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Preface

The 18th International Symposium on Applied Reconfigurable Computing (ARC 2022)
was organized by the Tsinghua University, China, during September 19–20, 2022. With
consideration of the COVID-19 pandemic situation, the event was held in a hybrid mode.

As with previous years, the ARC 2022 edition covered a broad spectrum of
applications of reconfigurable computing, including numerical application, machine
learning, communication, architecture, etc. This year’s symposium program included
13 regular contributions selected from a total of 16 submissions. The selection process
was very competitive with each submission having at least four reviews in an open peer
review process. The strong technical program also included keynote talks andworkshops
that covered both academical and industrial breakthroughs.

This year’s successful program was made possible by the contribution of many
talented individuals. First and foremost, we would like to thank all the authors who
responded to our call for papers and the members of the Program Committee and the
additional external reviewers who, with their opinion and expertise, ensured a program
of the highest quality. Last but not the least, we would like to thank the steering commit-
tee and staff from Springer who ensured that publicity and web interactivity remained
engaging and responsive.

Thank you all.

September 2022 Yu Wang
Wei Xue

Thomas Chau
Lin Gan
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100% Visibility at MHz Speed: Efficient
Soft Scan-Chain Insertion on AMD/Xilinx

FPGAs

Hossein Omidian(B), Eddie Hung, and Dinesh Gaitonde

AMD, San Jose, USA
hosseino@gmail.com

Abstract. FPGA-based prototyping has become an increasingly impor-
tant part of the overall integrated circuit design and verification flow, pro-
viding the ability to test an integrated circuit running at (near) speed
with realistic inputs and outputs. The reconfigurable aspect of FPGA
technology makes them suitable for hardware emulation and prototyp-
ing, plus their nature of having over-provisioned resources — inherently
necessary to support the late-binding of a wide range of applications —
allows support for ‘out-of-band’ functionality such as debug. It is impera-
tive that as much visibility into the inner state of the circuit is accessible
in order for debugging to be effective. Full visibility for functional debug
can be achieved by building a soft scan-chain out of LUTs and flip-flops,
or by using hardened device readback capabilities that use the configu-
ration network to exfiltrate circuit state. In this paper, we show how soft
scan-chains can be efficiently and intelligently inserted to give 100% visi-
bility into all user flip-flops of a design and demonstrate how performing
parallel scan dumps can be more than 10x faster (reaching 1 MHz) than
hardened readback when evaluated on industrial emulation designs in
excess of 200K flip-flops.

Keywords: Emulation · Prototyping · Debug · Scan chain · Readback

1 Introduction

Since the cost of fabricating a custom ASIC is so time-consuming and expen-
sive after which changes (for example, to fix a design error or to insert some
debug infrastructure) are not always possible, reconfigurable technology such as
FPGA is widely used in this area. FPGAs are inherently flexible devices that
are composed of programmable logic cells, memory and interconnect. This allows
them to be customized and used in a broad range of applications including ASIC
prototyping and hardware emulation [1].

A problem common to ASIC and FPGA technology is the lack of on-chip
visibility for diagnosing erroneous behaviour. In ASICs, such errors can be caused
by (a) fabrication defects or (b) functional bugs. Fabrication defects are caused
by the imperfect nature of silicon fabrication process whereby, for example, a
metal wire or a transistor is randomly manufactured incorrectly. To identify
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Gan et al. (Eds.): ARC 2022, LNCS 13569, pp. 1–16, 2022.
https://doi.org/10.1007/978-3-031-19983-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19983-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-19983-7_1
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Fig. 1. (left) ASIC scan flops (scan-mux and regular flop) arranged into a chain. (right)
Hardened FPGA config. network allowing both write and read back.

these cases, ASICs often employ ‘scan flops’ in place of regular flip-flops to
enable manufacturing tests. A scan-flop behaves just as a regular flip-flop but
with the optional capability (achieved using a scan mux) that new values can
instead be sequentially shifted in and existing values shifted out when arranged
into a scan-chain as shown in Fig. 1. The utility of a scan-chain is that post-
fabrication, a known test pattern can be shifted into all flip-flops of a design,
the clock advanced to capture the next state computed by the device, and then
this newly captured state can be shifted out and compared with a known golden
value. Deviations from this golden value would indicate a manufacturing failure.

After manufacturing tests, these same ASIC scan-chains can be reused to
investigate functional bugs by following the same shift out method: halt the
design at the clock cycle of interest and proceed to shift out all values on the
scan-chain to gain a complete picture of all design state to aid debugging.

In contrast, even though FPGAs may suffer from the same issue of fabri-
cation defects, their reconfigurable nature provide alternate ways to perform
manufacturing tests without the overhead of hardened scan-chains as for ASICs.
An unavoidable overhead that FPGAs do have to pay, however, is that of a
configuration network. The purpose of this network is to transport all of the
configuration necessary to implement a user design, such as all LUT contents,
flip-flop initialization values, interconnect switch states, etc. to all locations of
the device. Some FPGA vendors, such as Xilinx, allow this same configuration
infrastructure to be re-purposed as a method of extracting user-state to aid in
the investigation of functional bugs, in the same way as ASIC scan-chains. We
refer to this FPGA capability as ‘hardened readback’.

Hardened readback for functional debug shares the same limitations as for
ASIC scan-chains: the design must be halted during the shift out procedure,
for a length of time proportional to that necessary to perform configuration
readback of all used flip-flop resources in the design or to unload the longest
ASIC scan-chain. In this work, we show how the use of multiple soft scan-chains
(i.e. scan-chains created out of regular LUT logic) can be used to dramatically
reduce this overhead for functional debug; our main contributions are:

1. An approach for the efficient insertion of multiple soft scan-chains capable of
acquiring 100% visibility into all flip-flops of a user design while still allow-
ing such designs to continue operating in excess of 1MHz while a typical
emulation design operates between 1 to 10KHz.
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2. Integration of our techniques into a production quality and fully timing-driven
commercial FPGA toolflow, one mindful of real-world considerations such as
hold time requirements, clock skew, etc.

3. Robust evaluation on 29 industrial emulation designs containing multiple
clock domains and more than 200,000 user flops, finding a 10x speedup over
a hardened readback solution.

The remainder of the paper is organized as follows: Sect. 2 explains back-
ground and related studies. Section 3 describes the proposed approach of insert-
ing soft scan-chains into a user’s design. Section 4 provides experimental results
and comparison of our approach with hardened readback. Finally, Sect. 5 con-
cludes the paper.

1.1 Related Work

The novelty of our work is not in using soft-logic to implement scan functional-
ity. Prior work from Wheeler et al. [2] examined the application of ASIC-style
scan-flops (as per Fig. 1) to replace existing flip-flops (as opposed to our proposal
of shadowing existing flops) to allow design state to be both observed as well
as modified (where our shadow approach is unable to modify). The cost of this
prior work is a reported 20% reduction in Fmax during normal operation, a 2.3x
increase in LUT count, and the need to halt the design during the scan out pro-
cedure. Wheeler et al. state that is an acceptable overhead during development
since this handicap is removed for the final production design. In contrast, our
approach focuses on this development phase and we show that there is no Fmax
degradation when scan functionality is not used, a temporary Fmax slowdown
during scan-out, and no effect on the size of FPGA required, when evaluated on
industrial designs from the emulation domain.

Work from Tiwari and Tomko [3] explores the use of soft scan-chains to
implement software-like “watch-point” functionality to detect when specific val-
ues appear on predetermined internal signals, after which the clock can be halted
and the state of the design examined. Here, scan-chain functionality is used to
update watch-point values efficiently. However, both prior works [2,3] do con-
sider using FPGA device readback to reduce the area overhead and for pro-
viding observability respectively, recognizing as we do, that readback is a slow
operation.

2 Background

When a hardware design does not behave as expected, debugging is required
to find the root cause of this erroneous behaviour. Key to the effectiveness of
the functional debugging process is the visibility that the designer has into the
internal signals of their circuit. Using software simulation, unlimited visibility
is available but the speed at which large complex designs can be simulated is
often many orders of magnitude slower than their target frequency. With real
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silicon, this frequency gap is significantly narrowed on FPGAs and may even
be eliminated on ASICs, but the tradeoff is that visibility becomes severely
limited. To overcome this limited visibility, designers must repurpose existing or
insert new infrastructure to expose internal signal activity. There are two main
categories for visibility infrastructure: scan-based and trace-based.

As described in Sect. 1, ASICs are often built with scan-chain capabilities to
test that the silicon was manufactured correctly. Post manufacturing test, such
functionality can be repurposed for debug. As long as the design can be halted
at precisely the clock cycle of interest, by unloading all values of the scan-chain
a designer can determine of all flip-flops in the design (and consequently, all
intermediate combinatorial signals too). Equivalently, the same concept can be
applied to FPGAs that support a hardened readback capability once the design
is halted, its configuration network can instead be repurposed to read/scan out
all flip-flop state. The design can then be advanced to the next state by single-
stepping the clock, and further scan dumps performed to understand how the
design evolves over time.

The disadvantage of a traditional scan-based approach is the time required
to dump its contents. For FPGA technology, the max frequency of a user design
with full readback FmaxD−with−RB is proportional to the number of flip-flop
values that need to be dumped NFuser, the efficiency of hardware readback Eff ,
as well as output bandwidth of the configuration controller (on Xilinx devices,
this is referred to as ICAP [4], BW(ICAP )):

FmaxD−with−RB ∝ Eff · BWICAP

NFuser
(1)

Eff here is a (0, 1] scaling factor that reflects the overhead of using hardened
readback. In Xilinx UltraScale+ devices, the configuration network operates at
a frame granularity where each frame contains 2,976 bits of configuration data
that must be atomically written or read [5]. Using hardened readback to extract
the value of just one flip-flop value requires the entire frame to be read back,
leading to an efficiency of 0.00034. The efficiency is improved, up to a limit,
when multiple user flops that happen to be placed into the same frame are read
back.

Trace-based approaches require the insertion of trace buffers and supporting
logic to non-intrusively record a small subset of signal activity into on-chip mem-
ory [6]. The advantage of this method is that a design-under-trace need not to be
halted in order to gain visibility, as well as being able to capture behaviour of the
circuit over time without single stepping the clock. However, the disadvantages
of trace infrastructure is that it does occupy precious on-chip memory and logic
resources which can limit the amount of information that can be traced — both
in terms of the number of signals that can be traced in parallel (corresponding
to the width of the trace memory) as well as how many cycles of history can be
captured (the depth of the trace memory).

Recent work by Attia and Betz [7] has demonstrated a compelling need to
export the entire state of the design — that stored in user flip-flops as well as
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Fig. 2. Two-step scan-chain insertion: Add_FlopLoad followed by Add_ScanChain.

RAM contents — so that a faulty subset of the design already executing in an
FPGA can be migrated into the much-slower (but more familiar and productive)
software simulator to continue debug. To achieve this, they use Xilinx’s hardened
readback [4] capabilities, making it closer to the scan-based approach than a
trace-based one.

In this work, we propose that a soft scan-chain approach be used to overcome
the performance penalty incurred by continuously applying a hardened readback
solution, yet without restricting the visibility available to a designer as would be
necessary with a trace-based approach.

3 Soft Scan-Chain Methodology

The implementation and requirements of a soft FPGA scan-chain are very dif-
ferent to those in ASICs. Firstly, ASIC scan flops are typically highly optimized
macro cells that can be used as drop-in replacements to regular flop cells with
only a small area impact. For an FPGA, it is not practical to make all cus-
tomers pay this area cost (along with even more area to expose the additional
pins to the routing network) for a feature that many would not need, especially
since manufacturing test is a FPGA vendor responsibility. Secondly, since an
FPGA scan-chain is not used for manufacturing test there also does not exist
the requirement to load new values into user-flops.

Add_FlopLoad : Instead, FPGAs can use soft logic resources — lookup tables
— to implement the 2:1 scan multiplexer functionality. Rather than add an
extra 3-input LUT to every path leading into a flip-flop, we propose that each
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flop in the user design (henceforth referred to as a user flop) be replicated into a
shadow flop, as shown in Fig 2a. Importantly, this shadow flop must be sensitive
to a different clock than that used by the user flop for reasons explained in the
following paragraph. A scan-mux can then be attached in front of the shadow
flop, as per Fig 2b. Since user-flop controllability is not a necessity in FPGAs,
along with the over-provisioning of flip-flop resources on FPGAs, a shadow flop
is suitable here. Furthermore, adding an extra fanout to the output of the user
flop, as opposed to adding extra logic to its input, also minimizes the impact on
compilation quality and runtime. Both the shadow-flop and scan-mux insertion
is accomplished in the Add_FlopLoad stage of our flow.

After capturing a design’s state into shadow flops, all those captured values
need to be stored or exported at every user clock cycle so that it may be analyzed
or post processed. This can be done connecting the shadow flops into a serial
chain (Fig. 2c) similar to a shift register; once the user clock is halted, advancing
the scan clock will cause its contents to be dumped out one value at a time.
Attaching the shadow flops to an separate scan clock independent from the
user design is both necessary so that the scan-chain can be dumped without
interfering the user design, and also beneficial since the scan dump procedure
can also be safely operated at a higher frequency.

Figure 3a shows a design with 6 flip-flops FF1, FF2, ..., FF6 with values
D1,D2, ...,D6. After each user design clock cycle, the Capturing_Value process
starts by saving each user flip-flop’s value into their respective shadow flops. This
step is done by selecting the top input of all scan-muxes. The Capturing_Values
step was also shown as “Read” in the Fig. 3a waveform. After capturing values
into the shadow flops, we move to the Scan_Dump mode to send the values out
serially.

In the Scan_Dump mode, the bottom input for all scan-muxes are selected
to enable shift out functionality1. As one can see in the waveform from Fig. 3a
when scan functionality is desired the user clock period needs to exceed the time
necessary to perform a scan dump when operating the scan clock at a different,
faster period. Hence, the maximum frequency of a design with continuous scan
dumps (Fmax) will be always dependent on the Fmax of the scan-chain as well
as the number of scan flops that need to be unloaded.

With NFscan as the number of scan flops on the scan-chain (which in this
work is equivalent to the number of user flops NFuser) Eq. 2 shows the relation-
ship between the Fmax of the slowed user design (FmaxD_with_SC) and the
scan-chain’s Fmax (Fmaxscan).

FmaxD_with_SC =
Fmaxscan

NFscan + 2
(2)

The +2 factor in the denominator represents a cycle to first read (capture) the
user flop values into the shadow flops, and a cycle at the end to export the last
value in the chain.

1 Scan_Dump can be done every cycle or once in while. For this study we focus on capturing and
reading back flops every cycle since it covers both cases.
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Fig. 3. Single and multiple/parallel Scan_Dump in which the scan clock operates at
a multiple of the user clock.

To improve the user-design-with-scan Fmax (FmaxD_with_SC), it is possible
to have more than one scan-chain and read out multiple in parallel. In other
words, we divide the set of all shadow flops into different scan-chains. Having
more than one scan-chain leads us to have less number of flops in each chain
(NFscan) which leads to a higher FmaxD_with_SC . Figures 3b and 3c have three
scan-chains instead of one, with each containing 1/3 of all flops. This means we
can shift out all scan flop values in only 2 cycles instead of 6 cycles, and Fmax
can be increased almost 3x.
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When to Insert Scan-Chains: In our flow, the Add_FlopLoad step is followed
by Add_ScanChain. The method taken by this latter step depends on when in
the compilation flow it is applied, which we shall discuss first. Each of these
previous steps can be applied to the user design at different stages of the flow:
synthesis, placement or routing as illustrated in Fig. 4.

Fig. 4. Scenarios 1–3: scan application at various points of the compilation flow.

Scenario 1: apply both Add_FlopLoad and Add_ScanChain steps after syn-
thesis and before placement. In this scenario, the place and route tool will have
maximum flexibility to find optimum overall placement of the combined design
(user design and the scan-chain). Since the placement algorithm places the design
considering its routability, finding a performant routing will be more likely. For
example, in case of possible routing congestion, the placer might spread out the
design throughout the chip to ensure the router can find a high quality rout-
ing solution. On the other hand, there are two shortcomings in this approach.
First, adding the full scan-chain to the user design before placement will bias
the placer to give the user design and the scan-chain equal priority, which may
lead to a subpar placement for the user logic. Second, the placer is given exactly
one scan-chain ordering, with zero flexibility, which can also lead to a subpar
placement for one or more scan-chain connections thus lowering Fmaxscan and
affecting overall system performance.

Scenario 2: applying Add_FlopLoad before placement, letting the tool place
the design, and then applying Add_ScanChain to the placed result. In this
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scenario since all the shadow flops are only connected to user flops, the placer is
going to place the design without being significantly affected by any scan-chain
connections. The placer algorithm will simply see the shadow flops and scan
muxes as floating logic attached only to the user flop’s output, thus place the
user flop as it would do normally and then place the shadow flop at a nearby
location. Since Add_ScanChain is done after placement, the exact location of
each shadow flop is known and this information can be used to find an efficient
scan-chain order that minimizes the routing distance between shadow flops.

Scenario 3: performing Add_FlopLoad and Add_ScanChain both after place-
ment/before routing, into just the FPGA resources left unused by the design.
This scenario comes handy when the user design was anchored or floor-planned
with a specific criteria. Adding the scan-chain after the placement technically
doesn’t affect user design’s placement and will try to add scan logic into any
unused resources left behind. However, finding unused LUT and compatible flip-
flop resources near to user flops is far from guaranteed.

Experimentally, we have found that Scenario 2 performs best and is the focus
for the remainder of this paper.

Add_ScanChain : For Scenarios 2 and 3, Add_ScanChain is to be applied
post placement. The main goal of this step is to maximize Fmaxscan by reduc-
ing the total wirelength and worst-case delay of all shadow-flop to scan-mux
paths across all connections within and between all scan-chains. Given a placed
result where all scan-mux and shadow-flop locations are known, the problem is
almost exactly that of the travelling salesman — starting at any shadow flop,
determine the order in which all other scan-mux/shadow-flops are to be visited
before finishing at a particular input pin, with no flop visited more than once
and with the objective of minimizing the total travelled distance (equivalent
to routed wirelength, minimizing which will improve the likelihood of finding a
legal routing solution). An additional objective on top of the travelling salesman
problem is to also minimize the maximum distance between any two flops, as
that determines Fmaxscan.

Despite the (NP) difficulty of optimally solving the travelling salesman vari-
ant, experimentally we have found that a simple greedy heuristic was sufficient
to achieve high performance. Starting from top-left of the chip, go down and
find the nearest shadow flop and connect that to the scan-chain repeating until
we hit the bottom of the chip. Then move right by one column and this time
move to the top of the chip continuing to connect shadow flops in this way.
This zig-zag move continues until all shadow flops are visited. Figure 5 shows an
example of adding one scan-chain to 1% of the flops in a design. We picked 1%
of flops randomly through out the design; 1% simply to make the figure clearer.
The scan-chain is shown in purple color.

Similar to top-down approach, a left-right approach was also implemented.
Experimentally, we observed that a top-down approach had slightly better results
compared to left-right approach. We believe that top-down is more suitable for
columnar FPGA architectures such as those from Xilinx.
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Fig. 5. Device view visualizing the connections made by one scan-chain visiting just
1% of the shadow flops in the design, using the top-down approach.

Partitioning: So far we have talked about the two main steps for adding scan-
chains to a user design and the different scenarios for when to do so. We also
talked about the benefits of having more than one scan-chain In the following,
we will explain different ways to break a single scan-chain into multiple and
explain the tradeoffs in doing so.

As discussed, one dimension that can improve FmaxD_with_SC is by increas-
ing the number of scan-chains, thus decreasing the amount of time required to
dump their values (in parallel). Partitioning techniques can be used to cut the
design into smaller partitions and assign a scan-chain for each partition. Par-
titioning can be define based on different parameters. One way of partitioning
a design is considering the FPGA architecture and partition based off that.
For example, Xilinx’s latest FPGA devices use Stacked Silicon Interconnect
(SSI) technology, which creates high-capacity FPGAs by combining multiple
dies called Super Logic Regions (SLRs) [8]. Considering that crossing from one
SLR to another incurs a significant wire delay, partitioning can be done along
these lines.

Partitioning based on design hierarchy would be another method that gener-
ates multiple scan-chains within each hierarchical sub-tree. Under the assump-
tion that the FPGA placer typically tries to place elements within the same
hierarchy close to each other, partitioning along hierarchy lines can be benefi-
cial for Fmaxscan as well, and especially so for Scenario 1. Moreover, having
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scan-chains which stay within the same hierarchy can help the eventual post-
processing and analysis steps too.

Both approaches were employed in this work.

Exporting Scan Data: Lastly, we must consider what to do with data from
the scan-dump: sending it off-chip or to another module to do post-processing.
We consider two different ways to do it in this study. One approach is using
a hardened high speed on-chip serializers such as Xilinx GT transceivers [9] to
export this device off-chip. In this approach, FmaxD_with_SC is also dependent
on the serializer’s bandwidth (BWserdes) as shown Fig. 3b. Equation 3 captures
this new consideration:

FmaxD_with_SC = max
(

Fmaxscan

NFscan + 2
,
BWserdes

NFscan

)
(3)

Another approach to capture multiple scan-chain outputs is by having a
soft logic shim implemented on the FPGA fabric which gathers their outputs,
buffers them, and transmits it using the AXI stream protocol. In this study
we also implemented a parameterized soft logic shim that our tool flow uses to
receive all scan outputs. This soft logic shim uses the AXI Capture module. One
shortcoming of this approach however is its area overhead, which scales with the
number of parallel scan-chains that exist.

Trade-off and Optimization: As discussed before, overall system performance
FmaxD_with_SC is a function of Fmaxscan and the maximum number of shadow
flops across all scan-chains. Therefore to improve system performance, it’s pos-
sible to break down a big scan-chain into multiple smaller ones to reduce the
maximum number of shadow flops in any one scan-chain. Although having sev-
eral scan-chains can increase FmaxD_with_SC , it also adds complexity to out-
put capturing logic at the end. Moreover, having too many parallel scan-chains
unloading at the same time might saturate the off-chip bandwidth. Our scan-
chain insertion tool flow explores this problem space to find a trade off between
number of parallel chain and the number of shadow flops in each while consid-
ering area usage/bandwidth capabilities of export logic. During scan-out, the
Fmax of the user design must be slowed to FmaxD_with_SC as defined in Eq. 2,
which describes the frequency if the state of all user flops is to be scanned out
at every cycle. Relaxing this requirement to a complete state dump every N
cycles would improve FmaxD_with_SC by the same factor – in this mode, soft-
ware simulation (along with a trace of any external stimulus) could be used to
interpolate missing user flop values.

4 Experimental Results

Our experiments are carried out using the Xilinx Vivado toolflow (version 2021.2)
targeting Xilinx UltraScale+ devices. We have developed a tool that analyzes
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post-synthesis, post-place or post-route netlist and finds a good tradeoff between
area/speed for adding soft scan capability to the user design to enable hardware
testing/emulation. Our tool flow explores area/speed tradeoffs to find how many
scan-chains should be implemented, how many flops in each scan-chains are
needed and how the design needs to be partitioned. After finding a good tradeoff,
it applies the Add_Flopload and Add_ScanChain steps described in the previous
section. Moreover, the tool determines an appropriate value for Fmaxscan (and
thus, computing FmaxD_with_SC) and constrains both clocks accordingly. After
adding the soft scan-chain, our tool flow adds all the necessary control units and
soft IPs for parallel capture to send the test flops’ values off-chip. We examined
29 industrial emulation designs ranging from approximately 100,000 flops to over
200,000 flops. In those 29 designs, we targeted a different numbers of user flops
using a different number of scan-chains and let our tool insert the necessary logic
and connections.

