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Abstract. Molecular Dynamics simulation (MD) models the interac-
tions of thousands to millions of particles through the iterative appli-
cation of fundamental physics, and MD is one of the core methods in
High-Performance Computing (HPC). However, the inherent weak scal-
ability problem of force interactions renders MD simulation quite com-
putationally intensive and challenging to scale. To this end, specialized
FPGA-based accelerators have been proposed to solve this problem. In
this work, we focus on many-body potentials on a single FPGA. Firstly,
we proposed an efficient data transfer strategy to eliminate the latency
between on-chip and off-chip memory. Then, the fixed-point description
of data type is developed for computation to increase the utilization
of on-chip resources. At last, a custom pipelined strategy is presented
for Tersoff to get a better simulation performance. Compared with
a floating-point implementation based on NVIDIA 28080ti GPUs, our
design based on Xilinx U200 FPGA is 1.2 times better.

Keywords: FPGA · Molecular dynamics simulations · Pipeline ·
Accelerator

1 Introduction

Molecular Dynamics (MD) simulations have been widely used in various aspects
of life [1] and material sciences [2,3]. They have tremendously succeeded in many
application areas during the past several decades. In particular, with the rapid
development of the semiconductor industry in recent years, MD simulation,
which contains multi-body potential formulations, such as Tersoff potential,
plays an essential role in the design space of new semiconductor materials [4]
such as GaN, CdS, and TIOZ. The results from MD simulations provide helpful
information for developing novel composite materials, reducing the extra exper-
imental cost.
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Recent enhancements of High-Performance Computing (HPC) power, espe-
cially the development of supercomputers, provide an opportunity for complex
MD simulations with complex potentials. Several available HPC clusters use
accelerators such as graphics processing units (GPUs) to improve the perfor-
mance of MD simulations, and they can make simulations of millions of par-
ticles with sufficient FLOPs. The ever-increasing demands of MD simulations
even push the development of special-purpose supercomputers like Anton super-
computers [5–7] and MDGRAPE [8,9], but they are very inaccessible and are
not widely used. While Anton supercomputers are based on ASICs, some novel
systems have radical architectural changes (e.g., Sunway TaihuLight Supercom-
puter, Fugaku, and CrayXT3), resulting in a better performance of simulations,
and it makes plenty of outstanding works in simulating biological systems [10,11].
However, as the MD simulations grow more complicated, traditional general-
purpose chips can no longer meet the complex demands, such as memory, band-
width, and computing efficiency. Furthermore, the computing efficiencies, the
memory wall, and the power issues are becoming more and more serious when
mapping MD simulations onto leading-edge supercomputing systems. There is a
significant gap between the widely-used MD simulations and the current physical
systems.

Fortunately, reconfigurable computing systems, such as those based on Field
Programmable Gate Array (FPGA) technology offer a brand-new computing
pattern that enables researchers to use a unique data-flow computing model
to achieve better performance. Implementing molecular dynamics (MD) on
FPGAs has also drawn substantial attention, and serval works [12,13] are
made to tap the potential capacity of FPGAs for MD simulation. However,
existing studies [14,15] are focused on the simple force interaction such as
Lennard−Jones(L−J)potential, which contains a few variables to be computed,
and it is not suitable for simulating new semiconductor materials. Furthermore,
most of the FPGA implementations in the literature are resided entirely on-chip
for the whole computation, completely removing the dependency on off-chip
devices, resulting in a limited simulation scale during MD simulations.

In this work, we extend the MD simulation with the typical multi-body
potential (Tersoff), and it has been widely used to analyze the three-body
MD interaction between partially rigid particles such as silicon (Si). As is often
the case when looking for cost-effective ASIC replacement, Field Programmable
Gate Arrays (FPGAs) provide a viable alternative. A customized FPGA-based
solution can significantly improve energy efficiency and power consumption com-
pared to CPU and GPU clusters. We want to explore the feasibility of making
a deeply-pipelined system for MD simulations on state-of-the-art FPGAs and
propose an efficient accelerator for complex Tersoff multi-body potential with
high power efficiency.

To our best knowledge, most of the FPGA implementations in the literature
are designed for two-body MD interactions with a limited simulation scale. This
work is the first attempt to develop a large-scale MD simulation for three-body
interactions (Tersoff) on a single-node FPGA system. Furthermore, our design
for Tersoff potential is general enough, and we consider it has the potential to be



FPGA-Accelerated Tersoff Multi-body Potential 19

used for computing some similar problems in MD without completely redesigning
the hardware. We also expect that the presented work can offer some ideas for
designing and implementing similar applications on FPGAs .

