con-
sidered is again a map from a pair of letters to a value and so the environment is
only permitted letter-to-letter rewritings. In contrast, our models permits more
general letter-to-string rewritings constrained with ω-regular objectives.

Chatterjee et al. [5] consider the problem of solving both quantitative and
qualitative objectives and define the notion of implication games where the objec-
tive is to solve both. While we provide direct proofs, Theorems 2 and 3 can also
be recovered from results on implication games.

8 Conclusion

This paper presented a generalization of fundamental problems on weighted
transducers and robustness threshold synthesis for ω-words. We proposed and
solved the problem of minimal cost repair formulated as two player games on
weighted transducers. We note that this problem is similar to multi-objectives
optimization where the goal of the players is to satisfy an ω-regular property
while optimizing a quantitative payoff. We also considered a related problem
of impair verification that is related to availability problem where an attacker
intends to rewrite the observations of the system to make it satisfy some unde-
sirable behavior. We believe that the repair problem may find application in
designing mitigation policies against side-channel vulnerability where some con-
fidential property of the system is leaking in the output trace, and the goal is to
find a minimum-cost repair to make the system opaque.
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Abstract. We consider the problem of repairing inconsistent real-time
requirements with respect to two consistency notions: non-vacuity, which
means that each requirement can be realized without violating other
ones, and rt-consistency, which means that inevitable violations are
detected immediately. We provide an iterative algorithm, based on solv-
ing SMT queries, to replace designated parameters of real-time require-
ments with new Boolean expressions and time constraints, so that the
resulting set of requirements becomes consistent.

1 Introduction

Requirements play an important role in the design of real-time systems. These
allow one to specify desired properties for the system under development at
an early stage, and can be used to guide testing and formal verification [26].
While basic requirements focus on the relation between the inputs and outputs
of the system, extrafunctional properties such as timing constraints are crucial
for describing the behaviors of real-time systems.

It is thus important to design formal requirements that are consistent,
that is, that avoid contradictions and admit implementations. Several works
have focused on providing tools to define, combine, and study specifications [8];
others have defined various notions of consistency, e.g. [1,14,27,28], which are
used to detect conflictual requirements that are impossible to satisfy in an imple-
mentation according to given criteria.

While several works have focused on checking the consistency of requirement
sets, or applying formal verification on requirements, we are interested in repair-
ing a given requirement set that is inconsistent, in order to turn it into a con-
sistent set. Repairing an unsatisfactory model or program is an active research
area. It consists in building expressions that fit a given data set to fill unknown
expressions in programs. Various techniques such as constraint solving, deci-
sion tree learning, or search algorithms are used for repairing programs [3,16].
We believe that requirements are a good target for repair algorithms as they can

This work was partially funded by ANR project Ticktac (ANR-18-CE40-0015).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bouajjani et al. (Eds.): ATVA 2022, LNCS 13505, pp. 371–387, 2022.
https://doi.org/10.1007/978-3-031-19992-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19992-9_24&domain=pdf
https://doi.org/10.1007/978-3-031-19992-9_24


372 R. Noguchi et al.

assist the user in correcting unsatisfactory requirement sets in an early stage. In
this paper, we provide repair algorithms tailored for the consistency of real-time
requirements.

We consider two consistency notions from the literature. The first one is the
non-vacuity of a requirement set, studied in temporal logic model checking [22]
but also in requirement verification [28]. This line of work was inspired by the
observation that formulas of the form a → b might hold in a given model simply
because a never becomes true. Thus, such a formula is vacuously satisfied, which
indicates an error, either in the design of the model or in the specification.
Intuitively, when all requirements are such implications, a requirement set is
non-vacuous if the premise of each requirement is satisfied by some execution
which does not fail the other requirements.

We consider requirements expressed as Simplified Universal Patterns (SUPs
for short) [9,29], which are patterns defining real-time temporal properties, and
are in the form of a logical implication with time constraints: in each require-
ment, completing a given trigger phase implies the realization of a corresponding
action phase. Moreover, the action phase must start after a given time interval
following the trigger, and phases are given durations with time intervals. Due
to this form, non-vacuity is easy to define and to interpret: the trigger phase of
each requirement must be realized by some execution which does not fail other
requirements. SUPs can be expressed as timed automata, and our algorithms
can be easily extended to general timed automata [2] as in [18]. We do focus on
SUPs here for their simplicity, and because non-vacuity can be defined naturally
due to their form. They are expressive enough to write complex specifications,
including the benchmarks we consider in Sect. 4.

The second consistency notion we consider is rt-consistency [27]. This
requires that all finite executions that satisfy all requirements (i.e., do not vio-
late any of them) admit infinite extensions that still satisfy all the requirements.
Put differently, this means that if an implementation produces a finite execu-
tion whose all continuations necessarily lead to the failure of some requirement,
then there must be a requirement that already fails at the said finite execution:
the inevitability of an error must be anticipated by the set of requirements. It
can be shown that rt-consistency is not a linear-time property; it was expressed
using a CTL formula in [18]. It can be observed that adding a requirement to the
set can remove rt-inconsistencies, since, intuitively, the new requirement can be
made to imediately fail whenever the error is inevitable in the future. However,
this must be done with care since adding a requirement might also introduce
new rt-inconsistencies and render some other requirements vacuous.

Our main result is an algorithm that, given a requirement set and some
designated parameter set M (time constraints and/or Boolean expressions that
appear in requirements), attempts to compute new values for the parameters
in M such that the new requirement set is rt-consistent and non-vacuous.
Our algorithm is iterative: at each iteration, we solve an SMT query to com-
pute candidate values for the parameters, and check whether non-vacuity and
rt-consistency hold. When this is not the case, we derive a new constraint to add
to the SMT query and start again. The new constraint either forces one of the
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requirements to be satisfied non-vacuously, or it excludes a counterexample to
rt-consistency.

We apply our algorithm to several benchmarks including four case studies
that have appeared in the literature, and anonymized benchmarks from [23].
In each case, we considered manually-introduced rt-inconsistencies and focused
on two uses: repairing the requirement set by adding a fresh requirement; and
repairing the set by modifying the parameters of a designated requirement.

Related Works. Verification algorithms for non-vacuity and rt-consistency were
given in [23] based on a reduction of the problems to a safety verification problem,
and using a software model checker. Due to efficiency constraints, the presented
results are obtained using a partial check: the rt-consistency is checked only for
pairs of real-time requirements; nonetheless, the method can also be applied to
consider the whole set.

Our approach is similar to program repair [3,16] where some techniques are
also based on using solvers to find expressions subject to given constraints. The
main difference of such lines of work with ours is that correctness is defined
based on non-vacuity and rt-consistency rather than on the acceptance of given
test cases, or on the model checking of the program w.r.t. a specification.

Repairing real-time systems has been considered recently. In [19,20],
the authors provide an iterative algorithm that finds a timed diagnostic trace
in a timed automaton using a model checker, and use an SMT solver to com-
pute modifications in the guards of the automaton. To ensure that the new
automaton is satisfactory, they check for untimed language equivalence (which
is EXPSPACE-complete [13]). Their tool enumerates all possible repairs until
one passes this equivalence test. In [4], the authors use parameter synthesis to
find new values of guards and validate with testing. Guard relaxation for ensur-
ing a reachability property is studied in [7].

Several algorithms for temporal logics rely on a given labeling of input signals:
the goal is to compute parameter values so as to reject some set of inputs signals,
and accept some others; see [11,15,21] for signal temporal logic. The problem
of synthesizing parameters for metric temporal logic formulas for a given hybrid
system was studied in [30]; see also [5] for a statistical learning procedure. In [25],
the goal is to compute a formula that accepts a given set of positive traces, and
rejects given negative traces. The algorithm also uses a SAT solver to guess the
formula as a DAG of size n, and increases n until a solution is found. In our case,
we restrict to requirements with propositional formulas in conjunctive form,
which simplifies their encodings.

2 Preliminaries

Traces. We fix a set AP of atomic propositions that represent Boolean inputs
and outputs of the system. A valuation of AP is a mapping vAP : AP → {�,⊥}
(or equivalently an element of 2AP). We write B(AP) for the set of Boolean
combinations of atomic propositions in AP. That a valuation vAP satisfies a
formula φ ∈ B(AP), denoted by vAP |= φ, is defined in the usual way.
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A (finite) trace σ is a sequence of valuations, and its length is denoted by
|σ|. Traces are seen as elements of (2AP)∗. The prefix of length i of the trace σ =
σ1σ2 . . . σn is denoted by σ1...i = σ1σ2 . . . σi.

Timed Automata. We use timed automata (here with a discrete-time semantics)
to model and reason about timed requirements.

Let X = {ci | 1 ≤ i ≤ k} be a set of variables called clocks. We consider
integer-valued clocks. For a valuation vX : X → N (equivalently an element
of NX ), an integer d ∈ N, and a subset of clocks R ⊆ X , we define vX + d
as the valuation (vX + d)(c) = vX (c) + d for all c ∈ X , and vX [R ← 0] as
vX [R ← 0](c) = 0 if c ∈ R, and vX [R ← 0](c) = vX (c) otherwise. Let 0 be the
valuation mapping all variables to 0.

The set of clock constraints over X is defined by the grammar: g ::= c ∼ n |
g ∧ g, where c ∈ X , n ∈ N, and ∼ ∈ {<,≤,=,≥, >}. Let C(X ) denote the set of
all clock constraints over X . The semantics of clock constraints is defined in the
expected way: given a clock valuation vX : X → N, a constraint g ∈ C(X ) is true
at vX , denoted vX |= g, if the formula obtained by replacing each occurrence
of c in g by vX (c) holds.

We consider timed automata over the alphabet 2AP of valuations of AP,
thereby generating (discrete-time) traces. Transitions are labelled with Boolean
constraints on AP.

A timed automaton (TA) is a tuple A = 〈S, s0,AP,X , T, F 〉 where S is a finite
set of states, s0 ∈ S is the initial state, AP is a finite set of atomic propositions,
X is a finite set of clocks, T ⊆ S × B(AP) × C(X ) × 2X × S is a finite set of
transitions, and F ⊆ S is the set of accepting states.

We endow timed automata with a discrete-time semantics, as follows.
With a timed automaton A, we define the infinite-state automaton S(A) =
〈Q, q0,D,QF 〉 over 2AP where Q = S×NX , q0 = (s0,0), QF = F ×NX is the set
of accepting configurations, and transitions in D are combinations of a transition
of the TA and a one-time-unit delay. Formally, given a valuation vAP ∈ 2AP and
two configurations (s, vX ) and (s′, v′

X ), there is a transition ((s, vX ), vAP, (s′, v′
X ))

in D if, and only if, there is a transition (s, φ, g, r, s′) in T such that vAP |= φ
and vX |= g, and v′

X = (vX [r ← 0]) + 1;
Our semantics thus makes it compulsory to take a transition of the TA (pos-

sibly a self-loop) at each time unit. This can be used to emulate invariants in
states. The automaton S(A) can be rendered finite by bounding the clocks since
the exact values of clock variables above a threshold do not matter (see [2]).

A run of A is a run of its associated infinite-state automaton S(A). It can
be represented as a sequence along which configurations and actions alter-
nate: (s0, v0) · σ1 · (s1, v1) · σ2 · · · (sn, vn) · · ·. A finite run is accepting if it ends
in QF . A trace σ = (σi)1≤i≤n is accepted by A if there is an accepting run
(s0, v0) · σ1 · (s1, v1) · σ2 · · · (sn, vn) in A.

We only consider safety TAs, i.e., TAs in which there are no transitions
from S \ F to F . Under such a condition, a run is accepting if, and only if,
it never visits any non-accepting state. This simplifies the presentation but a
richer set of properties could be handled as in [18].
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Simplified Universal Patterns. Simplified Universal Patterns (SUPs) [9,29] are
a simple and convenient formalism for expressing requirements. They are more
intuitive, but less expressive, than TAs.

An SUP requirement has the following form:

(TSE,TC,TEE)[Tmin,Tmax]
[Lmin,Lmax]−−−−−−−−→ (ASE,AC,AEE)[Amin,Amax],

where Fb = {TSE,TC,TEE,ASE,AC,AEE} is the set of Boolean parame-
ters(See Fig. 1 for the meaning of acronyms), which are Boolean formulas on AP,
and Ft = {Lmin,Lmax,Amin,Amax,Tmin,Tmax} is the set of time parame-
ters, which are integer time bounds. Their union is F = Fb ∪ Ft. We only
consider bounded intervals.

Figure 1 illustrates the intuitive semantics of SUPs. A trigger phase (left) is
realized, if TSE occurs and is confirmed within a duration in [Tmin,Tmax], that
is, if TC holds until TEE occurs; otherwise the trigger is aborted. For the SUP
instance to succeed, following each realized trigger phase, an action phase must
be realized: an action phase starts with ASE within [Lmin,Lmax] time units
after the end of the trigger phase, and AC must hold until AEE occurs within
[Amin,Amax] time units. Otherwise, the SUP is failed.

The semantics of (generic) SUPs can be encoded using timed automata [6].
These automata are defined over states QSUP = {init, trig, delay, act, err} with err
the only state not in F . Intuitively, the execution starts at init, it is at trig if
the trigger phase is being checked; at delay if the trigger was realized but the
subsequent action has not started yet; at act if the action phase is being checked;
from delay or act, either err is reached and the SUP is failed, or init is reached
and the SUP succeeds. Note that similar automata definitions were previously
given [6].

An SUP instance can be defined as a valuation P of parameters in F , i.e.,
a valuation of each Boolean parameter of Fb by a formula in B(AP), and each
time parameter of Ft by an integer. We then write SUP(P ) for the SUP with
parameters defined by P , and ASUP(P ) for the timed automaton corresponding
to SUP(P ). Given such a P and f ∈ F , Pf refers to the value of the parameter f
in P .

The sets of SUP requirements we consider will always be assumed to be
indexed, and will be written in the form (SUP(P i))1≤i≤n. Thus P i

f will refer

Fig. 1. Intuitive semantics of SUPs
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to the value of the parameter f in P i. We will also consider subsets of indexed
parameters {(f, i) | f ∈ F , 1 ≤ i ≤ n} to refer to a subset of the parameters.

Example 1. Consider a flashing light which can blink with a period of 20 time
units. The variable blink determines whether the blinking mode is active, and
on indicates that the light is currently on.

R1 : (on, true, true)[0, 0]
[0,0]−−−→ (true, on,¬on)[10, 10]

R2 : (¬on,¬on,¬on ∧ blink)[9, 9]
[1,1]−−−→ (true, true, on)[0, 0]

R1 means that when the light turns on, it will remain on for 10 time units,
and then turn off. R2 states that if the light has been off for 9 time units, and
the blinking mode is active, then it should turn on at the next time unit.

If we write R1 = SUP(P 1) and R2 = SUP(P 2), then for instance, P 2
TSE is

the formula ¬on, and P 1
Amax = 10.

In the rest of the paper, we only consider timed automata that correspond
to SUPs; and the term requirement interchangeably refers to an SUP or to its
timed-automaton representation.

A trace σ is said to trigger an SUP requirement SUP(P ), if the trigger phase
is realized by reading σ, that is, if TSE is observed and, within a period in
[Tmin,Tmax], TC holds until a point where TEE is true.

A finite or infinite trace σ satisfies the SUP if the state err is never
reached in ASUP(P ) by reading σ; this is denoted by σ |= SUP(P ). If err is
reached, then σ fails SUP(P ) and we write σ �|= SUP(P ). For a set of require-
ments R = (SUP(P i))1≤i≤n, we write σ |= R if σ satisfies all requirements
in R. Symmetrically, we write σ �|= R if σ fails at least one of the requirements
in R. Note that since we consider bounded time intervals, when a trace triggers
a requirement R, all extensions will eventually either realize the action phase or
fail R.

RT-Consistency. We recall rt-consistency, introduced in [27] and further studied
in [18]. Put simply, a set R of requirements is rt-consistent if all finite traces
that do not fail R admit infinite continuations that satisfy R. In other terms,
at any finite trace where failure is inevitable, some requirement must already be
failed.

