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Abstract. Deep neural networks (DNNs) are prevalent for many
applications related to classification, prediction and regression. To
perform different applications with better performance and accuracy,
an optimized network architecture is required, which can be obtained
through experiments and performance evaluation on different network
topologies. However, a custom hardware accelerator is not scalable and
it lacks the flexibility to switch from one topology to another at run
time. In order to support convolutional neural networks (CNN) along
with multilayer perceptron neural networks (MLPNN) of different sizes,
we present in this paper an accelerator architecture for FPGAs that
can be programmed during run time. This combined CNN and MLP
accelerator (CNN-MLPA) can run any CNN and MLPNN applications
without re-synthesis. Therefore, time spent on synthesis, placement and
routing can be saved for executing different applications on the proposed
architecture. Run time results show that the CNN-MLPA can be used
for network topologies of different sizes without much degradation of
performance. We evaluated the resource utilization and execution time
on Xilinx Virtex 7 FPGA board for different benchmark datasets to
demonstrate that our design is run time programmable, portable and
scalable for any FPGA. The accelerator was then optimized to increase
the throughput by applying pipelining and concurrency, and reduce
resource consumption with fixed-point operations.

Keywords: FPGA · Neural network · MLP · CNN · Overlay ·
Flexible · Programmable · Reconfigurable · Accelerators · Custom
hardware

1 Introduction

Deep neural networks have been applied to applications that are hard to
solve using traditional rule based programming methods. A trained DNN for a
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particular application takes some input features and makes prediction, decision
or classification. For many real time applications, a CPU based software system
might not be fast enough to produce outputs as the size of the network grows
for complex problems. Hence, hardware platforms like FPGA are used for
DNN applications because of their massive parallel processing units to produce
throughput higher than the CPU. The architecture of DNN with parallel inputs,
outputs, and neurons in the hidden layers makes it possible. The reconfigurable
logic blocks and interconnects, parallel memory and computing units, and low
power consumption of FPGA have produced many FPGA accelerator [1,2].
Applications such as image compression, pattern recognition, signal processing,
IoT device control, and biomedical applications (e.g., arrhythmia and eplileptic
seizure detection etc.) are reported in [3,4]. Krisps et al. [5] showed how an
artificial neural network (ANN) could be implemented within an FPGA for
a real time hand detection and tracking system. Wayne et al. [6] designed a
spiking neural network accelerator supporting large scale simulation on FPGA-
based systems. Seul et. al. Several methods exist for compressing the size of
data to reduce multiplication and addition operations for fast inference and
to reduce hardware consumption. For example, [7,8] proposed binary neural
network (BNN) inference engine on FPGAs for MNIST image classification with
high accuracy. Convolutional neural network (CNN) [9] is used for applications
such as image recognition, segmentation, speech recognition, medical diagnosis
etc. Although applications with CNN is growing, MLP workloads still have
a large share in open clouds operations by companies such as Facebook and
Google [10,11]. However, these accelerators are customized for only one type
of neural network used in a single application. Thus, the parameters for
different network topologies need to be defined before synthesis for different
applications. Moreover, creating custom DNN for different applications with
hardware description language (HDL) or high level synthesis (HLS) code is
an arduous and time consuming task. Therefore, a multi-purpose hardware
accelerator is desirable to meet varied computational and memory requirements
while supporting various neural networks for various applications. Some flexible
and scalable accelerators for neural networks on FPGA have been reported in
[12–14]. This paper presents such an accelerator for CNN and MLP applications.

The main contributions of this paper are:

• Designing a run time programmable hardware accelerator to run both CNN
and MLPNN applications.