Our significant contributions can be summarized as follows:

– We have presented an efficient data transfer strategy for large-scale MD simu-
lations that overlapped computation and communication, improving the uti-
lization of on-chip memories.

– We propose a fixed-point arithmetic for Tersoff potential computation,
which gives a tradeoff between resource and precision.

– We have proposed a custom pipelined computation engine for Tersoff poten-
tial, which brought a significant performance improvement.

The remainder of this paper will first present the basic background informa-
tion on Tersoff potential and prior work for MD simulaions. Then, the data
transfer design between the off-chip and on-chip memory, fixed-point quantiza-
tion of Tersoff , and a custom dataflow computing model of Tersoff will be
elaborated. Following this, the results are presented and evaluated comparatively
with different platforms. Finally, conclusions are detailed with plans for future
work.

2 Background

2.1 Classical MD with Tersoff Potential

The basic workflow of MD simulations consists of four essential parts: system
initialization, neighbor list generation, force interactions, and motion update.
Neighbor list generation and force interactions are much more time-consuming
among the four parts. In the part of neighbor list generation, a cutoff distance is
introduced, and both forces and energies between particles are assumed to be zero
if the distance between two particles is beyond the cutoff distance. Cell linked
list algorithm is used widely in modern MD simulations to build the neighbor
list. In this algorithm, the simulation domain is partitioned into several cells,
the edge of cells is equal to or larger than the cutoff distance, and there are 26
neighboring cells for each particle located in the home cell.

As mentioned before, a typical three-body potential (Tersoff) with N par-
ticles has a computational complexity of O(N3), which is far more complex than
two-body algorithm. The total potential energy for the Tersoff potential sys-
tem can be written as U = 1

2

∑
i

∑
j �=i Uij , where the energy Uij can be written

as

Uij = fC (rij) [fR (rij) − bijfA (rij)] (1)

where fC is a smooth cutoff function which contains trigonometric functions,
fR(r) = Ae−λrij and fA(r) = Be−μrij are the repulsive function and the attrac-
tive function, respectively.
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Furthermore, the most crucial part is bond-order(ζ), and it takes the follow-
ing forms:

bij =
(
1 + βnζn

ij

)− 1
2n (2)

ζij =
∑

k �=i,j

fC (rik) gijk (3)

gijk = 1 +
c2

d2
− c2

d2 + (h − cos θijk)2
(4)

Here, A, B, β, n, c, d, λ, μ and h are parameters and θijk is the angle formed
by rij and rik.

2.2 Prior MD Work

In general, MD is one of the core methods in High-Performance Computing
(HPC). Several well known high performance MD software packages (e.g. GRO-
MACS [16], LAMMPS [17], AMBER [18], NAMD [19], CHARMM [20]) are
making full use of modern HPC to achieve better performance. Furthermore,
many supercomputers are used for MD simulations to get better performance.
On Sunway TaihuLight supercomputer, Duan et al. [21] use the full supercom-
puter nodes for MD simulations, achieving a tremendous performance of over
2.43 PFlops. Meanwhile, in the year 2020, a machine learning-based simulation
protocol [22] for MD can simulate over 100 million atoms more than 1ns per day
on the Summit supercomputer, and this work can attain 91 PFLOPS (45.5%
of the peak) in double precision and 162/275 PFLOPS in mixed-single/half-
precision.

During the past several decades, Field Programmable Gate Arrays (FPGAs)
have been explored as efficient accelerators for MD simulations. Most FPGA-
based studies [23–25] only target the particle-particle (PP) computation to accel-
erate MD simulations, since they make up for over 92% of the runtime of simula-
tions. However, they only accelerate non-bonded pair interactions on the FPGAs
and do not use inter-FPGA communication. Although they can accelerate the
interactions, the overall system is not competitive due to a limited bandwidth
between the host processor and the BRAM on the FPGA card. The work pro-
posed by Benjamin Humphries et al. [26,27] shows that the widely-used 3D FFTs
in the order of 643 can be successfully presented on single FPGAs, which achieve
a competitive speed within a few 100 µs. Kasap et al. [28] make the first attempt
to propose a production-level MD accelerator using FPGA-based parallel com-
puters. Another work [13] presents the first full-scale FPGA-based simulation
engine implemented on a single FPGA and shows that its performance is com-
petitive with a GPU.
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3 Efficient Data Transfer