For a requirement set R, and trace σ, we write σ I-fails R if for all infinite
traces σ′, σ · σ′ �|= R. RT-consistency can then be expressed as follows:

Definition 1 (RT-consistency). A set R of requirements is rt-consistent if,
for any finite trace σ, if σ I-fails R, then σ �|= R. A witness to rt-inconsistency
then is a finite trace σ such that σ I-fails calR and σ |= R.

Thus a witness is a finite trace that satisfies all requirements but whose all
infinite continuations fail some of the requirements.

A simpler characterization of rt-inconsistency was proven in [18]:
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Theorem 1 [18]. A set R of requirements is rt-inconsistent if, and only if there
exists a trace σ such that σ |= R, and for any valuation a ∈ 2AP, σa �|= R.

Example 2. We consider the requirements R1 and R2 from Example 1. We
add an atomic proposition lowBattery, and consider the new requirement

R3 : (lowBattery, true, true)[0, 0]
[0,0]−−−→ (true,¬on, true)[50, 50],

which requires to switch off the lights for 50 time units if the battery is detected
to be low. The set R = {R1, R2, R3} of requirements is rt-inconsistent. In fact,
the finite trace σ = {lowBattery} · ∅ · . . . · ∅ · {blink} of length 9 does not fail
any of the requirements, so σ |= R. But all extensions of σ fail R. In fact, by R2,
on must be true in the next state; while by R3, on must be false. Thus, σ is
a witness to the rt-inconsistency of R. One could repair this rt-inconsistency
by forcing the value of blink to false for 50 time units whenever lowBattery

is true: R4 : (lowBattery, true, true)[0, 0]
[0,0]−−−→ (true,¬blink, true)[50, 50], so

that R ∪ {R4} is rt-consistent.

Non-vacuity. We define the non-vacuity of a set of requirements, which states
that each requirement must be triggered by some trace without failing any
requirement. This notion is closely related to non-vacuity in temporal logic,
where an implication of the form a → b is said to be satisfied vacuously if
a is never satisfied in the given system [22]. SUP requirements are similar to
implications since the realization of a trigger phase implies the non-violation of
the action phase. Intuitively, a requirement that is impossible to trigger points
to a bug in the set of requirements, and a good set of requirements must be
non-vacuous.

For R ∈ R, we say that R is non-vacuous in R if there exists a trace that
satisfies R and triggers R; otherwise R is vacuous in R.

Definition 2 (Non-vacuity). A set R of SUP requirements is non-vacuous
if for each R ∈ R, there exists a trace that satisfies R and triggers R.

Example 3. Consider again requirements R1, R2. Assume that the designer
wants to allow a user to maintain the light on manually by pushing a button,
but wants blinking to be deactivated if the user has been pushing the button for
20 time units, expressed as

R′
3 : (on, on, on)[20, 20]

[0,0]−−−→ (true, true,¬blink)[0, 0].

However, the set {R1, R2, R
′
3} is vacuous: in fact, R′

3 can never be triggered since
according to R1, maintaining on for 10 time units switches the light off. Thus,
R′

3 is useless. To fix this issue, the designer can introduce a predicate button
determining whether the button is being pushed, require R1, R2 under condi-
tion ¬button, and trigger R3 if button ∧ on has been true for 20 time units.
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Conjunctive Formulas and Substitutions. Although we allow the parameters of
SUP requirements to be arbitrary Boolean expressions, we will only synthesize
parameters that are conjunctive formulas when repairing requirements. We show
here how synthesizing a conjunctive formula can be seen as choosing an integer
valuation for a set of fresh variables. This will allow us to use an SMT solver for
finding repairs.

Let us fix a requirement set R = (SUP(P i))1≤i≤n, and a subset of modifiable
indexed parameters M ⊆ {(f, i) | 1 ≤ i ≤ n, f ∈ F}. For (f, i) ∈ M , define APf,i

as the set of fresh integer variables xf,i for x ∈ AP as follows:

– For f ∈ Fb, the value of xf,i encodes how x should appear in the conjunctive
formula for f in P i: as a positive literal (1), as a negative literal (−1), or
absent (0). We define the template for (f, i) as

tmp(f, i) = ∧x∈AP([xf,i = 1] ⇒ x) ∧ ([xf,i = −1] ⇒ ¬x).

A substitution ξ : APf,i → {−1, 0, 1} simplifies this formula into a conjunctive
formula over AP, so looking for such a conjunctive formula is reduced to
looking for a valuation over the variables in APf,i. The conjunctive formula
thus obtained is denoted tmp(f, i)[ξ]. Conversely, any conjunctive formula
over AP can be obtained from a template formula by such a substitution.

– For f ∈ Ft, we define tmp(f, i) = xf,i, and consider substitutions which
replace variables xf,i with natural numbers.

Let us define APM =
⋃

{(f,i)∈M} APf,i. Given R and M , a substitution will refer
to a function that is the union of substitutions for all parameters in M (including
both timed and Boolean). We denote by tmpM (R) the template requirement set
in which each parameter value P i

f with (f, i) ∈ M is replaced with tmp(f, i);
and for a substitution ξ, tmpM (R)[ξ] denotes the requirement set obtained by
applying the given subtitution to all templates.

Example 4. Consider the following requirements R = {R1, R2}.

R1 : (on, true, true)[0,�]
[0,0]−−−→ (true, on,�)[10, 10]

R2 : (¬on,¬on,�)[9, 9]
[1,1]−−−→ (true, true, on)[0, 0]

with AP = {on, blink}, and consider M = {(AEE, 1), (TEE, 2), (Tmax, 1)} (i.e.,
AEE and Tmax in R1 and TEE in R2). Placeholders for parameters in M are
shown as �. We have, for instance,

tmp(AEE, 1) = ([onAEE,1 = 1] ⇒ on) ∧ ([onAEE,1 = −1] ⇒ ¬on)
∧ ([blinkAEE,1 = 1] ⇒ blink) ∧ ([blinkAEE,1 = −1] ⇒ ¬blink)

The substitution defined by ξ(onAEE,1) = −1, ξ(blinkAEE,1) = 0, ξ(onTEE,2) =
−1, ξ(blinkTEE,2) = 1, and ξ(tTmax,1) = 0, yields tmp(AEE, 1)[ξ] = ¬on and
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tmp(TEE, 2)[ξ] = ¬on ∧ blink and tmp(Tmax, 1)[ξ] = 0. Thus, tmpM (R)[ξ] is
the following:

R1 : (on, true, true)[0, 0]
[0,0]−−−→ (true, on,¬on)[10, 10]

R2 : (¬on,¬on,¬on ∧ blink)[9, 9]
[1,1]−−−→ (true, true, on)[0, 0]

3 Repair Algorithm

Let R = (SUP(P i))1≤i≤n denote a set of SUP requirements and suppose that it
is either vacuous or rt-inconsistent. Given M ⊆ {(f, i) | 1 ≤ i ≤ n, f ∈ F} of
indexed parameters of R, we want to render R rt-consistent and non-vacuous
by replacing the parameters in M by fresh conjunctive formulas or time bounds.

Definition 3 (ReqFix). Given a set R = (SUP(P i))1≤i≤n of requirements, and
a subset M ⊆ {(f, i) | 1 ≤ i ≤ n, f ∈ F}, find a substitution ξ such that
R′ = tmpM (R)[ξ] is non-vacuous and rt-consistent.

Thus, our goal is to repair the given requirements by modifying the allowed
set M of parameters. The most general use of the algorithm is to let the user
identify the set M . This can be based on their expertise, while we discuss autom-
atizing the choice of M using rt-inconsistency or vacuity proofs in Sect. 5.

We will also consider a particular use of the algorithm. Notice that some
rt-inconsistencies can be repaired by adding a new requirement as we saw in
Example 2. The ReqFix problem can be instantiated to add a new requirement
as follows. Let trivial denote the SUP requirement where all Boolean parameters
are �, and all time parameters are 0. This requirement is trivially satisfied.
We add the trivial requirement to R, and let M be the set of all parameters of
trivial. Note however that vacuity cannot be repaired by a new requirement, so
this only applies to rt-inconsistency.

3.1 Checking Non-vacuity and rt-Consistency

For a finite trace σ ∈ (2AP)∗, let trigσ(R) denote a propositional formula that
is true if, and only if, σ has triggered R. This formula guesses the execution of
the SUP automaton on the trace σ and constrains it to visit the state delay.
Similarly, a propositional formula can be built for σ |= R (as well as for σ �|= R)
by guessing an execution on the automata corresponding to each R ∈ R and
constraining these to end outside of err (resp. at err).

We perform non-vacuity checking for a requirement R ∈ R as a bounded
search for a trace that triggers R without failing R.

Definition 4. For a given set of requirements R, R ∈ R, and bound α > 0,
define nonvac(R,R) as ∃σ ∈ (2AP1 · . . . · 2APα). trigσ(R) ∧ σ |= R.
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Notice that each 2APi defines the valuation at the i-th step. This is thus a partial
check since the bound α needs to be fixed. Notice that even though σ triggers R
and σ |= R, it might be that no infinite extensions of such a σ satisfy R;
nonetheless, since we also ensure that R is rt-consistent, such an extension will
be guaranteed to exist. If nonvac(R,R) is true, then one can query the solver for
a witness trace σ triggering R and satisfying R.

We will use template variants of the above formulas: trigσ(tmpM (R)), σ |=
tmpM (R), σ �|= tmpM (R), nonvac(tmpM (R), tmpM (R)). These simply consist in
replacing formulas corresponding to parameters in M by templates. The set of
free variables of the latter formulas is APM . As in Sect. 2, applying a substitution
for APM determines the truth value of each formula.

This allows us to constrain substitutions ξ we want to compute. For instance,
if we want ξ to define a new requirement set tmpM (R)[ξ] that is satisfied by a
given trace σ, and in which R ∈ R is non-vacuous, we can check the satisfiability
of σ |= tmpM (R)∧nonvac(tmpM (R), tmpM (R)), and choose ξ as a model of this
formula. We generalize this idea into an algorithm in the next section.

To check rt-consistency, one can use, as a black box, any algorithm given in
[18,23,27]. Here, we consider a bounded model checking approach and look for
an rt-inconsistency witness of bounded length using an SMT solver, following
the formulation of Theorem 1. This approach only gives partial guarantees, it
improves the performance while ruling out any counterexample of a given length.
A sound and complete algorithm from [18,23] can be used instead to make the
check complete.

3.2 Algorithm for ReqFix

Consider R = SUP(Pi)1≤i≤n and a subset M of indexed parameters. Let RM ⊆
R be the subset of requirements with parameters in M , and RM = R \ RM .
That is, only RM has modifiable parameters.

The algorithm consists in guessing conjunctive formulas for parameters in M ,
that is, a substitution ξ that satisfies a set of constraints C that we itera-
tively build. If the guessed substitution ξ yields a non-vacuous and rt-consistent
requirement set, then we return tmpM (R)[ξ] as the new requirement set. Other-
wise, the algorithm derives new constraints to add to C and iterates.

Assume that R is vacuous, that is, there exists R ∈ R which cannot be trig-
gered. Then, the substitution ξ we are looking for must be such that tmpM (R)[ξ]
is non-vacuous in tmpM (R)[ξ], that is, we must add the following formula to C:
nonvac(tmpM (R)[ξ], tmpM (R)[ξ]).

Assume that R is rt-inconsistent, σ is an rt-inconsistency witness.

1. If σ is an rt-inconsistency witness for RM , since we can only modify RM ,
then we need tmpM (RM )[ξ] to rule out σ, that is, σ must fail tmpM (RM )[ξ].
We thus add σ �|= tmpM (RM ) to the constraint set C.

2. If σ is not an rt-inconsistency witness for RM , then σ can be extended without
failing RM , but these extensions lead to failure in RM . In order to rule out
the witness σ, tmpM (RM )[ξ] must be such that either σ is rejected (i.e., σ �|=
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tmpM (RM )[ξ]), or σ admits a one-step extension that satisfies tmpM (R)[ξ].
This constraint on ξ is written as σ �|= tmpM (RM ) ∨ extσ(tmpM (R)), where
extσ(tmpM (R)) = ∃a ∈ 2AP. σ · a |= tmpM (R).

The following lemma shows that the constraints added in the two cases
described above are necessary in order to rule out the rt-inconsistency witness.

Lemma 1. Let σ be an rt-inconsistency witness for R.

1. If σ is an rt-inconsistency witness in RM , then for all requirement sets R′

with σ |= R′, σ is an rt-inconsistency witness in RM ∪ R′.
2. If σ is not an rt-inconsitency witness in RM , then for all requirement sets R′

with σ |= R′ ∧¬extσ(RM ∪R′), σ is an rt-inconsistency witness in RM ∪R′.

Algorithm. The full procedure is described in Algorithm 1. Its inputs are a
set R of requirements, and a subset M of indexed parameters of R. For any
propositional formula Φ, we denote by SAT(Φ) the satisfiability check which
returns either true and a model for Φ, or false.

The algorithm starts with a vacuity check inside the set RM on line 2: if
RM itself is vacuous, then R cannot be repaired and the algorithm rejects.
We maintain a set of constraints C, which contains non-vacuity constraints of the
form nonvac(tmpM (R), tmpM (R)) and constraints of the forms σ �|= tmpM (RM ),
σ |= tmpM (RM ) and σ �|= tmpM (RM ) ∨ extσ(tmpM (R)). Recall that the set of
free variables of these formulas is APM , so a model for the query on line 5 defines
a substitution ξ, and thus a new requirement set tmpM (R)[ξ].

On line 7, we check if RM ∪R′
M is vacuous, and then identify a requirement R

that cannot be triggered without violating RM ∪ R′
M . We necessarily have R ∈

RM , since all requirements in R′
M are non-vacuous as they satisfy C. We find

a trace σ that triggers R while satisfying RM . Such a trace σ exists by line 2,
but necessarily violates R′

M . We add σ |= tmpM (RM ) to C, which ensures that
subsequent iterations will make sure that σ triggers R without violating R′

M .
If RM ∪ R′

M is non-vacuous, then we check its rt-consistency. If it is rt-
consistent, then the algorithm has succeeded, and we return RM ∪ R′

M . Oth-
erwise, we consider a witness σ to rt-inconsistency. We distinguish two cases
as above: On line 13, we check if σ is already a witness to the rt-inconsistency
of RM , in which case we add the constraint σ �|= (tmpM (RM )). Otherwise, we
add σ �|= tmpM (RM ) ∨ extσ(RM ∪ tmpM (R)).

Observe that if the query on line 5 is unsatisfiable, then the algorithm returns
“Unknown”, in which case the result is inconclusive. In fact, since the choice of
the non-vacuity constraints on Line 8 is arbitrary, the unsatisfiability of the
query does not imply the absence of solution. The algorithm could be rendered
complete using backtracking although we have not explored this direction.