Fig. 6. Achievable user design Fmax with full per-cycle visibility — our work using
soft-scan-chains being dumped continuously: SC#x (FmaxD_with_SC); baseline using
hardened readback (The ICAP/FmaxD_with_RB results presented assume an opti-
mistic but unrealistic value of Efficiency = 1 within Eqn. 1, meaning that hardened
readback is capable of returning only user flop values. Even though this result is not
attainable in current devices, we believe this reflects the upper-bound of what a con-
figuration network based approach is capable of.): ICAP (FmaxD_with_RB).

Figure 6 shows the FmaxD_with_SC for different numbers of scan-chains
while continuously dumping out all flop values in the design. To compare with
the baseline approach, we also show an optimistic hardened readback approach
(See footnote 2) using the ICAP (FmaxD_with_RB) and the configuration net-
work to do so. As we can see after adding only four scan-chains to the design,
FmaxD_with_SC exceeds that possible with the ICAP approach. By adding 32
scan-chains, on average the improvement over FmaxD_with_RB is 10x.

The bandwidth results for 29 designs in our design suite are shown in Fig. 7.
As discussed in the prior section, scan data needs to be transferred off-chip to
be analyzed. We considered two approaches in this study to send the design
status off-chip; 1) using GT ports and 2) dumping the values into DDR memory.
Our tool flow, analyzes the bandwidth needed for sending the data off-chip and
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Fig. 7. Achievable soft scan/hardened readback (See footnote 2) bandwidth, along with
achievable off-chip bandwidth using GT transcievers.

adds the necessary IP to the design. As mentioned, having more scan-chains is
desirable to achieve higher FmaxD_with_SC but also requires more bandwidth
to send the data off-chip. At 64 scan-chains, we exceed the bandwidth available
supported by one GT resource. This means the tool flow needs to assign appro-
priate number of scan-chains to each GT based on the bandwidth. We face a
similar limitation for DDR as well. A user needs to consider these limitations
and force our tool to partition accordingly. This can be automated and will be
addressed in future work.

Fig. 8. Relationship of Fmaxscan and number of scan-chains.

The average Fmaxscan results for different numbers of scan-chains is shown
in Fig. 8. As we can see, by breaking a big scan-chain into a number of small
chains, our tool flow can find a set of shadow flops closer to each other and create
chains with lower delay.

Lastly, we added one long scan-chain using our tool flow, once for half of
the flops in the design and once for all the flops in the design. We measured
the placement and routing runtime and compared it with baseline (with no no
scan-chains). We observed that place and route runtime for one long scan-chain is
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Fig. 9. Placement runtime, normalized to runtime for original user design.

Fig. 10. Routing runtime, normalized to runtime for original user design.

higher than having multiple shorter chains and we report the worst case scenario
for runtime. Results of placement and routing runtime is shown in Figs. 9 and 10
respectively. As we can see even for the worst case, the effect of adding scan-
chains on place and route runtime is acceptable when gaining a 10x improvement
for FmaxD_with_SC with only 32 scan-chains.

Conclusion

FPGA prototypes have become an increasingly important part of the overall
integrated circuit design and verification flow, providing the ability to test an
integrated circuit running at (near) speed with realistic inputs and outputs.
This make FPGAs great platforms for hardware emulation and provides visi-
bility into many signals. This paper presents a soft scan-chain methodology for
FPGA technology which can be applied to user design to give full and continuous
visibility into all flop values, in a way that reduces its Fmax impact drastically
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compared to a hardened readback approach using the FPGA’s built-in config-
uration network. Our tool flow analyzes the user design, explores its area/time
tradeoffs, and partitions the scan connections into multiple parallel chains auto-
matically in order to obtain an efficient solution. We evaluated our tool flow on a
production-quality toolflow, using realistic industrial designs, and across a vari-
ety of different scan configurations to find the approach with the highest Fmax.
Our findings show that by inserting only 32 parallel scan chains, post-placement,
we can achieve a 10x higher Fmax compared to the baseline readback approach,
allowing 100% visibility into designs able to continue running beyond 1MHz.

Future Work: We plan to extend our work to the AMD/Xilinx Versal FPGA
architecture [10] and leverage its high-bandwidth hardened Network-on-Chip
(NoC) for on- and off-chip movement of scan data. Also, we plan to add and
evaluate an automatic pipeline insertion to improve long connections within scan-
chains, improving Fmaxscan at the expense of efficiency-loss due to redundant
flops, as well as to modify the insertion methodology to be congestion-aware so
that routing runtime can be reduced.

A second direction would be to examine Scenario 3 (post routing insertion)
in more detail since this scenario provides the benefit of leaving the user design
fully untouched — such a concept that may require different algorithms could be
explored using the open-source RapidWright framework [11]. Lastly, we intend to
investigate how a hybrid implementation of using hardened readback (for reading
Block RAM contents as well as any hard-to-reach shadow flops) in combination
with our proposed soft scan-chain can lead to an even more efficient solution.
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Abstract. Molecular Dynamics simulation (MD) models the interac-
tions of thousands to millions of particles through the iterative appli-
cation of fundamental physics, and MD is one of the core methods in
High-Performance Computing (HPC). However, the inherent weak scal-
ability problem of force interactions renders MD simulation quite com-
putationally intensive and challenging to scale. To this end, specialized
FPGA-based accelerators have been proposed to solve this problem. In
this work, we focus on many-body potentials on a single FPGA. Firstly,
we proposed an efficient data transfer strategy to eliminate the latency
between on-chip and off-chip memory. Then, the fixed-point description
of data type is developed for computation to increase the utilization
of on-chip resources. At last, a custom pipelined strategy is presented
for Tersoff to get a better simulation performance. Compared with
a floating-point implementation based on NVIDIA 28080ti GPUs, our
design based on Xilinx U200 FPGA is 1.2 times better.

Keywords: FPGA · Molecular dynamics simulations · Pipeline ·
Accelerator

1 Introduction

Molecular Dynamics (MD) simulations have been widely used in various aspects
of life [1] and material sciences [2,3]. They have tremendously succeeded in many
application areas during the past several decades. In particular, with the rapid
development of the semiconductor industry in recent years, MD simulation,
which contains multi-body potential formulations, such as Tersoff potential,
plays an essential role in the design space of new semiconductor materials [4]
such as GaN, CdS, and TIOZ. The results from MD simulations provide helpful
information for developing novel composite materials, reducing the extra exper-
imental cost.
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Recent enhancements of High-Performance Computing (HPC) power, espe-
cially the development of supercomputers, provide an opportunity for complex
MD simulations with complex potentials. Several available HPC clusters use
accelerators such as graphics processing units (GPUs) to improve the perfor-
mance of MD simulations, and they can make simulations of millions of par-
ticles with sufficient FLOPs. The ever-increasing demands of MD simulations
even push the development of special-purpose supercomputers like Anton super-
computers [5–7] and MDGRAPE [8,9], but they are very inaccessible and are
not widely used. While Anton supercomputers are based on ASICs, some novel
systems have radical architectural changes (e.g., Sunway TaihuLight Supercom-
puter, Fugaku, and CrayXT3), resulting in a better performance of simulations,
and it makes plenty of outstanding works in simulating biological systems [10,11].
However, as the MD simulations grow more complicated, traditional general-
purpose chips can no longer meet the complex demands, such as memory, band-
width, and computing efficiency. Furthermore, the computing efficiencies, the
memory wall, and the power issues are becoming more and more serious when
mapping MD simulations onto leading-edge supercomputing systems. There is a
significant gap between the widely-used MD simulations and the current physical
systems.

Fortunately, reconfigurable computing systems, such as those based on Field
Programmable Gate Array (FPGA) technology offer a brand-new computing
pattern that enables researchers to use a unique data-flow computing model
to achieve better performance. Implementing molecular dynamics (MD) on
FPGAs has also drawn substantial attention, and serval works [12,13] are
made to tap the potential capacity of FPGAs for MD simulation. However,
existing studies [14,15] are focused on the simple force interaction such as
Lennard−Jones(L−J)potential, which contains a few variables to be computed,
and it is not suitable for simulating new semiconductor materials. Furthermore,
most of the FPGA implementations in the literature are resided entirely on-chip
for the whole computation, completely removing the dependency on off-chip
devices, resulting in a limited simulation scale during MD simulations.

In this work, we extend the MD simulation with the typical multi-body
potential (Tersoff), and it has been widely used to analyze the three-body
MD interaction between partially rigid particles such as silicon (Si). As is often
the case when looking for cost-effective ASIC replacement, Field Programmable
Gate Arrays (FPGAs) provide a viable alternative. A customized FPGA-based
solution can significantly improve energy efficiency and power consumption com-
pared to CPU and GPU clusters. We want to explore the feasibility of making
a deeply-pipelined system for MD simulations on state-of-the-art FPGAs and
propose an efficient accelerator for complex Tersoff multi-body potential with
high power efficiency.

To our best knowledge, most of the FPGA implementations in the literature
are designed for two-body MD interactions with a limited simulation scale. This
work is the first attempt to develop a large-scale MD simulation for three-body
interactions (Tersoff) on a single-node FPGA system. Furthermore, our design
for Tersoff potential is general enough, and we consider it has the potential to be
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used for computing some similar problems in MD without completely redesigning
the hardware. We also expect that the presented work can offer some ideas for
designing and implementing similar applications on FPGAs .

Our significant contributions can be summarized as follows:

– We have presented an efficient data transfer strategy for large-scale MD simu-
lations that overlapped computation and communication, improving the uti-
lization of on-chip memories.

– We propose a fixed-point arithmetic for Tersoff potential computation,
which gives a tradeoff between resource and precision.

– We have proposed a custom pipelined computation engine for Tersoff poten-
tial, which brought a significant performance improvement.

The remainder of this paper will first present the basic background informa-
tion on Tersoff potential and prior work for MD simulaions. Then, the data
transfer design between the off-chip and on-chip memory, fixed-point quantiza-
tion of Tersoff , and a custom dataflow computing model of Tersoff will be
elaborated. Following this, the results are presented and evaluated comparatively
with different platforms. Finally, conclusions are detailed with plans for future
work.

2 Background

2.1 Classical MD with Tersoff Potential

The basic workflow of MD simulations consists of four essential parts: system
initialization, neighbor list generation, force interactions, and motion update.
Neighbor list generation and force interactions are much more time-consuming
among the four parts. In the part of neighbor list generation, a cutoff distance is
introduced, and both forces and energies between particles are assumed to be zero
if the distance between two particles is beyond the cutoff distance. Cell linked
list algorithm is used widely in modern MD simulations to build the neighbor
list. In this algorithm, the simulation domain is partitioned into several cells,
the edge of cells is equal to or larger than the cutoff distance, and there are 26
neighboring cells for each particle located in the home cell.

As mentioned before, a typical three-body potential (Tersoff) with N par-
ticles has a computational complexity of O(N3), which is far more complex than
two-body algorithm. The total potential energy for the Tersoff potential sys-
tem can be written as U = 1

2

∑
i

∑
j �=i Uij , where the energy Uij can be written

as

Uij = fC (rij) [fR (rij) − bijfA (rij)] (1)

where fC is a smooth cutoff function which contains trigonometric functions,
fR(r) = Ae−λrij and fA(r) = Be−μrij are the repulsive function and the attrac-
tive function, respectively.
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Furthermore, the most crucial part is bond-order(ζ), and it takes the follow-
ing forms:

bij =
(
1 + βnζn

ij

)− 1
2n (2)

ζij =
∑

k �=i,j

fC (rik) gijk (3)

gijk = 1 +
c2

d2
− c2

d2 + (h − cos θijk)2
(4)

Here, A, B, β, n, c, d, λ, μ and h are parameters and θijk is the angle formed
by rij and rik.

2.2 Prior MD Work

In general, MD is one of the core methods in High-Performance Computing
(HPC). Several well known high performance MD software packages (e.g. GRO-
MACS [16], LAMMPS [17], AMBER [18], NAMD [19], CHARMM [20]) are
making full use of modern HPC to achieve better performance. Furthermore,
many supercomputers are used for MD simulations to get better performance.
On Sunway TaihuLight supercomputer, Duan et al. [21] use the full supercom-
puter nodes for MD simulations, achieving a tremendous performance of over
2.43 PFlops. Meanwhile, in the year 2020, a machine learning-based simulation
protocol [22] for MD can simulate over 100 million atoms more than 1ns per day
on the Summit supercomputer, and this work can attain 91 PFLOPS (45.5%
of the peak) in double precision and 162/275 PFLOPS in mixed-single/half-
precision.

During the past several decades, Field Programmable Gate Arrays (FPGAs)
have been explored as efficient accelerators for MD simulations. Most FPGA-
based studies [23–25] only target the particle-particle (PP) computation to accel-
erate MD simulations, since they make up for over 92% of the runtime of simula-
tions. However, they only accelerate non-bonded pair interactions on the FPGAs
and do not use inter-FPGA communication. Although they can accelerate the
interactions, the overall system is not competitive due to a limited bandwidth
between the host processor and the BRAM on the FPGA card. The work pro-
posed by Benjamin Humphries et al. [26,27] shows that the widely-used 3D FFTs
in the order of 643 can be successfully presented on single FPGAs, which achieve
a competitive speed within a few 100 µs. Kasap et al. [28] make the first attempt
to propose a production-level MD accelerator using FPGA-based parallel com-
puters. Another work [13] presents the first full-scale FPGA-based simulation
engine implemented on a single FPGA and shows that its performance is com-
petitive with a GPU.
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3 Efficient Data Transfer

3.1 Bandwidth-Friendly Particle Mapping

When it comes to large-scale particle mapping, off-chip memory (DRR4/HBM)
can be used well to store particle information, especially for large-scale MD
simulations. Due to the bandwidth-to-compute nature of MD simulations, it
takes a large number of particles for few force interactions, and the performance is
directly bound up with the available bandwidth offered by FPGAs. However, the
random memory access nature of particle mapping presents an important issue:
access flexibility. It is essential to offer a bandwidth-friendly particle mapping
for the following computation.

Algorithm 1. A Design for Accelerating Particle Mapping
Require: FETCH : get the data of particles

Ncell: numbers of cell in in the x, y, z direction
Cellsize(Ncell): number of particles in each cell
Celloffsets(Ncell): new index of particles in each cell
Cellptr(Ncell + 1): the whole number of particles in the first Ncell cells

Ensure: Resorted Particle Position: X(N),Y(N),Z(N)
1: for i ∈ atoms do � Assign and count cell index
2: FETCH(Data(i))
3: k ← cell index of particle i
4: Cellsize(k) ← Cellsize(k) + +
5: Celloffsets(k) ← Celloffsets + +

6: Cellacc ← 0
7: for i in range (0, Ncell) do
8: Cellacc ← Cellacc + Cellsize(i)
9: Cellptr(i) ← Cellacc

10: Cellptr(Ncell) ← Cellacc
11: for i ∈ atoms do � Linear reorder
12: k ← cell index of atom i
13: j ← Celloffsets(k)
14: base ← Cellptr(k)
15: X(base + j) ← i
16: Y (base + j) ← i
17: Z(base + j) ← i

Since particles are randomly initialized, the particles often cannot be stored
continuously in off-chip memory. The subsequent batch data transfer will bring
the problem of discrete memory access and reduce bandwidth utilization. To
solve this problem, we propose a bandwidth-friendly data mapping design in
this work. As we adopt the cell linked list algorithm mentioned before, 27 cells
(1 home cell and 26 neighboring cells ) are sent to FPGAs for each timestep com-
putation. To increase the bandwidth utilization and decrease the data transfer
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latency, we should map the memory locations of potential neighboring cells and
the home cell as closely as possible.

The procedure of data mapping is shown in Algorithm1. The first loop (lines
1–5) computes the cell index of each particle i. Then, the second loop (lines 6–
9) accumulates the number of particles sent to on-chip memory for each batch.
At last, the third loop (lines 11–17) makes a linear distribution of particles. By
adopting this method, particles in the same home cell or neighboring cells will be
located in the off-chip memory with a sequential access pattern, and no explicit
performance degradation can be seen in simulations.

3.2 Zigzagging Buffer Design

As the scales of MD simulations increase rapidly, the need for more FPGA on-
chip resources, especially BRAMs, becomes evident. However, the main issue
becomes latency with more than enough storage offered by off-chip memory,
such as HBMs or GDDR. Therefore, an efficient strategy is pursued to make data
transfer between on-chip memory and off-chip devices, allowing for overlapping
computation and communication.

In general, the on-chip buffer strategy is always used for the prefetch design
based on FPGA, which efficiently narrows the gap between data transfer and
on-chip computation. Similarly, the on-chip buffer design is an essential strategy
used in MD simulations. To order to utilize the architectural compute resources
fully, the on-chip buffer is optimized to the minimum size and only stores the
data if reused in subsequent computations. Thus, we propose a zigzagging buffer
design to meet the requirement.

Z
X

Y

Top View

nx

nz

ny
R

R
X

Y

Fig. 1. Zigzagging buffer for MD simulaions.

As is shown in Fig. 1, (0, 0, 0) is denoted for the cells with minimum coordi-
nates, nx, ny, and nz indicate the number of cells in the X, Y and Z directions,
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respectively. R represents the following phase’s atoms to be computed, which are
only loaded but not computed. We assume the X-axis as the most frequently
varying dimension, followed by the Y - and Z-directions. The on-chip buffer is
employed to store multiple cells of particles for the following computation. For
each batch of data (3 × 3 × 3 cells) needed to be computed, an on-chip buffer
with (4 × 4× 4 cells) is loaded into on-chip memory, prefetch a cell data in the X,
Y and Z directions, respectively. The prefetched buffer will move on the X − Y
plane, then prefetch the data along the Z axis in a zigzag motion. Computation
is performed on zigzagging buffer data within the boundaries.

4 Fixed-Point Design

The practical algorithm using fixed-point arithmetic operation can significantly
reduce the area and power consumption and obtain a cost-effective design. For
brevity, we use the notation Fixed (IWL, FWL) to denote a fixed-point rep-
resentation. IWL and FWL are integer word-length and fractional part word-
length. The IWL optimizations determine the dynamic data range, while FWL
optimizations consist of the numerical accuracy analysis.

4.1 Dynamic Range Analysis

Generally, overflow is quite dangerous for any practical applications in numer-
ical simulation. Although a direct correlation between the application quality
and the overflow probability is hardly determined, the dynamic range estima-
tion usually determines the minimum and maximum values and computes the
minimum number of bits for the integer part.

Most of the variables contained in Tersoff potential are only influenced by
the input distance (rij). Their range is easy to track, and the variables only
change to a small degree. However, as Tersoff potential contains plenty of
transcendental functions computation, such as exp and pow, the final range
is hard to decide on after going through the calculation of the transcen-
dental functions. For example, when calculating the value of Bonded-Order
(ζ = exp(lam3 ∗ (rij − rik)3)), where lam3 is a constant parameter, rij and
rik are the distance between different particles. If taking the method of Extreme
Values Theory [29], the maximum range of bonded-order (ζ) is up to 263428,
resulting in the IWL being 20, which is quite expensive to set such a long word
length for bonded-order (ζ). Hence, the first problem is whether it is necessary
to cover the absolute theoretical bounds for IWL.

Considering that the distance r is the only input value for MD simulations, it
is essential to analyze the input distribution carefully. Figure 2 shows a statistic
of distribution of |rij - rik| and r for a system containing 5k particles, over 100
K iterations. It is clear that most values of |rij - rik| and r concentrate in a
fixed interval, respectively. The maximum value and minimum value of |rij -
rik| is 1.514 and 0.512, respectively. According to the formula of bonded-order
(ζ) discussed before, IWL of ζ is limited to 10, much smaller than the absolute
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Fig. 2. The distribution of rij-rik and r

theoretical bounds. We also apply a similar approach to determine the integer
bit width for the other fixed-point variables in the algorithm.

4.2 Precision Analysis

Computation in fixed-point arithmetic has limited accuracy and generates quan-
tization error at the output. The quantization of fixed-point error is considered
a noise added to the result and evaluated by the difference between the output
with different precision. Therefore, verifying that the algorithm’s fixed-point
arithmetic behavior is modified within a reasonable limit is necessary. Thus, the
second problem is whether to determine the suitable FWL between the needed
accuracy and the circuit cost.

Generally, accuracies of the final results should be guaranteed before we can
apply the fixed-point strategy. However, it is difficult to model the link between
the application quality and error occurrence probability in MD simulations.
Hence, in order to determine the impact on final accuracy caused by quantiza-
tion error, we propose a bit-width optimization through bit-accurate simulations
for different bit-width configurations. In this work, we find an essential indicator
(relative energy error) for the quick estimation of the accuracy from [30]. If the
relative energy error is more extensive than 0.1%, the final result will no longer
be more accurate than the baseline.

During the process of MD simulation, the force interaction F is a critical
variable that needs to be quantized. We explore a set of different bit widths for
F and observe the dynamic trend of the relative error and the on-chip resource
cost. According to the formulations of F , the maximum IWF of F is 8 due to
the IWF of ζ is set as 10 . Hence, to analyze the impact of different FWL



FPGA-Accelerated Tersoff Multi-body Potential 25

Fig. 3. The relative error and resource cost of LUTs according to different FWL of F
.

of force (F ) on the whole system, we explore the FWL of F from 24 to 16.
From Fig. 3, we observe a similar relative error of different bit-width as with
the baseline, ranging from 24-bits to 16-bits, and the relative error meets the
requirement of 0.1% when the bit-width is larger than 20. However, when we
further reduce the bit-width of F , we see a surge of the relative error to a level
far above the required 0.1%. The sharp accuracy reduction at the bit-width of
F to 20 indicates the precision threshold of the Tersoff . When the bit width
of data decreases and cannot satisfy the precision threshold, the accuracy will
break sharply. On the resource cost side, the bit-width of 20 is also a suitable
choice that reduces the LUT usage from around 20000 to 10050 of the total
capacity FPGA.

5 Custom Dataflow Design

Since the bandwidth-friendly data mapping strategy and fixed-point quantiza-
tion design are proposed in Sect. 3 and Sect. 4, more attention should be paid
to improving the performance of force interactions. Considering the dataflow
architecture of FPGA, a custom pipelined strategy for Tersoff interaction can
be taken to improve the performance.

In this Algorithm 2, the overall force of particle i contains two parts: repulsive
force and attractive force. After generating the neighbor list, the short-range
repulsive and attractive forces will be computed quickly. However, adopting the
original algorithm of computing Tersoff potential is quite expensive. Firstly,
the original method will require an almost triple computation workload (0(N3))
for Tersoff interaction, and all the computation parts are employed under the
serial computing pattern. Secondly, the storage capacity of local value is far
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beyond the on-chip memory size if we develop large-scale MD simulations. Since
the on-chip memory size is limited, plenty of local values must frequently be
swapped between on-chip and off-chip memory. It is a bad idea the design based
on FPGAs.