3.1 Bandwidth-Friendly Particle Mapping

When it comes to large-scale particle mapping, off-chip memory (DRR4/HBM)
can be used well to store particle information, especially for large-scale MD
simulations. Due to the bandwidth-to-compute nature of MD simulations, it
takes a large number of particles for few force interactions, and the performance is
directly bound up with the available bandwidth offered by FPGAs. However, the
random memory access nature of particle mapping presents an important issue:
access flexibility. It is essential to offer a bandwidth-friendly particle mapping
for the following computation.

Algorithm 1. A Design for Accelerating Particle Mapping
Require: FETCH : get the data of particles

Ncell: numbers of cell in in the x, y, z direction
Cellsize(Ncell): number of particles in each cell
Celloffsets(Ncell): new index of particles in each cell
Cellptr(Ncell + 1): the whole number of particles in the first Ncell cells

Ensure: Resorted Particle Position: X(N),Y(N),Z(N)
1: for i ∈ atoms do � Assign and count cell index
2: FETCH(Data(i))
3: k ← cell index of particle i
4: Cellsize(k) ← Cellsize(k) + +
5: Celloffsets(k) ← Celloffsets + +

6: Cellacc ← 0
7: for i in range (0, Ncell) do
8: Cellacc ← Cellacc + Cellsize(i)
9: Cellptr(i) ← Cellacc

10: Cellptr(Ncell) ← Cellacc
11: for i ∈ atoms do � Linear reorder
12: k ← cell index of atom i
13: j ← Celloffsets(k)
14: base ← Cellptr(k)
15: X(base + j) ← i
16: Y (base + j) ← i
17: Z(base + j) ← i

Since particles are randomly initialized, the particles often cannot be stored
continuously in off-chip memory. The subsequent batch data transfer will bring
the problem of discrete memory access and reduce bandwidth utilization. To
solve this problem, we propose a bandwidth-friendly data mapping design in
this work. As we adopt the cell linked list algorithm mentioned before, 27 cells
(1 home cell and 26 neighboring cells ) are sent to FPGAs for each timestep com-
putation. To increase the bandwidth utilization and decrease the data transfer
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latency, we should map the memory locations of potential neighboring cells and
the home cell as closely as possible.

The procedure of data mapping is shown in Algorithm1. The first loop (lines
1–5) computes the cell index of each particle i. Then, the second loop (lines 6–
9) accumulates the number of particles sent to on-chip memory for each batch.
At last, the third loop (lines 11–17) makes a linear distribution of particles. By
adopting this method, particles in the same home cell or neighboring cells will be
located in the off-chip memory with a sequential access pattern, and no explicit
performance degradation can be seen in simulations.

3.2 Zigzagging Buffer Design

As the scales of MD simulations increase rapidly, the need for more FPGA on-
chip resources, especially BRAMs, becomes evident. However, the main issue
becomes latency with more than enough storage offered by off-chip memory,
such as HBMs or GDDR. Therefore, an efficient strategy is pursued to make data
transfer between on-chip memory and off-chip devices, allowing for overlapping
computation and communication.

In general, the on-chip buffer strategy is always used for the prefetch design
based on FPGA, which efficiently narrows the gap between data transfer and
on-chip computation. Similarly, the on-chip buffer design is an essential strategy
used in MD simulations. To order to utilize the architectural compute resources
fully, the on-chip buffer is optimized to the minimum size and only stores the
data if reused in subsequent computations. Thus, we propose a zigzagging buffer
design to meet the requirement.

Z
X

Y

Top View

nx

nz

ny
R

R
X

Y

Fig. 1. Zigzagging buffer for MD simulaions.

As is shown in Fig. 1, (0, 0, 0) is denoted for the cells with minimum coordi-
nates, nx, ny, and nz indicate the number of cells in the X, Y and Z directions,
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respectively. R represents the following phase’s atoms to be computed, which are
only loaded but not computed. We assume the X-axis as the most frequently
varying dimension, followed by the Y - and Z-directions. The on-chip buffer is
employed to store multiple cells of particles for the following computation. For
each batch of data (3 × 3 × 3 cells) needed to be computed, an on-chip buffer
with (4 × 4× 4 cells) is loaded into on-chip memory, prefetch a cell data in the X,
Y and Z directions, respectively. The prefetched buffer will move on the X − Y
plane, then prefetch the data along the Z axis in a zigzag motion. Computation
is performed on zigzagging buffer data within the boundaries.