Minimizing Distance. It may be desirable to compute a solution tmpM (R)[ξ]
that is syntactically close to R, so as to make a minimal number of changes
during the repair. To formalize this, let us define a distance between conjunctive
formulas. Let

d(�1 ∧ . . . ∧ �m, �′
1 ∧ . . . ∧ �′

n) = |Supp({�1, . . . , �m} ⊕ {�′
1, . . . , �

′
n})|,
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Input: A set R of SUP requirements, and parameter set M
1 Let RM ⊆ R the set of those requirements that contain parameters in M ,

and RM = R \ RM

2 if ∃R ∈ RM . ¬nonvac(R, RM ) then
3 return Reject

4 C ← ∧
R∈RM

nonvac(tmpM (R), tmpM (R))

5 while SAT(
∧

φ(M)∈C φ(M)) do

6 Let ξ be a model of this formula, and let R′
M = tmpM (RM )[ξ]

7 if RM ∪ R′
M is vacuous then

8 Choose R ∈ RM which cannot be triggered

9 Let σ be a trace that triggers R and satisfies RM

10 C ← C ∪ {σ |= tmpM (RM )}
11 else if RM ∪ R′

M is rt-inconsistent then
12 Let σ be an rt-inconsistency witness

13 if σ is an rt-inconsistency witness for RM then
14 C ← C ∪ {σ �|= tmpM (RM )}
15 else

16 C ← C ∪ {σ �|= tmpM (RM ) ∨ extσ(RM ∪ tmpM (RM ))}
17 else

18 return RM ∪ R′
M

19 return Unknown
Algorithm 1: Algorithm for ReqFix.

where ⊕ denotes the symmetric difference, and Supp is the set of variables
appearing in the given set of literals. For instance, d(¬on, on) = 1, and
d(on ∧ blink, on) = 1. For two time bounds T, T ′, we extend this definition
to d(T, T ′) = |T − T ′|. The distance between two SUPs with parameters P
and P ′ is the weighted sum of the distances of their parameters: d(P, P ′) =
wb · ∑

f∈Fb
d(Pf , P ′

f ) + wt · ∑
f∈Ft

d(Pf , P ′
f ) for given weights wb, wt ≥ 0. Fur-

thermore, given two SUP requirement sets of the same size, R = (SUP(P i))1≤i≤n

and R′ = (SUP(P ′i))1≤i≤n, define d(R,R′) =
∑n

i=1 d(P i, P ′i).
In order to find the substitution that minimizes the distance between the

original requirement set and the new one, we use MaxSMT [10]. The query on
line 5 is considered a hard formula (that must be satisfied), and the following
are soft formulas (that may be satisfied or violated):

wb ·
∑

(f,i)∈M :f∈Fb

(if (xf,i �= x̄f,i) then 1 else 0) + wt ·
∑

(f,i)∈M :f∈Ft

|xf,i − x̄f,i| ≤ k,

for all 0 ≤ k ≤ m, for an appropriately chosen m, and weights wb, wt ≥ 0,
where xf,i ∈ APM and the x̄f,i are constant values defining the substitution
that yields the original requirement set R. The MaxSMT solver returns a model
that satisfies the hard formulas, and satisfies a maximal number of soft formulas;
which means minimizing d(R, tmpM (R)[ξ]).



Repairing Real-Time Requirements 383

4 Experiments

We implemented our techniques in Python and applied it to four case stud-
ies from the literature [12,17,24] as well as to a set of anonymized benchmarks
from [23]. We manually introduced rt-inconsistencies by removing a requirement,
or by modifying the parameters of a requirement. The summary of the results are
shown in Table 1. We considered two applications of our algorithm. In the first
case, starting from an rt-inconsistent set, we looked for a repair by generating a
new requirement with the minimal number of literals and the least time bounds.
We call this the generation variant of our program. Notice that this consists in
minimizing the distance of the generated requirement to the trivial requirement.
In the second case, we selected the parameters of a requirement as the set M
to be modified, and looked for a repair that minimizes the distance of the new
requirement with the old one. We call this the modification variant of our pro-
gram. While the generation variant allowed us to find very simple repairs, these
were not always satisfactory. The second one yields repairs that are syntactically
very similar to the initial requirement, and were closer to the intended behavior
in the considered case studies. We provide a focus on two case studies below.

Blinking System. This case study corresponds to the behaviour of the turning
light indicator in a car [17]. The pitman arm can be moved up or down to a
first position (5◦) to turn the indicator on for only 3 cycles; in each direction
(up and down), it can also be moved to a second position (7◦) where the indicator
remains on until the arm is moved back. We analyzed a set of 7 requirements,
including the following one.

R : (down5, down5,¬down5)[0, 3]
[5,5]−−−→ (¬down5∧ ¬down7, true, true)[0, 0],

which states that if the pitman arm is maintained down for less than 3 time
units, then it will automatically be on neutral position 5 time units later. We
modified this, by introducing a typo, into the following requirement in order to
introduce an rt-inconsistency:

R′ : (down5, down5,¬down5)[0, 3]
[5,5]−−−→ (¬down5, true, true)[0, 0],

and ran the modification variant of the algorithm to find a repair by modifying
the parameters of R′. A solution was found after 3 iterations and 12 s:

Rfix : (down5, down5,¬down5)[0, 3]
[5,5]−−−→ (¬down5, true,¬down7)[0, 0],

which is semantically equivalent to R.
When we ran the generation variant of the algorithm to find a repair to the

set obtained by removing R altogether, we obtained the following requirement:

R′
fix : (true, true, true)[0, 0]

[0,0]−−−→ (true, down7,¬blink)[0, 6].

This requirement enforces that the blinking must be disabled every 6 time units,
while in the meantime, the pitman arm kept down by 7◦. While this intuitively
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Table 1. Results of the benchmarks for two variants of the algorithm: the genera-
tion variant repairs requirement sets by adding a fresh requirement; the modification
requirement repairs by modifying the parameters of a designated requirement. The for-
mer minimizes the number of literals and the size of the time bounds introduced, while
the latter minimizes the distance between the designated requirement and the new one.
The size column shows the number of requirements; the time column is execution time,
and %iter. column shows the number of iterations. A bound of α = 30 was used for
non-vacuity and rt-consistency checks.

Case study Size Modification Generation

Time #iter. Time #iter.

Carriage line [24] 12 24 s 4 38 s 11

Landing gear [12] 10 14 s 2 21 s 6

Car light blink. [17] 6 13 s 4 13 m 47 s 44

Cruise ctrl. [17] 7 9 s 4 12 s 6

part1–04 13 29 s 11 21 s 9

part1–05 14 19 s 4 47 s 17

part1–06 16 17 s 4 21 s 10

part2–06 18 32 s 11 48 s 16

part2–07 24 43 s 5 58 s 12

part2–08 27 51 s 4 1 m 8 s 13

part2–10 80 3 m 47 s 2 2 m 39 s 1

part3–02 26 45 s 5 1 m 3 s 13

part3–04 13 24 s 8 21 s 8

part3–05 26 1 m 6 s 9 1 m 7 s 13

part3–08 27 1 m 52 s 10 1 m 32 s 19

part3–14 24 3 m 8 s 3 10 m 55 s 18

part3–16 22 TO – TO –

does not correspond to a desirable requirement, it does ensure the rt-consistency
and non-vacuity. In practice, one would perhaps need to allow the user to inspect
the repair and accept or reject, add constraints and ask for a new repair. This
could yield more satisfactory repairs for the generation variant.

Carriage Line Control. This example from [24, Appendix 4.20] represents a car-
riage in charge of bringing a piece of material from a container to a conveyor.
When the carriage receives the piece of material, it moves forward to a place
where an arm will push the piece onto the conveyor, and then moves back to its
original location.

We described the behaviour of this system using 12 SUP requirements, of
which 6 involved timing constraints. As an example, we have the following SUP:

R : (fwd, true, true)[0, 0]
[1,1]−−−→ (¬bckwd,¬bckwd,¬bckwd∧right)[0, 20), stating

that when the carriage is at its forward position, then at the next step, it should
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not be at the backward position until it starts moving right. This requirement
is used to model the physical environment: the carriage cannot be both on the
forward and backward limits, and it must start moving right before it can reach
the backward limit.

Modifying this requirement by introducing a typo as follows leads to an rt-

inconsistency. R′ : (fwd, true, true)[0, 0]
[1,1]−−−→ (¬bckwd,¬bckwd, true)[0, 20),

The modification variant of our tool computed the following repair: R′
fix :

(fwd, true, true)[0, 0]
[1,1]−−−→ (¬bckwd,¬bckwd,¬push)[0, 20), which says that the

carriage cannot be in the backward position until the arm stops pushing the
object. This is slightly different than the original requirement R but it does
constrain the environment in a similar way. In fact, the idea of the system is
that the carriage must move right when the arm stops pushing, and R′

fix says
that only then can the carriage reach the backward limit.

5 Conclusion

We believe that the practical application of requirement repair would be a tool
that assists the designer by suggesting repairs. The designer should be able to
either pick a suggested repair, suggest additional constraints and request differ-
ent repairs. Our program is currently a proof of concept and many additional
features would be required to turn it into such a tool.

One of the possible directions is to be able to choose the set M automatically.
This is possible in some cases, for instance, if nonvac(R,R) is not true, then one
can determine the set of parameters involved in its unsatisfiability proof, which
can be included in M (we know that at least one such parameter must be in M).
The choice of M with a similar method is less obvious for rt-consistency and will
be the subject of future work.

Another important direction would be the computation of solutions that are
close to the original requirement set semantically, for instance, minimizing the
number of traces that are accepted by one but not the other set.
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4. André, É., Arcaini, P., Gargantini, A., Radavelli, M.: Repairing timed automata
clock guards through abstraction and testing. In: Beyer, D., Keller, C. (eds.) TAP
2019. LNCS, vol. 11823, pp. 129–146. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-31157-5 9

https://doi.org/10.1007/s10009-016-0444-z
https://doi.org/10.1007/s10009-016-0444-z
https://doi.org/10.1007/978-3-030-31157-5_9
https://doi.org/10.1007/978-3-030-31157-5_9


386 R. Noguchi et al.

5. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of
temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS,
vol. 8711, pp. 23–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10512-3 3

6. Becker, J.S.: Analyzing consistency of formal requirements. In: Automated Verifi-
cation of Critical Systems (AVoCS) (2019)
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Abstract. Convolutional neural networks (CNNs) have achieved
immense popularity in areas like computer vision, image processing,
speech proccessing, and many others. Unfortunately, despite their excel-
lent performance, they are prone to producing erroneous results — for
example, minor perturbations to their inputs can result in severe classi-
fication errors. In this paper, we present the Cnn-Abs framework, which
implements an abstraction-refinement based scheme for CNN verifica-
tion. Specifically, Cnn-Abs simplifies the verification problem through
the removal of convolutional connections in a way that soundly creates
an over-approximation of the original problem; it then iteratively restores
these connections if the resulting problem becomes too abstract. Cnn-
Abs is designed to use existing verification engines as a backend, and our
evaluation demonstrates that it can significantly boost the performance
of a state-of-the-art DNN verification engine, reducing runtime by 15.7%
on average.

1 Overview

Deep neural networks (DNN s) have demonstrated a remarkable ability to solve
extremely complex tasks [4,11]. However, they are also notoriously opaque to
human engineers, and various errors have been demonstrated in real-world, state-
of-the-art DNNs [12]. Such errors are a hindrance to the adoption of DNN-based
methods in critical systems and have sparked great interest in DNN verification
(e.g., [1,2,5,6,9,10,13], among many others). Unfortunately, the DNN formal
verification problem is NP-complete even for simple neural networks and speci-
fications [5], and emperically, it appears to become exponentially harder as the
network size increases — making scalability a key challenge for DNN verification
tools.

Here, we contribute to the ongoing effort to address this challenge with a
new framework called Cnn-Abs, which uses an abstraction-refinement based
approach for verifying convolutional neural networks (CNNs). A CNN is a par-
ticular type of DNN that uses convolutions: constructs that allow for a very
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bouajjani et al. (Eds.): ATVA 2022, LNCS 13505, pp. 391–396, 2022.
https://doi.org/10.1007/978-3-031-19992-9_25
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compact representation of the DNN, and consequently enable engineers to over-
come memory-related bottlenecks. CNNs have been shown to perform well in
image processing and computer vision tasks [4,11] and are in widespread use.
Existing verification tools can verify CNNs, but typically only by reducing them
to the general, fully connected case, thus failing to leverage the built-in com-
pactness of CNNs. Because the size of the DNN slows down its verification, such
transformations are costly. In contrast, our proposed framework aims to utilize
the special properties of a CNN in expediting its verification.

At a high level, given a verification query over a CNN, Cnn-Abs first cre-
ates an abstract network, with significantly fewer neurons, with the property
that if the query can be proved for this smaller network, then it also holds for
the original network. Notably, the abstract network that we construct is fully
connected, and can thus be verified using existing technology. Further, because
the verification complexity depends on the number of neurons and edges in the
DNN, verifying this smaller network is faster than transforming the CNN into an
equivalent, fully connected network and verifying it. Due to the abstraction pro-
cedure, verifying the smaller network might produce a spurious counterexample,
in which case our framework refines the network and repeats the process.

The overall flow of Cnn-Abs is depicted in Fig. 1. Initially, Cnn-Abs applies
bound propagation [10,13] to compute lower and upper bounds for all hidden
neurons within the network. Then, it selects a set of neurons and abstracts them
by removing their incoming edges and treating them as input neurons — which
can take on values within the previously-computed range. Any other neurons
that become disconnected from the network’s outputs as a result are pruned
entirely; the number of such neurons tends to be high, due to the nature of
convolutional layers, where each neuron is only connected to a small number of
neurons in following layers. A small illustrative example appears in Fig. 2. For a
more thorough and precise description of the technique, as well as a proof of its
soundness, see the full version of this paper [8].

Fig. 1. The suggested abstraction-refinement scheme.

Related Work. Abstraction-refinement techniques have been successfully
applied in DNN verification [1,3,9], though these attempts were not particu-
larly aimed at CNNs. Specific approaches to CNN verification have also been
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Fig. 2. A toy CNN, abstracted by disconnecting the edges leading to m1 and pruning
the neurons no longer connected to the output neurons (in gray). m′

1 is now treated as
an input neuron, bounded by its computed bounds 0 ≤ m′

1 ≤ 1.2.

proposed (e.g., [2,14]), but these do not focus on abstraction/refinement. For a
more thorough discussion, see [8].

2 Design of Cnn-Abs

We implemented Cnn-Abs as a set of Python modules, available online.1 Cnn-
Abs currently accepts CNNs stored in Tensorflow format as input. The tool’s
main module, CnnAbs.py, implements the abstraction and refinement principles
described in Sect. 1 and currently supports five different heuristics for iteratively
applying refinement steps when spurious counterexamples are detected (see [8]).
Cnn-Abs can be used in verifying arbitrary CNN properties, although it con-
tains a specialized interface for verifying adversarial robustness properties [12],
which are the most common kinds of properties in currently available verification
benchmarks. The central classes in Cnn-Abs are:

The CnnAbs class, which implements Cnn-Abs’s main functionality, and
manages solving, logging, and heuristic configurations. It includes the following
methods: (i) solveAdversarial(model, abstractionPolicy, sampleIndex, distance):
solves an adversarial robustness query on model, allowing input perturbations
in an ‖‖∞-ball of radius distance around an input sample whose index is sam-
pleIndex in the data-set, using abstractionPolicy as the abstraction policy; (ii)
solve(model, modelTF, abstractionPolicy, property): solves model, which encodes
both a network and a property, using the abstraction policy abstractionPolicy.
For technical reasons, this method also receives a property object property and a
Keras sequential model modelTF ; and (iii) propagateBounds(model): propagates
lower and upper bounds for all neurons in the network and properties encoded
in model. Cnn-Abs includes a novel technique for bound propagation across
Max-Pooling layers — see [8] for details.

Policy Classes: Abstraction policies are implemented as classes inheriting from
the PolicyBase class. Every child class is required to implement the rankAb-
sLayer(model, prop, absLayerPredictions) function. Its arguments are model, a
1 https://drive.google.com/file/d/1En8f I8LWFWQ6LFMHF9SSajszfOEKWF4.

https://drive.google.com/file/d/1En8f_I8LWFWQ6LFMHF9SSajszfOEKWF4


394 M. Ostrovsky et al.

property described in prop, and the assigned values of the abstracted layer for
each point in the test-set. It returns the variable indices of the layer’s neurons,
sorted by their score: the first element is the least important and will thus be
refined last. This modular design allows adding additional heuristics easily.

3 Evaluation

Setup. For our evaluation, we used the Marabou DNN verifier [6] as the backend
DNN verifier within Cnn-Abs, and used MILP-based techniques [13] (enhanced
to better handle Max-Pooling layers) for neuron bound computation.

