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Abstract. Object tracking is an essential element of visual percep-
tion systems. It is used in advanced video surveillance systems (AVSS),
autonomous vehicles, robotics, and many more. For applications such as
autonomous robots, the system must be implemented on some embedded
platform with limited computing performance and power. Furthermore,
sufficiently fast response is required from the tracking system in order to
perform some real-time tasks. Discriminative Correlation Filter (DCF)
based tracking algorithms are popular for such applications, as they offer
state-of-the-art performance while not being too computationally com-
plex. In this paper, an FPGA implementation of the DCF tracking algo-
rithm using convolutional features is presented. The ZCU104 board is
used as a platform, and the performance is evaluated on the VOT2015
dataset. In contrast to other implementations that use HOG (Histogram
of Oriented Gradients) features, this implementation achieves better
results for 64 × 64 filter size while being able to potentially operate at
higher speeds (over 467 fps per scale).

Keywords: Discriminative correlation filter · Object tracking ·
FPGA · Real-time image processing

1 Introduction

Object tracking is one of the basic tasks of computer vision. In general, it can be
described as determining the objects’ positions in consecutive frames. Tracking is
used in many civilian applications (autonomous vehicles, advanced surveillance,
robotics, human-computer interfaces) and military applications (air defence, tar-
geting systems, missile control systems). Depending on what data the tracking
system has and what we expect at the output, there are several subtypes of
this problem. We can assume tracking of only one object (VOT – Visual Object
Tracking) or several (MOT – Multiple Object Tracking), and decide whether it is
necessary to reidentify the object after it has been lost (long-term vs. short-term
tracking). It is also important if we track classes of objects known in advance
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(model-based tracking) or whether we should be ready to track any arbitrarily
indicated fragment of an image. A final distinction is whether we only use the
current and previous frames (casual tracker), or whether we also have access to
future frames of the image (for example, post-processing of a video surveillance
camera recording).

This paper addresses the issue of single object, short-term, model-free and
online tracking, which is the premise of the short-term challenge of the VOT
Challenge [16]. In addition to the effectiveness of the task itself in predicting the
displacement of an object between successive frames, another very important
parameter of the tracking system is the processing speed. If the time between
successive predictions of the tracking system is too long, it may result in a
too large change in the position or appearance of the object, resulting in poor
performance. Moreover, in some systems, the energy efficiency is also crucial.
Examples are solutions for autonomous vehicles in the broad sense.

In recent years, the use of convolutional networks for the generation of image
features in computer vision algorithms has become increasingly popular. These
features usually allow algorithms to achieve greater efficiency than the image
itself or the so-called hand-crafted features like HOG (Histogram of Oriented
Gradients) or Colour Attributes [10]. However, convolutional networks, partic-
ularly deep networks, require a lot of computing power to work in real-time.
It is helpful to use platforms that support parallel computing, such as FPGA
(Field-Programmable Gate Array) or GPU (Graphics Processing Unit). Specifi-
cally, the first one provides the ability to obtain high processing speed and low
energy consumption, thanks to the possibility of optimising the computational
architecture and precision of calculations to a specific algorithm. Quantisation
of neural networks, i.e. reduction of the number of bits in the representation of
processed data and model parameters, allows for a significant reduction of com-
putational and memory complexity of algorithms with little loss of performance
[3,21].

In this paper, a hardware implementation of the deepDCF tracking algo-
rithm is presented. Using the FINN compiler for neural network acceleration
and parallel computations in FPGA devices we were able to achieve an average
processing speed of 467,3 fps (frames per second) per scale at 64 × 64 filter size.

The main contributions of this paper include:

– Optimisation and analysis of a deepDCF tracking algorithm for implemen-
tation on an embedded computing platform and evaluation on the VOT2015
dataset.

– Implementation of a tracking system based on correlation filters using convo-
lutional network features. The system outperforms other similar approaches
in tracking performance and speed.