• Writing a parameterized high level synthesis code so that parameters such as
number of processing elements (PEs), data representation (floating-point or
fixed-point) and activation function (AF) implementation approach (BRAM
lookup tables (LUTs) or synthesized logic-diffused multiplier) can be set
before synthesis. This allows designers to adjust resource utilization by
varying the parallel processing with PEs. It also enables changing the type of
AFs and data precision.
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• Making some parameters programmable (such as input size, output size,
number of layers, neurons, channels and filters, size of filters and stride) so
that they can be set (up to a maximum value) during run time. Thus, different
topologies for different applications can be run without resynthesizing the
hardware. Our experiments showed 50 h of reduction time on synthesis,
placement, implementation and routing for maximum utilization on Virtex 7.

• Developing a switching technique to switch between CNN and MLP opera-
tions according to user’s need. It enables the reuse of the same PEs for both
MLP and CNN.

• Optimizing the accelerator to demonstrate some strategies that can be applied
to make further improvement on the performance of the accelerator.

• Testing different benchmark data sets and network topologies to show
programmable attributes and performance of the accelerator, and comparing
them with Xilinx FINN and DPU framework for the same networks.

The rest of this paper is organized as follows. Section 2 introduces the CNN-
MLPA architecture, and Sect. 3 presents the results for MLP. In Sect. 4, CNN
feature of the accelerator is discussed in details along with its results. Finally,
Sect. 5 concludes this paper.

2 CNN-MLPA Architecture

Figure 1a shows the generic structure of an CNN-MLP accelerator. It contains a
1D array of Processing Elements (PEs), a scheduler, a controller, configuration
registers, local memory, and three external interface connections. Input data,
weights for the filters in convolution layers (CLs), and weights in the fully
connected (FC) layers are transferred through the same input channel. For a
particular network, weights are fetched from DRAM according to their need and
then they are stored in BRAM. The size of DRAM is the limitation for our
design. The input and output interfaces are configured as FIFOs with a DMA
engine (not shown) for fast transfers through the AXI-Stream interface. The
AXI4-Lite interface is used to program the configuration registers and control
the operation of the CNN-MLPA during run time. Users can switch between
CNN and MLP during run time with a control signal. MLP is nothing but a
fully connected neural network [15], whereas CNN contains convolution layers
with multiple channels and filters [9,16] followed by the fully connected layers.
Thus, for CNN applications, block of both convolution layers and MLPs are kept
active; and for MLP applications, only the MLP block functions. The remainder
of this section describes the functionality of different components of the CNN-
MLPA.

2.1 Processing Element

Figure 1b shows the block diagram of a PE. Each PE has two input BRAMs (one
for inputs and the other for weights), an output BRAM, control signals (Start,
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Fig. 1. Overview of the CNN-MLP accelerator.

and Done), an adder/multiplier unit (ALU), a controller, accumulation registers
(AR), and an AF unit. AR is mainly an output buffer that stores the complete
or partial result of a multiplication-accumulation (MAC) operation. Then this
result is sent either back to the input buffer so that it can be used for the next
layer or to the output stream interface. Each PE gives output for one neuron of
a layer in case of MLP operation. For CNN, each PE may be used several times
depending on the number of PEs, channels and filters in a convolution layer. Two
types of AFs are implemented: a step function and log sigmoid. Before synthesis,
two options are provided to the system designer to implement the AFs as either
computation-based functions (synthesized hardware) or using LUTs.

2.2 Scheduler

The responsibility of the scheduler is to partition each layer of neurons into the
linear array of PEs. The scheduler divides each layer into groups of neurons
equal in size of the available number of PEs. If the number of neurons in a
layer is not divisible evenly by the number of PEs, the remaining neuron(s) will
be assigned to the first PE(s) during the next cycle. For example as shown in
Fig. 2, with 4 PEs and 10 neurons in the first hidden layer, the scheduler will
sequence two groups (G1, G2) of 4 neurons and one group (G3) of 2 neurons.
The second hidden layer has 7 neurons. Thus, one group (G4) of 4 neurons
and one group (G5) of 3 neurons will be scheduled. All neurons in a group are
processed concurrently, while different groups are processed sequentially. Based
on the scheduler assignment, the controller aligns weights and inputs for each
neuron in each PE’s internal BRAMs. The outputs of each group within a layer
are saved in the output buffer, and assigned as inputs to the next layer for
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MLPNN. In case of CNN, the outputs can be used as partials sum for the next
channel in a convolution layer or as inputs for the next convolution layer.