We trained three convolutional networks on the MNIST digit recognition
data-set [7]. The first network, network A, has two convolution blocks (a convo-
lution layer followed by a ReLU layer and a max-pooling layer), another block
consisting of a weighted-sum layer and a ReLU layer, and a final weighted-sum
layer. When transformed into an equivalent, fully-connected model, it has a total
of 2719 neurons and achieves a test-set accuracy of 93.7%. The second network,
B, has the same layer sequence as A, but its convolution kernels are larger; con-
sequently, it has 4564 neurons and achieves an accuracy of 96.2%. Network C is
similar but has three convolution blocks instead of two; it has 4636 neurons and
achieves an accuracy of 86.6%. Additional details appear in Appendix B of [8].

For specifications, we focused on adversarial robustness properties [12], which
have become the de-facto standard for DNN verification benchmarks [10,13]. An
adversarial robustness query consists of input x0 and some ε > 0, and its goal
is to prove that perturbations to x0 within a ball of radius ε do not result in
a change in the classification. For simplicity, we consider targeted adversarial
robustness, where the goal is to prove that some perturbation cannot result in
the input being classified as some target label l. We select l as the label that
received the second-highest score when the DNN is evaluated on x0.

Fig. 3. Performance over different net-
works and ε values. Each query was ran
in vanilla Marabou (dash-dotted line),
and with Cnn-Abs (solid line).

Experiments. We ran a comprehensive
comparison between vanilla Marabou
and Cnn-Abs (with Marabou as a back-
end). All experiments were run with a
1-hour timeout, and individual verifica-
tion queries on abstract networks were
limited to 800 s. Our benchmarks con-
sisted of our three CNNs and robustness
properties with varying values of ε, 0.01,
0.02, and 0.03, over 100 input points,
resulting in nine combinations and a
total of 900 experiments. The results
are depicted in Fig. 3. Excluding the
(C, 0.03), (B, 0.03), (A, 0.01) queries, in
every category the abstraction-enhanced
version solved more instances than
vanilla and required a shorter total run-
time. In the (A, 0.01) category, both
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Fig. 4. Cnn-Abs’s runtime vs. vanilla
Marabou’s runtime, on a log scale.
(Color figure online)

Fig. 5. The size of the abstract network
when Cnn-Abs terminates, compared
to the size of the original network.

frameworks performed similarly; and in (C, 0.03), (B, 0.03), Cnn-Abs solved
more instances, but at the cost of additional runtime. Aggregating the results
over all instances solved by both frameworks, Cnn-Abs’s average runtime was
84.3% that of vanilla Marabou’s runtime, and its median runtime 75.4% that of
vanilla Marabou’s. Additionally, Cnn-Abs solved 1.13 times as many instances
as vanilla Marabou. The exact numbers of instances solved, average runtimes,
and median runtimes all appear in Appendix C.2 of [8]. This experiment clearly
indicates the superior performance of Cnn-Abs compared to the vanilla version.

Figure 4 depicts the runtime of Cnn-Abs vs. vanilla Marabou for every query
solved by at least one of the verifiers. There are 526 UNSAT points (green) and
49 SAT points (red). The results show that for SAT instances, the frameworks
achieve similar performance; whereas for UNSAT instances, Cnn-Abs performs
significantly better, solving 61 instances that the vanilla version timed out on.
We thus conclude that the Cnn-Abs is particularly effective on UNSAT instances,
presumably because SAT instances require multiple refinement steps.

In Fig. 5, we measure the number of refinement steps needed by Cnn-Abs
before arriving at an answer. Specifically, it depicts the size of the DNN in the
final iteration of the abstraction/refinement algorithm, as a fraction of the size of
the original DNN. The results differ significantly between UNSAT queries, which
terminate with small networks and few refinement steps, and SAT queries, which
often require the network to be refined back to the original DNN. The corollary
is that slow, gradual refinement is ineffective; and that Cnn-Abs performs better
on UNSAT queries, as these can often be solved on small, abstract networks.

Conclusion. We presented a novel scheme for CNN verification, which uses
abstraction-refinement techniques to effectively reduce network sizes and facil-
itate verification. Our tool, Cnn-Abs, can be used with various existing DNN
verifiers as backends. We regard this effort as a step towards more effective ver-
ification of real-world CNNs.
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Abstract. For safety assurance of deep neural networks (DNNs), out-
of-distribution (OoD) monitoring techniques are essential as they filter
spurious input that is distant from the training dataset. This paper stud-
ies the problem of systematically testing OoD monitors to avoid cases
where an input data point is tested as in-distribution by the monitor,
but the DNN produces spurious output predictions. We consider the def-
inition of “in-distribution” characterized in the feature space by a union
of hyperrectangles learned from the training dataset. Thus the testing is
reduced to finding corners in hyperrectangles distant from the available
training data in the feature space. Concretely, we encode the abstract
location of every data point as a finite-length binary string, and the union
of all binary strings is stored compactly using binary decision diagrams
(BDDs). We demonstrate how to use BDDs to symbolically extract cor-
ners distant from all data points within the training set. Apart from test
case generation, we explain how to use the proposed corners to fine-tune
the DNN to ensure that it does not predict overly confidently. The result
is evaluated over examples such as number and traffic sign recognition.

Keywords: OoD monitoring · Test case prioritization · Neural
network · Training

1 Introduction

To cope with practical concerns in autonomous driving where deep neural net-
works (DNNs) [7] are operated in an open environment, out-of-distribution
(OoD) monitoring is a commonly used technique that raises a warning if a DNN
receives an input distant from the training dataset. One of the weaknesses with
OoD detection is regarding inputs that fall in the OoD detector’s decision bound-
ary while being distant from the training dataset. These inputs are considered
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“in-distribution” by the OoD detector but can impose safety issues due to exten-
sive extrapolation. In this paper, we are thus addressing this issue by developing
a disciplined method to identify the weakness of OoD detectors and improve the
system accordingly.

Precisely, we consider OoD detectors constructed using boxed abstraction-
based approaches [3,10,24], where DNN-generated feature vectors from the train-
ing dataset are clustered and enclosed using hyperrectangles. The OoD detector
raises a warning over an input, provided that its corresponding feature vec-
tor falls outside the boxed abstraction. We focus on analyzing the corners of
the monitor’s hyperrectangle and differentiate whether a corner is supported or
unsupported depending on having some input in the training dataset generating
feature vectors located in the corner. However, the number of exponentially many
corners in the abstraction reveals two challenges, namely (1) how to enumerate
the unsupported corners and (2) how to prioritize unsupported corners to be
analyzed.

– For (1), we present an encoding technique that, for each feature vector dimen-
sion, decides if an input falls in the border subject to a closeness threshold δ.
This allows encoding for each input in-sample as a binary string and storing
the complete set compactly via Binary decision diagrams (BDDs) [2]. With
an encoding via BDD, one can compute all unsupported corners using set
difference operations.

– For (2), we further present an algorithm manipulated on the BDDs that
allows filtering all corners that are far from all training data subject to a
minimum constant Hamming distance (which may be further translated into
Euclidean distance). This forms the basis of our corner prioritization tech-
nique for abstractions characterized by a single hyperrectangle. For multiple
boxed-abstraction, we use a lazy approach to omit the corners when the pro-
posed corner from one box falls inside another box.

With a given corner proposal, we further encounter practical problems to
produce input images that resemble “natural” images. We thus consider an alter-
native approach: it is feasible to have the DNN generate a prediction with low
confidence for any input whose feature vectors resemble unsupported corners.
This requirement leads to a DNN fine-tuning scheme as the final contribution of
this paper: The fine-tuning freezes parameters for all network layers before the
monitored layer, thereby keeping the validity of the OoD monitor. However, it
allows all layers after the monitored features to be adjusted. Thus the algorithm
feeds the unsupported corners to the fine-tunable sub-network to ensure that the
modified DNN reports every class with low confidence, while keeping the same
prediction for existing training data.

We have evaluated our proposed techniques in applications ranging from
standard digit recognition to traffic sign detection. For corners inside the mon-
itor while distant from the training data, our experiment indicates that the
DNN indeed acts over-confidently in the corresponding prediction, which is later
adjusted with our local training method. Altogether the positive evaluation of
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the technique offers a rigorous paradigm to align DNN testing, OoD detection,
and DNN repair for safety-critical systems.

The rest of the paper is structured as follows: After reviewing related work in
Sect. 2, we present in Sect. 3 the basic notation as well as a concise definition on
abstraction-based monitors. Subsequently, in Sect. 4 we present our key results
for prioritized corner case proposal in a single-box configuration and its extension
to a multi-box setting. In Sect. 5 we present how to use the discovered corners
in improving the DNN via local training. Finally, we present our preliminary
evaluation in Sect. 6 and conclude in Sect. 7.

2 Related Work

Systematically testing of DNNs has been an active research scheme, where read-
ers may reference Sect. 5.1 of a recent survey [12] for an overview of existing
results. Overall, the line of attack is by first defining a coverage criterion, followed
by concrete test case generation utilizing techniques such as adversarial pertur-
bation [23], constraint solving [13], or model-based exploration [21]. For white
box coverage criteria, neuron coverage [20] and extensions (e.g., SS-coverage [22]
or neuron combinatorial testing [18]) essentially consider the activation pattern
for neurons and demand the set of test inputs to satisfy a pre-defined relative
completeness criterion; the idea is essentially motivated by classical software
testing coverage (e.g., branch coverage) as used in safety standards. For black-
box coverage criteria, multiple results are utilizing combinatorial testing [1,4],
where by first defining the human-specified features in the input space, it is
also possible to argue the relative completeness of the test data. For the above
metrics, one can apply coverage-driven testing, i.e., generate test cases that max-
imally increase coverage. Note that the above test metrics and the associated
test case prioritization techniques are not property-oriented, i.e., prioritizing the
test cases does not have a direct relation with dependability attributes. This is
in contrast to our work on testing the decision boundary of a DNN monitor,
where our test prioritization scheme prefers corners (of the monitor) that have
no input data being close-by. These corners refer to regions where DNN decisions
are largely extrapolated, and it is important to ensure that inputs that may lead
to these corners are properly tested. The second differentiation is that we also
consider the subsequent DNN repair scheme (via local training) to incorporate
the distant-yet-uncovered corners.

In this paper, we are interested in testing the monitors built from an abstrac-
tion of feature vectors from the training data, where the shape of the abstraction
is a union of hyperrectangles [3,10,24]. There exist also other types of monitors.
The most typical runtime monitoring approach for DNNs is to build a logic on
top of the DNN, where the logic inspects some of the DNN features and tries to
access the decision quality. Popular approaches in this direction are the baseline
of Hendrycks et al. [9] that looks at the output softmax value and flags it as
problematic if lower than a threshold, or the ODIN approach that improves on
it using temperature scaling [17]. Further, [16] looks at intermediate layers of a
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DNN and assumes that their features are approximately Gaussian-distributed.
With that, they use the Mahanalobis distance as a confidence score for adversar-
ial or OoD detection. The work of [16] is considered the practical state-of-the-art
in the domain. In another direction, researchers have attempted to measure the
uncertainty of a DNN on its decisions, using Bayesian approaches such as drop
out at runtime [6] and ensemble learning. Deep Ensembles [14] achieve state-
of-the-art uncertainty estimation but at a large computational overhead (since
one needs to train many models), thus recent work attempts to mitigate this
with various ideas [5,8]. Although the above results surely have their benefits,
for complex monitoring techniques, the decision boundary is never a single value
but rather a complex geometric shape. For this, we observe a strong need in
systematic testing over the decision boundaries (for rejecting an input or not),
which is reflected in this work by testing or training against unsupported corners
of a monitor.

3 Preliminaries

Let N and R be the sets of natural and real numbers. To refer to integer intervals,
we use [a · · · b] with a, b ∈ N and a ≤ b. To refer to real intervals, we use [a, b]
with a, b ∈ R ∪ {−∞,∞} and if a, b ∈ R, then a ≤ b. We use square bracket
when both sides are included, and use round bracket to exclude end points (e.g.,
[a, b) for excluding b). For n ∈ N\{0}, Rn def= R × · · · × R

︸ ︷︷ ︸

n times

is the space of real

coordinates of dimension n and its elements are called n-dimensional vectors.
We use x = (x1, . . . , xn) to denote an n-dimensional vector.

Feedforward Neural Networks. A neuron is an elementary mathematical func-
tion. A (forward) neural network f

def= (gL, . . . , g1) is a sequential structure of
L ∈ N\{0} layers, where, for i ∈ [1 · · · L], the i-th layer comprises di neurons
and implements a function gi : Rdi−1 → R

di . The inputs of neurons at layer i
comprise (1) the outputs of neurons at layer (i − 1) and (2) a bias. The outputs
of neurons at layer i are inputs for neurons at layer i+1. Given a network input
x ∈ R

d0 , the output at the i-th layer is computed by the function composition
f i(x) def= gi(· · · g2(g1(x))). Therefore, fL(x) is the output of the neural network.
We use f i

j(x) to extract the j-th value from the vector f i(x).

Abstraction-Based Monitors Using Boxes [3,10,24]. In the following, we present
the simplistic definition of abstraction-based monitors using multiple boxes. The
definition is simplified in that we assume the monitor operates on all neurons
within a given layer, but the technique is generic and can be used to monitor a
subset of neurons across multiple layers.

For a neural network f whose weights and bias related to neurons are fixed,
let Dtrain

def= {(x,y) | x ∈ R
d0 ,y ∈ R

dL} be the corresponding training dataset.
We call B

def=
[

[a1, b1], · · · , [an, bn]
]

an n-dimensional box, where B is the
set of points {(x1, . . . , xn)} ⊆ R

n with ∀i ∈ [1 · · · n] : xi ∈ [ai, bi]. Given a
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neural network f and the corresponding training dataset, let k be a positive
integer constant and l ∈ [1 · · · L]. Then Bk,l,δ

def= {B1, . . . , Bk} is a k-boxed
abstraction monitor over layer l with buffer vector δ

def= (δ1, . . . , δdl
),

provided that Bk,l,δ satisfies the following properties.

1. ∀i ∈ [1 · · · k], Bi is a dl-dimensional box.
2. ∀(x,y) ∈ Dtrain, there exists i ∈ [1 · · · k] such that f l(x) ∈ Bi.
3. ∀i ∈ [1 · · · k], let Bi be

[

[a1, b1], · · · , [adl
, bdl

]
]

. Then
– for every j ∈ [1 · · · dl], there exists (x,y) ∈ Dtrain such that aj ≤ f l

j(x) ≤
aj + δj , and

– for every j ∈ [1 · · · dl], there exists (x′,y′) ∈ Dtrain such that bj − δj ≤
f l

j(x
′) ≤ bj .

The three conditions stated above can be intuitively explained as follows:
Condition (1) ensures that any box is well formed, condition (2) ensures that
for any training data point, its feature vector at the l-th layer falls into one
of the boxes, and (3) the construction of boxes is relatively tight in that for
any dimension, there exists one training data point whose j-th dimension of its
feature vector is close to (subject to δj) the j-th lower-bound of the box; the
same condition also holds for the j-th upper-bound.

Monitoring. Given a neural network f and the boxed abstraction monitor Bk,l,δ,
in runtime, the monitor rejects an input x′ if 	 ∃i ∈ [1 · · · k] : f l(x′) ∈ Bi.
That is, the feature vector of x′ at the l-th layer is not contained by any box. As
the containment checking f l(x′) ∈ Bi simply compares f l(x′) against the box’s
lower and upper bounds on each dimension, it can be done in time linear to the
number of neurons being monitored.

Example 1. Consider the set {f l(x) | (x,y) ∈ Dtrain} = {(0.1, 2.9), (0.3, 2.6),
(0.6, 2.3), (0.8, 2.8), (0.9, 2.1), (2.1, 0.1), (2.2, 0.7), (2.3, 0.3), (2.6, 0.6), (2.9, 0.2),
(2.7, 0.9)} of feature vectors obtained at layer l that has only two neurons: Fig. 1
shows B2,l,δ = {[

[0, 1], [2, 3]
]

,
[

[2, 3], [0, 1]
]}, a 2-boxed abstraction monitor with

δ = (0.15, 0.15). The area influenced by δ is visualized in yellow.