To our knowledge, no paper has been published in which the deepDCF algorithm
has been implemented in an FPGA.

The remainder of this paper is organised as follows. Section 2 describes object-
tracking methods using correlation filters. Section 3 discusses the state-of-the-
art of implementing correlation filters on embedded FPGA platforms. Section 4
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presents the evaluation of the software model, the quantisation process of the
convolutional network, and the hardware implementation. The last section con-
tains a discussion of the results obtained and directions for further research.

2 Object Tracking with Correlation Filters

In this section, we present the first algorithm in the correlation filter family
– MOSSE (Minimum Output Sum of Squared Error) [4], and its subsequent
improvements that have been implemented on embedded platforms. It should be
noted that there are also other modifications to the algorithm, such as SRDCF
(Spatially Regularized Discriminative Correlation Filters), however, they have a
much higher computational complexity and are therefore currently not consid-
ered for implementation on embedded vision platforms.

The following algorithms share a simple concept. The tracked object model is
initialised in the first frame of the video sequence. In subsequent tracking frames,
a filter response is obtained by correlating the current object model with a part of
the image around the last known object position. The location of the maximum
correlation value in the response is used to predict the new object’s position.
Also, the model is updated taking into account the new, potentially changed,
appearance of the object.

2.1 MOSSE

The goal of the MOSSE algorithm is to find an optimal filter w ∈ R
M×N (where

M × N is the size of the filter and the tracked region) which is defined by the
following LS (Least Squares) regression problem:

arg min
ŵ

N∑

i=1

||ŵ∗ � x̂i − ŷi||2 (1)

where � means element-wise multiplication, ·̂ hat denotes a discrete Fourier
transform (DFT) of some signal and ∗ is a complex conjugate. The problem is
defined in the frequency domain because using the FFT algorithm (Fast Fourier
Transform) and the convolution theorem, the computational complexity of the
correlation can be lowered from O(M2N2) to O(MNlogMN). The training set
consists of (xi, yi) pairs, where xi ∈ R

M×N is a grayscale image patch centered
around the target object in the first frame. The samples are generated by aplying
random affine transformations to the initial object’s appearance. For regression
targets yi ∈ R

M×N , a discrete two-dimensional Gaussian is used.
The problem (1) has a closed-form solution given by:

ŵ =
∑N

i=1 ŷi
∗ � x̂i∑N

i=1 x̂i
∗ � x̂i

(2)
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The prediction of object’s position is done by computing filter response in
pixel coordinates space by using inverse, discrete Fourier transform (IDFT):

g = F−1(ŵ∗
t−1 � x̂t) (3)

After every prediction, the filter is updated using a running average to address
changes in the object’s appearance:

ât = ηŷ∗ � x̂t + (1 − η)ât−1 (4)

b̂t = ηx̂t
∗ � x̂t + (1 − η)b̂t−1 (5)

where ŵt = ât

b̂t
(element-wise division), and η ∈ [0, 1] is a learning rate parameter.

2.2 KCF

The correlation filter tracker was further improved by considering tracking as a
linear ridge regression problem [13,14]. The method is called KCF (Kernelized
Correlation Filter) and the goal is to find a linear function f(z) = wT z which
minimises the error between samples xi ∈ R

d and regression targets yi ∈ R:

ε =
∑

i

(f(xi) − yi)2 + λ||w||2 (6)

An interesting conclusion from these works is, that if data matrix X is cir-
culant, the regression problem (6) is equivalent to the MOSSE filter (1) for one
sample (n = 1). The advantage of such representation of the problem (6) is a
possibility to solve it in some nonlinear space ϕ(x) using the kernel trick [19].
In brief, a kernel function κ(x, z) must be defined which acts as a dot product
in non-linear space ϕ(x). For that purpose, a so-called kernel correlation vector
is computed:

kxz = exp
(

− 1
σ2

(
||x||2 + ||z||2 − 2F−1

( C∑

l

x̂l
∗ � ẑl

)))
(7)