Fig. 2. Scheduling neurons in MLP with four PEs.

2.3 Controller

The controller organizes weights and inputs for the neurons. It divides the weight
vector into groups, each having weights equal to the number of PEs, and allocates
them into each PE’s weight BRAM. It also connects the outputs of each layer
with the appropriate weights, and this combination of outputs and weights is
used in the next layer. The inputs are read serially from BRAM and stored in
PE’s input BRAM according to the number of neurons and PEs in the input
layer for FCs. However, the allocation of inputs for CL depends on the input
size, filter size, number of PEs, and strides. The allocation of weights and inputs
for convolution operation in the convolution layer is briefly described by Fig. 3
for inputs with two channels, two filters and two PEs. Two sets of inputs in a
channel can be convoluted by a filter in two PEs in parallel. Inputs (a, b, c)
are arranged in PE-1’s input BRAM. PE-2’s input BRAM holds one stride size
shifted version of inputs (b, c, d). Filter-1 has two sets of weights for Channel-1
and Channel-2, which are arranged in the temporary filter buffer. PE performs
the MAC operations to produce partial sums. The same PEs are reused until
convolution on Channel-1 is done. The same convolution process with Filter-1 is
done on Channel-2. The outputs of both channels are accumulated in the output
buffer. These operations are repeated for the same input channels with Filter-2
to produce output Channel-2. The output channels are used as input channels
for the next layer.

The controller can read the AF values via the streaming input channel and
store them in PE’s BRAM if they are implemented as LUTs. Moreover, it
calculates the number of weights being streamed to the CNN-MLPA based on
the configured registers. Finally it streams the results out of the CNN-MLPA
core and generates “done” signal in the output layer. It also enables users to
switch between CNN and MLPNN operations.
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Fig. 3. Convolution layer operations.

2.4 Configuration Registers

The CNN-MLPA contains two sets of registers, one for the MLP block and one
for the Convolution Layers (CL) block. They are used to specify the topology
of the neural network during run time. The registers are described below with
their corresponding parameters they store.

• Layers: number of layers in the FC
block.

• Inputs: number of inputs.
• Outputs: number of outputs.
• NeuronsHn

: number of neurons in
nth hidden layer.

• ConvLayers: number of CL in the
network.

• InputSize: input size in each CL.

• OutputSize: output size in each
CL.

• Filters: number of filters in each
CL.

• FilterSize: filter size in each CL.
• Channels: number of channels in

each CL.
• Strides: the step size of the

scanning filter in each CL.

The number of registers for MLP block scales according to the maximum
network configuration such as: Maximum Number of Layers (MNL), Maximum
Number of Neurons (MNN), Maximum Number of Neurons in Largest Layer
(MNNLL), Maximum Number of Inputs (MNI), Maximum Number of Outputs
(MNO), and the registers for CL scales according to the maximum number
of filters, input and output channels, size of the filters and strides in the CL.
Some values for the registers such as output size from each CL can be pre-
calculated and then be sent to the accelerator if the network architecture is
known. For example, output size is calculated by the equation, OutputSize =
Input size-Filter size+2×Padding Layers

strides . We can stream the value to the controller
directly or let the accelerator calculate it.