Algorithm 2. Original method to calculate the Tersoff potential
Require: r: The distance of the different particles

L: Neighbor lists of different particles
FA, FR:Attraction term and Repulsion term

Ensure: F : The force on the atom
1: procedure Algo2
2: for each i ∈ particles do � Generate Neighbor list
3: for each j ∈ particles do
4: if r(ij) < cutoff then
5: L ← L ∪ j
6: Store(L)

7: for each i ∈ particles do
8: for j ∈ Li do
9: if i �= j then

10: Fi ← Fi + FR(ij) � Repulsion term
11: UPDATE(Fi)

12: for k ∈ Li do
13: if j �= k then
14: Fi ← Fi + FORCE(ζijk)
15: UPDATE(Fi)

16: for k ∈ Li do
17: if j �= k then
18: FA ← ζikj � Attraction term
19: Fi ← Fi + FA(j, i, k, ζij)
20: UPDATE(Fi)

Thus, to solve this problem, a custom pipelined design is proposed for
Tersoff interaction. As the data prefetch strategy is adopted in this work,
each batch contains 64 cells (4 × 4 × 4) for computation. As shown in Fig. 4,
when the current home cell has completed the generation of the neighbor list,
the process of force interactions for the current home cell and neighbor list gen-
eration for the next home cell can be operated simultaneously. Furthermore,
considering the ζ(ijk) is shared in the repulsive term and attraction term at the
level of k-loop, the local value ζ(ijk) can be pushed directly to the attraction
term, which means when calculating the attraction term of the particle i, it is
not necessary to wait for the repulsion term to be finished for all the particles.
Hence, the custom computation pattern used in MD simulations can improve
the performance well, allowing for overlapping different communication parts.
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Fig. 4. Custom dataflow computation pattern for MD simulaions.

6 Evaluation

6.1 Environment Setup

We have implemented, tested, and verified our designs on Xilinx Alveo U200
FPGA, which has four DDR4 stacks. This high-end chip has 2586 CLBs, 6840
DSPs, 345.9 Mb block RAMs, and 2 QSFP28 (100GbE) interfaces, making it a
good target for FPGA/MD. Then, our main evaluation metrics include overall
performance, resource usage, power consumption, and energy evaluation.

Throughout the testing process, we select a typical crystalline structure of
silicon (Si), equilibrated at temperature T = 100 K, to characterize the perfor-
mance of our implementation. The atoms are highly mobile in the simulation
system while only fluctuating around their equilibrium positions in the crys-
talline structure. The dataset has 512 K atoms, which is too large to fit in a single
FPGA’s BRAM. The dataset is constrained to a bounding box of 59.5×51×51Ȧ,
with a cutoff radius of 4.2Ȧ. The simulation timestep is 2fs.

6.2 Evaluation Performance

In this section, we will evaluate the performance of different platforms, includ-
ing multi-core CPU, GPU, and the FPGA implementations of this work. Table 1
measures the performance of Tersoff potential with 512 K atoms while using
different devices. For a fair comparison, the benchmark is run on the device
without any involvement of the host in the calculation. Firstly, Compared with
CPU, our design implemented on FPGA has much better performance, 219.64×
improvement for Intel Xeon 2690 v3 CPU with one core, and 14.69× improve-
ment for Intel Xeon 2690 v3 CPU with eight cores.
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As a cost-effective accelerator alternative in clouds and clusters, the low
power consumption of FPGA is one of the advantages of HPCs. We evaluate the
power consumption and power efficiency of different platforms. Due to the low
power consumption for FPGA, the power efficiency of our design on U200 FPGA
are 152.6× and 28.6× than that on Xeon CPU with one core and eight cores,
respectively. Then, compared with GTX 2080ti GPU, our design implemented
on FPGA has better performance, and the power efficiency is 4.1× than it. Much
more evaluation needs to be done, but we believe these results to be promising.

Table 1. Evaluation performance.

Platform Simulation rate Speed up Power Power efficiency

Intel 2690 v3 1-core 1.04 × 10−2 (ns/day) 1 32 W 1

Intel 2690 v3 2-core 3.60 × 10−2 (ns/day) 3.7× 45W 2.2×
Intel 2690 v3 4-core 7.13 × 10−2 (ns/day) 7.1× 64W 3.55×
Intel 2690 v3 8-core 1.34 × 10−1 (ns/day) 14.9× 80W 5.96×
NVIDIA GTX 2080Ti GPU 2.17 (ns/day) 208.65× 184.6W 37.68×
Xilinx Alevo U200 FPGA 2.21 (ns/day) 219.80× 46.5W 152.2×

6.3 Resource Usage Evaluation

This section discusses the overall system resource utilization for Tersoff . As
mentioned before, we propose an effective data transfer design to overlap com-
putation and communication and improve the utilization of on-chip memories
(BRAMs). Meanwhile, we find a rich design space for quantization of Tersoff
and propose a custom precision for force computation to reduce on-chip resource
usage. Finally, we present a custom pipelined computation model for Tersoff ,
reducing the computational engine idling.

Table 2 lists the available resource of FPGA and several pipeline units that
can fit onto a single FPGA chip. We note that our force pipeline for Tersoff
can include 64 pipelines. Due to the design of cell linked list, this design needs
hundreds of memory modules, while the workload mapping requires each pipeline
to accumulate the local variable on-chip. Because of this, a substantial on-chip
memory is required. Compared with the standard floating-point implementation
of Tersoff based on FPGAs, our fixed-point design reduces LUT, BRAM, and
DSP usage by 60.5%, 79.2%, and 74.1%, while the fixed-point design increase
LUT, BRAM, and DSP use by 55.1%, 74.1%, and 48.1%, respectively.

6.4 Energy Evaluation

Energy evaluation adds complexity but is needed only every few iterations. We
thus stream off the energy values computed by FPGA via PCIe every few iter-
ations. A software simulator based on CPU is made to perform simulation on
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Table 2. Overall system resource utilization

Available Force pipeline (float) Force pipeline (fixed)

Pipelines − 64 64

Kernel frequency (MHZ) − 300 300

LUT 892K 542.88K (60.5%) 491.18K (55.0%)

FF 1.74M 0.98M (56.4%) 0.95M(53.2%)

DSP 6.84K 4.40K (74.1%) 3.20K (48.1%)

BRAM 35 MB 28.04 MB (79.2%) 26.04 MB (74.2%)

Latency − 87 71

Power (W) − 49.8 46.5

the same input dataset in single precision for validation. The energy waveform is
shown in Fig. 5. Our software simulator’s energy waveform matches our FPGA
implementation with a slight variance.

Fig. 5. Energy Waveform

7 Conclusion

In this work, we focus on many-body potentials (Tersoff) on a single
FPGA with 512 K particles. Compared with conventional pair-wise poten-
tials, the many-body potential (Tersoff) requires much more arithmetic oper-
ations and data dependency. Due to the limited on-chip resource of FPGA,
several approaches are pursued to increase simulation performance, such as
input/output throughputs, pipeline design, custom precision, and parallelism.



30 M. Yuan et al.

Compared with a floating-point implementation based on NVIDIA 28080ti
GPUs, our design based on Xilinx U200 FPGA is 1.2× better, and the power
efficiency is 4.1× than it. In the future, we would like to find ways to improve the
performance further and verify FPGAs as promising candidates for both current
and next-generation supercomputing architectures.
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Abstract. Deep neural networks (DNNs) are prevalent for many
applications related to classification, prediction and regression. To
perform different applications with better performance and accuracy,
an optimized network architecture is required, which can be obtained
through experiments and performance evaluation on different network
topologies. However, a custom hardware accelerator is not scalable and
it lacks the flexibility to switch from one topology to another at run
time. In order to support convolutional neural networks (CNN) along
with multilayer perceptron neural networks (MLPNN) of different sizes,
we present in this paper an accelerator architecture for FPGAs that
can be programmed during run time. This combined CNN and MLP
accelerator (CNN-MLPA) can run any CNN and MLPNN applications
without re-synthesis. Therefore, time spent on synthesis, placement and
routing can be saved for executing different applications on the proposed
architecture. Run time results show that the CNN-MLPA can be used
for network topologies of different sizes without much degradation of
performance. We evaluated the resource utilization and execution time
on Xilinx Virtex 7 FPGA board for different benchmark datasets to
demonstrate that our design is run time programmable, portable and
scalable for any FPGA. The accelerator was then optimized to increase
the throughput by applying pipelining and concurrency, and reduce
resource consumption with fixed-point operations.

Keywords: FPGA · Neural network · MLP · CNN · Overlay ·
Flexible · Programmable · Reconfigurable · Accelerators · Custom
hardware

1 Introduction

Deep neural networks have been applied to applications that are hard to
solve using traditional rule based programming methods. A trained DNN for a
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particular application takes some input features and makes prediction, decision
or classification. For many real time applications, a CPU based software system
might not be fast enough to produce outputs as the size of the network grows
for complex problems. Hence, hardware platforms like FPGA are used for
DNN applications because of their massive parallel processing units to produce
throughput higher than the CPU. The architecture of DNN with parallel inputs,
outputs, and neurons in the hidden layers makes it possible. The reconfigurable
logic blocks and interconnects, parallel memory and computing units, and low
power consumption of FPGA have produced many FPGA accelerator [1,2].
Applications such as image compression, pattern recognition, signal processing,
IoT device control, and biomedical applications (e.g., arrhythmia and eplileptic
seizure detection etc.) are reported in [3,4]. Krisps et al. [5] showed how an
artificial neural network (ANN) could be implemented within an FPGA for
a real time hand detection and tracking system. Wayne et al. [6] designed a
spiking neural network accelerator supporting large scale simulation on FPGA-
based systems. Seul et. al. Several methods exist for compressing the size of
data to reduce multiplication and addition operations for fast inference and
to reduce hardware consumption. For example, [7,8] proposed binary neural
network (BNN) inference engine on FPGAs for MNIST image classification with
high accuracy. Convolutional neural network (CNN) [9] is used for applications
such as image recognition, segmentation, speech recognition, medical diagnosis
etc. Although applications with CNN is growing, MLP workloads still have
a large share in open clouds operations by companies such as Facebook and
Google [10,11]. However, these accelerators are customized for only one type
of neural network used in a single application. Thus, the parameters for
different network topologies need to be defined before synthesis for different
applications. Moreover, creating custom DNN for different applications with
hardware description language (HDL) or high level synthesis (HLS) code is
an arduous and time consuming task. Therefore, a multi-purpose hardware
accelerator is desirable to meet varied computational and memory requirements
while supporting various neural networks for various applications. Some flexible
and scalable accelerators for neural networks on FPGA have been reported in
[12–14]. This paper presents such an accelerator for CNN and MLP applications.

The main contributions of this paper are:

• Designing a run time programmable hardware accelerator to run both CNN
and MLPNN applications.

• Writing a parameterized high level synthesis code so that parameters such as
number of processing elements (PEs), data representation (floating-point or
fixed-point) and activation function (AF) implementation approach (BRAM
lookup tables (LUTs) or synthesized logic-diffused multiplier) can be set
before synthesis. This allows designers to adjust resource utilization by
varying the parallel processing with PEs. It also enables changing the type of
AFs and data precision.
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• Making some parameters programmable (such as input size, output size,
number of layers, neurons, channels and filters, size of filters and stride) so
that they can be set (up to a maximum value) during run time. Thus, different
topologies for different applications can be run without resynthesizing the
hardware. Our experiments showed 50 h of reduction time on synthesis,
placement, implementation and routing for maximum utilization on Virtex 7.

• Developing a switching technique to switch between CNN and MLP opera-
tions according to user’s need. It enables the reuse of the same PEs for both
MLP and CNN.

• Optimizing the accelerator to demonstrate some strategies that can be applied
to make further improvement on the performance of the accelerator.

• Testing different benchmark data sets and network topologies to show
programmable attributes and performance of the accelerator, and comparing
them with Xilinx FINN and DPU framework for the same networks.

The rest of this paper is organized as follows. Section 2 introduces the CNN-
MLPA architecture, and Sect. 3 presents the results for MLP. In Sect. 4, CNN
feature of the accelerator is discussed in details along with its results. Finally,
Sect. 5 concludes this paper.

2 CNN-MLPA Architecture

Figure 1a shows the generic structure of an CNN-MLP accelerator. It contains a
1D array of Processing Elements (PEs), a scheduler, a controller, configuration
registers, local memory, and three external interface connections. Input data,
weights for the filters in convolution layers (CLs), and weights in the fully
connected (FC) layers are transferred through the same input channel. For a
particular network, weights are fetched from DRAM according to their need and
then they are stored in BRAM. The size of DRAM is the limitation for our
design. The input and output interfaces are configured as FIFOs with a DMA
engine (not shown) for fast transfers through the AXI-Stream interface. The
AXI4-Lite interface is used to program the configuration registers and control
the operation of the CNN-MLPA during run time. Users can switch between
CNN and MLP during run time with a control signal. MLP is nothing but a
fully connected neural network [15], whereas CNN contains convolution layers
with multiple channels and filters [9,16] followed by the fully connected layers.
Thus, for CNN applications, block of both convolution layers and MLPs are kept
active; and for MLP applications, only the MLP block functions. The remainder
of this section describes the functionality of different components of the CNN-
MLPA.

2.1 Processing Element

Figure 1b shows the block diagram of a PE. Each PE has two input BRAMs (one
for inputs and the other for weights), an output BRAM, control signals (Start,
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Fig. 1. Overview of the CNN-MLP accelerator.

and Done), an adder/multiplier unit (ALU), a controller, accumulation registers
(AR), and an AF unit. AR is mainly an output buffer that stores the complete
or partial result of a multiplication-accumulation (MAC) operation. Then this
result is sent either back to the input buffer so that it can be used for the next
layer or to the output stream interface. Each PE gives output for one neuron of
a layer in case of MLP operation. For CNN, each PE may be used several times
depending on the number of PEs, channels and filters in a convolution layer. Two
types of AFs are implemented: a step function and log sigmoid. Before synthesis,
two options are provided to the system designer to implement the AFs as either
computation-based functions (synthesized hardware) or using LUTs.

2.2 Scheduler

The responsibility of the scheduler is to partition each layer of neurons into the
linear array of PEs. The scheduler divides each layer into groups of neurons
equal in size of the available number of PEs. If the number of neurons in a
layer is not divisible evenly by the number of PEs, the remaining neuron(s) will
be assigned to the first PE(s) during the next cycle. For example as shown in
Fig. 2, with 4 PEs and 10 neurons in the first hidden layer, the scheduler will
sequence two groups (G1, G2) of 4 neurons and one group (G3) of 2 neurons.
The second hidden layer has 7 neurons. Thus, one group (G4) of 4 neurons
and one group (G5) of 3 neurons will be scheduled. All neurons in a group are
processed concurrently, while different groups are processed sequentially. Based
on the scheduler assignment, the controller aligns weights and inputs for each
neuron in each PE’s internal BRAMs. The outputs of each group within a layer
are saved in the output buffer, and assigned as inputs to the next layer for
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MLPNN. In case of CNN, the outputs can be used as partials sum for the next
channel in a convolution layer or as inputs for the next convolution layer.

Fig. 2. Scheduling neurons in MLP with four PEs.

2.3 Controller

The controller organizes weights and inputs for the neurons. It divides the weight
vector into groups, each having weights equal to the number of PEs, and allocates
them into each PE’s weight BRAM. It also connects the outputs of each layer
with the appropriate weights, and this combination of outputs and weights is
used in the next layer. The inputs are read serially from BRAM and stored in
PE’s input BRAM according to the number of neurons and PEs in the input
layer for FCs. However, the allocation of inputs for CL depends on the input
size, filter size, number of PEs, and strides. The allocation of weights and inputs
for convolution operation in the convolution layer is briefly described by Fig. 3
for inputs with two channels, two filters and two PEs. Two sets of inputs in a
channel can be convoluted by a filter in two PEs in parallel. Inputs (a, b, c)
are arranged in PE-1’s input BRAM. PE-2’s input BRAM holds one stride size
shifted version of inputs (b, c, d). Filter-1 has two sets of weights for Channel-1
and Channel-2, which are arranged in the temporary filter buffer. PE performs
the MAC operations to produce partial sums. The same PEs are reused until
convolution on Channel-1 is done. The same convolution process with Filter-1 is
done on Channel-2. The outputs of both channels are accumulated in the output
buffer. These operations are repeated for the same input channels with Filter-2
to produce output Channel-2. The output channels are used as input channels
for the next layer.

The controller can read the AF values via the streaming input channel and
store them in PE’s BRAM if they are implemented as LUTs. Moreover, it
calculates the number of weights being streamed to the CNN-MLPA based on
the configured registers. Finally it streams the results out of the CNN-MLPA
core and generates “done” signal in the output layer. It also enables users to
switch between CNN and MLPNN operations.
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Fig. 3. Convolution layer operations.

2.4 Configuration Registers

The CNN-MLPA contains two sets of registers, one for the MLP block and one
for the Convolution Layers (CL) block. They are used to specify the topology
of the neural network during run time. The registers are described below with
their corresponding parameters they store.

• Layers: number of layers in the FC
block.

• Inputs: number of inputs.
• Outputs: number of outputs.
• NeuronsHn

: number of neurons in
nth hidden layer.

• ConvLayers: number of CL in the
network.

• InputSize: input size in each CL.

• OutputSize: output size in each
CL.

• Filters: number of filters in each
CL.

• FilterSize: filter size in each CL.
• Channels: number of channels in

each CL.
• Strides: the step size of the

scanning filter in each CL.

The number of registers for MLP block scales according to the maximum
network configuration such as: Maximum Number of Layers (MNL), Maximum
Number of Neurons (MNN), Maximum Number of Neurons in Largest Layer
(MNNLL), Maximum Number of Inputs (MNI), Maximum Number of Outputs
(MNO), and the registers for CL scales according to the maximum number
of filters, input and output channels, size of the filters and strides in the CL.
Some values for the registers such as output size from each CL can be pre-
calculated and then be sent to the accelerator if the network architecture is
known. For example, output size is calculated by the equation, OutputSize =
Input size-Filter size+2×Padding Layers

strides . We can stream the value to the controller
directly or let the accelerator calculate it.

3 Evaluation and Results for MLP Operations

3.1 Test Platform

The CNN-MLP accelerator is implemented on Xilinx Virtex-7 (xc7vx-
485tffg1761-2) FPGA board. The overall implementation contains a softcore IP
named MicroBlaze running at 100 MHz frequency as the processing system (PS)
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and the CNN-MLPA as programmable logic (PL). The code for the accelerator
was written in C++ and generated using Xilinx’s Vivado-HLS 19.2 tool. After
synthesis, we run C/RTL co-simulation with our testbench code in HLS to verify
the functionality and output. Then, we export the RTL to vivado design suite
where it is integrated with the MicroBlaze. With the help of a direct memory
access (DMA) controller, communication among MicroBlaze, accelerator, and
external memory (DDR3 DRAM) is established for transfer and storage of
data. MicroBlaze provides programming interface to the users and enables
communication with the accelerator via JTAG-UART. It transfers the input
data and weights as a vector to the DRAM, and activates the DMA controller
to transfer the data from DRAM to the local BRAM of the accelerator. It also
assists the accelerator to be activated, read from and write to the storage. The
block diagram of the overall architecture is shown in Fig. 4. AXI Timer IP is
used to measure the time.

Fig. 4. Overview of the complete implementation.

3.2 CNN-MLPA Configurations

CNN-MLPA can be configured either for MLP operations or CNN operations.
The MLP block will exist in both cases since CNN uses the FC layers of
the MLP block. Therefore, when synthesized for CNN, it can perform MLP
operations too. First, the CNN-MLPA was configured as an MLP accelerator
only where the parameters are MNL, MNN, MNNLL, MNI, MNO as mentioned
earlier. They are set as 6, 784, 784, 784 and 64 respectively before synthesis
as a maximum bound for running the largest MLPNN we used as benchmark
for MNIST dataset. Three versions of the accelerator with 4, 8 and 16 PEs
and computation-based sigmoid AFs for all layers were synthesized. Then, we
measured execution time and resource utilization. The results are compared with
other FPGA implementations. Then we substituted sigmoid AFs with ReLU
AFs, and floating-point precision with fixed-point for improving performance
and resource utilization. Performance results for these tests are presented in
Sects. 3.4 and 3.5.
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3.3 Test Applications

Table 1 lists some referenced benchmarks along with the implementation plat-
form, operating frequency and execution time. We ran these topologies on our
architecture to evaluate performance of the MLP feature of the CNN-MLPA.
Each application was first trained offline on a desktop PC using python. Different
topologies were evaluated during the training phase. The validity of the results
for each system was checked by comparing the outputs with the expected outputs
produced by python, and C/RTL co-simulation result of HLS.

Table 1. Various FPGA implementations of MLPNN.

Works Dataset Topologies (Input,
Hidden layers,
Output)

Implementation
platform

Frequency
(MHz)

Execution
time/Speed
up

#1: (784, 64, 64, 10) 36.1x Speed Up

[17] #2: (784, 128, 128, 10) Zynq Zedboard 200 compared to 2.3 GHz

#3: (784, 256, 256, 10) Intel Core2 Processor

[18] MNIST #4: (784, 600, 600, 10) Virtex-7
(xc7vx485tffg1761-2)

490 2.514 µs

[19] #5: (784, 1024, 10) Zynq 7000 300 4.76 µs

[20] #6: (784, 126, 126, 126, 10) Zynq 7000 219 69 µs

[14] #7: (4, 7, 12, 3) Kintex-7 (xc7k410t) 330 430 ns

[18] IRIS #8: (4, 10, 3) Virtex-7
(xc7vx485tffg1761-2)

490 79 ns

[21] HAR #9: (14, 19, 19, 7) Spartan-6
(xc6slx45csg324-2)

67 800 ns

3.4 Performance Evaluation of MLP Accelerator

The benchmarks mentioned in Table 1 are run with our accelerator at 100 MHz
for three different numbers of PE. Table 2 shows the execution time for 9
different topologies for 3 different numbers of PEs for floating-point precision.
The throughput here is floating-point operations per second (FLOPS), which was
calculated by the ratio of floating-point multiply-accumulate (MAC) operations
and execution time. All the topologies were run by changing some parameters
such as the number of inputs, outputs, layers, and number of neurons in each
layer during run time without the need to re-synthesize. Input data sets were
pre-loaded into off-chip DRAM. The execution time obtained from AXI timer of
the FPGA includes the total time taken to setup the configuration registers with
parameters, transfer input and weight data from DRAM to the accelerator’s local
BRAMs, read that data from BRAMs, store them into PE’s internal BRAMs,
compute results, write final results back into the BRAMs, and send the output
to the DRAM. If AFs are used as LUTs, then they must also be loaded into the
BRAM. This will increase the execution time. Therefore, the time increases as
the network grows.
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Table 2. Execution time of optimized MLP accelerator for different benchmark
topologies.

Model Topology Execution time (µS) Throughput for 8 PEs

(Inputs, Hidden layers, Outputs) 4 PEs 8 PEs 16 PEs (MFLOP/S)

#1 784, 64, 64, 10 750 520 341 211

#2 784, 128, 128, 10 1,584 1,095 708 215

#3 784, 256, 256, 10 3,581 2,468 1,600 218

#4 784, 600, 600, 10 11,078 7,700 4,927 217

#5 784, 1024, 10 10,770 7,461 4,760 218

#6 784, 126, 126, 126, 10 1,950 1,244 798 212

#7 4, 7, 12, 3 6.1 6.00 5.88 49

#8 4, 10, 3 4.18 4.19 4.54 33

#9 14, 19, 19, 7 15.68 12.5 11 121

The computation time of CNN-MLPA accelerator is mainly dependent on the
number of PEs and the size of the network. As the size of the two hidden layers
increased from Model 1 to Model 4 of Table 2, we can see that the execution time
increases. This trend will be different if convolution layers are used. Many hyper
parameters of CNN affect its inference time. Most of the time inside PEs is spent
on MAC operations. Moreover, computation-based sigmoid activation function
contains exponential and division operations. These operations take many clock
cycles. Now, if the network size grows for limited PEs, the number of groups
of PEs will be high according to the partitioning technique described earlier
in Sect. 2.2. The maximum number of PEs depends on the available resources
of the FPGA platform. One PE can do several MAC operations at the same
time. Applying loop unrolling pragma in Vivado HLS would process multiple
loops in parallel, affecting the performance and resource utilization. This is
one method for optimization in HLS based design. Here, the PEs are partially
optimized with pipeline and unroll directives. All the loops are pipelined with
initiation intervals that do not violate the timing constraints. Moreover, log-
sigmoid activation function is replaced by ReLU activation function [22], which
is very simple to implement on hardware and takes less clock cycles to execute.
The execution time was brought down to half by this approach. If the number
of PE is increased, more operations are executed in parallel, thus decreasing the
time. However, for smaller network like the Models 7 and 8 of Table 2, the impact
of large number of PEs is not significant because they will remain unused. The
execution time can also be decreased by designing the accelerator to use LUTs
for AFs and represent the data with fixed-point precision before synthesis. But
it may reduce accuracy. We chose the bit width in such a way that the accuracy
was preserved.