Corners Within Monitors. As a monitor built from boxed abstraction only
rejects an input if the feature vector falls outside the box, the borders of the
box actually serve as a proxy for the boundary of the operational design domain
(ODD) - anything inside a box is considered acceptable. With this concept in
mind, we are interested in finding test inputs that can lead to corners of
these boxes. As shown in Fig. 1, for the box

[

[0, 1], [2, 3]
]

, the bottom left corner
is not occupied by a feature vector produced from any training data point.

We now precise the definition of corners.
Given a box Bi =

[

[a1, b1], · · · , [adl
, bdl

]
] ∈ Bk,l,δ, the set of corners associ-

ated with Bi is CBi

def= {[

[α1, β1], · · · , [αdl
, βdl

]
]} where ∀j ∈ [1 · · · dl], either

– [αj , βj ] = [aj , aj + δj ], or
– [αj , βj ] = [bj − δj , bj ].
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Fig. 2. Partition the boxed monitor and encode every region using BDDs. A black dot
represents a feature vector generated from a training data point.

Fig. 1. An example of two-boxes,
where corners are deep-yellow areas.
(Color figure online)

Without surprise, the below lemma
reminded us the well known problem of
combinatorial explosion, where the number
of corners, although linear to the number
of boxes, is exponential to the number of
dimensions.

Lemma 1. Given Bk,l,δ,
∑k

1 |CBi
|, i.e.,

the total number of corners associated with
the monitor, equals k · 2dl .

Given the set CBi
of corners associ-

ated with Bi, define Cs
Bi

⊆ CBi
to be

the (training-data) supported corners
where for each

[

[α1, β1], · · · , [αdl
, βdl

]
]

in
Cs

Bi
, exists (x,y) ∈ Dtrain such that ∀j ∈ [1 · · · dl] : f l

j(x) ∈ [αj , βj ]. The
set of (training-data) unsupported corners Cu

Bi
is the set complement, i.e.,

Cu
Bi

def= CBi
\Cs

Bi
. As an example, consider the box Bi in Fig. 2(a). The set of

unsupported corners Cu
Bi

is {[

[a1, a1+δ1], [b2−δ2, b2]],
[

[b1−δ1, b1], [a2, a2+δ2]]},
i.e., the top-left corner and the bottom-right corner.

An unsupported corner reflects the possibility of having an input xop in oper-
ation time, where the DNN-computed lth-layer feature vector f l(xop) falls into
that corner of the monitor. It reflects additional risks, as we do not know the
prediction result, but the monitor also will not reject the input. The consequence
of Lemma 1 implies that when we only have a finite budget for testing unsup-
ported corners, we need to develop methods to prioritize them, as detailed in
the following sections.

4 Unsupported Corner Prioritization Under Single-Boxed
Abstraction

We first consider the special case where only one box is used in the mon-
itoring. That is, we consider B1,l,δ = {B} where B = {(x1, . . . , xdl

) |x1 ∈
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[a1, b1], . . . , xdl
∈ [adl

, bdl
]}. The workflow is to first consider encoding feature

vectors at the l-th layer into fixed-length binary strings, in order to derive the
set of unsupported corners. Subsequently, prioritize the unsupported corners via
Hamming distance-based filtering. The algorithm stated in this section serves
as the foundation for the general multi-boxed monitor setting detailed in later
sections.

4.1 Encoding Feature Vectors Using Binary Strings

Given a finite-length Boolean string b ∈ {0, 1}∗, we use b[i···j] to denote the sub-
string indexed from i to j. For a single-boxed monitor B1,l,δ = {B} constructed
from Dtrain, let the φ-bit encoding (φ ≥ 2) be a function encφ : Rdl → {0, 1}φ·dl

that, for any x ∈ Dtrain, translates the feature vector f l(x) to a Boolean string b
(with length φ · dl) using the following operation: ∀j ∈ [1 · · · dl],

– if f l
j(x) ∈ [αj , αj + δj ], then b[φ(j−1)+1···φj] = 0 · · · 0

︸ ︷︷ ︸

φ times

;

– else if f l
j(x) ∈ [βj − δj , βj ], then b[φ(j−1)+1···φj] = 1 · · · 1

︸ ︷︷ ︸

φ times

;

– otherwise, b[φ(j−1)+1···φj] = 0 · · · 0
︸ ︷︷ ︸

φ−τ times

1 · · · 1
︸ ︷︷ ︸

τ times

when

f l
j(x) ∈ [aj + δj + (τ−1)(bj−aj−2δj)

φ −1 , aj + δj + (τ)(bj−aj−2δj)
φ −1 )

The φ-bit encoding essentially considers f l(x) in dimension j, assigns the
substring with all 0s when f l

j(x) falls in the corner reflecting the lower-bound,
assigns with all 1s when f l

j(x) falls in the corner reflecting the upper-bound,
and finally, splits the rest interval of length bj − aj − 2δj into φ − 1 equally
sized intervals and assigns each interval with an encoding. Figure 2 illustrates
the result of 2-bit and 3-bit partitioning under a 2-dimensional boxed monitor.
For point x in Fig. 2(b), enc3(x) = 011111. The first part “011” comes as when
τ = 2, f l

1(x) ∈ [a1 + δ1 + (2−1)(b1−a1−2δ1)
3 −1 , a1 + δ1 + (2)(b1−a1−2δ1)

3 −1 ). The second
part “111” comes as f l

2(x) ∈ [β2 − δ2, β2]. Given an input x and its computed
feature vector f l(x), the time required for performing φ-bit encoding is in low
degree polynomial with respect to dl and φ.

4.2 BDD Encoding and Priortizing the Unsupported Corners

This section presents Algorithm 1, a BDD-based algorithm for identifying unsup-
ported corners. To ease understanding, we separate the algorithm into three
parts.

A: Encode the Complete Training Dataset. Given the training dataset Dtrain and
the DNN function f , one can easily compute {b | b = encφ(f l(x)) where x ∈
Dtrain} as be the set of all binary strings characterizing the complete training
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Algorithm 1. Priortizing unsupported corners using BDD
Input: Dataset Dtrain, DNN f , 1-box monitor B1,l,δ = {B}, φ, distance metric Δ
Output: The set {bu} of binary strings represented in BDD, reflecting unsupported

corners Cu
B for box B, with each bu distant to all training data encodings by at

least Δ + 1 bits.
1: Declare BDD variables bv1, . . . , bvφdl .
2: Strain ← BDD.false (* Initialize to empty set *)
3: for all x ∈ Dtrain do
4: b ← encφ(f l(x))
5: Sb ← BDD.true
6: for all m ∈ [1 · · · φdl] do (* Refine the set to contain only b *)
7: if b[m···m] = 1 then Sb ← BDD.and(Sb, bvm)
8: else Sb ← BDD.and(Sb,BDD.not(bvm))

9: Strain ← BDD.or(Strain, Sb) (* Add Sb to the set *)

10: Sall.corners ← BDD.true
11: for all j ∈ [1 · · · dl] do
12: Sj0s ← BDD.true; Sj1s ← BDD.true
13: for all m ∈ [1 · · · φ] do
14: Sj0s ← BDD.and(Sj0s,BDD.not(bvφ(j−1)+m))
15: Sj1s ← BDD.and(Sj1s, bvφ(j−1)+m)

16: Sall.corners ← BDD.and(Sall.corners,BDD.or(Sj0s, Sj1s))

17: Sunsup ← Sall.corners\Strain (* BDD.setminus(·, ·) operation *)
18: S≤Δ

train ← Strain

19: for all n ∈ [1 · · · Δ] do
20: Slocal ← S≤Δ

train

21: for all m ∈ [1 · · · φdl] do
22: S≤Δ

train ← BDD.or(S≤Δ
train,BDD.exists(Slocal, bvm))

23: return Sunsup\S≤Δ
train

dataset. As each element in the set is a fixed-length binary string, the set can
be compactly stored using Binary Decision Diagrams.

Precisely, as the length of a binary string b = encφ(f l(x)) equals φ · dl, in
our encoding we use φ · dl BDD variables, denoted as bv1, . . . , bvφdl

, such that
bvi = true iff b[i···i] = 1. Line 1 of Algorithm 1 performs such a declaration.
Lines 2 to 9 perform the BDD encoding and creation of the set Strain containing
all binary strings created from the training set. Initially (line 2) Strain is set to
be an empty set. Subsequently, generate the binary string (line 4), and encode a
set Sb which contains only the binary string (line 5–8). Finally, add Sb to Strain

(line 9).

B: Derive the Set of Unsupported Corners. Lines 10 to 17 of Algorithm 1 com-
putes Sunsup, where each binary string in Sunsup corresponds to an unsupported
corner. The set is computed by a set difference operation (line 17) between the
set of all corners Sall.corners and Strain. Following the encoding in Sect. 4.1, we
know that the set of all corners corresponds to {0 · · · 0

︸ ︷︷ ︸

φ times

, 1 · · · 1
︸ ︷︷ ︸

φ times

}dl . As an exam-



Prioritizing Corners in OoD Detectors via Symbolic String Manipulation 405

ple, in Fig. 2(b), the set of all corners equals {000000, 000111, 111000, 111111}.
Lines 10 to 16 of Algorithm 1 describe how such a construction can be done
symbolically using BDD, where the number of BDD operations being triggered
is linear to φ · dl. The set Sj0s, after the inner loop (line 13–15), contains the
set of all possible Boolean words with the restriction that b[φ(j−1)+1···φj] equals
0 · · · 0
︸ ︷︷ ︸

φ times

(similarly Sj1s for having 1 s). The “BDD.or” operation at line 16 per-

forms a set union operation between Sj0s and Sj1s, to explicitly allow two types
of possibilities within b[φ(j−1)+1···φj].

C: Filter Unsupported Corners that are Close to Training Data. Although at
line 17 of Algorithm 1, all unsupported corners are stored compactly inside the
BDD, the implication of Lemma 1 suggests that the number of unsupported
corners can still be exponential. Therefore, we are interested in further filtering
out some unsupported corners and only keeping those unsupported corners that
are distant from the training data.

Consider again the example in Fig. 2(b), where Sunsup is the symbolic repre-
sentation of two strings, namely

– 000111 reflecting the top-left corner, and
– 111000 reflecting the bottom-right corner.

The algorithm thus should keep 000111 and filter 111000, as the bottom-right
corner has a training data x′ being close-by.

The final part of Algorithm 1 (starting at line 18) describes how to per-
form such an operation symbolically by utilizing the Hamming distance on the
binary string level. Consider again the example in Fig. 2(b), where for train-
ing data x′, enc3(f l(x′)) = 011000. The Hamming distance between “011000”
and the bottom-right corner encoding “111000” equals 1. For the top-left corner
having its encoding being 000111, there exists only data points whose encoding
(e.g., x has an encoding of 011111) has a Hamming distance of 2. Therefore, by
filtering out the elements with Hamming distance 1, only the top-left corner is
kept.

Within Algorithm 1, line 18 maintains S≤Δ
train as a BDD storing every binary

string that has another binary string in Strain such that the Hamming distance
between these two is at most Δ. Initially, S≤Δ

train is set to be Strain, reflecting
the case of Hamming distance being 0. The loop of Line 19 is executed Δ times
to gradually increase S≤Δ

train to cover strings with Hamming distance from 1 up
to Δ.

Within the loop, first a local copy Slocal is created (line 20). Subsequently,
enlarging the set by a Hamming distance 1 can be done by the inner loop within
line 21–22: for each variable index m, perform existential quantification over the
local copy to get the set of binary strings that is insensitive at variable bvm. As
an example, if Slocal = {011000}, then performing existential quantification on
the first variable generates a set “{θ11000 | θ ∈ 0, 1}”, and performing existential
quantification on the second variable generates another set “{0θ1000 | θ ∈ 0, 1}”.
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A union over all these newly generated sets returns the set of strings whose
Hamming distance to the original “011000” is less or equal to 1.

Finally, line 23 performs another set difference to remove elements in Sunsup

that is present in S≤Δ
train, and the resulting set is returned as the output of the

algorithm.

4.3 Corner Prioritization with Multi-boxed Abstraction Monitors

In the previous section, we focus on finding corners within a box, where the
corners are distant (by means of Hamming distance) to DNN-computed feature
vectors from the training dataset. Nevertheless, when the monitor uses multiple
boxes, is it possible that the corner being prioritized in one box has been covered
by another box? An example can be found in Fig. 3, where the monitor contains
two boxes B1 and B2. If the algorithm applied on B1 proposes corner c1 to be
tested, it would be a waste as c1 lies inside B2.

We propose a lazy approach to mediate this problem - whenever a corner
proposal is created from one box, use a strengthened condition and check if
some part of the corner is deep inside another box (subject to δ). Precisely, given
Bk,l,δ, provided that Algorithm 1 applied on Bi =

[

[a1, b1], · · · , [adl
, bdl

]
] ∈ Bk,l,δ

suggests an unsupported corner c ∈ Cu
Bi

whose corresponding binary string
equals b, conduct the following:

1. Given b, find a vertex v = (v1, . . . , vdl
) in box Bi that is also in the proposed

corner c. Precisely, for ∀j ∈ [1 · · · dl],
– if b[φ(j−1)+1···φj] = 0 · · · 0

︸ ︷︷ ︸

φ times

, set vj to be aj .

– Otherwise, set vj to be bj .
2. Discard the corner proposal on c, whenever there exists Bi′ =

[

[a′
1, b

′
1], · · · , [a′

dl
, b′

dl
]
] ∈ Bk,l,δ, i′ 	= i, such that the following holds: ∀j ∈

[1 · · · dl] : a′
j + δj < vj < b′

j − δj .

The time complexity for rejecting a corner proposal is in low degree polyno-
mial:

– For step (1), assigning each vj sums up the time O(dl).
– For step (2), the containment check is done on every other box (the number

of boxes equals k) over all dimensions (size dl), leading to the time complexity
O(k · dl).

5 Improving the DNN Against the Unsupported Corners

As unsupported corners represent regions in the monitor where no training data
is close-by, any input whose feature vector falls in that corner will not be rejected
by the monitor, leading to safety concerns if the prediction is incorrect. For
classification tasks, one possible mediation is to explicitly ensure that any input
whose feature vector falls in the unsupported corner does not cause the DNN to
generate a strong prediction over a particular class.
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Algorithm 2. DNN modification against unsupported corners under 1-boxed
abstraction monitor (classification network with one-hot output encoding)
Input: Dataset Dtrain, DNN f = (gL, . . . , g1), 1-boxed monitor B1,l,δ, S ⊂

Sunsup\S≤Δ
train created from Algorithm 1, the number of samples ρ per unsupported

corner.
Output: Updated DNN f ′.
1: Create dataset Dmodify

def
= {(f l(x),y)) | (x,y) ∈ Dtrain}

2: for all b ∈ S do
3: Let c

def
=

[
[α1, β1], · · · , [αdl , βdl ]

] ∈ R
dl be the corresponding corner of b.

4: Sample ρ points p1, . . . ,pρ from c.
5: for all i ∈ [1 · · · ρ] do
6: Dmodify ← Dmodify ∪ {(pi, (

1
dL

, . . . , 1
dL

))}
7: Improve gL, . . . gl+1 to ĝL, . . . ĝl+1 by training against Dmodify

8: Return f ′ def
= (ĝL, . . . ĝl+1, gl, . . . , g1)

Fig. 3. Two overlapping boxes.

As an example, if the DNN f is used for digit
recognition and dL equals 10 with each f

(L)
i indi-

cating the possibility of the character being i−1,
it is desirable to let an input x, whose feature
vector falls inside the unsupported corner, to
produce f

(L)
1 (x) ∼= f

(L)
2 (x) ∼= . . . ∼= f

(L)
10 (x) ∼=

0.1, i.e., the DNN is not certain on which class
this input belongs to. One can naively retrain the
complete DNN against such an input x. Never-
theless, if the DNN is completely retrained, the
created monitor Bk,l,δ is no longer valid, as the
parameters before layer l have been changed due to re-training.