3 Evaluation and Results for MLP Operations

3.1 Test Platform

The CNN-MLP accelerator is implemented on Xilinx Virtex-7 (xc7vx-
485tffg1761-2) FPGA board. The overall implementation contains a softcore IP
named MicroBlaze running at 100 MHz frequency as the processing system (PS)
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and the CNN-MLPA as programmable logic (PL). The code for the accelerator
was written in C++ and generated using Xilinx’s Vivado-HLS 19.2 tool. After
synthesis, we run C/RTL co-simulation with our testbench code in HLS to verify
the functionality and output. Then, we export the RTL to vivado design suite
where it is integrated with the MicroBlaze. With the help of a direct memory
access (DMA) controller, communication among MicroBlaze, accelerator, and
external memory (DDR3 DRAM) is established for transfer and storage of
data. MicroBlaze provides programming interface to the users and enables
communication with the accelerator via JTAG-UART. It transfers the input
data and weights as a vector to the DRAM, and activates the DMA controller
to transfer the data from DRAM to the local BRAM of the accelerator. It also
assists the accelerator to be activated, read from and write to the storage. The
block diagram of the overall architecture is shown in Fig. 4. AXI Timer IP is
used to measure the time.

Fig. 4. Overview of the complete implementation.

3.2 CNN-MLPA Configurations

CNN-MLPA can be configured either for MLP operations or CNN operations.
The MLP block will exist in both cases since CNN uses the FC layers of
the MLP block. Therefore, when synthesized for CNN, it can perform MLP
operations too. First, the CNN-MLPA was configured as an MLP accelerator
only where the parameters are MNL, MNN, MNNLL, MNI, MNO as mentioned
earlier. They are set as 6, 784, 784, 784 and 64 respectively before synthesis
as a maximum bound for running the largest MLPNN we used as benchmark
for MNIST dataset. Three versions of the accelerator with 4, 8 and 16 PEs
and computation-based sigmoid AFs for all layers were synthesized. Then, we
measured execution time and resource utilization. The results are compared with
other FPGA implementations. Then we substituted sigmoid AFs with ReLU
AFs, and floating-point precision with fixed-point for improving performance
and resource utilization. Performance results for these tests are presented in
Sects. 3.4 and 3.5.
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3.3 Test Applications

Table 1 lists some referenced benchmarks along with the implementation plat-
form, operating frequency and execution time. We ran these topologies on our
architecture to evaluate performance of the MLP feature of the CNN-MLPA.
Each application was first trained offline on a desktop PC using python. Different
topologies were evaluated during the training phase. The validity of the results
for each system was checked by comparing the outputs with the expected outputs
produced by python, and C/RTL co-simulation result of HLS.

Table 1. Various FPGA implementations of MLPNN.

Works Dataset Topologies (Input,
Hidden layers,
Output)

Implementation
platform

Frequency
(MHz)

Execution
time/Speed
up

#1: (784, 64, 64, 10) 36.1x Speed Up

[17] #2: (784, 128, 128, 10) Zynq Zedboard 200 compared to 2.3 GHz

#3: (784, 256, 256, 10) Intel Core2 Processor

[18] MNIST #4: (784, 600, 600, 10) Virtex-7
(xc7vx485tffg1761-2)

490 2.514 µs

[19] #5: (784, 1024, 10) Zynq 7000 300 4.76 µs

[20] #6: (784, 126, 126, 126, 10) Zynq 7000 219 69 µs

[14] #7: (4, 7, 12, 3) Kintex-7 (xc7k410t) 330 430 ns

[18] IRIS #8: (4, 10, 3) Virtex-7
(xc7vx485tffg1761-2)

490 79 ns

[21] HAR #9: (14, 19, 19, 7) Spartan-6
(xc6slx45csg324-2)