The results in Table 3 are derived for 16 PEs for 8 bit (4 bit integer part
& 4 bit fractional part) inputs and weights at the input layer. Intermediate
layers required at most 12 bits (8 bit integer part & 4 bit fractional part)
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Table 3. Result comparison of floating-point and fixed-point precision for 16-PE
design.

Model Topology Execution time (µS) Accuracy at 8 Bit Frame per second Throughput (OP/S)

32 Bit float 8 Bit fixed precision at 8 Bit precision at 8 Bit precision

#4 784, 600, 600, 10 7,700 2,637 100% 380 634 MOPS

#3 784, 256, 256, 10 2,468 854 100% 1170 628 MOPS

#1 784, 64, 64, 10 520 180 99% 5556 610 MOPS

to maintain good accuracy. The precision was determined by analyzing the
maximum and minimum values of inputs and trained weights with python script
so that all the values within this range can be represented by fixed-point precision
with minimum error. The precision for intermediate layers was determined by
experiments because different network size may require different precision. Same
accuracy as 32 bit floating-point precision was achieved in this method. Both
the area and execution time were also reduced. Table 3 reports throughput in
terms of both OP/S and frame per second (FPS).

3.5 Resource Utilization and Performance Comparison with Other
Works

This section shows the resource utilization and performance of the programmable
CNN-MLPA with MLP feature only. It also reports comparison on resource
utilization and throughput with other MLP related works. The term normalized
throughput (ratio of OP/S & total LUT or DSP utilized) was introduced for
better comparison because different works adopt different parallelism strategies
and use different FPGA platforms. Moreover, our design was not fully optimized
for maximum resource consumption. We report the versions synthesized for
running the largest network for MNIST dataset in Models 4 and 6 of Table 2.
Model 4 represents the maximum number (600) of neurons in a layer and Model
6 represents the total number of layers (5), which are set before synthesis so that
both can be run on the CNN-MLPA. The maximum number of 32-bit weights
was chosen to be 850,000 because Model 4 requires around 835,000 weights. It
almost exceeds the available BRAM resources. The input BRAMs of PEs also put
pressure on on-chip memory. By directing Vivado HLS to allocate distributed
RAM [23], also known as LUT-based RAM for PEs, the consumption of 36K

Table 4. Result comparison with other works.

MLP Designs FPGA LUT DSP BRAM FF Throughput
(OP/S)

Normalized throughput
[OP/(S × LUT × 1000)]

CNN-MLPA (Our Work) XC7VX485T 18,218 6 222 11670 610 M 33.5

NAFOSTED’17 [20] XC5VLX-110T 218,528 – – 139,391 3.8 G 17.4

FPL’21 [3] XC7Z020 11,845 184 61 16,461 3 M 0.250

DLAU’17 [17] XC7Z020 53,200 220 280 106,400 192 M 3.594

IJEECS’19 [2] Altera 5CSEMA5F31C6 7,137 70 – 11,053 12.7 M 1.7

Xilinx FINN’17 [8] ZC706 91,131 – 4.5 – 1.9 T 20849
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BRAMs was brought down to 81.07%. Our design can also fetch additional
weights from DRAM when required to avoid over utilization of BRAMs.

The CNN-MLPA shows better normalized throughput compared with all
other works except Xilinx FINN in Table 4. Xilinx FINN outperforms us by a
large number because it relies mainly on binary neural network training before
inference. Thus, different networks need to go through the training cycle first.
Furthermore, it can only be used with PYNQ boards [24] for interfacing with
python, and it is not run time programmable. Our design is synthesized only once
for all networks. Therefore, the latency increases with larger networks because
the same resources are being utilized sequentially. Larger network will require
more resources for equivalent performance. If the loops for the PEs in HLS
can be unrolled efficiently, the resource utilization will be increased for better
throughput.

4 Accelerator with CNN Feature

When CNN is run on the CNN-MLPA, both convolution layer (CL) block and
MLP block shown in Fig. 1a are functional. Thus, the maximum limit for the
configuration parameters of the convolution layers as described in Sect. 2.4 are
also set based on the largest CNN being run. The largest CNN we ran was VGG-
16 based on which the maximum values for input size, output size, number of
filters and channels, filter size were chosen. Model specific parameters are sent
during run time to execute different CNN topologies within the limit. We tested
the programmable feature of the accelerator with three custom CNNs. Their
network topologies and performance are reported in Table 5. These three CNNs
perform MNIST digit classification. Some other benchmarks such as VGG-16,
LeNet and SqueezeNet were also executed.

We used ReLU AF after each convolution layer. For the custom CNNs in
Table 5, the whole convolution block is followed by two FC layers in the MLP
block before outputs are generated. Thus, a CNN with one convolution layer was
represented as ‘Input→ Conv1→ ReLU→ FC→ ReLU→ FC→ ReLU→ Output’.
The convolution layers have input and output channels. The number of output
channels from a CL, which works as input for the next CL, depends on the
number of filters used to scan the data of the input channels. The filters scan
with a step size known as stride. Their weights are multiplied with the inputs
and then the partial sums are accumulated. This operation is done in one PE.
Thus, the same PE will operate several times. The number of times the same
PE is used depends on the total number of PEs and input channels, and the size
of filters and stride. An adder is used outside PE to sum up all the output of
the same location of the channels (as shown in Fig. 3).

4.1 Results for Full CNN-MLP Acceleration

This section shows the performance and resource utilization when both con-
volution layer block and MLP block are operational. Table 5 includes result of
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the execution time, frame per second, throughput and accuracy at fixed-point
precision for three custom CNNs. 10 bit (6 bit integer part & 4 bit fractional
part) precision for inputs and weights and 16 bit (6 bit integer part & 8 bit
fractional part) precision for outputs and intermediate values were found to
preserve the same accuracy as floating-point after some experiments on the 3
CNNs. The precision might be different for other very deep CNNs. It also shows
the combinations of various parameters (filter, channel, stride, padding) used in
the convolution layers. The number of MAC operations in the convolution layers
is higher than the FC layers of CNN. The time also grows with the increase in
convolution layers. The time can be reduced by using more PEs in CLs because
they have more parallel operations than FC layers.

Table 5. Performance of CNN-MLPA for 3 CNN architectures.

Model CNN architecture Filter size Input Stride, Test Execution Frame Throughput

(No.× Width × Height) channels padding accuracy (%) time (mS) per second (OP/S)

1 Input → Conv1 → ReLU Layer-1: Layer-1: Layer-1: 97 0.209 4784 0.65 G

→ FC → ReLU (1 × 8 × 8) 1 (1,0)

→ FC→ ReLU→ Output

2 Input → Conv1 → ReLU Layer-1: Layer-1: Layer-1: 98 0.219 4566 0.92 G

→ Conv2 →ReLU → (1 × 8 × 8) 1 (1,0)

→FC →ReLU Layer-2: Layer-2: Layer-2:

→ FC→ReLU→ Output (3 × 3 × 3) 1 (2,0)

3 Input → Conv1 → ReLU Layer-1: Layer-1: Layer-1: 99 0.237 4219 1.3 G

→ Conv2 →ReLU → (3 × 3 × 3) 1 (1,0)

→ Conv3 →ReLU → Layer-2: Layer-2: Layer-2:

→FC →ReLU (8 × 6 × 6) 3 (2,0)

→ FC→ReLU→ Output Layer-3: Layer-3: Layer-3:

(3 × 3 × 3) 8 (1,0)

The comparison of resource utilization, throughput in terms of both OP/S
and FPS and normalized throughput (ratio of OP/S & total LUT or DSP
utilized) between our work and others for different benchmarks is shown in
Table 6. It also contains some custom CNN implementation done by us and others
using Xilinx DPU [25] on Zynq UltraScale+ MPSoC ZCU104 Evaluation board.
It shows how CNN-MLPA can support various CNN networks using the same
resources. The CNN-MLPA was not fully optimized for any particular network,
but was optimized for all networks. Therefore, the normalized throughput is not
the best but close to other custom designs, which supports only one network. The
DSP utilization of CNN-MLPA is also lower than other designs. When compared
with the Xilinx DPU, we got higher throughput of the models in Table 5 with
CNN-MLPA when DPU was configured with single core. Our design is also
portable to any FPGA while DPU is only supported by a few platforms.
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Table 6. Result comparison with other works for different benchmarks.

Models Designs FPGA LUT DSP BRAM 36k FF Throughput
(OP/S)

Normalized Throughput
[OP/(S ×LUT × 1000)]

LeNet-5 CNN-MLPA (This Work) XC7VX485T 70878 96 361 58422 120 M 1.7

Electronics’21 [26] XCZU9EG 61,713 123 102 27,863 141 M 2.28

ICEIC’20 [27] XCZU9EG 32,598 143 95 33,585 201 M 6.14

VGG-16 CNN-MLPA (This Work) XC7VX485T 70878 96 361 58422 29 G 418

YUAN et al.’21 [28] VCU118 781,000 4096 1779 243,802 2558 G 3275

FCCM’21 [29] XCVU9P 469,288 2100 27 663,488 49.92 G 106

SqueezeNet/ZynqNet CNN-MLPA (This Work) XC7VX485T 70878 96 361 58422 1.4 G 19

Micro-processors and Microsystems’20 [30] XC7Z020 38,038 172 97.5 25,036 5.5 G 145

ARC’18 [31] ZC702 13,418 149 124 18,114 1.1 G 87

Custom CNNs Xilinx DPU (Single Core)-In Our Lab ZCU104 49,383 710 255 98735 118 M 2.38

Xilinx DPU (Dual Core) - Electronics’22 [25] ZCU104 103,700 1,380 290 198,900 7 G 66

Xilinx DPU - SEEDA-CECNSM’21 [32] XC7Z020 31,812 194 117.5 58,169 4.1 M 0.128

5 Conclusion

In this paper, we presented a run time programmable accelerator on FPGAs to
run both Convolutional Neural Network (CNN) and Multilayer Perceptron Neu-
ral Network (MLPNN) of any topology without re-synthesizing the accelerator
every time for different networks. It partitions the operations of a network into
groups of available processing elements (PEs). The advantages of this design
are reusability and scalability over custom accelerators that can execute only
specific DNN applications. The execution time and resource utilization are
reported for some benchmark datasets to show how they vary with the number
of PEs, precisions and activation functions (AF). It can be synthesized either
for MLPNN or CNN. If synthesized for CNN, it can run both MLP and CNN
applications. The synthesis is done only once after configuring parameters such
as data precision, number of PEs, and implementation method for the AFs for
a particular FPGA. Then it becomes efficient for handling a wide range of CNN
and MLPNN topologies with varying accuracies and performance. Performance
in terms of execution time may degrade for some networks, which can be
considered as a trade-off for the flexibility, scalability and portability of the
CNN-MLPA architecture.
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Abstract. The application of Deep Neural Networks (DNN) for rein-
forcement learning has proven effective in solving complex problems,
such as playing video games or training robots to perform human tasks.
Training based on reinforcement implies the continuous interaction of the
agent powered by the DNN and the environment, vanishing the typical
separation between the training and inference stages in deep learning.
However, the high memory and accuracy requirements of gradient-based
training algorithms prevent using FPGAs for these applications. As an
alternative, this work demonstrates the feasibility of using Evolutionary
Algorithms (EA) for training DNNs and their usage in reinforcement
learning scenarios. Unlike backpropagation, EA-based training of neural
networks, referred to as neuroevolution, can be effectively implemented
on FPGAs. Moreover, this paper shows how the inherent parallelism of
EAs can be effectively exploited in multi-FPGA scenarios to acceler-
ate the learning process. The proposed FPGA-based neuroevolutionary
framework has been validated by building a system capable of learning
autonomously to play the Pong Atari game in less than 25 generations.

Keywords: Reinforcement learning · Neuroevolution · Convolutional
Neural Networks · Multi-FPGA

1 Introduction

Nowadays, the predominant technique for training Deep Neural Network (DNN)
models is backpropagation. Backpropagation is based on the computation of
the gradient of the error function with respect to the network weights for each
input-output pair. This gradient is calculated for one layer at a time, iterating
backward from the last layer to the input. Then, network weights are updated
so that the expected error is minimized. Backpropagation has reported excellent
accuracy results when training huge DNNs with over a million neurons.

The high numerical accuracy and the amount of memory required to com-
pute the weight’s gradient across the network layers make Graphics Processing
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Units (GPUs) the best choice for gradient-based training [10]. On the contrary,
FPGAs beat GPUs in DNN inference, i.e., when the capabilities learned during
training are put to work, since they offer higher power efficiency and throughput
than GPUs [13]. However, separating the training/inference processes prevents
the implementation of systems requiring the continuous adaptation of the net-
work models after deployment, a feature referred to as lifelong learning [15]. Of
particular interest are scenarios where autonomous agents learn from their own
experience by actively interacting with the environment, a strategy known as
Reinforcement Learning (RL). Unlike supervised learning, where agents learn
by passively observing example input/output pairs, in RL, agents learn from
the rewards received from the environment in response to their previous actions.
These rewards reflect how well the agent is doing [17]. In RL, there may be no
distinction between training and test phases, requiring the continuous adapta-
tion of the control policy to changes in the environment or the system itself.
Deep Reinforcement Learning (DRL) is a particular case of RL, in which a DNN
makes the decisions on how to respond to the incoming stimuli from the envi-
ronment. DRL is an effective technique that has achieved very significant results
in the context of robotics, video games, and smart grids, among many others [9].

This paper proposes a novel framework for continuously training DNN-based
deep reinforcement learning models on FPGAs having these application scenar-
ios in mind. Unlike the state-of-the-art, the proposal in this work is to use an
Evolutionary Algorithm (EA), a bio-inspired optimization and solution searching
tool, to train the system. The use of EAs for training neural networks is known
as neuroevolution. This work demonstrates that neuroevolution is an alternative
to backpropagation that can be efficiently implemented in FPGAs.

Learning based on EAs involves maintaining a population of potential candi-
date solutions that are randomly mutated and combined to obtain agents increas-
ingly suitable for solving a given problem. The quality of each possible solution
has to be evaluated by measuring its performance when interacting with the
environment. As shown in this work, this process can benefit from the inher-
ent parallelism offered by multi-FPGA systems by allowing the evaluation of
multiple DNN models simultaneously for each new generation. The evolutionary
process is repeated during a given number of generations, up to having a good
enough solution (i.e., a fitted agent, using RL terminology) for the problem.

Neuroevolution has already shown its benefits for reinforcement learning in
software-based solutions. However, the original contribution of this work is to
show the adaptation of neuroevolution-based DRL to FPGAs. The proposed
framework relies on the Versatile Tensor Accelerator (VTA) included in the
Apache TVM framework [3] for evaluating the performance of each potential
candidate DNN. Candidate networks are evaluated in parallel using multiple
FPGA System-on-Chips (SoCs) connected through a local area network. The
capabilities of the proposed framework are demonstrated by developing an agent
capable of playing the Pong Atari video game against a computer.

The rest of this paper is structured as follows. Section 2 reviews the related
work on neuroevolution for DRL. The background technologies used in this work
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are described in Sect. 3, while the neuroevolutionary framework is described in
Sect. 4. The detailed SW/HW architecture of the neuroevolutionary agents is
described in Sect. 5. Experimental results are described in Sect. 6, while conclu-
sions and future work are shown in Sect. 7.

2 Related Work

Neuroevolution has proven surprising results in complex human tasks like beat-
ing video games such as the Atari games [11,16]. Previous work also shows that
neuroevolution can deal directly with visual input, which makes network training
highly complex due to the high dimensionality of the space of possible solutions
[8]. Using only visual information is also the approach proposed in this work.

All these works constitute purely software solutions that do not include hard-
ware acceleration. Although there are some works dealing with evolution of neu-
ral networks in FPGAs (such as our previous work in [5]), these are limited to
shallow neural models with limited computing capabilities. As far as we know,
the only experience of the implementation of deep neuroevolution in FPGAS is
the work presented by IBM research in [1]. Authors report training a DNN to
beat the Atari 2600 games using deep neuroevolution implemented in a custom-
designed system, the IBM Neural Computer. This system comprises 432 Xilinx
FPGAs interconnected in a 3D mesh network topology, with a total power con-
sumption about 4 kW. Each of the nodes relies on a PCIe 2.0 connection to com-
municate with the external computer that acts as the host. The DNN integrated
in each node is the DNNBuilder. Results provided in this paper demonstrate
that gradient-free optimization methods are competitive for training DNNs over
FPGAs. However, different from the architecture proposed in our work, the
system proposed by IBM research is implemented on a custom ultra-high per-
formance board designed specifically to be installed in a cloud infrastructure,
not appropriate for the embedded domain. Differently, in this work a distributed
scheme intended to be deployed in a fog/edge scheme is proposed. In this scheme,
the different accelerator boards can be physically distributed along an Internet
of Things infrastructure, working collaboratively through standard Internet ser-
vices to retrain the controller when needed. Moreover, using a custom board also
limits the accessibility of the end-users to neuroevolution and reduces flexibility.
The proposal in this work uses commercial devices and relies uniquely on open-
source accelerator IPs, which is envisaged as a critical factor for the adption of
the framework by the community.

3 Background Technologies

The main components integrating the FPGA-based neuroevolutionary frame-
work proposed in this paper are explained next.
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3.1 OpenAI Gym

OpenAI Gym is a toolkit for developing and benchmarking reinforcement learn-
ing algorithms [2]. The OpenAI Gym library has a comprehensive collection of
different environments that can be used to compare the performance and accu-
racy of machine models. For this work, interest is focused on the Atari subset
of environments (Fig. 1). This environment targets the simulation of the games
present in the Atari 2600, a game console that was very popular in the 80s and
had many arcade-style games available.

Fig. 1. Example of OpenAI Gym Atari games. From left to right: Pong, MsPacman,
Breakout

The OpenAI environment simulates the game’s behavior running in a soft-
ware simulator of a real Atari machine. It is implemented in Python and can be
integrated into the embedded processors of the FPGA SoC selected to imple-
ment the framework. Among the possible games included in Atari, the Pong has
been selected as use case.

3.2 Versatile Tensor Accelerator

The evaluation of each DRL agent during the neuroevolution process requires
the execution of multiple neural network inferences. This is one of the more
time-consuming tasks that can benefit more from the parallelization capabili-
ties of FPGAs. This work relies on the Versatile Tensor Accelerator (VTA) [12]
for accelerating these inferences. This solution is embedded in the Apache TVM
framework [3] and delivers an end-to-end workload solution that provides a com-
plete software stack that can map high-level models down to the programming
interface exposed by the VTA. The DNN model can be programmed in differ-
ent software frameworks (TensorFlow, PyTorch, Keras, among others). Then a
relay graph optimizer is responsible for translating the DNN model to a graph
representation. Finally, the TVM operator optimizer and the TVM just-in-time
runtime compiler execute the DNN model graph representation over the hard-
ware architecture. This hardware architecture is parameterized by the size of the
shared input/output SRAM memory, the size of the General Matrix Multiply
(GEMM) core integrated within the VTA, and the data widths.
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3.3 Pyro Library

Pyro [6] is a Python library that allows building applications where objects can
communicate over the network with minimal programming effort, using standard
Python method calls. It supports almost every possible parameter and return
value types. It provides powerful features that enable building distributed appli-
cations quickly and effortlessly.

4 Neuroevolutionary Framework Overview

The proposed neuroevolutionary framework is composed of a set of FPGA SoCs
(Xilinx Zynq-7000) connected over a local area network to a Personal Computer
(PC) that acts as the master node, as shown in the scheme in Fig. 2. The PC
executes the evolutionary algorithm that proposes candidate configurations for
the neuroevolutionary agents interacting with the environment (i.e., the Pong
Atari game). These agents are internally implemented as DNNs, as described in
section V. The EA directly proposes new weights and biases for these DNNs to
create new candidate agents. Every generation, the possible DNN solutions (i.e.,
the set of weights proposed by the EA) are distributed throughout the FPGA
SoCs connected over the network to be evaluated when interacting with the
Atari. The model candidates are distributed using Pyro. In each of these FPGA
SoCs, the evolved neural network model will try to infer the best action for
every output given by the OpenAI gym environment. This closed-loop workflow
between the environment and the agent will run in each node until the game is
finished (i.e., when any player reaches 21 points). A fitness result describing the
quality of the agent is sent back to the primary node when this happens. When
all the models finish, the controller node classifies the models by their fitness and
applies the mutation operator to generate a new generation of neural network
models. Crossover, the other typical bioinspired operator, has not been included
in the algorithm since it did not provide any benefit according to preliminary
results. Repeating this process over a significant number of generations produces
an optimal model trained to play the Pong game successfully, as it will be shown
in the experimental results section. It must be noticed that the evolved agent
plays against a fixed algorithm already implemented in the OpenAI environment.
The system is fully scalable, supporting a variable number of FPGAs running
in parallel. In this work, experimental results have been carried out with 1, 2, 4,
and 8 FPGA SoCs.

Next, further details are provided regarding the evolutionary algorithm and
the distribution of fitness evaluation processes throughout the FPGA SoCs.

4.1 Evolutionary Algorithm Overview

The training of the neuroevolutionary agents is guided by the evolutionary algo-
rithm described in Algorithm 1. It is an iterative algorithm in which bio-inspired
transformations are applied to a population of potential solutions repetitively



52 J. Laserna et al.

Fig. 2. Structure of the distributed neuroevolutionary framework.

during G generations (lines 1 to 19). Each solution in the population is a set
of weights and biases for the DNN featuring the neuroevolutionary agents. The
initial population is generated via the λ function, which randomly produces the
parameters for each specific model from a uniform distribution (line 4). After-
ward, for every generation, a population of N individuals is generated by apply-
ing a mutation operator over the population of the previous generation (lines 6
and 7). In this case, the mutation is implemented taking inspiration from Evolu-
tionary Strategies, hence, by adding Gaussian noise with a standard deviation σ.
Once the new generation is created, the fitness function F evaluates the models
according to their performance in solving the given problem, in this case, playing
Pong against the machine (line 9). Notice that this step is executed in parallel
on the FPGA SoCs. The fitness metric for each individual is used to sort them
according to their performance (line 11) and the set of best candidates C (elite
population) is created according to this order (lines 13 and 15). The elite popu-
lation is the set of individuals that persist between generations. A reevaluation
of all the individuals in the elite population is performed and the individual with
the best performance is set as the Elite (line 17). This Elite model will not be
affected by mutation during the next generation (line 18).

For the experimental results provided in the paper, the values of the hyper-
parameters of the algorithm have been fixed empirically to the values described
in Table 1.