4 Fixed-Point Design

The practical algorithm using fixed-point arithmetic operation can significantly
reduce the area and power consumption and obtain a cost-effective design. For
brevity, we use the notation Fixed (IWL, FWL) to denote a fixed-point rep-
resentation. IWL and FWL are integer word-length and fractional part word-
length. The IWL optimizations determine the dynamic data range, while FWL
optimizations consist of the numerical accuracy analysis.

4.1 Dynamic Range Analysis

Generally, overflow is quite dangerous for any practical applications in numer-
ical simulation. Although a direct correlation between the application quality
and the overflow probability is hardly determined, the dynamic range estima-
tion usually determines the minimum and maximum values and computes the
minimum number of bits for the integer part.

Most of the variables contained in Tersoff potential are only influenced by
the input distance (rij). Their range is easy to track, and the variables only
change to a small degree. However, as Tersoff potential contains plenty of
transcendental functions computation, such as exp and pow, the final range
is hard to decide on after going through the calculation of the transcen-
dental functions. For example, when calculating the value of Bonded-Order
(ζ = exp(lam3 ∗ (rij − rik)3)), where lam3 is a constant parameter, rij and
rik are the distance between different particles. If taking the method of Extreme
Values Theory [29], the maximum range of bonded-order (ζ) is up to 263428,
resulting in the IWL being 20, which is quite expensive to set such a long word
length for bonded-order (ζ). Hence, the first problem is whether it is necessary
to cover the absolute theoretical bounds for IWL.

Considering that the distance r is the only input value for MD simulations, it
is essential to analyze the input distribution carefully. Figure 2 shows a statistic
of distribution of |rij - rik| and r for a system containing 5k particles, over 100
K iterations. It is clear that most values of |rij - rik| and r concentrate in a
fixed interval, respectively. The maximum value and minimum value of |rij -
rik| is 1.514 and 0.512, respectively. According to the formula of bonded-order
(ζ) discussed before, IWL of ζ is limited to 10, much smaller than the absolute
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Fig. 2. The distribution of rij-rik and r

theoretical bounds. We also apply a similar approach to determine the integer
bit width for the other fixed-point variables in the algorithm.

4.2 Precision Analysis

Computation in fixed-point arithmetic has limited accuracy and generates quan-
tization error at the output. The quantization of fixed-point error is considered
a noise added to the result and evaluated by the difference between the output
with different precision. Therefore, verifying that the algorithm’s fixed-point
arithmetic behavior is modified within a reasonable limit is necessary. Thus, the
second problem is whether to determine the suitable FWL between the needed
accuracy and the circuit cost.

Generally, accuracies of the final results should be guaranteed before we can
apply the fixed-point strategy. However, it is difficult to model the link between
the application quality and error occurrence probability in MD simulations.
Hence, in order to determine the impact on final accuracy caused by quantiza-
tion error, we propose a bit-width optimization through bit-accurate simulations
for different bit-width configurations. In this work, we find an essential indicator
(relative energy error) for the quick estimation of the accuracy from [30]. If the
relative energy error is more extensive than 0.1%, the final result will no longer
be more accurate than the baseline.

During the process of MD simulation, the force interaction F is a critical
variable that needs to be quantized. We explore a set of different bit widths for
F and observe the dynamic trend of the relative error and the on-chip resource
cost. According to the formulations of F , the maximum IWF of F is 8 due to
the IWF of ζ is set as 10 . Hence, to analyze the impact of different FWL
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Fig. 3. The relative error and resource cost of LUTs according to different FWL of F
.

of force (F ) on the whole system, we explore the FWL of F from 24 to 16.
From Fig. 3, we observe a similar relative error of different bit-width as with
the baseline, ranging from 24-bits to 16-bits, and the relative error meets the
requirement of 0.1% when the bit-width is larger than 20. However, when we
further reduce the bit-width of F , we see a surge of the relative error to a level
far above the required 0.1%. The sharp accuracy reduction at the bit-width of
F to 20 indicates the precision threshold of the Tersoff . When the bit width
of data decreases and cannot satisfy the precision threshold, the accuracy will
break sharply. On the resource cost side, the bit-width of 20 is also a suitable
choice that reduces the LUT usage from around 20000 to 10050 of the total
capacity FPGA.