Towards this issue, Algorithm 2 presents a local DNN modification scheme1

where the re-training is only done between layers l + 1 and L. As the new DNN
share the same function with the existing one from layer 1 to layer l, previously
constructed 1-boxed monitor remains applicable in the new DNN.

As re-training is only done over a sub-network between layers l+1 and L, the
input for training the sub-network is the output of layer l. Therefore, reflected
at line 1, one prepares a new training dataset where the input is f l(x). The
input for Algorithm 2 also contains S, which is a subset of unsupported corners
derived from Algorithm 1. Lines 2 to 6 translate each binary string in S into an
unsupported corner (line 3) and sample ρ points (line 4) to be added to the new
training dataset. As stated in the previous paragraph, we wish the result of these
points to be unbiased for any output class. Therefore, as stated at line 6, the
corresponding label, under the assumption where Dtrain uses one-hot encoding,
should be ( 1

dL
, . . . , 1

dL
).

1 For simplicity, we only show the algorithm for 1-boxed abstraction monitors, while
extensions for multi-boxed abstraction monitors can follow the same paradigm stated
in Sect. 4.3.
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Table 1. Hyper-parameter setting in the experiments

dataset # of monitored
neurons

m :# unsupported
corners

ρ: # collected
samples per corner

MNIST 40 1000 10

GTSRB 84 1000 10

6 Evaluation

This section aims to experimentally answer two questions about the unsupported
corners generated by the method in Sect. 4. The first question is regarding the
behavior of feature vectors in the unsupported corners reflected in the output
(Sect. 6.1). The second question is regarding generating inputs that can lead to
these unsupported corners (Sect. 6.2).

Specifically, we consider monitors built on the penultimate layer of two neural
networks, trained on benchmarks MNIST [15] and GTSRB [11], respectively,
to classify handwritten digits (0–9) and traffic signs. Following Algorithm 1,
we first encode the monitors’ supported corners using the BDD representation.
Subsequently, compute the unsupported corners using symbolic set difference
operations. We use Pytorch2 to train the DNN and use the python-based BDD
library dd3 for encoding the binary strings into the BDD.

6.1 Understanding Unsupported Corners

This subsection focuses on understanding the output softmax (probability) val-
ues for the feature vectors from unsupported corners. We take m unsupported
corners and from each of them uniformly pick ρ samples in the corresponding
corner. The hyper-parameters used in the experiments are shown in Table 1.

We first examine if the DNN can output overconfident softmax values for
these samples. From the statistical results, as shown in the left part of Fig. 4, one
can find that samples from many unsupported corners (with Hamming distance
larger than 3 from the training dataset) are assigned a high softmax value.
This confirms our conjecture that additional local training is needed to suppress
high-confident outputs against unsupported corners. After applying Algorithm 2
for fine-tuning the after-monitored-layer sub-network, these unsupported cases
are all assigned an averaged softmax value of 1

10 , as shown in the right part
of Fig. 4. Interestingly, the fine-tuning does not deteriorate the accuracy of the
neural network on the original training and test sets: We observe a shift from
the original accuracy of 99.34% (98.8%) on the training (test) dataset to a new
one of 99.24% (98.84%).

2 https://pytorch.org/.
3 https://github.com/tulip-control/dd.

https://pytorch.org/
https://github.com/tulip-control/dd
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Fig. 4. Statistics of numbers of samples (picked from unsupported corners) per softmax
value interval on MNIST (left: before re-training; right: after re-training).

Remark 1. The repair of the sub-network essentially equips the original network
with an additional ability of identifying out-of-distribution samples (around the
area of unsupported corners) by observing whether the softmax value of predic-
tion is close to 1

dL
or not.

6.2 From Test Case Proposal to Test Case Generation

This subsection explores two possibilities for generating inputs that yield features
in specific unsupported corners of the monitored layer.

– The first method is to verify whether the maximum or minimum activation
value of each monitored neuron is responsible for a particular segment or local
area of the input, hereafter referred to as Neuron-Wise-Excited-Input-Feature
(NWEIF). If such a connection exists, since a corner is a combination of the
maximum/minimum activation values of each neuron, then a new input can
be formed by combining the NWEIFs of each neuron.

– The second is to apply optimization techniques. Given an image in the train-
ing dataset, perform gradient descent to find a modification over the image
such that the modified image generates a feature within a given unsupported
corner.

Neuron-Wise Excited Input-Feature Combination. We applied the layer-
wise relevance propagation (LRP) [19] technique to interpret the images that
reach the maximum and minimum five values of a neuron. LRP is one of the
back-propagation techniques used for redistributing neuron activation values at
one layer to its precedent layers (possible up to the input layer). In a nutshell,
it explains which parts of the input contribute to the neuron’s activation and to
what extent.
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Fig. 5. LRP interpretation example: each bold-black block contains the inputs reaching
the minimum 5 (red sub-block) and the maximum 5 (blue sub-block) activation values
of a neuron; the top two and the bottom two are from MNIST and GTSRB, respectively.
(Color figure online)

Fig. 6. Using adversarial testing to generate images whose feature vectors fall into a
particular corner. The original images are shown on the left, and the perturbed ones on
the right. We also show the predicted classes, and for the perturbed images additionally
the distance of their features from the corner point, as well as the distance from the
unperturbed image.

Discussion. The results in Fig. 5 show that it is difficult for humans to compose
new inputs based on NWEIF. The first and second rows in each bold-black
block are the original images and corresponding heat maps interpreted by LRP.
Although LRP can help us identify regions or features, it is very difficult to
precisely associate one neuron with one specific input-feature. We can observe in
Fig. 5 that for the 20km/h speed sign, the area that leads to maximum activation
has considerable overlap with the area that leads to minimum activation. This
makes a precise association between neurons and features difficult, justifying the
need of using other methods such as optimization-based image generation for
testing and Algorithm 2 for local training over unsupported corners.

Optimization-Based Test Case Generation. Finally, we create images cor-
responding to corners by using an optimization method, similar to the ones used
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for adversarial example generation [23]. Overall, the generated test case should
allow the DNN to (1) fall inside the box of the unsupported corner and to (2)
be confident in predicting a wrong class. In our implementation, the previously
mentioned two objectives are integrated as a loss function, which is optimized
(by minimizing the loss) with respect to the input image. We refer readers to
an extended version4 for details regarding how such a method is implemented.
Figure 6 illustrates examples of original and perturbed images, where for the
bottom-right example, the perturbed images not only falls into a particular cor-
ner, but the resulting prediction also changes from the initially correct “1” to the
incorrect “4”. We observe that when the buffer δ around the box is small, it can
be difficult for the adversarial testing method to generate images that fall into a
specific corner. However, we are unable to state that it is impossible to generate
such an input; the problem can only be answered using formal verification. This
further justifies the need for local DNN training.

7 Concluding Remarks

In this paper, we address the issue of testing OoD monitors built from boxed
abstractions of feature vectors from the training data, and we show how this
testing problem could be reduced to finding corners in hyperrectangle distant
from the available training data in the feature space. The key novelty lies in a
rigorous method for analyzing the corners of the monitors and detecting whether
a corner is supported or not according to the input in the training data set,
generating feature vectors located in the corner. To the best of our knowledge,
it is the first approach for testing the decision boundary of a DNN monitor,
where the test prioritization scheme is based on corners (of the monitor) that
have no input data being close-by. The other important result is the DNN repair
scheme (via local training) to incorporate the distant-yet-uncovered corners. To
this end, we have developed a tool that provides technical solutions for our OoD
detectors based on boxed abstractions. Our experiments show the effectiveness
of our method in different applications.

This work raises a new research direction on rigorous engineering of DNN
monitors to be used in safety-critical applications. An important future direction
is the refinement of boxed abstractions: By considering the unrealistic corners,
we can refine the abstraction by adding more boxes to remove them. Another
direction is to use some probability estimation method to prioritize corners rather
than using Hamming distance.
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4 Available at https://arxiv.org/abs/2205.07736.

https://arxiv.org/abs/2205.07736


412 C.-H. Cheng et al.

References

1. Abrecht, S., Gauerhof, L., Gladisch, C., Groh, K., Heinzemann, C., Woehrle, M.:
Testing deep learning-based visual perception for automated driving. ACM TCPS
5(4), 1–28 (2021)

2. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. CSUR 24(3), 293–318 (1992)

3. Cheng, C.-H., Huang, C.-H., Brunner, T., Hashemi, V.: Towards safety verification
of direct perception neural networks. In: DATE, pp. 1640–1643. IEEE (2020)

4. Cheng, C.-H., Huang, C.-H., Yasuoka, H.: Quantitative projection coverage for
testing ML-enabled autonomous systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 126–142. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4 8

5. Dusenberry, M., et al.: Efficient and scalable Bayesian neural nets with rank-1
factors. In: ICML, pp. 2782–2792. PMLR (2020)

6. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing
model uncertainty in deep learning. In: ICML, pp. 1050–1059. PMLR (2016)

7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

8. Havasi, M., et al.: Training independent subnetworks for robust prediction. arXiv
preprint arXiv:2010.06610 (2020)

9. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

10. Henzinger, T.A., Lukina, A., Schilling, C.: Outside the box: abstraction-based mon-
itoring of neural networks. arXiv preprint arXiv:1911.09032 (2019)

11. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traffic
signs in real-world images: the german traffic sign detection benchmark. In: IJCNN,
pp. 1–8. IEEE (2013)

12. Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu, M., Yi,
X.: A survey of safety and trustworthiness of deep neural networks: verification,
testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37,
100270 (2020)

13. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
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Abstract. We present POLAR (The source code can be found at
https://github.com/ChaoHuang2018/POLAR Tool. The full version of
this paper can be found at https://arxiv.org/abs/2106.13867.), a
POLynomial ARithmetic-based framework for efficient time-bounded
reachability analysis of neural-network controlled systems. Existing
approaches leveraging the standard Taylor Model (TM) arithmetic for
approximating the neural-network controller cannot deal with non-
differentiable activation functions and suffer from rapid explosion of the
remainder when propagating TMs. POLAR overcomes these shortcom-
ings by integrating TM arithmetic with Bernstein polynomial interpo-
lation and symbolic remainders. The former enables TM propagation
across non-differentiable activation functions and local refinement of
TMs, and the latter reduces error accumulation in the TM remainder
for linear mappings in the neural network. Experimental results show
POLAR significantly outperforms the state-of-the-art tools on both effi-
ciency and tightness of the reachable set overapproximation.

1 Introduction

Neural networks have been increasingly used as the central decision makers in a
variety of control tasks [17,21]. However, the use of neural-network controllers
also gives rise to new challenges on verifying the correctness of the resulting
closed-loop control systems especially in safety-critical settings [29,30]. In this
paper, we consider the reachability verification problem of neural-network con-
trolled systems (NNCSs). The high-level architecture of a simple NNCS is shown
in Fig. 1 in which the neural network senses the system state �x at discrete time
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Fig. 1. A typical NNCS model. Fig. 2. Executions over 4 control steps.

steps, and computes the corresponding control values �u for updating the system
dynamics which is defined by an ordinary differential equation (ODE) over �x and
�u. The time-bounded reachability analysis problem of an NNCS is to compute a
state set that contains all the trajectories of a finite number of control steps from
a given initial set. The initial set may represent uncertainties in the starting state
of the system or error (e.g. localization error) bounds in estimating the current
system state during an execution of the system. Figure 2 shows an illustration
of reachable sets for 4 steps, where the orange region represents the reachable
set, and the two red, arrowed curves are two example trajectories starting from
two different initial states in the initial set X0 (blue).

Reachability analysis of general NNCSs is notoriously difficult due to non-
linearity in both the neural-network controller and the plant. The difficulty is
further exacerbated by the coupling of the controller and the plant over multiple
control steps. Since exact reachability of general nonlinear systems is undecid-
able [2], current approaches for reachability analysis largely focus on computing a
tight overapproximation of the reachable sets [1,6,10]. Verisig [14] leverages prop-
erties of the sigmoid activation function and converts an NNCS with these activa-
tion functions to an equivalent hybrid system. Thus, existing tools for hybrid sys-
tem reachability analysis can be directly applied to solve the NNCS reachability
problem. However, this approach inherits the efficiency problem of hybrid system
reachability analysis and does not scale beyond very small NNCSs. Another line
of approach is to draw on techniques for computing the output ranges of neural
networks [12,16,24,26–28] and directly integrating them with reachability anal-
ysis tools designed for dynamical systems. NNV [25], for instance, combines star
set analysis on the neural network with zonotope-based analysis of the nonlinear
plant dynamics from CORA [1]. However, such approaches have been shown to
be ineffective for NNCS verification due to the lack of consideration on the inter-
action between the neural-network controller and the plant dynamics [8,11,13].
In particular, since the primary goal of these techniques is to bound the output
range of the neural network instead of approximating its input-output function,
they cannot track state dependencies across the closed-loop system and across
multiple time steps in reachability analysis.

More recent advances in NNCS reachability analysis are based on the idea of
function overapproximation of the neural network controller. A function overap-
proximation of a neural network κ has two components: an approximated func-
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tion p and an error term I (e.g. an interval) that bounds the approximation error.
Such function overapproximation that produces a point-wise approximation of
κ with an interval error term (typically called a remainder) is also known as a
Taylor model (TM). Function-overapproximation approaches can be broadly cat-
egorized into two classes: direct end-to-end approximation such as Sherlock [8],
ReachNN [11] and ReachNN* [9], and layer-by-layer propagation such as Verisig
2.0 [13]. The former computes a function overapproximation of the neural net-
work end-to-end by sampling from the input space. The main drawback of this
approach is that it does not scale beyond systems with more than a few input
dimensions. The latter approach tries to exploit the neural network structure
and uses Taylor model arithmetic to more efficiently obtain a function overap-
proximation of κ by propagating the TMs layer by layer through the network
(details in Sect. 3). However, due to limitations of basic TM arithmetic, these
approaches cannot handle non-differentiable activation functions and suffer from
rapid growth of the remainder during propagation. For instance, explosion of the
interval remainder would degrade a TM propagation to an interval analysis.

In this paper, we propose a principled POLynomial ARithmetic framework
(POLAR) that enables precise layer-by-layer propagation of TMs for general
feed-forward neural networks. Basic Taylor model arithmetic cannot handle
ReLU that is non-differentiable (cannot produce the polynomial), and also suf-
fers from low approximation precision (large remainder). POLAR addresses the
key challenges of applying basic TM arithmetic through a novel use of uni-
variate Bernstein polynomial interpolation and symbolic remainders. Univariate
Bernstein polynomial interpolation enables the handling of non-differentiable
activation functions and local refinement of Taylor models (details in Sect. 3.1).
Symbolic remainders can taper the growth of interval remainders by avoiding the
so-called wrapping effect [15] in linear mappings. The paper has the following
novel contributions: (I) A polynomial arithmetic framework using both Taylor
and univariate Bernstein approximations for computing NNCS reachable sets
to handle general NN controllers; (II) An adaptation of the symbolic remainder
method for ODEs to the layer-by-layer propagation for neural networks; (III)
A comprehensive experimental evaluation of our approach on challenging case
studies that demonstrates significant improvements of POLAR against SOTA.

2 Preliminaries

A Neural-Network Controlled System (NNCS) is a continuous plant governed by
a neural network controller. The plant dynamics is defined by an ODE of the form
�̇x = f(�x, �u) wherein the state variables and control inputs are denoted by the
vectors �x and �u respectively. We assume the function f is at least locally Lipschitz
continuous such that its solution w.r.t. an initial state and constant control
inputs is unique [20]. We denote the input-output mapping of the neural network
controller as κ. The controller is triggered every δc time which is called the control
stepsize. A system execution (trajectory) is produced as follows: starting from
an initial state �x(0), the controller senses the system state at the beginning of
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every control step t = jδc for j = 0, 1, . . ., and updates the control inputs to
�vj = κ(�x(jδc)). The system’s dynamics in that control step is governed by the
ODE �̇x = f(�x,�vj).