67 800 ns

3.4 Performance Evaluation of MLP Accelerator

The benchmarks mentioned in Table 1 are run with our accelerator at 100 MHz
for three different numbers of PE. Table 2 shows the execution time for 9
different topologies for 3 different numbers of PEs for floating-point precision.
The throughput here is floating-point operations per second (FLOPS), which was
calculated by the ratio of floating-point multiply-accumulate (MAC) operations
and execution time. All the topologies were run by changing some parameters
such as the number of inputs, outputs, layers, and number of neurons in each
layer during run time without the need to re-synthesize. Input data sets were
pre-loaded into off-chip DRAM. The execution time obtained from AXI timer of
the FPGA includes the total time taken to setup the configuration registers with
parameters, transfer input and weight data from DRAM to the accelerator’s local
BRAMs, read that data from BRAMs, store them into PE’s internal BRAMs,
compute results, write final results back into the BRAMs, and send the output
to the DRAM. If AFs are used as LUTs, then they must also be loaded into the
BRAM. This will increase the execution time. Therefore, the time increases as
the network grows.
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Table 2. Execution time of optimized MLP accelerator for different benchmark
topologies.

Model Topology Execution time (µS) Throughput for 8 PEs

(Inputs, Hidden layers, Outputs) 4 PEs 8 PEs 16 PEs (MFLOP/S)

#1 784, 64, 64, 10 750 520 341 211

#2 784, 128, 128, 10 1,584 1,095 708 215

#3 784, 256, 256, 10 3,581 2,468 1,600 218

#4 784, 600, 600, 10 11,078 7,700 4,927 217

#5 784, 1024, 10 10,770 7,461 4,760 218

#6 784, 126, 126, 126, 10 1,950 1,244 798 212

#7 4, 7, 12, 3 6.1 6.00 5.88 49

#8 4, 10, 3 4.18 4.19 4.54 33

#9 14, 19, 19, 7 15.68 12.5 11 121

The computation time of CNN-MLPA accelerator is mainly dependent on the
number of PEs and the size of the network. As the size of the two hidden layers
increased from Model 1 to Model 4 of Table 2, we can see that the execution time
increases. This trend will be different if convolution layers are used. Many hyper
parameters of CNN affect its inference time. Most of the time inside PEs is spent
on MAC operations. Moreover, computation-based sigmoid activation function
contains exponential and division operations. These operations take many clock
cycles. Now, if the network size grows for limited PEs, the number of groups
of PEs will be high according to the partitioning technique described earlier
in Sect. 2.2. The maximum number of PEs depends on the available resources
of the FPGA platform. One PE can do several MAC operations at the same
time. Applying loop unrolling pragma in Vivado HLS would process multiple
loops in parallel, affecting the performance and resource utilization. This is
one method for optimization in HLS based design. Here, the PEs are partially
optimized with pipeline and unroll directives. All the loops are pipelined with
initiation intervals that do not violate the timing constraints. Moreover, log-
sigmoid activation function is replaced by ReLU activation function [22], which
is very simple to implement on hardware and takes less clock cycles to execute.
The execution time was brought down to half by this approach. If the number
of PE is increased, more operations are executed in parallel, thus decreasing the
time. However, for smaller network like the Models 7 and 8 of Table 2, the impact
of large number of PEs is not significant because they will remain unused. The
execution time can also be decreased by designing the accelerator to use LUTs
for AFs and represent the data with fixed-point precision before synthesis. But
it may reduce accuracy. We chose the bit width in such a way that the accuracy
was preserved.

The results in Table 3 are derived for 16 PEs for 8 bit (4 bit integer part
& 4 bit fractional part) inputs and weights at the input layer. Intermediate
layers required at most 12 bits (8 bit integer part & 4 bit fractional part)
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Table 3. Result comparison of floating-point and fixed-point precision for 16-PE
design.

Model Topology Execution time (µS) Accuracy at 8 Bit Frame per second Throughput (OP/S)

32 Bit float 8 Bit fixed precision at 8 Bit precision at 8 Bit precision

#4 784, 600, 600, 10 7,700 2,637 100% 380 634 MOPS

#3 784, 256, 256, 10 2,468 854 100% 1170 628 MOPS

#1 784, 64, 64, 10 520 180 99% 5556 610 MOPS

to maintain good accuracy. The precision was determined by analyzing the
maximum and minimum values of inputs and trained weights with python script
so that all the values within this range can be represented by fixed-point precision
with minimum error. The precision for intermediate layers was determined by
experiments because different network size may require different precision. Same
accuracy as 32 bit floating-point precision was achieved in this method. Both
the area and execution time were also reduced. Table 3 reports throughput in
terms of both OP/S and frame per second (FPS).