Table 1. Hyper-parameters table

Hyper-parameter Value

Generations number (G) 250

Population size (N) 1000

Selected individuals (T ) 200

Mutation power (σ) 0.005

Number of elites (E) 1
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Algorithm 1. Genetic algorithm
Require: number of generations G, population size N , selected individuals T , initialization function

λ, mutation power σ, fitness function F , elite population C, number of re-evaluations n.
Ensure: N >= T ; 0 < σ < 1; E = 0
1: for g = 1, 2..., G generations do
2: for i = 1, ..., N − 1 do
3: if g = 1 then
4: θg=1

i = λ() {initialize random DNN}
5: else
6: k = uniformRandom(1,T ) {select parent}
7: θg

i = θg−1
k + σ · snrv() {mutate}

8: end if
9: Evaluate Fi = F (θg

i ) {play Pong and get the score}
10: end for
11: Sort θg

i with descending order by Fi

12: if g = 1 then
13: Set Elite Candidates C ← θg=1

1...T

14: else
15: Set Elite Candidates C ← θg

1...T ∪ {Elite}
16: end if

17: Set Elite ← arg maxθ∈C
1

n

∑n
j=1 F (θ)

18: θg ← [Elite,θg - {Elite}] {only include elite once}
19: end for return Elite

4.2 Distribution of Evolutionary Processes

The distribution of the models to be evaluated from the master node (the PC)
to the FPGA SoCs is done using the Pyro library, which only requires the PC
to know the IP address and ports associated with each FPGA SoC. Once the
training starts, the master node instantiates as many processes as secondary
nodes registered in a pool of resources. Associated to each resource, there is a
flag responsible for registering whether the node is busy or whether it has been
released and is ready to take on a new load. Semaphores are used to synchronize
all the processes.

Next, the internal structure of each neuroevolutionary agent integrated into
each FPGA SoC is provided.

5 Detailed SW/HW Architecture of the
Neuroevolutionary Agents

We describe now the framework component that runs in each FPGA SoC. The
ZYNQ-Z1 device has been selected for this implementation [4]. This platform has
as the processing system (PS) and as the programmable logic (PL). The Atari
Pong environment and the preprocessing step are implemented in the PS. A
Debian Linux operating system has been implemented in the processors to make
the development easier. The evolved DNNs running over the VTA architecture
included in the Apache TVM framework has been implemented in the PL. Both
partitions, shown in Fig. 3, are described in the following subsections.
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Fig. 3. FPGA SoC architecture for deep neuroevolution.

5.1 Software Subsystem

Atari Game Model. The particular architecture of the Atari Pong environ-
ment used in this work is represented in Fig. 4. This scenario has one input and
four outputs. The input to the environment is called action, and it mimics the
interaction that would produce a human player in the case of a real Atari game
machine. In this environment, only the right side pad (green) can be controlled,
and for this input, the user is allowed to go up, go down or do nothing. These
three different types of action will be the output of the machine learning agent.
After setting the input for a step in the simulation, this OpenAI gym environ-
ment computes the action and evolves the system to the next state. The output
of the environment comprises the next game frame (observation), if a player has
scored or not (reward), if the game has finished or not (done), and some relevant
information about the environment (info). This model is integrated as a software
process in the embedded processor of each SoC.

Fig. 4. Atari Pong environment architecture (Color figure online)

Video Frame Preprocessing. The preprocessing routine performs the neces-
sary actions to adjust the visual output of the Atari Pong environment to make
it compatible with the input of the DNN accelerator. These actions include delet-
ing the scoreboard, down-sampling the resolution to 84× 84 pixels, and changing
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the background colors and pads to grayscale. Then, the preprocessing module
batches four consecutive frames and inserts them into the neural network (Fig. 5).
Notice that the system needs more than one frame to infer the ball’s and pad’s
trajectory, not only the instantaneous position. The system is prepared to work
with visual information without requiring extra sensors, an approach known as
visual servoing in robotics.

Fig. 5. Preprocessing step

5.2 Hardware Subsystem

The evolved DNN is the entity responsible for deciding the optimal sequence of
actions to be executed to try and beat the other player (in this case, the program
embedded in the OpenAI model). Each action corresponds to a movement of the
joystick: up, down, and stay (see Fig. 6). To take the decision, the DNN receives
the state of the environment as the input.

Fig. 6. Modular representation of the DNN in the neuroevolutionary agent.

The DNN interacts with the Atari Pong environment moving the player pad.
This movement generates a new game frame that is provided to the preprocessing
stage, feeding back the latest state of the game to the DNN. Therefore, the
neural network closes the loop between the environment output and the received
actions, as shown in Fig. 3. These steps are repeated until the game ends. At this
point, the reward buffer is returned to the master node as the fitness of the neural
network loaded in the agent.
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The associated fitness value represents the goodness of each candidate model
after playing a complete game. A point will be added to this fitness if the evolved
solution scores. Conversely, a point will be subtracted if the Atari model scores.
The game finishes when any of the two players achieve +21.

Among all the possible DNN topologies in the literature, we have selected a
Convolutional Neural Network (CNN) appropriate for dealing with visual input
data [18]. The internal structure of the CNN model is represented in Fig. 7. This
network contains a feature extraction part and a classifier part. The feature
extraction part comprises three convolutional layers and a pooling layer. The
pooling layer has been included as a dummy layer exclusively to be able to
package the CNN model in the format required by the VTA accelerator. This
is why it does not produce a change in the output dimensions. On the other
hand, the binary classifier part is composed of a flattened layer that serves as a
nexus for the two dense layers that connect the CNN output. The parameters
of all these layers are defined in Table 2. This network has three outputs, each
associated with an action of the joystick. The action for which the DNN provides
the highest value will be the one introduced to the environment.

Fig. 7. Diagram of a convolutional neural network (CNN)

Table 2. CNN layers parameters table

Operation Filter size Stride Output Activation

Input image – – 84× 84× 4 –

Convolution 8× 8 4× 4 20 × 20 × 32 ReLU

Convolution 4× 4 2× 2 9 × 9 × 64 ReLU

Convolution 3× 3 1× 1 7 × 7 × 64 ReLU

MaxPooling2D – – 7 × 7 × 64 –

Flatten – – 3136 –

Dense – – 512 –

Dense – – 3 –

The CNN is executed over the VTA accelerator included in the Apache TVM
framework. To do so, the model weights proposed by the EA are encoded using
the TVM tools into a graph format that can be understood by the tensor pro-
cessor VTA.
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6 Experimental Results

The experimental results carried out to validate the proposed multi-FPGA based
platform for deep RL are described in this section. The evaluation of the solution
will be carried out in terms of the achieved fitness and the training performance.

6.1 Fitness Evaluation

The proposed fitness function consists of the sum of all the rewards obtained from
the simulation environment during training, as shown in Eq. 1. These individual
rewards Fii consist of the following values: 0 if no agent has scored a goal, the
value 1 if the player scores a goal, and the value −1 if the machine scores a goal.

fitness =
N∑

i=0

Fi (1)

The fitness evolution during training is shown in Fig. 8, where it can be
observed that the proposed framework manages to beat the machine, i.e., it
obtains a positive fitness in less than 25 generations. Moreover, it can be seen
that, after 172 generations, almost perfect score (20 vs. 21) is achieved by the
developed agent. It must be noticed that the fitness value represented in the
figure corresponds to the best individual in the population since this will be the
individual to be selected for the final deployment.

Fig. 8. Evolution of the fitness of the best individual of the population during training

6.2 Architecture Evaluation

In this section, we will evaluate the framework’s performance in terms of training
time for a variable number of FPGA accelerators. These results are summarized



58 J. Laserna et al.

in Table 3. Apart from showing the total time, the final value is broken down
by each of the parts involved in evaluating the DNN model: execution time of
the neural network (DNN), execution time of a game episode on the OpenAI
gym simulation environment (Env), time required for sending the model to the
FPGA node (Send), total execution time of a game (Iter), and total training
time for a generation (Total). These time results shown in the table are the
average execution time for all the FPGAs in the cluster. The slight differences
in the DNN evaluation and the environment time depending on the number of
FPGA is due to the changing traffic in the Ethernet network.

Table 3. Execution times.

DNN (ms) Env (ms) Send (s) Iter (s) Total (h)

1 FPGAs 504,9* 140,6 6,957 63,001 4,1

2 FPGAs 504,3* 141,0 6,805 63,002 2,04

4 FPGAs 503,7 140,8 8,574 62,811 1,075

8 FPGAs 504,7 141,1 6,811 63,281 0,546

From the results in the Table 3, we can state that the FPGA-based solution
is fully distributed and scalable, enabling the successful resolution of the deep
RL problem in a feasible time.

The same neuroevolutionary system has been deployed on a PC processor
(Intel Core i5 - 10400 with 6 cores running at 4,30 GHz), a gaming GPU (AMD
Ryzen RX 570), as well as on a single VTA implemented on the Zynq-7020 device.
The graph in Fig. 9 shows the time required to execute a complete iteration (one
set) for each of the proposed architectures. These results show that a single VTA
solution is significantly worse than the other two solutions when only the time
required for an iteration is considered. It can also be concluded that the GPU
solution is the fastest solution of the three. However, it must also be noted that
the nominal power consumption of these three platforms is entirely different (65
w for the CPU, 450 w for the GPU, and 5 W for the SoC, according to the
manufacturer’s spreadsheets and the report in [7]).

However, as shown below, the solution over VTA is enhanced when we use
distributed computing, reducing the times significantly. This situation is graphi-
cally represented in Fig. 10. In this graph we can see the total time elapsed during
the training of two generations with a population of 100 models each one (240
iterations in total with the parent’s reevaluation). For these results, one can see
the effect of a distributed computation of the VTA solution on the total training
time. As the number of FPGA nodes in the network doubles, the training time
is reduced by about half. The scalability limit will be imposed by the size of the
population of candidate DNNs evaluated by the evolutionary algorithm in every
generation.
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Fig. 9. Iterations times for a single CPU, a high-end GPU and 1 VTA instance

Fig. 10. Generations times with a variable number of hardware accelerators.

7 Conclusions and Future Work

This paper demonstrates the feasibility of using solutions based on evolutionary
algorithms to accelerate the training of DNNs on commercial FPGAs as an
alternative to gradient-based algorithms, which are not that suitable for FPGA
implementations. This feature is demonstrated in the context of reinforcement
learning applications, in which an agent running on an FPGA accelerator is
continuously interacting with an environmental model to learn how to control
it, using the accumulated experience. An Atari game included in OpenAI has
been selected as the use case to demonstrate the possibilities of the provided
solution. Experimental results show that the system can train the network and
almost linear scalability when using a multi-FPGA scenario is achieved. This
will be only bounded by the size of the population.

Future work will address the extension of the proposed framework to all the
rest of the games included in the OpenAI Atari environments and other DNN
training problems to show the generalizability of the solution. The adaptation
to new environments is straightforward since these environments share a stan-
dard interface. Only the fitness function should be adapted to the particulari-
ties of each game. A physical setup is also being prepared to demonstrate that
the framework can effectively control mechanical systems. Other DNN train-
ing scenarios, such as supervised classification, will be demonstrated in addition
to applying it to reinforcement learning problems. Moreover, other automated
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libraries to execute DNNs in FPGAs, such as FINN [19] or Brevitas [14], will be
evaluated and compared with the performance offered by VTA. Another possi-
bility that is being considered to accelerate the training process is implementing
the environmental model in hardware since their python-based implementation
in the embedded device takes an amount of time that is not negligible.
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Abstract. SWLBM is a software framework based on Lattice BoltzmannMethod
(LBM) for Computational Fluid Dynamic (CFD) running on Sunway many-core
processors. In this paper, we review the achievements of code developing in
early stage and introduce the development progress recently of this software,
including the development of parallel optimization for Sunway new-generation
supercomputing system, functional extensions of the software like pre-process
function for mesh generation from a geometry file with STL file and BMP file,
Immersed boundary condition for moving subject simulation. Some applications
with SWLBMwill be introduced to show the advantage of this software over other
CFD code in large-scale simulations. SWLBM is still under development, with
the continuous improvement of functions, it will play a greater role in the field of
fluid simulation.

Keywords: Lattice Boltzmann Method · High performance computing · Sunway
many-core processor · Computational Fluid Dynamic

1 Introduction

Computational FluidDynamic is one of classical application styles onHigh Performance
Computing (HPC) systems. Sunway supercomputing systems are designed by National
Research Center of Parallel Computer Engineering and Technology based on Sunway
many-core processors. One of them is the Sunway TaihuLight which is set in National
Supercomputing Center in Wuxi, ranked No.1 on HPC worldly Top500 list during the
years 2016–2017. Lattice Boltzmann Method is a class of CFD methods developed
since 1990 s, which traces back to Lattice Cellular Automata (LCA) [1, 2]. This methods
solve Boltzmann equation usually LBGK equation instead of theNavier-Stokes equation
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which is usually solved by other CFD methods, but it was certificated similar between
LBGK to Navier-Stokes equation by Chapman-Enskog expansion [3, 4]. The scheme
of this method is normally described as collide and stream phases, the information
communication needed for flow field evolution is locally. As scheme friendly for parallel
computation LBM was widely researched on HPC area, and showed its capability in
solving problems which need ultra-scale simulation in many areas [5–9].

SWLBM (also named SunwayLB - Sunway Lattice Boltzmann Method code) is
jointly developed by a team composed of members from China Ship Scientific Research
Center, National Supercomputing Center in Wuxi and Jiangnan Institute of Comput-
ing Technology. The code is specially designed for Supercomputers which use Sunway
many-core processors based on Lattice Boltzmann Method since 2017. The main moti-
vation of this code developing is to produce an efficient tool to solve problems within
days in industrial area which acquire extreme super-size computing with Sunway Super-
computers. In this paper we will briefly review the works we have done in early stage
when the code was established and will introduce the development progress recently in
the latter part.

2 Typical Works in Early Stage

The early stage for this code development is during the year 2017–2018. The works
were focused on optimization the efficiency of parallel algorithms on Sunway Taihu-
Light supercomputer with many-core processors SW26010. The code involved with
LBGK equation with the Lattice scheme called D3Q19 model [2] which is widely used.
Smagorinsky model [10] was embedded in the code for Large Eddy Simulation (LES)
when flow simulated at high Reynolds number, and do Direct Numerical Simulation
(DNS) without any turbulence models for low Reynolds number situation. The details
of those works could be found in reference [11–14].

2.1 Optimization Schemes for SW26010

The SW26010 processor has 260 heterogeneous cores divided by four core groups (CGs)
which providing a peak performance of 3.06TFlops. As in Fig. 1 shows, each CG is
composed of one management processing element (MPE) and 64 computing processing
elements (CPEs).

The SWLBM code was optimized with multi-levels parallelization including MPI
A thread and SIMD. The orchestrated strategy includes carefully designed domain
decomposition consider with MPI load balance, data blocking in CG level with effi-
cient data exchange scheme, thread-level data reuse, maximize the utilization of DMA
(Direct Memory Access) bandwidth and 64k LDM, manual loop unroll and instructions
reordering to exploit computational potential of the pipelines and 256-bit vectorization
instructions of CPEs.

As the final result, SWLBM achieve high level parallel efficiency performance. The
performance experiments were done up to the largest size with 5.6 trillion lattice cells
running on 160,000 CGs and 10,400,000 cores, achieved a sustained performance 4.7
PFlops. Amdahl’s law [15] for strong scaling and Gustafson’s law [16] for weak scaling
was shown in Fig. 2.
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Fig. 1. Architecture of SW26010 [13]

(a)weak scaling results                                      (b)strong scaling results

Fig. 2. Performance and parallel efficiency of weak scaling and strong scaling tests [12]

2.2 Typical Applications

Direct numerical simulations of turbulence flow were typical application in this stage.
The benchmark cases like flow past a circular cylinder at Re = 3900, channel flow at
Ret = 180 were simulated.

Flow Past a Circular Cylinder at Re = 3900. Theflowpast circular cylinder has been
one of the highly researched topics especially at Re= 3900 [17–19]. This case was set as
experimental example for weakly scaling testing. And a process completely DNS of this
case was done with lattice size of 4000 * 1000 * 4000 to verify the capability to solve
specific problems by SWLBM. The resolution was 200 referenced to the diameter of
cylinder. It costs 0.3s per step with parallel size of 2000CGs and more than one million
steps evolution of the flow field was simulated to obtain the regular flow structure for
analyzing. The simulation result of Q Criterion was shown in Fig. 3. It could be found
the distinguishable complex vortex structures could be captured by SWLBM.
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Fig. 3. Q-Criterion of flow past circular cylinder at Re = 3900

Channel Flow at Ret = 180. Channel flow is another topicwhich iswidely researched
for turbulence studies [20, 21]. The channel flow at Ret = 180 was directly simulated
with lattice size of 1024 * 256 * 256 and cost 0.041 s per step with 64 CGs. The results
agrees quantitatively with the DNS results take by Moser et al. [19] (see Fig. 4.)

Fig. 4. Vortex structure and statistical quantitative comparison with other DNS [19]

3 Recently Development Progress

Afterward the focus of work on SWLBMdevelopment was shifted to function extending
since 2019. Various pre-processing functions were developed to enhance the ability of
SWLBM dealing with practical problems. Lattice schemes like D3Q27 and MRT, sub-
grid scale models likeWALEmodel and Vremanmodel for Large Eddy Simulation were
included in SWLBM gradually. Immersed boundary conduction was also introduced for
solving moving subject problems. Parallel optimization would be done after each new
functions involved. Another development progress on parallel optimization issue is the
work taken in transplant SWLBMcode to new generation Sunwaymany-core processors
SW26010Pro.



66 C. Xuesen et al.

3.1 Optimization Works for SW26010Pro

The new generation Sunway many-core processor is SW26010Pro [22], one hetero-
geneous CPU consists of 6 CGs (see in Fig. 5). There are some significant updates
of SW26010Pro related to SWLBM’s performance comparing to SW26010. First
SW26010Pro has 512-bit SIMD enables 8 FP64/FP32 data to be processed in a sin-
gle instruction. Second LDM was updated to 260 k. The corresponding optimization of
SWLBM was developed. The precision of the main date types in SWLBM was updated
from FP32 to FP64. The DMA and SIMD operation were optimized too. Another ver-
sion of SWLBM was also developed with A thread replaced by SWACC for hybrid
parallelization. Simulation of flow past SUBOFF was set as a case for optimization per-
formance testing with lattice size of 3000 * 600 * 600. The performance could be found
in Table1 testing with 64CGs. Either A thread or SWACC version could get about 120x
speedup according to MPI version which just running with MPE.

Fig. 5. Architecture of SW26010Pro

3.2 Pre-processing Functions Within SWLBM

In order to solve industrial problems, aCFDsoftware should have a robust pre-processing
module to handle arbitrarily geometries involved for simulation. The pre-processing job
in SWLBM in to define the lattice inside the computational domain into different styles
like FLUID, SOLID, BOUNDARY. Different functions were designed corresponding
to different input sources for pre-process in SWLBM. Here pre-processing with inputs
from STL geometry files and BMP files will be introduced.

Pre-process with STL Files. STL is one of the popular formats of file to describe
the structure of the geometry. It represents a surface geometry using facets. The facets
define the surface of a 3D object and is uniquely identified by a unit normal, and by
three vertices. An efficient algorithm for pre-processing of Lattice Boltzmann method
based on STL file was developed for SWLBM, the details could be found in reference
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Table 1. Optimization performance of SWLBM with SW26010Pro.

Functions MPE(MPI) MPE(MPI) +
CPE(A thread)

SpeedUp MPE(MPI) +
CPE(SWACC)

SpeedUp

Halo_send() 0.102174 s 0.002502 s 40.84 0.004456 s 22.93

Communicate() 0.285495 s 0 N/A 0.011618 s 24.57

Halo_receive() 0.105054 s 0.003720 s 28.24 0.005093 s 20.63

Boundary() 1.011485 s 0.007940 s 127.39 0.009438 s 107.17

Stream() 24.271920 s 0.402023 s 60.37 0.384242 s 63.17

Collide() 44.281064 s 0.159458 s 277.70 0.180118 s 245.84

Total 70.058357 s 0.578840 s 121.03 0.596119 s 117.52

[23]. The process from STL file to final result simulated with SWLBM with CHN-T1
airplane model is shown in Fig. 6.

Fig. 6. Example of pre-process with STL files [23]

Pre-process with BMP Files. Another pre-processing function was to reconstruct a
2D image with BMP file into 3D geometry. The other format images could transform
into BMP format firstly and then saved as a monochrome bitmap with 1-bit color depth.
The pre-processing function could load the file and judge the lattice’s style according to
the color value, and generate the third dimension with slice copy. The typical usage of
such function is to simulate the flow fields past certain LOGs. Normally those flowswere
simulated with lattice size of 1000 * 500 * 500, finishing within one hour with 2000CGs
of SW26010 for 100,000 steps. An example of flow past Tsinghua University’s LOG
was shown in Fig. 7.
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Fig. 7. Example of pre-process with BMP file

3.3 Immersed Boundary Conditions

The immersed boundary method (IBM) was created since 1972 by Peskin in order to
study the fluid dynamics of heart valves [24]. It is a Eulerian and Lagrangian mixing
method, with Eulerian grid for the fluid and Lagrangian mesh for the boundaries. The
effect of the boundary is communicated via interpolations between both coordinate
systems. It is a mesh-free technique which can deal moving boundary with arbitrarily
geometry easily. The IBM schemes introduced by Peskin 2002 [25] are integrate into
SWLBM. The calculation example of flow structures of an open water propeller rotating
with immersed boundary condition was shown in Fig. 8.

Fig. 8. Flow structure with open water propeller rotating with immersed boundary
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3.4 Other Expert Applications with SWLBM

SWLBMwas originally designed to handle ultra-large scale simulation problems. So, the
professional application scenarioswith SWLBMare those industry caseswhich sensitive
to the high resolution of the computational domain, like wind field, turbulence flow,
muti-scale problem and so on. Some expert applications will be introduced following.

Wind Field Simulation. Wind field simulation is a popular subject from research of
wind farm in wind power industry to forecasting dispersion of air pollution, simulation
of urban ventilation corridor in environmental engineering study. With the efficient
heterogeneous parallelization SWLBM could simulate wind field much faster than other
CFD code such as OpenFOAM. The simulation of wind field of the Beijing Olympic
Park was shown in Fig. 9. The area of 4 km2 was calculated in this case with lattice
setting 4000 * 4000 * 1000 of 1 m resolution. It is finish within 24 h with 2000CGs for
200,000 steps evolution simulating.

Fig. 9. Wind field of the Beijing Olympic Park

Large Scale Wake Simulation. Wake flow study of underwater vehicle is a popular
topic in ship engineering area.Most former simulations are limited in an area of few times
the length of the vehicle due to huge amount of calculation required in such problem.
Because not only the region near vehicle needs high resolution in order to capture the
flow structure formed, but also needs high resolution wake region to maintain the flow
field evolution spread with low dissipation. Due to huge scale simulation capability
and low diffusion characters of LBM scheme, SWLBM can handle such problem much
easier than other software. A 20 km region of wake flow of a suboff with length of 87
m was simulated with the resolution of 0.1 m. The lattice size is 200000 * 1000 * 1500
(300billion), the calculation was taken with 18,000CGs of SW26010Pro with time cost
0.68 s per step. The wake structure simulated is shown in Fig. 10.
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Fig. 10. Large scale wake simulation of suboff

4 Conclusions

In this paper, we report our development progress of SWLBM the CFD software for
Sunway supercomputers based on Lattice Boltzmann Method. Heterogeneous parallel
optimizations were designed for SW26010 at early stage and updated for SW26010Pro
recently, with efficient hybrid parallel strategy SWLBM lead tomore than 100x speedup.
Variety pre-process functions enable SWLBM to realize flow field simulation with arbi-
trarily geometry. Various applications with SWLBM including turbulence flow simula-
tion, wind field simulation, large scale wake simulation showed the powerful capability
of SWLBM to deal ultra-large-scale simulation with Sunway supercomputers.