Given an initial state set X0 ⊂ R
n, all executions from a state in this set

can be formally defined by a flowmap function ϕN : X0 ×R≥0 → R
n, such that

the system state at any time t ≥ 0 from any initial state �x0 ∈ X0 is ϕN (�x0, t).
We call a state �x′ ∈ R

n reachable if there exists �x0 ∈ X0 and t ≥ 0 such that
�x′ = ϕN (�x0, t). The reachability problem on NNCS is to decide whether a state is
reachable in a given NNCS, and it is undecidable since NNCS is more expressive
than two-counter machines for which the reachability problem is already unde-
cidable [2]. Many formal verification problems can be reduced to the reachability
problem. For example, the safety verification problem can be reduced to checking
reachability to an unsafe state. In the paper, we focus on computing the reach-
able set of an NNCS over a bounded number K of control steps. Since flowmap
ϕN often does not have a closed form due to the nonlinear ODEs, we seek to
compute state-wise overapproximations for it over multiple time segments, that
is, in each control step [jδc, (j + 1)δc] for j = 0, . . . , K − 1, the reachable set is
overapproximated by a group of flowpipes F1(�x0, τ), . . . ,FN (�x0, τ) over the N
uniformly subdivided time segments of the time interval, such that Fi(�x0, τ) is a
state-wise overapproximation of ϕN (�x0, jδc + (i − 1)δ + τ) for τ ∈ [0, δc/N ], i.e.,
Fj(�x0, τ) contains the exact reachable state from any initial state �x0 in the i-th
time segment of the j-th control step. Here, τ is the local time variable which
is independent in each flowpipe. A high-level flowpipe construction algorithm is
presented as follows, in which X̂0 = X0 and δ = δc/N is called the time step.

1: for j = 0 to K − 1 do
2: Computing an overapproximation Ûj for the control input range κ(X̂j);
3: Computing the flowpipes F1(�x0, τ), . . . ,FN (�x0, τ) for the continuous

dynamics �̇x = f(�x, �u), �̇u = 0 from the initial set �x(0) ∈ X̂j , �u(0) ∈ Ûj ;
4: R ← R ∪ {F1(�x0, τ), . . . ,FN (�x0, τ)};
5: X̂j+1 ← FN (�x0, δ);

Notice that �x(0) denotes the local initial set for the ODE used in the current
control step, that is the system reachable set at the time jδc, while the variables
�x0 in a flowpipe are the symbolic representation of an initial state in X0. Intu-
itively, a flowpipe overapproximates not only the reachable set in a time step,
but also the dependency from an initial state to its reachable state at a particular
time. For settings where the plant dynamics of an NNCS is given as a difference
equation in the form of �xk+1 = f(�xk, �uk), we can obtain discrete flowpipes which
are the reachable set overapproximations at discrete time points by repeatedly
computing the state set at the next step using TM arithmetic.

Dependencies on the Initial Set. As we mentioned previously, the reachable
state of an NNCS at a time t > 0 is uniquely determined by its initial state if there
is no noise or disturbance in the system dynamics or on the state measurements.
If we use Xj to denote the exact reachable set {ϕN (�x0, jδc) | �x0 ∈ X0} from
a given initial set X0, then the control input range is defined by the set Uj =
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{κ(�xj) | �xj = ϕN (�x0, jδc) and �x0 ∈ X0}. More intuitively, the set Uj is the image
from the initial set X0 under the mapping κ(ϕN (·, jδc)). The main challenge
in computing NNCS reachable sets is to control the overapproximation, which
requires accurately tracking the dependency of a reachable set on the initial set
across multiple control steps. In this paper, we present a polynomial arithmetic
framework for tracking such dependencies using Taylor models.

Taylor Model Arithmetic. Taylor models are originally proposed to compute
higher-order overapproximations for the ranges of continuous functions (see [4]).
They can be viewed as a higher-order extension of intervals [22], which are
sets of real numbers between lower and upper real bounds, e.g., the interval
[a, b] wherein a ≤ b represents the set of {x | a ≤ x ≤ b}. A Taylor model
(TM) is a pair (p, I) wherein p is a polynomial of degree k over a finite group
of variables x1, . . . , xn ranging in an interval domain D ⊂ R

n, and I is the
remainder interval. The range of a TM is the Minkowski sum of the range of
its polynomial and the remainder interval. Thereby we sometimes intuitively
denote a TM (p, I) by p + I in the paper. TMs are closed under operations
such as addition, multiplication, and integration (see [19]). Given functions f, g
that are overapproximated by TMs (pf , If ) and (pg, Ig), respectively, a TM for
f + g can be computed as (pf + pg, If + Ig), and an order k TM for f · g can be
computed as (pf · pg − rk, If · B(pg) + B(pf ) · Ig + If ·Ig + B(rk)), wherein B(p)
denotes an interval enclosure of the range of p, and the truncated part rk consists
of the terms in pf ·pg of degrees > k. Similar to reals and intervals, TMs can also
be organized as vectors and matrices to overapproximate the functions whose
ranges are multidimensional. Notice that a TM is a function overapproximation
and not just a range overapproximation like intervals or polyhedra.

3 Framework of POLAR

In this section, we describe POLAR’s approach for computing a TM for the out-
put range of a neural network (NN) when the input range is defined by a TM.
POLAR uses the layer-by-layer propagation strategy, and features the following
key novelties: (a) A method to compute univariate Bernstein Polynomial (BP)
overapproximations for activation functions, and selectively uses Taylor or Bern-
stein polynomials to limit the overestimation produced when overapproximating
the output ranges of individual neurons. (b) A technique to symbolically repre-
sent the intermediate linear transformations of TM interval remainders during
the layer-by-layer propagation. The purpose of using Symbolic Remainders (SR)
is to reduce the accumulation of overestimation in composing a sequence of TMs.

3.1 Main Framework

We begin by introducing POLAR’s propagation framework that incorporates
only (a), and then describe how to extend it by further integrating (b). Although
using TMs to represent sets in layer-by-layer propagation is already used in [13],
the method only computes Taylor approximations for activation functions, and
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Algorithm 1. Layer-by-layer propagation using polynomial arithmetic and TMs
Input: Input TM (p1(�x0), I1) with �x0 ∈ X0, the M + 1 matrices W1, . . . , WM+1 of

the weights on the incoming edges of the hidden and the output layers, the M + 1
vectors B1, . . . , BM+1 of the neurons’ bias in the hidden and the output layers, the
M + 1 activation functions σ1, . . . , σM+1 of hidden and output layers.

Output: a TM (pr(�x0), Ir) that contains the set κ((p1(�x0), I1)).
1: (pr, Ir) ← (p1, I1);
2: for i = 1 to M + 1 do
3: (pt, It) ← Wi · (pr, Ir) + Bi; # Using TM arithmetic
4: Computing a polynomial approximation pσ,i for σ w.r.t. the domain (pt, It);
5: Evaluating a conservative remainder Iσ,i for pσ,i w.r.t. the domain (pt, It);
6: (pr, Ir) ← pσ,i(pt + It) + Iσ,i; # Using TM arithmetic
7: return (pr, Ir).

the TM output of one layer is propagated by the existing arithmetic for TM
composition to the next layer. Such a method has the following shortcomings: (1)
the activation functions have to be differentiable, (2) standard TM composition
is often the source of overestimation even if preconditioning and shrink wrapping
are used. Here, we seek to improve the use of TMs in the above two aspects.

Before presenting our layer-by-layer propagation method, we describe how a
TM output is computed from a given TM input for a single layer. The idea is
illustrated in Fig. 3. The circles in the right column denote the neurons in the
current layer which is the i-th layer, and those in the left column denotes the neu-
rons in the previous layer. The weights on the incoming edges to the current layer
is organized as a matrix Wi, while we use Bi to denote the vector organization
of the biases in the current layer. Given that the output range of the neurons in
the previous layer is represented as a TM (vector) (pi(�x0), Ii) wherein �x0 are the
variables ranging in the NNCS initial set. Then, the output TM (pi+1(�x0), Ii+1)
of the current layer can be obtained as follows. First, we compute the polyno-
mial approximations pσ1,i, . . . , pσl,i for the activation functions σ1, . . . , σl of the
neurons in the current layer. Second, interval remainders Iσ1,i, . . . , Iσl,i are eval-
uated for those polynomials to ensure that for each j = 1, . . . , l, (pσj ,i, Iσj ,i) is a
TM of the activation function σj w.r.t. zj ranging in the j-th dimension of the set
Wi(pi(�x0)+Ii)+Bi. Third, (pi+1(�x0, Ii+1)) is computed as the TM composition
pσ,i(Wi(pi(�x0) + Ii) + Bi) + Iσ,i wherein pσ,i(�z) = (pσ1,i(z1), . . . , pσl,i(zk))T and
Iσ,i = (Iσ1,i, . . . , Iσl,i)

T . Hence, when there are multiple layers, starting from the
first layer, the output TM of a layer is treated as the input TM of the next layer,
and the final output TM is computed by composing TMs layer-by-layer.

We give the whole procedure by Algorithm 1, where the polynomial approx-
imation pσ,i and its remainder interval Iσ,i for the vector of activation functions
σ in the i-th layer can be computed in the following two ways.
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Fig. 3. Single layer propagation

Taylor Approximation. When the activa-
tion function is differentiable in the range
defined by (pt, It). The polynomial pσ,i can
be computed as the order k Taylor expan-
sion of σ (in each of its dimension) at the
center of (pt, It), and the remainder is eval-
uated using interval arithmetic based on the
Lagrange remainder form. More details are
described elsewhere [19].

Bernstein Interpolation. The use of
Bernstein approximation only requires the
activation function to be continuous in (pt, It), and can be used not only in
more general situations, but also to obtain better polynomial approximations
than Taylor expansions (see [18]). Intuitively, an order k Taylor approximation
can only guarantee to have the same value as the approximated function at the
expansion point, while an order k Bernstein interpolation has the same value as
the approximated function at k + 1 points. We give the details of our Bernstein
overapproximation method as follows.

Bernstein Approximation for σ(�z) w.r.t. �z ∈ (pt, It). Given (pt, It) computed in
Line 3, the j-th component of the polynomial vector pσ,i is the order k Bernstein
interpolation of the activation function σj of the j-th neuron. It can be computed

as pσj ,i(zj)=
∑k

s=0

(

σj(
Zj−Zj

k s + Zj)
(
k
s

) (zj−Zj)
s(Zj−zj)

k−s

(Zj−Zj)
k

)

, such that Zj and

Zj denote the upper and lower bounds respectively of the range in the j-th
dimension of (pt, It), and they can be obtained by interval evaluating TM.

Evaluating the Remainder Iσ,i. The j-th component Iσj ,i of Iσ,i is computed as
a conservative remainder for the polynomial pσj ,i, and it can be obtained as a
symmetric interval [−εj , εj ] such that

εj= max
s=1,···,m

(∣∣∣∣∣pσj ,i(
Zj−Zj

m
(s−1

2
)+Zj)−σj(

Zj − Zj

m
(s − 1

2
)+Zj)

∣∣∣∣∣ +Lj ·
Zj−Zj

m

)

wherein Lj is a Lipschitz constant of σj with the domain (pt, It), and m is
the number of samples that are uniformly selected to estimate the remainder.
The soundness of the error bound estimation above has been proven in [11] for
multivariate Bernstein polynomials. Since univariate Bernstein polynomials is a
special case of multivariate Bernstein polynomials, our approach is also sound.

The following theorem states that a TM flowpipe computed by our approach
is not only a range overapproximation of a reachable set, but also a function
overapproximation for the dependency of a reachable state on its initial state.

Theorem 1. If F(�x0, τ) is the i-th TM flowpipe computed in the j-st control
step, then for any initial state �x0 ∈ X0, the box F(�x0, τ) contains the actual
reachable state ϕN (�x0, (j − 1)δc + (i − 1)δ + τ) for all τ ∈ [0, δ].
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3.2 Selection of Polynomial Approximations

Since an activation function is univariate, both of its Taylor and Bernstein
approximations have a size which is linear in the order k. Then we investigate
the accuracy produced by both approximation forms. Since the main operation
in the TM layer-by-layer propagation framework is the composition of TMs, we
study the preservation of accuracy for both of the forms under the composition
with a given TM. We first define the Accuracy Preservation Problem.

When a function f(�x) is overapproximated by a TM (p(�x), I) w.r.t. a bounded
domain D, the approximation quality, i.e., size of the overestimation, is directly
reflected by the width of I, since f(�x) = p(�x) for all �x ∈ D when I is zero by the
TM definition. Given order k TMs (p1(�x), I1) and (p2(�x), I2) which are overap-
proximations of the same function f(�x) w.r.t. a bounded domain D ⊂ R

n, we use
(p1(�x), I1) ≺k (p2(�x), I2) to denote that the width of I1 is smaller than the width
of I2 in all dimensions, i.e., (p1(�x), I1) is a more accurate overapproximation of
f(�x) than (p2(�x), I2).

Accuracy Preservation Problem. Assume (p1(�x), I1) and (p2(�x), I2) are
overapproximations of f(�x) with �x ∈ D, and (p1(�x), I1) ≺k (p2(�x), I2). Another
function g(�y) is overapproximated by a TM (q(�y), J) whose range is a subset of
D, does (p1(q(�y)+J), I1) ≺k (p2(q(�y)+J), I2) hold by order k TM arithmetic?

We give the following counterexample to show that the answer is no, i.e.,
although (p1(�x), I1) is more accurate than (p2(�x), I2), the composition p1(q(�y)+
J)+I1 might not be a better order k overapproximation than p2(q(�y)+J)+I2 for
the composite function f ◦g. Given p1 = 0.5+0.25x−0.02083x3, I1 = [−7.93e−5,
1.92e−4], and p2 = 0.5+0.24855x-0.004583x3, I2 = [−2.42e−4, 2.42e−4], which
are both TM overapproximations for the sigmoid function f(x) = 1

1+e−x w.r.t.
x ∈ q(y) + J such that q = 0.1y − 0.1y2, J = [−0.1, 0.1], and y ∈ [−1, 1].
We have that (p1, I1) ≺3 (p2, I2), however after the compositions using order 3
TM arithmetic, the remainder of p1(q(y) + J) + I1 is [−0.0466, 0.0477], while
the remainder of p2(q(y) + J) + I2 is [−0.0253, 0.0253], and we do not have
(p1(q(y) + J), I1) ≺3 (p2(q(y) + J), I2).

Since the accuracy is not preserved under composition, we do not decide
which approximation to choose directly based on the their remainders. Instead,
we integrate an additional step in Algorithm 1 to replace line 4–6: for each acti-
vation function, we compute both Taylor and Bernstein overapproixmations, and
choose the one that produces the smaller remainder interval Ir after composition.

3.3 Symbolic Remainders in Layer-by-Layer Propagation

We describe the use of symbolic remainders (SR) in the layer-by-layer propaga-
tion of computing an NN output TM. The method was originally proposed in [7]
for reducing the overestimation of TM flowpipes in the reachability computation
for nonlinear ODEs, we adapt it particularly for reducing the error accumulation
in the TM remainders during the layer-by-layer propagation. Unlike the BP tech-
nique whose purpose is to obtain tighter TMs for activation functions, the use
of SR only aims at reducing the overestimation accumulation in the composition
of a sequence of TMs each of which represents the input range of a layer.
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Algorithm 2. TM output computation using symbolic remainders, input and
output are the same as those in Algorithm 1
1: Setting Q as an empty array which can keep M + 1 matrices;
2: Setting J as an empty array which can keep M + 1 multidimensional intervals;
3: J ← 0;
4: for i = 1 to M + 1 do
5: Computing the composite TM (pσ,i,Iσ,i) using BP;
6: Evaluating qi(�x0) + Ji based on J and Q[1]I1; # Q[1]I1 = I1 when i = 1
7: J ← Ji; Φi ← QiWi;
8: for j = 1 to i − 1 do
9: Q[j] ← Φi · Q[j];

10: Adding Φi to Q as the last element;
11: for j = 2 to i do
12: J ← J + Q[j] · J [j − 1];
13: Adding Ji to J as the last element;
14: Computing an interval enclosure Ir for J + Q[1]I1; # interval evaluation
15: return qM+1(�x0) + Ir.