3.5 Resource Utilization and Performance Comparison with Other
Works

This section shows the resource utilization and performance of the programmable
CNN-MLPA with MLP feature only. It also reports comparison on resource
utilization and throughput with other MLP related works. The term normalized
throughput (ratio of OP/S & total LUT or DSP utilized) was introduced for
better comparison because different works adopt different parallelism strategies
and use different FPGA platforms. Moreover, our design was not fully optimized
for maximum resource consumption. We report the versions synthesized for
running the largest network for MNIST dataset in Models 4 and 6 of Table 2.
Model 4 represents the maximum number (600) of neurons in a layer and Model
6 represents the total number of layers (5), which are set before synthesis so that
both can be run on the CNN-MLPA. The maximum number of 32-bit weights
was chosen to be 850,000 because Model 4 requires around 835,000 weights. It
almost exceeds the available BRAM resources. The input BRAMs of PEs also put
pressure on on-chip memory. By directing Vivado HLS to allocate distributed
RAM [23], also known as LUT-based RAM for PEs, the consumption of 36K

Table 4. Result comparison with other works.

MLP Designs FPGA LUT DSP BRAM FF Throughput
(OP/S)

Normalized throughput
[OP/(S × LUT × 1000)]

CNN-MLPA (Our Work) XC7VX485T 18,218 6 222 11670 610 M 33.5

NAFOSTED’17 [20] XC5VLX-110T 218,528 – – 139,391 3.8 G 17.4

FPL’21 [3] XC7Z020 11,845 184 61 16,461 3 M 0.250

DLAU’17 [17] XC7Z020 53,200 220 280 106,400 192 M 3.594

IJEECS’19 [2] Altera 5CSEMA5F31C6 7,137 70 – 11,053 12.7 M 1.7

Xilinx FINN’17 [8] ZC706 91,131 – 4.5 – 1.9 T 20849
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BRAMs was brought down to 81.07%. Our design can also fetch additional
weights from DRAM when required to avoid over utilization of BRAMs.

The CNN-MLPA shows better normalized throughput compared with all
other works except Xilinx FINN in Table 4. Xilinx FINN outperforms us by a
large number because it relies mainly on binary neural network training before
inference. Thus, different networks need to go through the training cycle first.
Furthermore, it can only be used with PYNQ boards [24] for interfacing with
python, and it is not run time programmable. Our design is synthesized only once
for all networks. Therefore, the latency increases with larger networks because
the same resources are being utilized sequentially. Larger network will require
more resources for equivalent performance. If the loops for the PEs in HLS
can be unrolled efficiently, the resource utilization will be increased for better
throughput.

4 Accelerator with CNN Feature

When CNN is run on the CNN-MLPA, both convolution layer (CL) block and
MLP block shown in Fig. 1a are functional. Thus, the maximum limit for the
configuration parameters of the convolution layers as described in Sect. 2.4 are
also set based on the largest CNN being run. The largest CNN we ran was VGG-
16 based on which the maximum values for input size, output size, number of
filters and channels, filter size were chosen. Model specific parameters are sent
during run time to execute different CNN topologies within the limit. We tested
the programmable feature of the accelerator with three custom CNNs. Their
network topologies and performance are reported in Table 5. These three CNNs
perform MNIST digit classification. Some other benchmarks such as VGG-16,
LeNet and SqueezeNet were also executed.