For tracking, the filter is initialised by:

α̂ =
ŷ

k̂xx + λ
(8)

Prediction:
f(z) = F−1(k̂xz � α̂) (9)

Update:
α̂t = (1 − η)α̂t−1 + ηα̂ (10)

x̂t = (1 − η)x̂t−1 + ηx̂ (11)

The algorithm offers an improvement in tracking performance compared to
MOSSE with a little extra computational complexity that comes from the need to
compute the kernel correlation vector (7). Computing the IDFT F−1 and DFTs
x̂l

∗ is necessary in the MOSSE algorithm anyway and the exponent function
operation can be for example stored in LUTs (Look Up Tables) on the target
hardware platform.
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2.3 DSST

Scale estimation in the tracking system is typically done by predicting the filter
at multiple scales. In that case, the object scale corresponds to the largest cor-
relation score obtained. In the paper [8], the concept of DSST (Discriminative
Scale Space Tracking) is presented. The method uses an additional correlation
filter dedicated to predicting the change in scale. Training and prediction sam-
ples x ∈ R

S×D are constructed by generating one-dimensional feature vectors
xs ∈ R

D of the object for several scales s ∈ [1, S]. Each vector is extracted from
an image patch of size βnH×βnW centered around the object’s position. β > 1 is
a scale factor parameter (typically around 1.01) and n ∈

{⌊− S−1
2

⌋
, . . . ,

⌊
S−1
2

⌋}
.

This solution to scale prediction has shown better performance while also
reducing computational complexity compared to estimating the filter in multiple
scales.

2.4 Convolutional Features

Another improvement to the MOSSE algorithm was to use multidimensional
image features [9,14] like histograms of oriented gradients (HOG) or generated
by a convolutional neural network. Such algorithms are often called DCF (Dis-
criminative Correlation Filters). In such a case, for initialisation, update and
prediction, multidimensional samples x ∈ R

[C×H×W ] are used, as well as D
filters, each for one feature channel.

ŵl =
ŷ∗ � x̂l

∑C
l=1 x̂l∗ � x̂l

(12)

âl
t = ηŷ∗ � x̂t

l + (1 − η)âl
t−1 (13)

b̂t = η

C∑

l=1

x̂t
l∗ � x̂t

l + (1 − η)b̂t−1 (14)

g = F−1
( C∑

l=1

ŵl∗
t−1 � x̂l

t

)
(15)

In the paper [6], the deepDCF algorithm is presented which utilises a con-
volutional network to generate image features in the DCF framework. A vgg-
2048 [5] model trained for the classification task was used on the ImageNet [11]
dataset. The image features x in Eqs. (12)–(15) are generated by the network
after applying a preprocessing consisting of scaling the image to a fixed size
(in [6], a 224 × 224 window was used) and normalisation. The output features
are then multiplied by a Hann window before applying them to the tracking
algorithm.

Only by using convolutional features (in fact, only the first layer), the sim-
ple DCF algorithms gave better tracking performance than more complicated
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Fig. 1. The comparison of tracking performance of correlation filter based algorithms
on the OTB-50 dataset (source: [6]).

methods. The comparison on the OTB-50 dataset [23] with other state-of-the-
art tracking algorithms, including other correlation filter methods, is shown in
Fig. 1. It is worth mentioning that the KCF and DSST algorithms can be applied
regardless of the feature extraction method as long as the features are spatially
correlated.

3 Previous Work

The implementation of correlation filters in FPGA devices has been addressed
in a number of research papers. The paper [22] presents the implementation of
the DCF + DSST algorithm on the Zynq ZedBoard platform (xc7z020clg484-1).
The architecture implemented with the Vivado HLS tool offers image process-
ing with a resolution of 320 × 240 at an average rate of 25.38 fps. An FPGA
implementation of the HOG generation presented in the article [12] is used
as image features. The authors analyse the basic computational steps of the
algorithm: SVD (Singular Value Decomposition), QR decomposition (used in
feature dimensionality reduction) and the determination of the two-dimensional
discrete Fourier transform. The architecture of the QR decomposition algorithm
has been optimised and uses 2.3 times less computational resources. The SVD
computation has been accelerated nearly 3.8 times with respect to the known
FPGA implementation [18], but consumes about twice as many computational
resources. The authors did not provide information about the tracking perfor-
mance after applying the proposed optimisations.