5 Custom Dataflow Design

Since the bandwidth-friendly data mapping strategy and fixed-point quantiza-
tion design are proposed in Sect. 3 and Sect. 4, more attention should be paid
to improving the performance of force interactions. Considering the dataflow
architecture of FPGA, a custom pipelined strategy for Tersoff interaction can
be taken to improve the performance.

In this Algorithm 2, the overall force of particle i contains two parts: repulsive
force and attractive force. After generating the neighbor list, the short-range
repulsive and attractive forces will be computed quickly. However, adopting the
original algorithm of computing Tersoff potential is quite expensive. Firstly,
the original method will require an almost triple computation workload (0(N3))
for Tersoff interaction, and all the computation parts are employed under the
serial computing pattern. Secondly, the storage capacity of local value is far
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beyond the on-chip memory size if we develop large-scale MD simulations. Since
the on-chip memory size is limited, plenty of local values must frequently be
swapped between on-chip and off-chip memory. It is a bad idea the design based
on FPGAs.

Algorithm 2. Original method to calculate the Tersoff potential
Require: r: The distance of the different particles

L: Neighbor lists of different particles
FA, FR:Attraction term and Repulsion term

Ensure: F : The force on the atom
1: procedure Algo2
2: for each i ∈ particles do � Generate Neighbor list
3: for each j ∈ particles do
4: if r(ij) < cutoff then
5: L ← L ∪ j
6: Store(L)

7: for each i ∈ particles do
8: for j ∈ Li do
9: if i �= j then

10: Fi ← Fi + FR(ij) � Repulsion term
11: UPDATE(Fi)

12: for k ∈ Li do
13: if j �= k then
14: Fi ← Fi + FORCE(ζijk)
15: UPDATE(Fi)

16: for k ∈ Li do
17: if j �= k then
18: FA ← ζikj � Attraction term
19: Fi ← Fi + FA(j, i, k, ζij)
20: UPDATE(Fi)

Thus, to solve this problem, a custom pipelined design is proposed for
Tersoff interaction. As the data prefetch strategy is adopted in this work,
each batch contains 64 cells (4 × 4 × 4) for computation. As shown in Fig. 4,
when the current home cell has completed the generation of the neighbor list,
the process of force interactions for the current home cell and neighbor list gen-
eration for the next home cell can be operated simultaneously. Furthermore,
considering the ζ(ijk) is shared in the repulsive term and attraction term at the
level of k-loop, the local value ζ(ijk) can be pushed directly to the attraction
term, which means when calculating the attraction term of the particle i, it is
not necessary to wait for the repulsion term to be finished for all the particles.
Hence, the custom computation pattern used in MD simulations can improve
the performance well, allowing for overlapping different communication parts.
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Fig. 4. Custom dataflow computation pattern for MD simulaions.

6 Evaluation

6.1 Environment Setup

We have implemented, tested, and verified our designs on Xilinx Alveo U200
FPGA, which has four DDR4 stacks. This high-end chip has 2586 CLBs, 6840
DSPs, 345.9 Mb block RAMs, and 2 QSFP28 (100GbE) interfaces, making it a
good target for FPGA/MD. Then, our main evaluation metrics include overall
performance, resource usage, power consumption, and energy evaluation.

Throughout the testing process, we select a typical crystalline structure of
silicon (Si), equilibrated at temperature T = 100 K, to characterize the perfor-
mance of our implementation. The atoms are highly mobile in the simulation
system while only fluctuating around their equilibrium positions in the crys-
talline structure. The dataset has 512 K atoms, which is too large to fit in a single
FPGA’s BRAM. The dataset is constrained to a bounding box of 59.5×51×51Ȧ,
with a cutoff radius of 4.2Ȧ. The simulation timestep is 2fs.