We used ReLU AF after each convolution layer. For the custom CNNs in
Table 5, the whole convolution block is followed by two FC layers in the MLP
block before outputs are generated. Thus, a CNN with one convolution layer was
represented as ‘Input→ Conv1→ ReLU→ FC→ ReLU→ FC→ ReLU→ Output’.
The convolution layers have input and output channels. The number of output
channels from a CL, which works as input for the next CL, depends on the
number of filters used to scan the data of the input channels. The filters scan
with a step size known as stride. Their weights are multiplied with the inputs
and then the partial sums are accumulated. This operation is done in one PE.
Thus, the same PE will operate several times. The number of times the same
PE is used depends on the total number of PEs and input channels, and the size
of filters and stride. An adder is used outside PE to sum up all the output of
the same location of the channels (as shown in Fig. 3).

4.1 Results for Full CNN-MLP Acceleration

This section shows the performance and resource utilization when both con-
volution layer block and MLP block are operational. Table 5 includes result of
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the execution time, frame per second, throughput and accuracy at fixed-point
precision for three custom CNNs. 10 bit (6 bit integer part & 4 bit fractional
part) precision for inputs and weights and 16 bit (6 bit integer part & 8 bit
fractional part) precision for outputs and intermediate values were found to
preserve the same accuracy as floating-point after some experiments on the 3
CNNs. The precision might be different for other very deep CNNs. It also shows
the combinations of various parameters (filter, channel, stride, padding) used in
the convolution layers. The number of MAC operations in the convolution layers
is higher than the FC layers of CNN. The time also grows with the increase in
convolution layers. The time can be reduced by using more PEs in CLs because
they have more parallel operations than FC layers.

Table 5. Performance of CNN-MLPA for 3 CNN architectures.

Model CNN architecture Filter size Input Stride, Test Execution Frame Throughput

(No.× Width × Height) channels padding accuracy (%) time (mS) per second (OP/S)

1 Input → Conv1 → ReLU Layer-1: Layer-1: Layer-1: 97 0.209 4784 0.65 G

→ FC → ReLU (1 × 8 × 8) 1 (1,0)

→ FC→ ReLU→ Output

2 Input → Conv1 → ReLU Layer-1: Layer-1: Layer-1: 98 0.219 4566 0.92 G

→ Conv2 →ReLU → (1 × 8 × 8) 1 (1,0)

→FC →ReLU Layer-2: Layer-2: Layer-2:

→ FC→ReLU→ Output (3 × 3 × 3) 1 (2,0)

3 Input → Conv1 → ReLU Layer-1: Layer-1: Layer-1: 99 0.237 4219 1.3 G

→ Conv2 →ReLU → (3 × 3 × 3) 1 (1,0)

→ Conv3 →ReLU → Layer-2: Layer-2: Layer-2:

→FC →ReLU (8 × 6 × 6) 3 (2,0)

→ FC→ReLU→ Output Layer-3: Layer-3: Layer-3:

(3 × 3 × 3) 8 (1,0)

The comparison of resource utilization, throughput in terms of both OP/S
and FPS and normalized throughput (ratio of OP/S & total LUT or DSP
utilized) between our work and others for different benchmarks is shown in
Table 6. It also contains some custom CNN implementation done by us and others
using Xilinx DPU [25] on Zynq UltraScale+ MPSoC ZCU104 Evaluation board.
It shows how CNN-MLPA can support various CNN networks using the same
resources. The CNN-MLPA was not fully optimized for any particular network,
but was optimized for all networks. Therefore, the normalized throughput is not
the best but close to other custom designs, which supports only one network. The
DSP utilization of CNN-MLPA is also lower than other designs. When compared
with the Xilinx DPU, we got higher throughput of the models in Table 5 with
CNN-MLPA when DPU was configured with single core. Our design is also
portable to any FPGA while DPU is only supported by a few platforms.
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Table 6. Result comparison with other works for different benchmarks.