The authors of the article [24] implemented a three-scale KCF algorithm
based on HOG features using the Vivado HLS tool. They used the Zynq ZCU102
MPSoC platform and achieved 30 fps for a 960 × 540 resolution. A brief anal-
ysis of the parallelisation of HOG feature generation operations by using the



172 M. Danilowicz and T. Kryjak

PIPELINE, ARRAY PARTITION and DATAFLOW directives of the HLS tool
was performed. Attention was also drawn to the possibility of parallelising the
computation of kernel feature correlation (Eq. (7)), detection (Eq. (9)) and fil-
ter update (Eq. (8)). No optimisation of the Fourier transform calculation was
performed, and the function available in the HLS library was used. The effective-
ness of the algorithm was compared with other state-of-the-art methods on the
UAV123 set, however, only a selected part of the test sequences was used. The
comparison is not very reliable if only for the reason that the authors obtained
a better result with the KCF algorithm than with SRDCF, which is directly a
better algorithm in other comparisons in the literature [7].

The work [17] presents an implementation of the KCF + DSST algorithm
using the Vivado HLS tool. A processing rate of 25 fps was achieved, although
it is not clear for which frame size and filter size. The HOG features were used.
Only a qualitative (visualisation of sample frames from the sequence) evaluation
of the tracking performance on sequences prepared by the authors and selected
from the OTB set was presented. No quantitative evaluation and comparison
with other methods or implementations in view of the applied optimisations was
provided.

The publication [15] describes the implementation of the MOSSE algorithm
in one scale on the Zynq UltraScale+ MPSoC ZCU104 platform. The Verilog
hardware description language was used, which generally allows for lower FPGA
resource requirements (for example, for the dot product operation [3]). Filter ini-
tialisation procedure was implemented on the processing system of the platform
due to iterative operation and the need to implement affine transformations.
The two-dimensional discrete Fourier transform was implemented by utilising
two Xilinx FFT modules for one-dimensional signals and a BRAM to transpose
the data. The system operates on a real-time video stream at 60 fps for 64 × 64
filter size.

The paper [25] presents a single scale KCF + HOG algorithm on the ZYNQ-
7000 (xc7z100ffg900-2) platform implemented in Vivado HLS. A simpler linear
kernel function was used and the filter update mechanism was abandoned in
favour of lower computational complexity. An evaluation of the tracking effi-
ciency of the implemented system was performed based on a set of own 5
sequences containing drones. No comparison of effectiveness with state of the
art on common benchmarks was provided. A processing speed of 41 fps was
obtained.

In the work [20], the authors describe an FPGA implementation of the DCF
+ DSST filter on the XC7K325T FPGA device. The system achieves processing
speed of 153 fps on 33 image channels (one grayscale and 32 HOG) with filter
size of 32 × 32. However, the paper does not include any evaluation results of
the tracking performance. Also, no implementation details are mentioned (HLS
or VHDL, Verilog).

The works presented in this section mostly lack evaluation of tracking quality
and comparison to other implementations. All described hardware implemen-
tations are using HOG or greyscale features, which impacts processing speed
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or tracking performance. Additionally, most implementations utilise HLS (High
Level Synthesis) tools for development, which introduces resource usage overhead
compared to hardware description languages approaches like VHDL or Verilog.
This issue was discussed in detail in [3] in the case of dot product computation.

In this paper, we present the use of convolutional features to achieve higher
tracking performance with less computational complexity than HOG feature-
based solutions, which further allows for higher processing speed.