SWLBM is still under developing. Much more function will be planned to develop
in the future such as free surface models, thermal models and so on. The post-process
functions will also to be expand for result data analyzing. We are sure SWLBM could
be a powerful tool on Sunway supercomputers for industry application.
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Abstract. In this paper, we investigate the application of early-exit
strategies to fully quantized neural networks, mapped to low-complexity
FPGA SoC devices. The challenge of accuracy drop with low bitwidth
quantized first convolutional layer and fully connected layers has been
resolved. We apply an early-exit strategy to a network model that com-
bines weights and activation with extremely low bitwidth and binary
arithmetic precision based on the ImageNet dataset. We use entropy cal-
culations to decide which branch of the early-exit network to take. The
experiments show an improvement in inferred speed of 1.52× using an
early-exit system, compared with using a single primary neural network,
with a slight accuracy decrease of 1.64%.

Keywords: Early-exit · Neural network · Low-cost FPGAs ·
Hardware acceleration

1 Introduction

The deployment of deep neural networks (DNNs) on edge devices is increasingly
popular and this brings new energy and performance challenges. For example,
the inference speed of neural networks (NNs) on CPUs is generally limited by
the lower level of parallelism present in the hardware with just a few arithmetic
units available. On the other hand, GPU devices offer significantly better per-
formance with a large number of parallel streaming processors but these are
designed to work with data types wider than the few bits used in quantized neu-
ral network (QNN) models, which limits their performance. The deployment of
heavily quantized NNs on field-programmable gate arrays (FPGAs) has resulted
in very high performance and low energy consumption [1]. However, despite the
efficiency of quantized models, significant performance and complexity trade-offs
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are required to map DNNs with millions of parameters in low-cost FPGAs with
limited resources.

In this research, we build an early-exit image classification system based on
the FINN framework [2]. Our demonstrator is based on a low-cost Xilinx Zynq-
7020 SoC PYNQ-Z2 (FPGA) board and a Logitech C160 webcam. FINN [3]
is a framework that specifically targets QNNs, with emphasis on generating
dataflow-style architectures customized for each network. The resulting FPGA
accelerators are highly efficient and can yield high throughput and low latency.
Our target system design is shown in Fig. 1. Both webcams capturing and direct
image inputs are applicable to this recognition system with a heterogeneous
NN deployed to achieve optimal performance. The proposed early-exit system
contains a primary network, which has more network layers and can achieve
better accuracy but is slower; and a small-scale network, which has fewer network
layers with high efficiency but it is relatively low accuracy. The computing layers,
including the first convolutional layer and fully connected (FC) layer of the NN,
are executed on the programmable logic (PL). However, the entropy evaluation
module will be executed in the processing system (PS). The deployment strategy
will be explained in detail in Sects. 3 and 4. The uncertainty evaluation module
based on entropy estimations is used to decide which network should be applied
during inference. These two NNs cooperate with each other to form a high-
performance adaptive system with optimized processing time.

Fig. 1. Overview of the system

The main contributions of this research can be summarized as follows:

• We propose the application of an early-exit strategy that targets a hardware-
based neural network with sub-byte precision for weights and activations.

• We optimize accuracy and execution time mixing different sub-byte precisions
for weight and activations in different layers.

• We evaluate the accuracy and execution time by changing the entropy of the
uncertainty evaluation module with different image perspectives captured by
the camera.
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2 Background and Related Work

The deployment of DNNs on FPGAs has become popular due to their design
flexibility, good performance, and low energy consumption. However, the limited
resources available in embedded FPGAs requires significant trade-offs between
performance and complexity. The current progress in DNNs dictates that the
number of required parameters has reached the order of millions or even bil-
lions. For example, CoAtNet-7 [4], the most advanced NN as of writing this
publication, achieves 90.88% of top-1 accuracy when applied to the ImageNet
dataset and contains 2.44 billion parameters. Other widely-used NNs such as
VGG [5], GoogLeNet [6], and Res-Net [7] have also reached the level of millions
of parameters. The increase in parameters significantly improves the accuracy
of DNNs, but it makes the deployment on low-cost edge devices challenging.

In recent years, the need for floating-point multiply-add operations has been
reduced by using weight and activation quantization, with extreme cases such
as Binarized Neural Networks (BNNs) eliminating the need for multiplications
altogether. Kim and Smaragdis [8] believe that in a fully binarized NN, some
inactive neurons can be pre-served as zero weight, while others are served as
one weight during the calculation. They achieved 98.7% of accuracy on the
MNIST dataset using the proposed BNN system. In a BNN only XNOR and bit
counting operations are used instead of multiplication/addition. XNOR-Net [9]
is proposed by the research group of Rastegari, which applied the binary convo-
lutional neural network to the ImageNet dataset classification task. It is inspired
by Alex-Net [10], Res-Net [7], and GoogLeNet [6]. XNOR-Net achieves 51.2%
of Top-1 accuracy in a fully binarized NN with the ResNet-18 architecture and
65.5% of Top-1 accuracy in a partly binarized NN with the GoogLeNet archi-
tecture. DoReFa-Net, proposed by Zhou et al. [11], explored the accuracy of the
forward/backward passes during the convolution using low bit-width weights.
This made effective NN implementations on FPGAs possible. They experimented
with partly binarized NNs and fully binarized NNs on the ImageNet dataset with
53% of Top-1 accuracy with 8-bit weight and 8-bit activation. Kwan et al. [12,13]
experimented with an adaptive system that varies the number of frames used for
image classification with a BNN and improved the accuracy to 70.4% based on
the FINN library using real data frames as input. The inference part is executed
on the PL, while a filter that adapts the system is executed on the PS.

The early-exit strategy has been proposed as a way to adapt the classification
effort to the complexity of the task. The objective is to improve performance and
reduce energy requirements with a minimum accuracy drop. BranchyNet [14] was
proposed with the core idea of early exiting by introducing an early-exit system in
the DNN. Branchy-LeNet (B-LeNet) on the MNIST dataset and Branchy-ResNet
(B-ResNet) on the CIFAR10 dataset are both modifications from the original
Le-Net and Res-Net NNs. B-LeNet and B-ResNet achieve 99.25% and 79.17%
respectively, which have a negligible accuracy drop or even slightly increased
accuracy compared with the 99.20% and 80.70% accuracy of the original net-
work. At the same time, B-LeNet and B-ResNet also achieved 4.7× and 1.9×
speed improvement compared with the original networks on an NVIDIA GeForce
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GTX TITAN X (Maxwell) 12GB GPU. In our research, we will create an early-
exit NN using similar techniques to BranchyNet. Teerapittayanon et al. [15] also
applied BranchyNet to the portable-edge-cloud heterogeneous computing sys-
tem with the NN model divided into three parts. Wang et al. [16] proposed a
dual dynamic inference framework for DNN training containing Input-Adaptive
Dynamic Inference (IADI) and Resources-Adaptive Dynamic Inference (RADI).
The IADI can dynamically choose the sub-network that is the most time-effective
with minimal degradation of accuracy, while RADI decides the confidence of
early exit. This framework is applied on Res-Net trained with CIFAR-10 result-
ing in up to 4× computational saving with the same or higher accuracy compared
with the SkipNet [17]. Lo et al. [18] proposed authentic operation (AO) and
dynamic network sizing under the early-exit concept. AO is used after an initial
inference is performed locally to decide whether the input should be transferred
to the edge server for further inference or to present the output directly. The
dynamic network determines the number of NN layers being used. Neshatpour
et al. [19] decomposed the convolutional neural network (CNN) into a contin-
uous number of smaller networks that are capable of image classification, and
an early-exit strategy is introduced afterwards. Li et al. [20] and Phuong et
al. [21] introduced multiple early-exit branches to the DNN model with the Ima-
geNet dataset. More recent research shows that multiple early-exit branches can
improve the efficiency of inference as demonstrated in SDN [22] and SPINN [23].
However, adding multiple exit branches into the NN system will increase the
complexity of the network and in this research, we focus on a single exit branch
due to the limited resources available in the selected Zynq-7020 FPGA board.

The training method of the early-exit networks shown above is known as
joint training. In joint training, all the layers in a model are trained simultane-
ously. In our research, the early-exit branch network will be trained separately
from the primary network. The primary network will be trained in the initial
phase. Then, the early-exit branch will be introduced and trained while the pre-
trained primary model is made immutable. Since the branch network is trained
separately, it is not required to train the whole network from scratch but only
re-train the corresponding branches if there are modifications or additions to the
branch network.

There is also a similar concept of the primary network and subordinate net-
work written as Multi-Precision CNNs in the research work done by Amiri et
al. [24]. In that work, NNs were trained independently, and they did not share
the same data structure. In this research, we will still retain the multi-CNN
concept but the early-exit branch network will share a part of the structure with
the primary network. This will reduce the NN size and the NN training process.

In contrast to the previous work that considers DNNs mapped to CPUs
and GPUs, we deploy the early-exit strategy on an FPGA-based BNN with the
FINN framework [2]. Umuroglu et al. have implemented a BNN with FINN into
a ZC706 embedded FPGA platform. It has been demonstrated that up to 12.3
million image classifications per second with 0.31µs latency on the MNIST with
95.8% accuracy, while reached up 21096 image classifications per second with
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283µs latency on the CIFAR-10 and SVHN dataset with respectively 80.1%
and 94.9% accuracy. This previous FINN research has targeted less challenging
datasets with fewer image categories so the whole network can fit in the device
memory. Zhang et al. [25] proposed FracBNN, a BNN which is deployed on a
Zynq Ultrascale+ MPSoC device and achieved 71.8% Top-1 accuracy. Although
the accuracy of FracBNN is better than our model, the FracBNN model is too
large to be deployed on our low-cost FPGA device. Furthermore, we need to
build an early-exit branch network based on the primary network increasing
complexity, which will make FracBNN implementation even more problematic.

3 Early-Exit Topology and Training

In this section, we present the early-exit topology and demonstrate the training
method of the NN. Python version 3.6.9 and PyTorch 1.10.2 with GPU support
and dependencies were installed on an 8-core vCPU, Tesla P100 GPU, and 53GB
of machine RAM. There are other frameworks for training available such as
PyTorch, TensorFlow, and Caffe. However, to maintain compatibility with the
FINN tools, our method uses PyTorch to train the NN model and uses the
Brevitas [26] tool to quantize the model. The model is then converted from
.npz to .onnx format which is ready for deployment on the FPGA. The model is
trained with the ILSVRC12 dataset which is derived from the ImageNet dataset.

Fig. 2. The flow chart of the primary and early-exit configuration of NN system

The early-exit system contains a primary NN and an early-exit branch and
both are mapped to a Xilinx Zynq-7020 SoC PYNQ-Z2 FPGA board. As shown
in Fig. 2 and Fig. 3, every sample will go through some layers of the NN for
initial inference until it reaches a junction. An evaluation will be performed to
compare the current entropy of the sample with the entropy set by the user.
The entropy is defined as: entropy (y) =

∑
l∈L yllog2yl, where y is a vector that

contains probabilities of all possible classification labels and l contains all possible
classification labels. If the current entropy is smaller than the threshold entropy
set on the primary network, the sample will go through the early-exit network
for further inference and present the result with maximum probability. If not,
the sample will go through the primary network and the label with maximum
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probability will be returned. The inferring system will repeat the same procedure
and continue in a loop after the classification result of the latest input image
has been produced. The uncertainty evaluation algorithm is demonstrated as
follows:

r = fexit (x)
y = softmax (r)
e = entropy(y)
if e < eT then

return argmax(y),

where fexit is the output of the network and eT is the entropy of training. The
early-exit network system follows the same procedure for every image inference.

Fig. 3. The processing timeline for the system

Figure 4 shows the structure of the primary and early-exit NNs. The primary
network structure is based on Dorefa-Net and the early-exit network is a pruned
version of the primary network with fewer convolutional layers and FC layers.
Both primary and early-exit networks share the same data structure at the ini-
tial inference part of the NN. The first stage of our approach trained the NN
layers with 1-bit weight and 2-bit activation but remains the first convolutional
layer and FC layers unquantized with floating-point precision to guarantee the
prediction accuracy of the NN. This is because the first layer is connected to
the image input which contains 8-bit pixels. Hence, there will be a significant

Fig. 4. The primary and early-exit model topology
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accuracy drop if it is binarized. However, the unquantized layers are not able
to be deployed on the PL side of FPGA and make the entire system less effi-
cient. The previous version of the NN system achieves 52.29% of Top-1 accuracy
and 63.62% of Top-5 accuracy for the primary network, and 48.17% of Top-1
accuracy and 59.38% Top-5 accuracy for the early-exit branch network. In order
to improve the efficiency of the network after being deployed on the PYNQ-Z2
board, we kept the quantized NN layers as their original and set up a series
of experiments to find an optimization method that can satisfy both accuracy
requirements and fully quantized layers. The FC layers are quantized to 1-bit
weight and 2-bit activation directly as they do not impact the NN accuracy as
significantly as the first convolutional layer does. The FC layers will produce
a one-hot vector output. However, for the first convolutional layer, a variety of
bits of quantization targeting the weight and activation are tested from 1 bit to
4 bits based on the primary network, with each sample trained for 35 epochs.
Figure 5 (a) shows the accuracy difference with different weight precision while
keeping the activation binarized. From the figure, it can be seen that the accu-
racy significantly improves from 28% to 35.07% when the number of weight bits
increases from 1 to 2. The accuracy improvement effect with a higher number
of weight bits is gradually reduced. The accuracy increase when replacing 2-bit
weights with 3 bits is 2.35% from 35.07% to 37.42%. The accuracy improve-
ments comparing 3-bit and 4-bit weight is only 1.24% from 37.42% to 38.66%.
If the accuracy is the only factor that is taken into the consideration, it is obvi-
ous that a higher weight bit count will result in higher NN inference accuracy.
However, this increases in weight bits will result in additional computation and
resource consumption. Hence, to balance NN inference efficiency and accuracy,
the weight of the first convolutional layer will be quantized to 2 bits. Figure 5 (b)
demonstrates the effects on accuracy with different counts of activation bits. The
weights of the first convolutional layer are quantized to 2 bits in this scenario.
The accuracy behaviour in this experiment is similar to the weight experiment.
The accuracy increases sharply with the gain of 8.25% from 35.07% to 43.32%
when the activation bit number is changed from 1 to 2. However, the accuracy
only improves approximately 1% when the activations are quantized to 3 bits or
4 bits, with 44.86% and 45.89% respectively. Similarly, in order to achieve the
best combination of accuracy and NN execution efficiency, a 2-bit quantization
will be chosen for the activations of the first convolutional layer. After these two
experiments presented above, the accuracy of the primary network now improves
from 28% to 43.32%, which is close to the accuracy of the NN with binarized
FC layers only that achieves an accuracy of 49.76%.

To improve the inference accuracy further, the stride of the first convolu-
tional layer can also be reduced to preserve more information from the direct
image input. In the original version, the stride number was 4. Hence, a set of
experiments with a range of stride from 4 to 1 are carried out. Figure 6 compares
the results of accuracy with different strides. All the NN samples are trained for
35 epochs. The effect of stride changing is significant in terms of the inference
accuracy as an increment of approximately 5.5% is achieved for each step of the
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Fig. 5. Accuracy with different levels of weight quantization (a) Accuracy with different
levels of activation quantization (b)

stride change from 4 to 2 reaching 53.64% of Top-1 accuracy with the stride
equals to 2. When the stride is set to 1, the accuracy increases to 55.51% with
a step increment of 1.87%, which is less significant than the previous change.
Thus, the stride number of the first convolutional layer is set to 2 as an optimal
solution with the best balance between efficiency and accuracy.

Fig. 6. The comparison of accuracy with different stride

The fully-quantized primary network was trained for 60 epochs to achieve the
optimal inference accuracy, while the early-exit network was trained afterwards
using the pre-trained model from the primary network using transfer learning
techniques. Thus, instead of training the entire early-exit network, the initial
layers of NN can be directly used from the pre-trained primary network. Only
the layers that are different from the primary network need to be trained from
scratch. This design makes the early-exit system achieve better integration, flexi-
bility, and ease of modification if any further enhancements and development are
carried out. The primary network reaches 59.38% of Top-1 accuracy and 72.81%
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of Top-5 accuracy, which is approximately 7% more accurate than the previous
version of our NN system. While the early-exit branch network reaches 53.14%
of Top-1 accuracy and 65.64% Top-5 accuracy after 60 epochs of training. As it
is expected, the early-exit branch network is less accurate than the primary net-
work, but the overall efficiency of the system improves since the number of layers
executed is lower. In addition, the confidence evaluation strategy will reduce the
drop in terms of accuracy.

4 FPGA Optimization and Deployment

After training the NNs, the FINN framework is used in order to deploy the NNs
on the PYNQ-Z2 platform using a multi-layer offload architecture. The process
of deployment is shown in Fig. 7. Brevitas is applied to achieve NN quantization.
Brevitas is a PyTorch library for quantization-aware training (QAT). Although
PyTorch has already quantized the NN, the quantization in PyTorch only tar-
gets CPU backends and Brevitas has been designed to target FPGA and Data
Processing Unit (DPU) backends. Thus, the trained model needs to be imported
to Brevitas to convert the quantization format to target the FPGAs backend.
Then, the NN model is imported to FINN using the ModelWrapper. The next
step is to convert the network layers that will be deployed on the FPGA into
their HLS equivalent by calling the FINN HLS library so they are available for
Vivado HLS synthesis. After this step, the network model is ready for hardware
generation. The ZynqBuild function is applied to complete the hardware gener-
ation step. Finally, the DeployToPYNQ script is called to deploy the hardware
to the PYNQ-Z2 FPGA board. The clock frequency of the PL will be fixed at
50 MHz.

Table 1. Utilization report on PYNQ-Z2

LUTs FlipFlops Block RAMs DSPs

51632 (97%) 42538 (40%) 139 (99%) 69 (32%)

Table 1 shows the utilization of PL resources which is close to the maximum.
Therefore, the hardware proposed accelerator is maximizing the utilization of
the FPGA device.

5 Evaluation

5.1 Entropy Threshold Evaluation

In this section, we evaluated the efficiency and accuracy obtained when changing
the entropy value for the uncertainty evaluation module. Figure 8 shows how
changes in entropy affect the percentage of samples that take the early-exit
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Fig. 7. The deployment procedure of NN on the PYNQ-Z2 FPGA

branch, as well as how it affects the frequency that the system chooses to select
the early-exit branch. It shows that there is an inflection point of entropy value
which indicates a rapid decrease in terms of accuracy. Hence, it can be deduced
that the value of the inflection point of the entropy value will be a trade-off that
satisfies the required inference speed while maintaining accuracy. In the rest of
the paper, we set the threshold value to 0.14 for the further evaluation that
corresponds to the inflection point.

Fig. 8. The overall accuracy of the
heterogeneous NN with varying ent-
ropy threshold

Fig. 9. The MOPS comparison for primary
network and branch network

5.2 Camera Input Evaluation

In this section, we verify that the system is able to adaptively select the optimal
branch of the NN according to the different camera angles while classifying the
same object. Our demonstrator is based on a Logitech C160 webcam. The size
of every input sample is fixed at 224 × 224 × 3 pixels. Figure 10 demonstrates
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examples of the network usage and classification results for our early-exit system
on the same object but with different camera angles. The results were obtained
with the early-exit branch enabled and entropy = 0.14. Figure 10 clearly shows
that the system presents the correct results of the car model in all camera angles,
with the exception of Fig. 10 (e). We can see that the system chooses the branch
network while it classifies the picture Fig. 10 (a) and outputs the correct results.
The primary network is applied for inferring the picture Fig. 10 (b). The system
fails to infer the picture Fig. 10 (c) with an extreme shooting angle with the
primary network.

Fig. 10. Examples of network usage and inference results

5.3 Performance and Accuracy Evaluation

To test the performance, we prepared 100 images randomly captured from the
Logitech C160 webcam. Figure 11 shows the execution time evaluation for the
early-exit NN system. As shown in Fig. 11 (a), The majority of the execution
time in this NN model is spent in the FC layers. Thanks to the pruned network
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layers in the branch network, the execution time of the convolutional layers in
the branch network is 1.43× faster than the primary network and is 2.44× faster
than the primary network in terms of the FC layers. The overall time cost of
the early-exit branch network is 2.08× lower than the primary network, which
achieves 146.27ms and 304.75ms respectively as it can be seen in Fig. 11 (b).
Although the FC layer contains most of the parameters in the NN, it requires
lower computation than the convolutional layer. It can also be observed that
the execution time of the convolutional layer and FC layers on the PS are not
proportional to the number of parameters in the corresponding layers.

Fig. 11. The time costs comparison for each part of networks (a) and The total time
cost comparison of networks (b)

Figure 9 compares the MOPS of the primary network and the branch network.
Binarized network layers executed on the PL achieve a performance of 16167.29
MOPS for the primary network. The performance of the PL when the early-exit
branch network is executed is 14452.86 MOPS.

To validate the hardware acceleration, we execute the entire NN system on
the PS only. Also, an initial comparison is set up for our NN on an Intel i5-9300H
8-core CPU machine at 45W TDP (Thermal Design Power) and an NVIDIA
RTX2060 GPU machine at 160W TDP by executing the original PyTorch val-
idation code. Table 2 compares the time cost of the network executed on the
various devices described above. It can be calculated that the acceleration rate
for this NN is about 350× if the whole NN is executed on the PS. When the NN
is tested on the Intel CPU, the time consumption is more than twice compared
with PL. The execution time on the GPU is very close to the PL. This is because
the layers that are implemented onto the PL are quantized as BNN layers. This
allows all the network layers parameters to be stored in the initial memory of the
PL without accessing the external memory. Moreover, BNNs eliminate the mul-
tiplication operations and replace them with XORing and zero-counting logic,
which is also an efficient optimization targeting FPGA backends.
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Table 2. Heterogeneous NN performance comparison on selected devices

Device PS on
PYNQ-Z2

i5-9300H
CPU

RTX2060
GPU

PL on
PYNQ-Z2

Time (ms) 78,710.55 548.86 218.33 224.52

Time-cost Ratio 350.57× 2.44× 0.87× –

To verify the system accuracy, we used the validation dataset of ILSVRC12.
The accuracy is compared between executing just the primary network and
deploying both the primary network and the early-exit branch network for infer-
ence. Table 3 highlights the threshold value, exit rate, and gain in terms of accel-
eration of the early-exit network system. The threshold value is set at 0.14, which
is approximately the same as the entropy loss of the primary network during the
training session. The results indicate that the early-exit system is 1.52× more
efficient compared to the network without an early-exit branch. There is also a
trade-off between network accuracy and efficiency. An accuracy drop of 1.64%
is observable in Table 3, which is lower than the original accuracy difference
between the primary network and the early-exit branch network.

Table 3. The performance result for the primary network, the branch network, and
the early-exit system

Networks Accuracy Time (ms) Gain Threshold Exit rate

Primary Network Only 58.74% 304.75 – – –

Branch Network Only 52.76% 146.27 – – –

Early-exit System 57.10% 200.66 1.52x 0.14 65.68%

6 Conclusions and Future Work

In this paper, we present an early-exit system with a primary network and
an early-exit branch network applied to a binarized neural network to improve
overall system performance. The PyTorch framework is used for NN training and
Brevitas is applied for NN model conversion. The quantized (partly binarized)
NN model is based on the FINN framework for dataflow optimization targetting
the PYNQ-Z2 FPGA backend.