Consider the TM composition for computing the output TM of a single layer
in Fig. 3, the output TM pσ,i(Wi(pi(�x0)+Ii)+Bi)+Iσ,i equals to QiWipi(�x0)+
QiWiIi +QiBi +pR

σ,i(Wi(pi(�x0)+Ii)+Bi)+Iσ,i such that Qi is the matrix of the
linear coefficients in pσ,i, and pR

σ,i consists of the terms in pσ,i of the degrees �= 1.
Therefore, the remainder Ii in the second term can be kept symbolically such
that we do not compute QiWiIi out as an interval but keep its transformation
matrix QiWi to the computation for the subsequent layers. Given the image
S of an interval under a linear mapping, we use S to denote that it is kept
symbolically, i.e., we keep the interval along with the transformation matrix,
and S to denote that the image is evaluated as an interval.

Then we present the use of SR in layer-by-layer propagation. Starting from
the NN input TM (p1(�x0), I1), the output TM of the first layer is computed as

Q1W1p1(�x0) + Q1B1 + pR
σ,1(W1(p1(�x0) + I1) + B1) + Iσ,1

︸ ︷︷ ︸
q1(�x0)+J1

+Q1W1I1

which can be kept in the form of q1(�x0) + J1 + Q1W1I1. Using it as the input
TM of the second layer, we have the following TM

pσ,2(W2(q1(�x0) + J1 + Q1W1I1) + B2) + Iσ,2

= Q2W2q1(�x0) + Q2B2 + pR
σ,2(W2(q1(�x0) + J1 + Q1W1I1) + B2) + Iσ,2

︸ ︷︷ ︸
q2(�x0)+J2

+ Q2W2J1 + Q2W2Q1W1I1

for the output range of the second layer. Therefore the output TM of the i-th
layer can be obtained as qi(�x0) + Ji + QiWi · · · Q1W1I1 such that Ji = Ji +
QiWiJi−1 + QiWiQi−1Wi−1Ji−2 + · · · + QiWi · · · Q2W2J1.
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Fig. 4. Comparison between reachable sets of the 6-dimensional attitude control bench-
mark produced by POLAR (dark green), Verisig 2.0 (gray) and NNV (yellow). The red
curves are simulated trajectories. (Color figure online)

We present the SR method by Algorithm 2 in which we use two lists: Q[j]
for QiWi · · · · ·QjWj and J [j] for Jj to keep the intervals and their linear trans-
formations. The symbolic remainder representation is replaced by its interval
enclosure Ir at the end of the algorithm.

Time and Space Complexity. Although Algorithm 2 produces TMs with
tighter remainders than Algorithm 1 because of the symbolic interval representa-
tions under linear mappings, it requires (1) two extra arrays to keep the interme-
diate matrices and remainder intervals, (2) two extra inner loops which perform
i−1 and i−2 iterations in the i-th outer iteration. The size of QiWi · · · · ·QjWj is
determined by the rows in Qi and the columns in Wj , and hence the maximum
number of neurons in a layer determines the maximum size of the matrices in
Q. Similarly, the maximum dimension of Ji is also bounded by the maximum
number of neurons in a layer. Because of the two inner loops, time complexity
of Algorithm 2 is quadratic in M , whereas Algorithm 1 is linear in M .

Sizes of the TMs. All the TMs computed in the layer-by-layer propagation
are over the same variables �x0 which are symbolic representation for the NNCS
initial set, i.e., �x0 ∈ X0. Therefore, the maximum size of an order k TM over
n variables is bounded by

(
n+k

n

)
, and hence the TM sizes are independent from

the total number of neurons in the hidden layers of the NN controller.

4 Experiments

We perform a comprehensive empirical study of POLAR against state-of-the-
art (SOTA) techniques. We first demonstrate the performance of POLAR on
two examples with high dimensional states and multiple inputs, which are far
beyond the ability of SOTAs (Sect. 4.1). A comprehensive comparison over the
full benchmarks in [11,13] is then given (Sect. 4.2). Finally, we present abla-
tion studies, scalability analysis, and the ability to handle discrete-time systems
(Sect. 4.3). More detailed results can be found in the full version of the paper.

All our experiments were run on a machine with 6-core 2.90 GHz Intel Core
i5 and 8 GB of RAM. POLAR is implemented in C++. We present the results
for POLAR, Verisig 2.0 and Sherlock using a single core without parallelization.
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Fig. 5. (a) Results of QUAD. POLAR for 50 steps (dark green sets), Verisig 2.0 for 3
steps (grey sets), and simulation traces for 50 steps (red curves). It took POLAR 1533 s
seconds to compute the flowpipes for 50 steps. On the other hand, it took Verisig 2.0
more than 5 h to compute the flowpipes for the first 3 steps, and the TM remainders
computed in the 4th step are already of the size 1015. NNV crashed with out-of-memory
errors when computing the 1st step. (b) Results of Mountain Car. POLAR for 150 steps
(dark green sets), Verisig 2.0 for 150 steps (grey sets), ReachNN* for 90 steps (light
green sets), NNV for 65 steps, and simulation traces for 150 steps (red curves). (Color
figure online)

The results of ReachNN* were computed on the same machine with the aid of
GPU acceleration on an Nvidia GeForce RTX 2060 GPU.

State-of-the-Art Tools. We compare with SOTA tools in the NNCS reacha-
bility analysis literature, including Sherlock [8] (only works for ReLU), Verisig
2.0 [13] (only works for sigmoid and tanh), NNV [25], and ReachNN* [9]1.

4.1 High Dimensional Case Studies: Attitude Control and QUAD

We consider an attitude control of a rigid body with 6 states and 3 control
inputs [23], and quadrotor (QUAD) with 12 states and 3 control inputs [3] to
evaluate the performance of POLAR on difficult problems. The complexity of
these two example lies in the combination of the numbers of the state variables
and control inputs. For each example, we trained a sigmoid neural-network con-
troller and compare POLAR with Verisig 2.0 and NNV. The detailed setting of
these two examples can be found in the full version of the paper.

The result for the attitude control benchmark is shown in Fig. 4, and the
result for the QUAD benchmark is shown in Fig. 5a. In the attitude control
benchmark, POLAR computed the TM flowpipes for 30 control steps in 201 s.
From Fig. 4, We can observe that the flowpipes computed by POLAR are tight
w.r.t. the simulated traces. As a comparison, although Verisig 2.0 [13] can handle
this system in theory, its remainder exploded very quickly and the tool crashed
after only a few steps. NNV computed flowpipes for 25 steps by doing extensive
splittings on the state space and crashed with out-of-memory errors. In the

1 The results of ReachNN* are based on GPU acceleration.
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Table 1. V : number of state variables, σ: activation functions, M : number of hidden
layers, n: number of neurons in each hidden layer. For each approach, we give the
runtime in seconds if it verifies the property. ‘Unknown’: the property is not verified.
‘–’: the approach cannot be applied due to the type of σ.

# V NN Controller POLAR ReachNN* Sherlock Verisig 2.0

σ M n [9] [8] [13]

1 2 ReLU 2 20 12 26 42 –

sigmoid 2 20 17 75 – 47

tanh 2 20 20 Unknown – 46

ReLU+tanh 2 20 13 71 – –

2 2 ReLU 2 20 2 5 3 –

sigmoid 2 20 9 13 – 7

tanh 2 20 3 73 – Unknown

ReLU+tanh 2 20 2 Unknown – –

3 2 ReLU 2 20 16 94 143 –

sigmoid 2 20 36 146 – 44

tanh 2 20 26 137 – 38

ReLU+sigmoid 2 20 15 150 – –

4 3 ReLU 2 20 2 8 21 –

sigmoid 2 20 3 22 – 11

tanh 2 20 3 21 – 10

ReLU+tanh 2 20 2 12 – –

5 3 ReLU 3 100 13 103 15 –

sigmoid 3 100 76 27 – 190

tanh 3 100 76 Unknown – 179

ReLU+tanh 3 100 10 Unknown – –

6 4 ReLU 3 20 16 1130 35 –

sigmoid 3 20 21 13350 – 83

tanh 3 20 19 2416 – 70

ReLU+tanh 3 20 15 1413 – –

ACC 6 tanh 3 20 343 Unknown – 3344

QMPC 6 tanh 2 20 61 –a – 652

Attitude Control 6 sigmoid 3 64 201 –a – Unknown

QUAD 12 sigmoid 3 64 1533 –a – Unknown
a This example has multi-dimensional control inputs. ReachNN* only supports NN
controllers that produce single-dimensional control inputs.

QUAD benchmark, POLAR computed the TM flowpipes for 50 control steps in
1533 s, while Verisig 2.0 and NNV took hours to compute flowpipes just for the
first few steps.

4.2 Comparison over a Full Set of Benchmarks

We compare POLAR with the SOTA tools mentioned previously, including Sher-
lock, Verisig 2.0, NNV, and ReachNN* over the full benchmarks in [11,13]. We
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refer to [11,13] for more details of these benchmarks. The results are presented
in Table 1 where NNV is not included since we did not successfully use it to
prove any of the benchmarks likely because it is designed for linear systems.
Similar results for NNV are also observed in [13]. We can see POLAR success-
fully verifies all the cases and the runtime is on average 8x and up to 94x
faster2 compared with the tool with the second best efficiency. The “Unknown”
verification results either indicate the overapproximation was too large for veri-
fying the safety property or the tool terminated early due to an explosion of the
overapproximation. POLAR achieves the best performance among all the tools.

We remark that the hyperparameter settings used by all of the three tools
for the benchmarks in Table 1 were set to be the same for a fair, lateral compar-
ison. However, they are not the best settings for POLAR. For example, POLAR
finishes in 0.5 s for the benchmark #1 with an integration stepsize that is same
as the control stepsize and a TM order of 4.

4.3 Discussion

POLAR demonstrates substantial performance improvement over existing tools.
In this section, we seek to further explore the capability of POLAR. We conduct
several experiments for the QUAD benchmark to better understand the limita-
tion and scalability of POLAR. We also include a mountain car example to show
that POLAR is able to handle discrete-time systems.

Ablation Studies. To explore the impact of the two proposed techniques,
namely Bernstein polynomial interpolation (BP) and symbolic remainder (SR)
on the overall performance, we conduct a series of experiments on the QUAD
benchmark with different configurations. Table 2 shows the performance of
POLAR with and without the proposed techniques SR and BP in the NN prop-
agation: 1) TM: only TM arithmetic is used; 2) TM+SR: SR is used with TM
arithmetic; 3) BP is used with TM arithmetic; and 4) Both BP and SR are used
with TM arithmetic. Based on the results, we can observe that SR significantly
improves the accuracy of the reachable set overapproximation. Finally, the com-
bination of basic TM with BP and SR not only achieves the best accuracy, but
also is the most efficient. While the additional BP and SR operations can incur
runtime overhead compared with basic TM, they help to produce a tighter over-
estimation and thus reduce the state space being explored during reachability
analysis. As a result, the overall performance including runtime is better.

The following further observations can be obtained from Table 2. (i) Both
of the independent use of BP and SR techniques significantly improves the per-
formance of reachable set overapproximations. (ii) When the BP technique is
used, Bernstein approximation is often not used on activation functions, but
the few times for which they are used significantly improve the accuracy. The
reason of having this phenomenon is that Taylor and Bernstein approximations
are similarly accurate in approximating activation functions with small domain.
2 These are lower bounds on the improvements since other tools terminated early for

certain settings due to explosion of their computed flowpipes.
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Table 2. Ablation Studies for POLAR on the QUAD benchmark. We compare the
width of TM remainder on x3 at the 50th step under different settings. For settings
with BP, we also list the percentage of times where BP is used among 9600 neurons.
If a setting cannot compute flowpipes for all 50 steps, it is marked as Unknown. X0 is
the radius of the initial set. k is the order of the TM.

X0 k TM TM+SR TM+BP TM+BP+SR

Width Time (s) Width Time (s) Width Time (s) BP % Width Time (s) BP %

0.05 2 7.5e−04 229 1.3e−04 233 6.8e−04 228 5.79% 1.2e−04 231 1.34%

3 5.2e−04 273 6.5e−05 251 5.0e−04 274 3.62% 6.5e−05 251 0%

4 4.9.e−04 332 6.2e−05 270 4.7e−04 336 3.57% 6.2e−05 270 0%

0.1 2 Unknown – 2.3e−03 319 1.0e−02 325 9.68% 1.1e−03 289 4.80%

3 1.8e−03 352 2.2e−04 287 1.7e−03 349 6.85% 2.2e−04 287 0%

4 1.6e−03 431 1.9e−04 304 1.5e−03 427 6.70% 1.9e−04 304 0%

0.2 2 Unknown – Unknown – Unknown – – Unknown – –

3 9.0e−03 721 1.9e−03 412 7.8e−03 670 4.03% 1.6e−03 394 0.77%

4 5.0e-03 761 9.2e-04 403 4.7e-03 728 4.38% 8.1e-04 396 0.07%

0.4 2 Unknown – Unknown – Unknown – – Unknown – –

3 Unknown – Unknown – Unknown – – Unknown – –

4 Unknown – Unknown – Unknown – – 3.7e-02 1533 3.25%

However, the Lagrange form-based remainder evaluation in Taylor polynomials
performs better than the sample-based remainder evaluation in Bernstein poly-
nomials in those cases. It can also be seen that for each X0, the use of Bernstein
approximation becomes more frequent when the TMs has larger remainders. (iii)
When both BP and SR techniques are used, the approach produces the tight-
est TMs compared with the other columns in the table even though the use
Bernstein approximation is less often. The reason is that the remainders of the
TMs are already well-limited and most of the activation functions handled in
the reachability computation are with a “small” TM domain.

Scalability Analysis. Table 1 shows that POLAR can handle much larger
NNCSs compared with the current SOTA. To better understand the scalability of
POLAR, we further conduct scalability analysis on the size of the NN controller
and the width of the initial set using the QUAD benchmark. The experiment
results in Fig. 6 for the neural networks with different widths and depths show
that POLAR scales well on the number of layers and the number of neurons in
each layer in the NN controller. On the other hand, the time cost grows rapidly
when the width of the initial set becomes larger. Such a phenomenon already
exists in the literature for reachability analysis of ODE systems [5]. The reason
for this is that when the initial set is larger, it is more difficult to track the state
dependencies and requires keeping more terms in a TM flowpipe.

Discrete-Time NNCS. Finally, we use Mountain car, a common benchmark in
Reinforcement Learning literature, to show that POLAR also works on discrete-
time systems. The comparison with Verisig 2.0, ReachNN* and NNV is shown
in Fig. 5b. POLAR also outperforms these tools substantially for this example.
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Fig. 6. Scalability analysis for POLAR on the QUAD benchmark. We present the
runtime of QUAD for 50 steps reachability analysis. Under all settings, POLAR can
verify that the system reaches the target set at the 50th step. Left figure: Runtime
on different neural network architectures with the input set radius as 0.05. We study
neural-network controllers with different number of layers (2, 3, 4, 5) and neurons (64,
100, 150, 200). Right figure: Runtime on the different input set radius of the QUAD
benchmark. We use the same network in Fig. 5 which has 3 hidden layers with 64
neurons in each layer.

5 Conclusion

In this paper, we propose POLAR, a polynomial arithmetic framework, which
integrates TM flowpipe construction, Bernstein overapproximation, and sym-
bolic remainder method to efficiently compute reachable set overapproximations
for NNCS. Empirical comparison shows POLAR performs significantly better
than SOTAs on both computation efficiency and tightness of reachable set esti-
mation. Our future work includes parallelization of POLAR on GPUs to further
improve computation efficiency.
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