4 The Proposed CF Implementation

The main concept of this paper is to prove that choosing a convolutional network
as a feature extractor for correlation filter tracking not only gives better perfor-
mance than HOG features, but also can be efficiently accelerated on FPGA to
achieve high processing speeds. The work started with the Python implemen-
tation of a software model of the deepDCF algorithm. The environment was
chosen mainly due to the presence of libraries suitable for testing and training
neural networks such as PyTorch. It was also possible to use the official evalua-
tion tools for the VOT Challenge, which are available in Python. In addition, it
was possible to use the Brevitas tool, which is a wrapper for the PyTorch library
and performs neural network calculations, with a fixed precision (for instance, 8
bits or even 1 bit).

4.1 CNN Quantisation Using Knowledge Transfer

First, the quantisation of the convolutional layer generating features for the filter
was performed. For this purpose, the PyTorch library was used to implement
learning on the ImageNet set. The training was organised in the knowledge
transfer style, i.e. it assumes the presence of a teacher model performing the
computation in full precision and a quantised student model. The teacher model
was the first layer (including maxpooling and ReLU (Rectified Linear Unit))
of the VGG11 network, pre-trained for the classification task on the ImageNet
set. In preliminary experiments, it was noted that reducing the precision in the
representation of weights and activations to four bits did not introduce a large
increase in learning error. Additional experiments could be conducted to test
the effect of different degrees of quantisation of the feature-generating network
on tracking quality. Furthermore, the architecture of the student was identical
to that of the teacher. The student model was also initialised with the weights
of the teacher model. The cost function was the mean square error between
the features returned by the teacher model and the student model, while the
training was carried out with the SGD (Stochastic Gradient Descent) algorithm
with parameters learning rate = 0.01,momentum = 0.9, weight decay = 10−4.

4.2 Software Model Evaluation on VOT2015

The VOT (Visual Object Tracking) challenge environment was used to evaluate
the tracking performance of the software model. Our results were compared with
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those of the KCF and DSST algorithms published by the organisers of the VOT
challenge 2015 [2]. Accuracy (A) represents the average IoU (Intersection over
Union) between the object position returned by the algorithm and the reference
position in each image frame (both described by bounding boxes). Robustness
(R), on the other hand, is the ratio of frames in which the object was lost to all
frames in the tested sequence. The decisive metric in ranking the algorithms in
the competition is EAO (Expected Average Overlap), which takes into account
both accuracy and robustness. The data is summarised in Table 1.

Table 1. The table compares our software model to the state-of-the-art correlation
filter tracking algorithms used in FPGA implementations. The bolded, underlined
model was implemented in hardware and discussed in Sect. 4. The evaluation was done
on the VOT 2015 dataset. Arrows denote whether more is better ↑ or less is better ↓ for
a given evaluation metric. Using just 8 channels of convolutional features and 3 scales
for 64×64 filter gives better results than KCF and DSST filters on HOG features used
in current hardware implementations.

Algorithm Features ROI size A↑ R↓ EAO↑
deepDCF (multiscale, not
precised) (original impl.
[6])

CONV (96 channels
float precision)

224× 224
(112× 112 filter)

0.48 1.75 (not given)

deepDCF (5 scales) (our
implementation)

CONV (32 channels
4bit quantisation)

224× 224
(112× 112 filter)

0.505 1.829 0.207

deepDCF (5 scales) (our
implementation)

CONV (64 channels
4bit quantisation)

224× 224
(112× 112 filter)

0.484 1.879 0.203

deepDCF (3 scales) (our
implementation)

CONV (32 channels
4bit quantisation)

128× 128
(64× 64 filter)

0.494 1.92 0.184

deepDCF (3 scales)
(our implementation)

CONV (8 channels
4bit quantisation)

128× 128
(64× 64 filter)

0.491 2.082 0.183

deepDCF (3 scales) (our
implementation)

CONV (16 channels
4bit quantisation)

128× 128
(64× 64 filter)