The deployed NNs on the PL achieve an excellent hardware acceleration
result compared with other devices with similar accuracy to the original pri-
mary network and very low energy consumption. The topology of the early-exit
branch network further improves the processing rate by 2.08× compared to the
primary network. The overall system is 1.52× more efficient compared to just
using the primary network with a minor accuracy drop of 1.64% using the vali-
dation dataset of ILSVRC12.



Entropy-Based Early-Exit in a FPGA-Based Low-Precision Neural Network 85

In future work, we intend to evaluate other FPGA devices with more
resources such as the Zynq Ultrascale+ development platform to create more
complex systems with multiple exits or better accuracy NN models. A method
to automatically evaluate the optimal location of early exits and their total num-
ber is also an interesting research path. Moreover, the implementation of NN to
decent CPU and GPU can also be optimized. We also aim to extend our work to
other application areas, such as object detection and abnormal event monitoring.
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Abstract. This paper introduces a computer architecture, where part
of the instruction set architecture (ISA) is implemented on small highly-
integrated field-programmable gate arrays (FPGAs). Small FPGAs
inside a general-purpose processor (CPU) can be used effectively to
implement custom or standardised instructions. Our proposed archi-
tecture directly address related challenges for high-end CPUs, where
such highly-integrated FPGAs would have the highest impact, such as
on main memory bandwidth. This also enables software-transparent
context-switching. The simulation-based evaluation of a dynamically
reconfigurable core shows promising results approaching the performance
of an equivalent core with all enabled instructions. Finally, the feasibil-
ity of adopting the proposed architecture in today’s CPUs is studied
through the prototyping of fast-reconfigurable FPGAs and profiling the
miss behaviour of opcodes.

Keywords: Computer architecture · Memory hierarchy ·
Reconfigurable extensions

1 Introduction

There has been considerable maturity around traditional software on today’s
CPUs. This has led to easier development through high-quality libraries and
debug tools, as well as relatively mature programming models and verification
routines. Additionally, a variety of software and hardware abstractions have
enabled portability of code, such as with virtual memory and cache hierarchies,
and enabled more effortless increase in performance, such as through instruction-
level parallelism.

However, general purpose processors leave a lot to be desired in terms of
performance, hence the increase in the use of computation offloading to spe-
cialised processors. These include graphics processing units (GPUs), FPGAs and
even purpose-built silicon in the form of application-specific integrated circuits
(ASICs).
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One consideration in today’s hardware specialisation technologies is the fact
that they are mostly based on the non-uniform memory-access model (NUMA).
Large off-chip memories are found in the majority of today’s high-end FPGA
offerings, resulting in power-hungry and expensive setups, as well as in limita-
tions in programming models and complications in deployment and data move-
ment.

While promising techniques like wide single-instruction multiple-data
(SIMD) instructions [17] in CPUs attempt to close the gap between specialised
and general purpose computing [10], this gap is wider than it has ever been. This
is because of the increased need for highly customised architectures in trending
workloads [26], whose functionality cannot be efficiently expressed with a fixed
general purpose ISA and architecture.

In this paper, we extend the most common computer architecture in today’s
systems (modified Harvard architecture [15]) to introduce FPGA-based instruc-
tion implementations in general purpose systems. In contrast to current research,
this goes beyond embedded and heterogeneous processors, and introduces multi-
processing for operating systems and fine-grain reconfiguration, as with stan-
dardised instruction extensions. A feasibility study shows promising performance
for supporting reconfigurable extensions on-demand, especially when supporting
fast FPGA reconfiguration. The list of contributions is as follows:

1. The “FPGA-extended modified Harvard Architecture”, a novel computer
architecture to introduce FPGAs working as custom instructions, enabling
context-switching and other advanced concepts for higher-end applications.

2. A comprehensive evaluation with fine-grain reconfiguration (at the
instruction-level), providing insights on the impact of the reconfiguration time
and the operating system’s scheduler properties for multi-processing.

3. Feasibility studies elaborating on the readiness of current SoC technology to
adopt the proposed approach.

2 Challenges

The research on FPGAs implementing instructions can be considered an attempt
to overcome a series of challenges in current systems. This work addresses chal-
lenges found in existing research on custom instructions.

Current CPUs and Discrete FPGAs. One challenging design choice that
relates to both hardware and software is the selection of instructions that would
be more beneficial to include as part of the instruction set architecture (ISA).
With a fixed ISA, vendors can select a subset of instructions, such as with the
modularity of RISC-V [3], or design custom instructions. For general purpose
computing it is difficult to predict what the most appropriate instructions will be.
For instance, some applications may be ephemeral, as with some deep learning
models, for which specialised hardware becomes obsolete faster.

Another challenge is hardware complexity. Supporting a high-number of
instructions is expensive, but sometimes this has been unavoidable for widening
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the applicability of general purpose processors. For example, Intel’s AVX2 and
AVX-512 include thousands of instructions [17], and RISC-V’s unratified vector
extension hundreds [1]. The related implementation complexity, such as with
AVX-512, is associated with a decrease in operating frequency and power effi-
ciency, and area increase [11,14]. Additionally, AVX-512 is suboptimal for certain
workloads, where a serial code could surpass them in terms of performance and
scalability [11]. Expanding the ISA can also harm the SoC scalability to many-
cores, which heavily relies on core miniaturisation and power efficiency.

When using FPGAs as accelerators, one of the most limiting bottlenecks to
performance is the bandwidth to main memory [21]. For example, even with
Intel’s Xeon+FPGA, although the FPGA is directly connected to the memory
controller it only achieves 20 GB/s [7]. The memory hierarchy tends to always
favour CPU performance, hence the presence of expensive off-chip memories
in high-end FPGA boards. This heterogeneity is considered to impact FPGA
development and increases the cost and deployment of FPGAs in the datacenter
[22].

FPGAs Implementing Instructions. The basic limitation of the related
work on FPGA-based instructions is the focus on embedded and/or heteroge-
neous systems, with no notion for multi-processing, context-switching and other
advanced micro-architectural features. The use of embedded FPGAs (eFPGAs)
has many practical applications in embedded systems [5,18], but there is cur-
rently no computer architecture to “hide” reconfiguration from traditional soft-
ware.

One challenge in existing methods of introducing FPGAs as custom instruc-
tions is the need for manual intervention for reconfiguration. Although the rec-
ommended procedures to handle bitstreams can be well documented, deviating
from conventional software development could be detrimental for adoption [5].

By initially focusing on highly-customised instructions and more complex
accelerators, there has been less opportunity for modern processors to gradually
adopt small reconfigurable regions as part of their core. It is more complex to
derive conclusions from specific custom instructions and accelerators, as their
exploration usually shifts the focus to specialisation and optimisation.

3 Solution

The proposed solution is the “FPGA-extended modified Harvard Architecture”,
which unifies the address space for instructions, data, as well as for FPGA bit-
streams. When compared to the traditional modified Harvard architecture, the
proposed solution also adds a separate bitstream cache at level 1, to provide
bitstreams for FPGA-instructions after an instruction opcode is ready. The idea
is for a computing core that features reconfigurable slots for instructions, to be
able to efficiently fetch instruction bitstreams transparently from the software.
Fig. 1 (left) introduces the proposed computer architecture.

This architecture assumes that the computing core features fast-
programmable FPGAs that can be used to implement instructions. This can
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Fig. 1. Proposed computer architecture (left) and instruction disambiguator (right)

be achieved with the help of a small cache-like structure, the instruction disam-
biguator, shown in Fig. 1 (right). On every instruction decode there is a request
to this unit to see if there is an instruction implementation for the requested
instruction. It operates as a fully-associative cache and uses opcodes (plus any
additional fields for defining functions) as tags to determine the bitstream loca-
tions. On an opcode miss, it requests the instruction bitstream from the bit-
stream cache, while on a hit it multiplexes the operands to the appropriate slot.

The bitstream cache is a separate cache specifically designed for FPGA bit-
streams, and can increase the performance of the reconfigurable core. Similarly
to today’s modified Harvard architecture, the L1 instruction and data caches
are still separated and connected to a unified cache, allowing easier simultane-
ous memory accesses for pipelining the instructions. Since the instruction dis-
ambiguator unit waits for an instruction opcode to be ready, a bitstream fetch
phase can be placed subsequently to the instruction decode pipeline stage in
heavily-pipelined processors. This cache is separated to also allow different fea-
tures than the rest of the caches, such as with wider blocks to facilitate the
increased width to carry bitstreams, as opposed to instructions (see Sect. 5.2).

This approach enables the applications to be agnostic of the reconfiguration
aspect. An operating system can provide ISA extensions (or part of them) in
the form of bitstream libraries, while the hardware fetches the corresponding
bitstreams on demand. Sharing the same address space for the bitstreams also
enables keeping bitstreams in software binaries, so that they can provide custom
instruction extensions alongside their data segment for acceleration potential.

4 Evaluation

This evaluation works as a proof of concept, thus any platform limitations are not
handed-down over the proposed computer architecture. As our proposal concerns
a fundamentally different computer architecture and targets high-end hardened
processors, future research on a detailed evaluation would involve fabrication.

The framework for evaluating the performance of the proposed architecture1

is based on Simodense [22], an open-source FPGA-optimised RISC-V softcore,

1 Source code available: https://github.com/pphilippos/fpga-ext-arch.

https://github.com/pphilippos/fpga-ext-arch
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which was heavily modified to facilitate our study on the system effects of
our proposal. This study extends it with the “F” extension for single-precision
floating-point support. This resulted in the RV32IMF, where “I” is the base 32-
bit integer and “M” is the integer multiplication/division extension [3]. Most of
the “I” instructions introduce one cycle of latency, while the “M” instructions
occupy 4 non-blocking cycles of latency. The “F” extension is pipelined with a
latency of 6 cycles, excluding the fused multiply-add instructions that yield a
12-cycle latency. RISC-V’s “Zicsr” and a set of control status registers (mstatus,
mie, mcause, mepc and mtvec) were also added to support the experiment of
Sect. 4.3.

The main addition is the instruction disambiguator. Its functionality here is
to process opcodes (and related fields) and add artificial latency when there is
an instruction slot miss (or hit). All required instructions actually pre-exist on
the softcore, emulating the performance overhead of the proposal as observed
by the software. The instruction opcodes are first being resolved through the
instruction cache, and the instruction slot disambiguator here works as an L0
instruction cache that uses opcodes as cache tags and adds latency on opcode
accesses.

With respect to the size and complexity of the reconfigurable instructions,
we explore a compartmentalisation scenario, where instructions are grouped
into single reconfigurable regions according to their logic similarity. There are 3
groups for the “M” extension ({mul, mulh, mulhsu, mulhu}, {div, divu}, {rem,
remu}), and 7 groups for the “F” extension {fadd.s, fsub.s}, {fmul.s}, {fdiv.s},
{fsgnj.s, fsgnjn.s, fsgnjx.s, fmin.s, fmax.s, fle.s, flt.s, feq.s}, {fsqrt.s}, {fcvt.w.s,
fcvt.wu.s, fcvt.s.w, fcvt.s.wu}, {fmadd.s, fmsub.s, fnmsub.s, fnmadd.s}), totalling
10 groups. The number of free slots is parameterisable.

This emulates an environment where the CPU has no space for all extensions,
and the workload exhibits competitiveness for a limited number of instruction
slots. This instruction selection and granularity is indicative, thus a more com-
plete ISA research would be appropriate to decide what fraction of instructions
remains hardened in final products. Such an exploration would relate to the
features and performance of the embedded FPGAs, while still allowing custom
extensions.

The resulting codebase is synthesisable and also passed benchmark-based test
cases on a Xilinx Zynq UltraScale+ FPGA. However, as the resulting framework
ran relatively fast using Verilator 4.224, we opted to use simulations instead.

4.1 Benchmark Classification

The utilised benchmark suite is Embench [23], providing a selection of bench-
marks with different attributes of interest. It was ported for use in our infras-
tructure, and each benchmark was made to run as a thread instead of a process.
This required some additional modification, such adding thread safety for shared
local libraries. Some benchmarks with double-precision floating point arithmetic
were modified to use single-precision to make use of the “F” extension.
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In order to quantify the impact of the studied extensions on the benchmark
performance, they are first seen individually. There are four binaries/runs per
benchmark, one for each of the following fixed specification combinations: RV32I,
RV32IF, RV32IM and RV32IMF. When a useful instruction is absent from the
specification of the compiler, it is replaced by a sub-optimal pre-defined routine,
as specified by the application binary interface (ABI). The underlying softcore
supports their superset RV32IMF and can run all 4 binaries per benchmark.

Fig. 2. Task classification based on the speedups of RV32IM and RV32IF over RV32I

The benchmark classification is illustrated in Fig. 2. The axes represent the
speedup of using one of “M” or “F” over only the base instruction set RV32I. As
expected, the five benchmarks that used floating point all seem benefit from “F”
(minver, wikisort, st, nbody and cubic), while “M” seems a relatively more pop-
ular set amongst the benchmark selection (crc32, qrduino, primecount, ud, aha-
mont64, tarfind, matmult-int and edn). The remaining 9 benchmarks are clas-
sified as “insensitive”, which exhibit different properties such as being control-
heavy. Interestingly, there is no class where an Embench benchmark is only
benefited from “F” and not from “M” here.

4.2 Single-Program

For the evaluation of the proposed architecture under single benchmarks, we
select the “improved by both F and M” class from the classification of the
previous section. This is done to focus on workloads where there is demand for
both instruction extensions, before introducing multi-processing.

In this experiment with simulated reconfigurability, there are six data series
for different miss and hit latency combinations for the instruction slot disam-
biguator. There are 10-cycle, 50-cycle and 250-cycle miss latencies representing
both reconfiguration technologies that approach a latency closer to that of CPU
instructions, and slower which could be achievable with more traditional par-
tial reconfiguration techniques. For each of the three, there are versions with
and without a hit latency, which is useful to represent potential discrepancies
between the CPU core and the fabric (e.g. frequency drops).

Figure 3 presents these results for 4 available instruction (group) slots. The
y axis shows the slowdowns over when running with a fixed specification with
both “M” and “F” (RV32IMF). Note that all series regard slowdowns, but the
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term speedup is also kept for consistency. There are also the RV32I and max(IM,
IF) series. The latter represents the maximum performance between the fixed
specifications RV32IM and RV32IF per individual run.

Fig. 3. Approaching RV32IMF with reconfigurability for single benchmarks

When selecting the (50, 0)-cycle latency configuration, it can still approach
selecting the best extension per benchmark (max(IM, IF) series) with an aver-
age performance at around 71% of RV32IMF. It also exceeds the max(IM, IF)
performance in benchmarks like st and wikisort, where the use of “F” instruc-
tions is used more sporadically. Over a fixed baseline, when considering both the
benchmarks classes “improved by both F and M” and “improved by M” (latter
not in Fig. 3), a (50, 0)-cycle latency configuration is 2.46x, 1.4x and 3.62x faster
than RV32IF, RV32IM and RV32I respectively.

When comparing the versions for with and without a hit latency (darker
shades in Fig. 3), there is a considerable performance degradation at the higher
latency values. For instance, for 250-cycle misses and 16-cycle hits, the approach
performs similarly to featuring no instructions from “M” and “F”, at 20% of
the RV32IMF performance. However, targeting a 0-to-few-cycle observable hit
latency in future implementations, such as with fast FPGAs or more pipelining,
seems to provide promising performance. This includes the (50, 4)-cycle combi-
nation, which updates the above comparison of (50, 0) to a speedup of 1.75x,
1.05x and 2.7x over RV32IF, RV32IM and RV32I respectively.

A general conclusion with regards to the latencies is that there is a sensi-
ble point where the approach is still helpful. For each workload there could be
detailed curves with smaller latency intervals than the indicative values here.
A similar argument can be made for the number of slots and other attributes.
Though, analyzing specific points would be less significant, as this would relate
more directly to the specification of the FPGAs and the core.

4.3 Multi-program

The effects of multi-processing are studied with the help of an operating system.
FreeRTOS [8], a real-time operating system, was selected to provide a minimal
framework allowing experimentation with a task scheduler. A single binary is
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obtained, containing both the FreeRTOS task scheduler and the benchmarks as
threads. This is run as a bare-metal application by the adopted softcore to study
the effects of context switching under our proposal for multi-programming. The
main modification to FreeRTOS was the porting of the context-switching routine
to support the “F” extension in our platform.

A periodic interrupt is set by its task scheduler, responsible for context-
switching. The FreeRTOS scheduler enforces a round-robin priority between the
tasks (benchmarks). A pair of benchmarks are run through two independent
infinite loops, and once one of them does a certain number of iterations, the
operating system terminates.

Following the benchmark classification of Sect. 4.1, the category that is not
improved by “F” or “M” (“insensitive”) is not considered. The studied pairs are
combinations between two of the five benchmarks that are improved by “F” and
“M” (totalling 10) and combinations between one from the latter category with
one from the eight benchmarks that are only improved by “M” (totalling 40).

Fig. 4. Multi-programming using the reconfigurable approach with 2, 4 or 8 slots versus
subsets of RV32IMF, under different scheduler timings. All series are sorted individu-
ally.

Figure 4 presents the results of this experiment with a 50-cycle miss latency
(no hit latency) from the single-program experiments, as well as with variations
of it for a different number of slots (2 and 8). The latter variations are added to
elaborate on the slot interaction with this multi-program case, as the competi-
tiveness between the slots is increased. The y-axes are the average speedups for
each of the paired benchmarks over their corresponding runtimes with RV32IMF.

The left plots in Fig. 4 use binaries compiled for a 1000-cycle (1K) timer
interrupt for context-switching, while the right plots present the results for a
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20-fold increase in the timer interrupt delay. With the shorter 1K-cycle delay,
all runtimes increase due to the additional instructions coming from the inter-
rupt handler of the operating system. However, due to the different instruction
distributions amongst the benchmarks, this also increases the instruction slot
misses, hence the 20K-cycle versions improve the speedups of the reconfigurable
approach. For instance, the average speedup of 4-slot series improves from 0.62
to 0.71 (i.e. from 38% to 29% slowdown) for the top selection of pairs, and from
0.82 to 0.9 for the benchmark pairs of the bottom plots in the figure.

One observation when combining the benchmarks of the same class (Fig. 4
top) is that the reconfigurable approach remains at the similar levels of per-
formance degradation as with the last section (single-program). For instance,
the average speedup for the 4-slot with 50-cycle reconfiguration and a 20K-cycle
timer is 0.71, while the last section’s corresponding average was also around 0.71.

From Fig. 4 (bottom right) we can see that the potential of reconfiguration
is relatively higher when combining benchmarks with different extension pref-
erences. The average speedup over RV32IMF for the 2-slot, 4-slot and 8-slot
approaches is 0.62, 0.9 and 0.94 respectively, under 20K-cycle interrupts.

The proposed reconfigurable approach is shown to be more well-rounded
than fixed extensions. For example, RV32IF performs significantly better than
RV32IM in the pairs of the upper half of Fig. 4, but this is reversed for the pairs
of the lower part. When considering all 50 of the aforementioned benchmark
combinations for 20K cycle interrupts, the 4-slot version is 3.39x, 1.48x and 2.04x
faster on average when compared to RV32I, RV32IM and RV32IF respectively,
at an average of 0.82x the performance of RV32IMF. Finally, fine-tuning the
operating system’s scheduler parameters could be a cheap but necessary step to
fully take advantage of the proposed computer architecture.

5 Feasibility

It is also important to comment on the readiness of current technologies to
support such fast reconfiguration in future SoCs. The main evaluation refrained
from elaborating on this aspect to enable a discussion through system effects.

5.1 Reconfiguration Latency Representativeness

In order to demonstrate that future CPUs which feature FPGAs as functional
units can be reprogrammed under a latency of the order of magnitude studied in
Sects. 4.2 and 4.3, we present an example fast-reconfigurable FPGA architecture
and prototype it in simulation.

The modelled FPGA is based on a traditional FPGA fabric layout but
directly exposes a wide configuration bus which can be loaded from a wide
bitstream cache. In contrast, typical FPGA architectures such as UltraScale+
constrain the reconfiguration port width to 32 bits [29]. The test designs for
the FPGA were based on the RISC-V bit manipulation extension [2], including
clmul (carry-less multiply) and bextdep (bit extract and deposition).
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The FPGA is modelled inside nextpnr [24] using the viaduct plugin frame-
work for architectures, with a Verilog simulation model to confirm that bit-
streams can be loaded in the target latency and function correctly. There are
two connections between the FPGA fabric and the CPU. A wide configuration
bus based on the Pico Co-Processor Interface (PCPI) from PicoRV32 [28] is
loaded through an L1 cache. Once the FPGA is configured, the fabric itself can
also receive instruction operands and source register values; and returns a des-
tination value after some cycles. This approach also enables partial instruction
decoding; so one bitstream could implement multiple related instructions.

A series of optimisations are applied to the architecture to minimise the
configuration array size (and hence cache size and configuration port width) and
reconfiguration latency. The first relates to the removal of features less likely
to be useful for this application, such as block RAM (BRAM) for storing large
states. The inclusion of DSPs is not explored, though this could further reduce
the configuration state by avoiding the use of fabric resources e.g. for multipliers.

An optimisation relates to the type of the look-up tables (LUTs), which are
basic building blocks in FPGAs. 4-LUTs (i.e. with 4 inputs totalling 16 entries)
are used rather than 6-LUTs. In this way the size of the configuration informa-
tion is reduced; full instead of one-hot muxes is used for the routing; and the
number of routing resources is generally minimised whilst keeping target designs
routable. LUT permutation and route-throughs in place and route were used
to partially compensate for the latter. The benefit of 4-LUTs in this context is
shown with the experiment of Fig. 5, that determines the minimum configuration
FPGA array size necessary to implement the bextdep benchmark. Future work
includes further optimising the internal architecture, such as with fracturable
LUTs.

Fig. 5. LUT type versus bitstream size Fig. 6. Modification of SRAM FPGAs

When configured for 1680 LUTs, the bitstreams are a total of 91 kbits, requir-
ing a 1824-bit wide configuration port for a 50-cycle reconfiguration latency. This
is within the reasonable range of wide datapaths (see Sect. 5.2), and it could be
reduced at the expense of latency. Similarly, a 250-cycle latency (that still ben-
efited some applications) would only require a 365-bit-wide port.
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A necessary architectural change was to keep the entire configuration data
path equal to the number of bitlines, rather than narrowing to an 8-bit or 32-
bit external port or memory mapped configuration interface. This can then be
loaded at full rate, in the target number of cycles, directly from the bitstream
cache.

FPGAs generally use static RAM (SRAM) cells to store the configuration
bits; and a word/bit line architecture to configure them. Architectures typically
have a similar number of word and bitlines to ease routing. However, this would
generally lead to unacceptably high configuration latencies for this application.
Reducing the configuration latency requires more bitlines and fewer wordlines
– the number of wordlines being equal to the latency, all things being equal.
A diagrammatic example of the implication of increasing wordlines to reduce
latency is shown in Fig. 6, simplified to few tiles and word/bitlines (showing only
four configuration bits per tile, rather than a typical value of about a thousand).

This prototype uses a chain of shift registers to store the configuration bits.
A configuration word is being shifted through the chain each configuration cycle
(the chain is 50 deep, 1824 wide). This is for brevity, but has not challenged
the routability of the test case. The operating frequency aspect is left as future
work, but does not seem prohibitive at the moment, given the margins for a hit
latency (Sect. 4.2) and reports for instruction-like tasks operating in the GHz
range [4].