6.2 Evaluation Performance

In this section, we will evaluate the performance of different platforms, includ-
ing multi-core CPU, GPU, and the FPGA implementations of this work. Table 1
measures the performance of Tersoff potential with 512 K atoms while using
different devices. For a fair comparison, the benchmark is run on the device
without any involvement of the host in the calculation. Firstly, Compared with
CPU, our design implemented on FPGA has much better performance, 219.64×
improvement for Intel Xeon 2690 v3 CPU with one core, and 14.69× improve-
ment for Intel Xeon 2690 v3 CPU with eight cores.
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As a cost-effective accelerator alternative in clouds and clusters, the low
power consumption of FPGA is one of the advantages of HPCs. We evaluate the
power consumption and power efficiency of different platforms. Due to the low
power consumption for FPGA, the power efficiency of our design on U200 FPGA
are 152.6× and 28.6× than that on Xeon CPU with one core and eight cores,
respectively. Then, compared with GTX 2080ti GPU, our design implemented
on FPGA has better performance, and the power efficiency is 4.1× than it. Much
more evaluation needs to be done, but we believe these results to be promising.

Table 1. Evaluation performance.

Platform Simulation rate Speed up Power Power efficiency

Intel 2690 v3 1-core 1.04 × 10−2 (ns/day) 1 32 W 1

Intel 2690 v3 2-core 3.60 × 10−2 (ns/day) 3.7× 45W 2.2×
Intel 2690 v3 4-core 7.13 × 10−2 (ns/day) 7.1× 64W 3.55×
Intel 2690 v3 8-core 1.34 × 10−1 (ns/day) 14.9× 80W 5.96×
NVIDIA GTX 2080Ti GPU 2.17 (ns/day) 208.65× 184.6W 37.68×
Xilinx Alevo U200 FPGA 2.21 (ns/day) 219.80× 46.5W 152.2×

6.3 Resource Usage Evaluation

This section discusses the overall system resource utilization for Tersoff . As
mentioned before, we propose an effective data transfer design to overlap com-
putation and communication and improve the utilization of on-chip memories
(BRAMs). Meanwhile, we find a rich design space for quantization of Tersoff
and propose a custom precision for force computation to reduce on-chip resource
usage. Finally, we present a custom pipelined computation model for Tersoff ,
reducing the computational engine idling.

Table 2 lists the available resource of FPGA and several pipeline units that
can fit onto a single FPGA chip. We note that our force pipeline for Tersoff
can include 64 pipelines. Due to the design of cell linked list, this design needs
hundreds of memory modules, while the workload mapping requires each pipeline
to accumulate the local variable on-chip. Because of this, a substantial on-chip
memory is required. Compared with the standard floating-point implementation
of Tersoff based on FPGAs, our fixed-point design reduces LUT, BRAM, and
DSP usage by 60.5%, 79.2%, and 74.1%, while the fixed-point design increase
LUT, BRAM, and DSP use by 55.1%, 74.1%, and 48.1%, respectively.

6.4 Energy Evaluation

Energy evaluation adds complexity but is needed only every few iterations. We
thus stream off the energy values computed by FPGA via PCIe every few iter-
ations. A software simulator based on CPU is made to perform simulation on
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Table 2. Overall system resource utilization

Available Force pipeline (float) Force pipeline (fixed)

Pipelines − 64 64

Kernel frequency (MHZ) − 300 300

LUT 892K 542.88K (60.5%) 491.18K (55.0%)

FF 1.74M 0.98M (56.4%) 0.95M(53.2%)

DSP 6.84K 4.40K (74.1%) 3.20K (48.1%)

BRAM 35 MB 28.04 MB (79.2%) 26.04 MB (74.2%)

Latency − 87 71

Power (W) − 49.8 46.5

the same input dataset in single precision for validation. The energy waveform is
shown in Fig. 5. Our software simulator’s energy waveform matches our FPGA
implementation with a slight variance.

Fig. 5. Energy Waveform

7 Conclusion

In this work, we focus on many-body potentials (Tersoff) on a single
FPGA with 512 K particles. Compared with conventional pair-wise poten-
tials, the many-body potential (Tersoff) requires much more arithmetic oper-
ations and data dependency. Due to the limited on-chip resource of FPGA,
several approaches are pursued to increase simulation performance, such as
input/output throughputs, pipeline design, custom precision, and parallelism.
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Compared with a floating-point implementation based on NVIDIA 28080ti
GPUs, our design based on Xilinx U200 FPGA is 1.2× better, and the power
efficiency is 4.1× than it. In the future, we would like to find ways to improve the
performance further and verify FPGAs as promising candidates for both current
and next-generation supercomputing architectures.
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