0.487 1.975 0.174

DSST (evaluated by VOT
commitee)

HOG 2 × target size
(same as filter)

0.54 2.56 0.17

KCF (evaluated by VOT
commitee)

HOG 2.5 × target size 0.48 2.17 0.17

deepDCF (3 scales) (our
implementation)

CONV (4 channels
4bit quantisation)

128× 128
(64× 64 filter)

0.456 2.611 0.145

The results in Table 1 confirm that the use of features from a single con-
volutional layer instead of HOG provides better results. The thesis is further
strengthened by the fact that the mechanisms of better and faster scale predic-
tion (DSST) and nonlinear regression (KCF) can also be used with convolutional
features, which is one of the directions of our further work. In addition, an inter-
esting finding is that it was possible to reduce the channels used by the filter to
eight (in the deepDCF work there were 96 channels originally) without a signif-
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icant decrease in tracking performance. The difference becomes only significant
when the number of channels is reduced to 4.

4.3 Multichannel MOSSE Filter Implementation on FPGA

Based on the software model, the deepDCF algorithm was implemented in the
SystemVerilog hardware description language. The work started with the analy-
sis of the project [15], in which the single-channel MOSSE algorithm was imple-
mented. The solution used as a video source a 4K video stream fed to the pro-
grammable logic (PL) through an HDMI port. The first change was to switch to
communication between the PL and the processing system (PS, ARM-based in
the considered device) to send image data and receive the new object’s position.
This makes hardware debugging easier because one can easily verify intermedi-
ate data like image features and current filter coefficients using DMA in PYNQ
environment. The input images are cropped by the PS and the ROI is send to the
PL via DMA transfer. However, it is also possible to restore the original video
source by adding a module that crops the object from the image and scales it to
the desired size. This is one of our future steps.

The top-level diagram is shown in Fig. 2. DMA communicates with the PS
through the memory-mapped AXI interface and provides AXI Stream ports to
send video to the convolutional network module and to receive the filter response.
The task of the PS is to read a video frame, crop an image patch at the current
position of the object, and send this fragment to the PL. The image is processed
by the convolutional network and the filter module, which finally returns the
object’s position displacement and any possible change in scale.

The FINN [3,21] tool was used to implement the trained convolutional layer
in the FPGA. This is an experimental environment from AMD Xilinx for imple-
menting neural networks in selected MPSoCs1. The tool is based on the finn-
hlslib library [1] in which basic modules are defined, and a compiler that trans-
forms the network architecture description from Brevitas to a graph composed
of these basic modules. FINN also offers the generation of a processing system
driver to communicate with the FPGA, but this feature was not used in this
project.

The schematic of the DCF multichannel filter module is shown in Fig. 3. All
channels of a given DCNN feature pixel are fed in parallel to the module input.
The BRAM modules were used as read-only memories for the Hann window
parameters and for the two-dimensional Gaussian distribution pre-calculated in
the software model. The input feature channels are split into parallel Channel
filter modules, each implements Eqs. (12)–(15) for its channel. For the predic-
tion step (logic highlighted in green in the diagrams), the filter responses from
each channel are summed, and then the inverse Fourier transform (Eq. (15)) is
computed. The prediction is followed by the filter update step (logic highlighted
in red), for which the sum of the energy spectrums over all input channels must

1 In previous FINN versions, Alveo boards were also supported (up to v0.7).
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Fig. 2. Top level diagram of the implemented design. The image patch containing the
tracked object is prepared by the Processing System by cropping and resizing the video
frame. It is sent to the Programmable Logic via DMA (Direct Memory Access) module
which streams the data to the convolutional network module generated by FINN. The
tracking is done in the Multichannel DCF module which outputs the predicted object
displacement back to the DMA.

Fig. 3. Diagram of the main filter module. One of the advantages of the algorithm is
the possibility of full parallelisation among channels. Hann BRAM and Gauss BRAM
are used as read-only memory for storing pre-computed windowing function and the
Gaussian distribution.

be computed (Eq. (14)). Since each filter channel is updated independently, the
sum from the red adder tree is returned to the Channel filter module.