Models Designs FPGA LUT DSP BRAM 36k FF Throughput
(OP/S)

Normalized Throughput
[OP/(S ×LUT × 1000)]

LeNet-5 CNN-MLPA (This Work) XC7VX485T 70878 96 361 58422 120 M 1.7

Electronics’21 [26] XCZU9EG 61,713 123 102 27,863 141 M 2.28

ICEIC’20 [27] XCZU9EG 32,598 143 95 33,585 201 M 6.14

VGG-16 CNN-MLPA (This Work) XC7VX485T 70878 96 361 58422 29 G 418

YUAN et al.’21 [28] VCU118 781,000 4096 1779 243,802 2558 G 3275

FCCM’21 [29] XCVU9P 469,288 2100 27 663,488 49.92 G 106

SqueezeNet/ZynqNet CNN-MLPA (This Work) XC7VX485T 70878 96 361 58422 1.4 G 19

Micro-processors and Microsystems’20 [30] XC7Z020 38,038 172 97.5 25,036 5.5 G 145

ARC’18 [31] ZC702 13,418 149 124 18,114 1.1 G 87

Custom CNNs Xilinx DPU (Single Core)-In Our Lab ZCU104 49,383 710 255 98735 118 M 2.38

Xilinx DPU (Dual Core) - Electronics’22 [25] ZCU104 103,700 1,380 290 198,900 7 G 66

Xilinx DPU - SEEDA-CECNSM’21 [32] XC7Z020 31,812 194 117.5 58,169 4.1 M 0.128

5 Conclusion

In this paper, we presented a run time programmable accelerator on FPGAs to
run both Convolutional Neural Network (CNN) and Multilayer Perceptron Neu-
ral Network (MLPNN) of any topology without re-synthesizing the accelerator
every time for different networks. It partitions the operations of a network into
groups of available processing elements (PEs). The advantages of this design
are reusability and scalability over custom accelerators that can execute only
specific DNN applications. The execution time and resource utilization are
reported for some benchmark datasets to show how they vary with the number
of PEs, precisions and activation functions (AF). It can be synthesized either
for MLPNN or CNN. If synthesized for CNN, it can run both MLP and CNN
applications. The synthesis is done only once after configuring parameters such
as data precision, number of PEs, and implementation method for the AFs for
a particular FPGA. Then it becomes efficient for handling a wide range of CNN
and MLPNN topologies with varying accuracies and performance. Performance
in terms of execution time may degrade for some networks, which can be
considered as a trade-off for the flexibility, scalability and portability of the
CNN-MLPA architecture.

References

1. Zhao, M., Hu, C., Wei, F., Wang, K., Wang, C., Jiang, Y.: Real-time underwater
image recognition with FPGA embedded system for convolutional neural network.
Sensors 19(2), 350 (2019)

2. Ann, L.Y., Ehkan, P., Mashor, M.Y., Sharun, S.M.: FPGA-based architecture of
hybrid multilayered perceptron neural network. Indonesian J. Electr. Eng. Comput.
Sci. 14(2), 949–956 (2019)

3. Ngo, D.M., Temko, A., Murphy, C.C., Popovici, E. FPGA hardware acceleration
framework for anomaly-based intrusion detection system in IoT. In 2021 31st
International Conference on Field-Programmable Logic and Applications (FPL),
pp. 69–75 (2021)

4. Jiang, W., et al.: Wearable on-device deep learning system for hand gesture
recognition based on FPGA accelerator. Math. Biosc. Eng. 18(1), 132–153 (2021)



A Programmable CNN-MLP Accelerator on FPGA 45

5. Krips, M., Lammert, T., Kummert, A.: FPGA implementation of a neural network
for a real-time hand tracking system. In: 2002 Proceedings of the First IEEE
International Workshop on Electronic Design, Test and Applications, pp. 313–317
(2002)

6. Cheung, K., Schultz, S.R., Luk, W.: A large-scale spiking neural network accelera-
tor for FPGA systems. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G.
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