The Channel filter module is part of the design proposed in [15] with some
modifications. The schematic is shown in Fig. 4. Although object features of size
64 × 64 are processed for prediction (this is also the size of the filter), a wider
image context is sent to the module because the update must be performed on a
new object position. For this purpose, the entire wider image context is written to
BRAM in parallel. After the prediction is completed (i.e., after the responses from
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Fig. 4. Diagram of the module responsible for a single input feature channel. It imple-
ments multichannel DCF filter Eqs. (12)–(15). Logic responsible for update and pre-
diction are highlightened in red and green respectively. Because the filter needs to be
updated at the new, predicted object location, a wider context of the object features
must be saved in the Big window BRAM.

the individual channels are summed up and the IFFT is calculated), the position
of the feature patch is known and needs to be read from Big window BRAM.

To implement the two-dimensional Fourier transform, the IP provided by
Xilinx was used to calculate the one-dimensional transform of each row of input
data. These results are then stored in BRAM, from which they are read column-
wise into a second one-dimensional transform module.

The hardware implementation was validated using the software model and
yielded the same results on sequences from the VOT2015 set. The FPGA
resource consumption of the system implementation for an eight-channel 64×64
filter is shown in Table 2. We used 32-bit fixed point precision in the calculations
required by the filter and the system currently operates in one scale.



178 M. Danilowicz and T. Kryjak

Table 2. Resource utilisation for the implemented tracking system with 64 × 64 filter
and 8 feature channels. Notice that the convolutional layer module uses only a small
portion of all FPGA resources utilised by the system.

Resource Used Available % utilisation % utilisation (CNN only)

LUT 156663 230400 68,00 5,40

LUTRAM 15436 101760 15,17 1,77

FF 334373 460800 72,56 3,18

BRAM 270, 5 312 86,70 1,92

DSP 480 1728 27,78 0

For the above implementation, an average reprogrammable logic processing
speed of 467.3 fps was obtained for a 375 MHz clock (single ROI processing).
The processing time is limited by the convolutional network module, which cur-
rently computes one output pixel at a time. Even faster feature extraction could
be achieved by computing multiple output pixels in parallel. Assuming sequen-
tial processing of the 3 scales, tracking speeds reaching 150 fps can be expected,
which exceeds the speeds achieved by existing hardware implementations.

5 Conclusion

In this paper, we presented a real-time FPGA implementation of deepDCF track-
ing algorithm. We evaluated the performance of the proposed solution and com-
pared it with other similar approaches on the VOT2015 benchmark. The use
of convolutional features in correlation filter-based object tracking offered an
improvement in comparison to the often used HOG features. Next, we imple-
mented the proposed method in a SoC FPGA device, which allowed us to take
advantage of the computation parallelisation and quantisation. We also demon-
strated that the models generated by the FINN compiler can be successfully
used with one’s own design implemented in a hardware description language.

The used filter size of 64 × 64 offers higher accuracy (EAO 0.183 on the
VOT2015 benchmark) than the algorithms implemented on FPGAs in the other
articles discussed here while maintaining an average processing speed of 467.3 fps
per scale. It is possible to select a larger filter, for example 112 × 112 to achieve
even higher tracking quality but at the expense of processing speed. A lower
FPGA clock could also be used to achieve lower power consumption depending
on the particular application of the tracking system.

As part of future research, we plan to implement sequential processing of
several scales or an application of the DSST filter. It is also worth investigat-
ing the possibility of using a nonlinear KCF filter by adding a kernel func-
tion computation to the existing implementation. We will also investigate the
impact of the number of bits in the representation of the filter computation, as
this potentially could reduce the FPGA resource consumption. The source code
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of the implementation is available at https://github.com/mdanilow/MOSSE
fpga/tree/deep features.
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