5.2 Bitstream Cache Dimensions

To better understand the bitstream cache requirements for high-end proces-
sors, a separate study is conducted on a commercial x86 platform with a higher
instruction variety (such as with vector instructions). By using dynamic binary
instrumentation (DBI), this section explores the spatial needs and temporal
localities with respect to the bitstream usage by comparing it to the traditional
instruction and memory usage.

The study of cache size requirements would normally involve measuring the
working set by simulating caches of different sizes and levels and pinpointing the
size where the miss rate declines sharply. However, this could use assumptions
relating to data and instructions, such as about the longevity of the working
set (benefiting from multiple cache levels) and the access pattern (the notion of
working set implies certain access distributions in space and time).

Through a custom Intel Pin [19] tool, on every dynamic instruction call, a
routine updates a series of data structures for statistics on the opcodes, instruc-
tion pointers (IPs) and memory locations (where applicable). Each opcode is
perceived as a separate bitstream. This represents the worst case to avoid spe-
cialisation in the observations, since it also includes control flow and data move-
ment instructions, which are expected to be the most frequent [6,12], as well as
for similar instructions that could be grouped together. A mask is applied to
ignore the last 6 bits for a 64-byte-granularity in data and instruction blocks,
which is commonly found in today’s x86 systems.
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The data structures inside the Pin tool are mainly hashsets that provide the
number of unique opcodes, instruction and data blocks. On every n ∈ N num-
ber of instructions, the 3 corresponding sets are cleared and their cardinality is
saved in lists (implemented as maps of <cardinality, occurrence> pairs to con-
serve memory). This provides the distribution of compulsory miss cardinalities
occurring in the specified periods of time (measured in instructions) for each of
the opcode, instruction and memory cache blocks. For the instructions and data,
the algorithm’s input would represent the stream observed right before the L1
instruction and L1 data caches. Though, the spatiotemporal locality scope of
this experiment extends beyond the L1 caches. For the opcodes, this stream is
considered to be observed from the bitstream disambiguator.

The benchmark suite selection for the single-program experiment is the
single-core part of Geekbench 5. This is a series of 21 compute-intensive bench-
marks ranging from encryption to machine learning, and are run one by one.
The same instance of the Intel Pin tool is used for the entirety of all Geekbench
benchmarks.

These results are illustrated in Fig. 7. The x-axis summarises the time period
the hashsets are collecting information for, and is used to observe temporal
locality. The y-axis shows the observed median cardinalities for each hashset,
and represents the compulsory misses for each type of cache block (bitstream
for opcode, instruction for IPs and data for data addresses). The shaded regions
underneath show the lower and upper quartiles of the cardinalities in each cor-
responding list of hashsets. As shown, the opcode count starts from below 16 for
the shorter time slices, while peaking at below 64 for the longer time slices.

Fig. 7. Reuse behaviour in single-program Fig. 8. Reuse behaviour in multi-program

Another observation is that the opcode series is “flatter” than the other
curves, meaning that there is higher reuse of opcodes than instruction and mem-
ory blocks. It is also longer lasting. This could have been conjectured, but the
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relationship between the 3 types of reuse is a result of multiple factors. For
instance, each instruction and data block already covers multiple locations (64-
byte granularity), whose reuse also depends on the memory access pattern. From
the opcode’s perspective, CISC ISAs like x86-64 include a rather high number, as
with Intel Pin’s catalogue of over 8000 entries. The fact that the instruction and
data series have a steeper upwards slope can also justify the need for multi-level
cache hierarchies, as their requirements grow more rapidly with time.

For the multi-program study, the same Pin tool (but with added thread
safety mechanisms) is used on the adapted Embench suite of Sect. 4.3. This time
each benchmark is run as a thread using pthreads in Linux/x86-64 and is pinned
down to the same core for oversubscription. The benchmark suite is compiled as
a single binary, and with the -march = native flag to promote vectorisation. The
idea of oversubscription here is to attempt increasing opcode demand, similar to
the operating system’s frequent migration of hundreds of tasks.

The results of the multi-program experiment are shown in Fig. 8, where the
median compulsory misses are measured for different amounts of task oversub-
scription to a single core. The time window size is fixed to 32768 instructions.
Superimposed to the medians are violin plots, which are used to visually pro-
vide more detailed distribution information than percentiles. The data behaviour
was fairly similar to the instruction blocks in this instance, hence its omission
for readability. As predicted, there is higher reuse of opcodes than instructions
among the different tasks when oversubscribed. For example, when all 22 tasks
are run concurrently, the median and maximum opcode misses reach 59 and 152
respectively, while the respective numbers for instructions are 119 and 672.

These numbers show that the bitstream cache is feasible with today’s tech-
nology on SoCs. Specifically, a 64-block bitstream cache is shown to be enough
for relatively long periods of time in both the single-program and multi-program
experiments. This totals 768 KB of SRAM when using 12 KB bitstreams, being
inline with the example FPGA architecture of Sect. 5.1. By observing recent
processor trends that feature, for example, up to 256 MB L3 caches [25], the
sub-MB size requirement is in the L2 territory. Additionally, a sub 2048-bit dat-
apath that is demonstrated in Sect. 5.1 is only needed between this cache and the
instruction disambiguator, as the expected latency profile of the bitstream cache
makes progressively-loaded bitstream blocks meaningful, even with 128/256-bit
datapaths to L2. Given the oversubscription experiment results and the read-
only nature of the bitstreams from the FPGA’s view, future multicores would
also benefit from sharing of the bitstream cache(s).

These conclusions are drawn with the worst case approach in mind, such as
by associating compulsory misses with the desirable cache size, and by not clas-
sifying opcodes into groups. A fraction of the reported desirable bitstream cache
could still benefit future high-end CPUs with FPGAs working as instructions.

6 Related Work

Earlier research focused on using FPGAs as a functional unit. Garp [16] tar-
gets embedded processors without multi-processing support, but it introduces
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the idea of combining a bitstream alongside the process binary. It does not make
FPGAs transparent, as it requires configuration instructions. DISC [27] is an ear-
lier work that elaborates on reconfiguration in a similar context. Its instruction
decoder is similar to the proposed instruction disambiguator by using caching.
It is not a general-purpose computer architecture, as the processor has a sepa-
rate ISA from the host processor. Chimaera [30] provides a reconfigurable array
to dynamically load FPGA-based instruction implementations. This is some-
what reminiscent of the proposed bitstream cache, but only supports specially-
compiled software. Architectures like CCA [13] and RISPP [9] aimed to improve
the adaptability of embedded systems by providing a set of specialised functional
units that can be dynamically selected at run-time. The latter does not involve
FPGAs.

FABulous [18] is an open-source framework for integrating FPGAs into an
ASIC. One of its applications is for the implementation of eFPGAs, also for the
purposes of extending hardened cores. A RISC-V SoC with eFPGAs is presented
as a use case. Related research studied the integration of SIMD units [20], but
the insights were platform-related, such as with regards to Xilinx’ partial recon-
figuration. The custom instruction usage is limited to specialised kernels, and
concepts like context-switching are not studied.

7 Conclusions

The FPGA-extended modified Harvard architecture can be used to transparently
fetch standardised ISA extensions or custom instructions through the computer’s
memory hierarchy. The disambiguator unit works as an L0 cache for the FPGA
slots and requests and multiplexes the bitstreams and instructions to reconfig-
urable regions. The evaluation showed promising results, generally surpassing the
performance of a core with a constrained extension subset. The operating system
in such computers is shown to benefit from longer times between context-switches
to compensate for the reconfiguration time. Finally, a low reconfiguration latency
is deemed necessary for the efficiency of the proposal, and our feasibility study
finds this possible by mainly using existing FPGA building blocks and a cache
with appropriate dimensions for providing the bitstreams.
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Abstract. Intelligent and adaptive in-vivo, catheter-based imaging sys-
tems with enhanced processing and analytical capability have the poten-
tial to enhance surgical operations and improve patient care. The paper
describes an intelligent surgical imaging system based on a ‘chip on tip’,
which reduces the need for conventional imaging. The associated embed-
ded system provides real-time, in-vivo imaging analysis and data display
for surgeons, enhancing their ability to detect clinically significant tis-
sue. The paper presents initial work on an field programmable gate array
implementation of a contrast limited adaptive histogram equalization
algorithm, Hessian matrix construction and region of interest function
on the AMD-Xilinx’s Kria KV260 board. It outlines optimizations under-
taken to reduce the BRAMs by 38%, DSP48 blocks by 80%, flip-flops by
33% and LUTs by 36%, thus creating a design operating at 121 FPS.

Keywords: Surgical imaging · Field programmable gate array

1 Introduction

In current surgical practice, surgeons still rely heavily on external, ’gold stan-
dard’ imaging systems such as X-ray, CT and MRI. In-vivo imaging systems
such as endoscopes, intravascular ultrasound are standard but can be further
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enhanced and using smart and integrated micro cameras. This offers the poten-
tial to enhance surgical procedures and outcomes by providing high quality,
diagnostic images from deep within the body using micro-scale image sensors on
a micro catheter platform.

As an example, the unprocessed in-vivo images in the femoral artery, distal
to proximal, of a porcine model with different illumination RGB and Near Infra-
Red (NIR) are shown in Fig. 1. Fig 1(a) shows a clear field of the marker band
of a balloon catheter, a commonly used medical device for cardiac procedures,
and Fig 1(b) gives the same location illuminated using 940nm NIR. Commer-
cial micro-camera integrated circuits are available, but they are not specifically
designed for biophotonics applications such as surgical guidance, based on diffuse
reflectance imaging, fluorescence and reflectance for specific biomarkers. Com-
mercially available micro-cameras [8] are limited by resolution, image quality,
sensitivity, field of view, etc., thus limiting their use in-vivo.

Fig. 1. Multispectral images from inside the femoral artery of a porcine model (Cour-
tesy of Tyndall National Institute).

Using integrated image sensors in-vivo to successfully allow, for example,
specular reflection and effective viewing of a beating heart, poses image pro-
cessing and data analytics challenges. This can be resolved by employing smart,
adaptive algorithms on an embedded system to enhance the image effectively,
but requires adoption of a suitable low power technology and careful design. The
Tyndall National Institute (TNI) in collaboration with clinicians and the medi-
cal device industry, are creating an intelligent surgical system (ISS) based on a
custom CMOS image sensor and embedded processing unit which provides both
image sensor power management and image processing capability to convert the
detected signals at the edge or interface into clinical significant medical images,
in real time. This paper describes the collaboration with Queen’s University to
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implement the image processing functionality on an field programmable gate
array (FPGA) on the AMD-Xilinx’s Kria KV260 AI board.

The work uses multispectral image processing to recover the best possi-
ble RGB images, including enhancement with at least two NIR wavelengths.
A contrast limited adaptive histogram equalization (CLAHE) algorithm [5] is
employed to help outline specific features such as tumours, by suppressing the
contrast of each pixel based on its neighbouring values. A Region of Interest
(ROI) algorithm highlights intra-operative ROIs to the clinician, by applying
convolution procedures using the derivatives of Gaussian kernel to construct the
Hessian matrix of each pixel with the eigenvalues used by an edginess or ROI
function. In this paper, we undertake a number of optimisations for the imple-
mentation of this functionality using the AMD-Xilinx Vitis High-Level Synthesis
(HLS) tools.

The paper is structured as follow: Sect. 2 briefly describes the ISS, followed by
an explanation in Sect. 3 of the processes and algorithms used for the detection
of blood vessels. The system architecture is then described in Sect. 4 and followed
by the results in Sect. 5. Conclusions are given in Sect. 6.

2 Intelligent Surgical System

The proposed ISS consists of a front-end comprises a micro camera and light
source, and a small embedded processor with intelligent image processing func-
tionality, connected via a fiber optic cable to a transceiver (see Fig. 2). The front-
end module needs to have a small footprint within a microcatether (3–6 Fr.) in
order to allow surgeons to navigate to the narrow regions inside body organs. The
challenge is to undertake the design of this functionality in a lower power, FPGA
technology that provides the adaptive processing to support evolving require-
ments. The back-end comprises a high performance computing resource which,
in the future, will incorporate additional intelligence (AI) capability, gleaned by
surgeons from operations as they are performed.

Fig. 2. Visualisation of the overall system design.

Images are captured by the micro-camera, and an automated multispectral
light source helps to vary the illumination spectrum. The multispectral illu-
mination is coupled to a single fibre and as part of the system control, the
illumination wavelengths are selected and synchronised with the detection by
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the imager and the video data transfer. The resulting raw video data is trans-
mitted in a streaming-data fashion to the embedded processing unit which, in
the future, will incorporate increasingly complex image analysis intelligence to
assist the surgeon during the operation. Therefore, optimisation of the current
implementation is essential in order to support future computation requirements.

Incorporating FPGA technology to surgical systems is an interesting choice
when building innovation systems that are cost effective, have low-power con-
sumption, and seek high performance. A multi-stage, FPGA-based customised
design using similar image functionality was explored in [2] for the enhanced
detection of blood vessels in retinal images. In another example, an FPGA plat-
form was used in an endoscope imaging system [4] to provide a low-cost, high-
performance implementation. A FPGA-based controller for robotic-assisted sur-
gical system was developed in [7] to provide real-time control of a robot arms.
Similar to our future plans, they aim to build the controller as a single chip, but
clearly have different requirements.

Fig. 3. Extraction of tissue features process from real imaging data captured by the
multi-spectral imaging system developed by Tyndall Institute.

3 Extraction of Tissue Features

A key need is to identify key features in generated images such as in the extrac-
tion of tissue features (Fig. 3). Therefore, the proposed system employs the
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widely-used CLAHE algorithm followed by a features extraction stage. It deter-
mines the directional second order derivatives of the enhanced image by com-
puting the eigenvalues of Hessian matrix to decide whether a pixel is of interest
or not. Overlying detected features on top of the hyperspectral images helps the
surgeons to identify the ROIs. With the aim to incorporate future additional
functionality, it is vital to minimise the FPGA resources by mapping effectively
the required functionality onto the parallel FPGA resources and employing sys-
tem level optimisations to produce the smallest footprint.

3.1 Image Acquisition

With conventional micro cameras, data is acquired with a rolling electronic shut-
ter at a frame rate of 100 frames per second (FPS). By experimentation of the
detection of blood vessels, it was determined that only the green channel needed
to be extracted, because it has unique representations of the dark background
and the bright retinal blood vessels. Each pixel stores a charge proportional to
the light intensity and is converted to a digital value between 0 to 255 within
the imager.

3.2 CLAHE

CLAHE is applied to enhance the contrast of each pixel based on its spatial
location and neighboring pixels and has been shown to map well to FPGA [3]. A
key stage of the algorithm is to divide the image into predefined and equal sized
tiles where each tile is independent and does not share pixels with its neighboring
tiles. A histogram for each tile is then obtained with 256 bins and clipped to a
threshold predefined by the user (Fig. 5). All exceeded amounts are accumulated
and redistributed uniformly to each bin which prevents noisy pixels from being
enhanced by the Adaptive Histogram Equalization (AHE) process [6].

Fig. 4. Bi-linear interpolation process
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Fig. 5. Clipping, redistributing, and accumulating processes.

For each pixel value in the image, a cumulative distribution function (CDF)
is generated using the cumulative sum of the redistributed histogram of each tile
as below:

CDFt(p) =
p∑

n=0

ht(n)
z

(1)

where p pixel in tile t, ht is histogram of tile t, and z is the size of the tile.
After that, a bi-linear interpolation of each pixel p, Inew(p), is determined by
three other CDFs of pixels from adjacent tiles, as shown in (2) and demon-
strated graphically in Fig 4. This interpolation process reduces the impact of
any interfering effects that will be generated at the framed boundaries.
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s

s + w

(
t

z + t
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z

z + t
cdfUR(p)

)

+
w

s + w

(
t

z + t
cdfBL(p) +

z

z + t
cdfBR(p)

) (2)

3.3 Convolution with Derivatives of Gaussian Kernel

Convolution with the second-order derivative of 2D Gaussian kernel estimates
the directional gradients of the image and involves the construction of a Hessian
matrix, H, of the image. The second-order partial derivative of 2D Gaussian
kernels in x-direction, Gxx, xy-direction, Gxy, and y-direction, Gyy, are described
in Eqs. (3), (4) and (5) respectively.
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e− x2+y2

2σ2 (5)
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Fig. 6. Convolution with second-order derivatives of 2D Gaussian kernel

where x and y are integer values between [−K,K], K = 4σ + 1 and σ is a
scaling constant which affects the size and intensity of the Gaussian kernel. Any
order derivative of a Gaussian kernel is also separable. This can be computation
efficient since separable (N ×N) kernels can be decomposed into horizontal and
vertical kernels of size (N × 1) and (1 × N) respectively.

3.4 Constructing the Hessian Matrix

H is a square matrix which holds the directional second-order derivatives of an
image, I, such as in Eq. (6). Each directional derivative of I can be determined
by the convolution with the directional derivatives of Gaussian kernel (Fig. 6).

H =
[
Hxx Hxy

Hyx Hyy

]
(6)

The second-order derivative of I in the x-direction Hxx is given as Eq. (8)
where Hxx = I ∗ Gxx, Hxy = I ∗ Gxy and Hyy = I ∗ Gyy. The Hessian matrix is
symmetric since Hxy and Hyx are equal.

3.5 Eigenvalues of Hessian Matrix

For a given pixel point (x, y), the H(x, y) is a 2× 2 symmetric matrix which has
two real eigenvalues. Therefore, determining eigenvalues at point (x, y) can be
simplified using linear algebra as the following:

H(x, y) =
[
hxx − λ hxy

hxy hyy − λ

]
= 0 (7)

where λ =
hxx+hyy±

√
(hxx−hyy)2−4h2

xy

2 , and Hxx(x, y), Hxy(x, y), and Hyy(x, y)
are represented as hxx, hxy, and hyy respectively. From (7), it can be seen that



110 M. Alsharari et al.

Fig. 7. Eigenvalues calculation and feature extraction

the two eigenvalues might be positive or negative real values and might be equal.
Therefore, the inequality |λ2| ≥ |λ1| should always be satisfied for the purpose
of this application before proceeding for a further process.

3.6 Feature Extraction or ROI Function

For images with darker features than the background, the edginess function,
F (x, y) in (8), is used to discriminate. It uses the eigenvalues of the corresponding
Hessian matrix of a pixel (Fig. 7) to produces a value between [0,1], where values
close to zeros are associated with the background and vice-versa. This gives,

F (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

(e− R2
B

2β2 )(1 − e− S2

2c2 ) λ2 > 0

0 otherwise

(8)

where RB = λ2/λ1, S =
√

λ2
2 + λ2

1, β = 0.5, and c = 15 are used. We only
implemented the traditional Hessian multi-scale filtering in [2] since the improved
Hessian multi-scale enhancement filter requires calculations that involve all pixels
of the image which impact the overall throughput and memory usage.

4 FPGA-Based Image Processing System Architecture

The AMD-Xilinx’s Kria KV260 AI board and associated Vitis HLS 2021.2 tool-
set was used for initial implementation and design exploration. To optimise the
image processing implementation, the data flow (DF) optimization was employed
as it leads to solutions with lower memory usage and is applied by adding the
DATAFLOW pragma in HLS. This ensures flawless data transfer from one func-
tion to the other and will support seamless integration of future, real-time func-
tionality, as yet undefined.

Each processing step inside the system has to be linked to the next and/or
previous processing step by internal streaming interfaces which will act as FIFO
channels after C-synthesis. When using FIFOs, it is important to avoid dead-
lock, which can occur when depth is not specified correctly. A baseline system
architecture was therefore established to allow stable system functionality and
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Fig. 8. Proposed FPGA-based image processing system architecture

then used as a reference design to evaluate the effectiveness of the applied opti-
misation techniques.

The baseline image processing system architecture (Fig. 8) comprises cascad-
ing processing elements (PEs) connected by streaming interfaces. The CLAHE
is organised into the CDF generating processes, comprising large look-up tables
(LUTs) which is connected to interpolating processes. The convolution process
is applied as one PE, but it has small internal FIFO channels which help the sep-
arable convolution and border replication loops to be in-line when specifying the
INLINE pragma in the DF optimisation flow. Finally, the Hessian matrix, deter-
mination and sorting of the eigenvalues, and the feature extraction functions,
are combined into one PE, and termed the feature extraction process.

4.1 Experimental Setup

Vitis HLS 2021.2 is used for resource estimation and exporting RTL designs of
the IP core while for place and route, we used Vivado 2021.2. For on-chip power,
we used linux command “platformstats” and “timeit” package for timing analy-
sis. The target FPGA platform is the Kria KV260 AI board (XCK26-SFVC784-
2LV-C). For CPU/GPU evaluation, we used the Jetson Nano development kit
which has a 1.43 GHz Quad-core ARM A57 as the CPU and 128-core Maxwell
as the GPU. We chose to operate on 5W mode, and we used OpenCV/OpenCV-
Cuda 4.1.1 implementations realised using Python on Jupyter notebook. For
power analysis, we used “jetson-stats” package while for time analysis, we used
“timeit” package. Both are imported as Python code to measure the performance
for OpenCV implementations.

5 Evaluation

This section provides details of the baseline design and changes in resource util-
isation and throughput after system- and algorithmic-level optimisations are
applied. These are critical to ensure that sufficient FPGA real estate is available
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for future improved image analysis functionality and possible AI intelligence. The
performance of the optimisations were investigated by assessing their impact in
Matlab (Sect. 5.3).

As the CMOS sensor will be 240 × 240 pixels and the system will need to
operate at 100 FPS, each frame needs to be executed in 10 ms. If every pixel is
executed for each clock cycle, this suggested a design with a 160 ns period time
will need 9.216 ms for one 240 × 240 frame to satisfy the design requirements.

Loops are pipelined using PIPELINE pragma with the minimum initiation
interval (II) to satisfy period time by the HLS tool. Floating-point data types
with single precision is the default for mathematical operations and variables in
the baseline design. For CLAHE, the image is divided into a 8 × 8 tile grid size,
giving 64 independent regions. For the convolutions, we specify σ to be 2 which
gives a (19 × 19) filter size, based on Sect. 3.3.

5.1 Baseline Design

The main hardware units in the FPGA are comprised of: a dedicated processing
DSP48 (DSP) blocks including a 25-bit x 18-bit multiplier, a 48-bit adder and a
48-bit accumulator; a block RAM (BRAM) unit with 36 Kbits of data, configured
as either two independent 18 Kb RAMs, or one 36 Kb RAM; a single bit flip-flip
(FF) unit with pre-set/pre-clear functionality and; a 5-bit Lookup Table (LUT)
which can be configured as logic, memory, or a shift register.

The baseline design of Fig. 8 was coded into three main functions, namely the
CLAHE, convolution and the feature extraction processes. FIFOs were imple-
mented as different dataflow objects. The resource breakdown resulted from the
synthesis is given in Table 1.

Table 1. Utilization estimates of baseline design on the Kria KV260 SOM involving a
Zynq UltraScale+ (% of the resource is listed)

Process BRAM DSP FF LUT

FIFO 12 (4.2%) 0 (0.0%) 2836 (1.2%) 2695 (2.3%)

CLAHE 26 (9.0%) 76 (6.1%) 6179 (2.6%) 26689 (22.8%)

Convolutions 57 (19.8%) 565 (45.3%) 10209 (4.4%) 40141 (34.3%)

Feature ext, 0 (0.0%) 58 (4.6%) 1043 (0.4%) 5811 (5.0%)

Total 95 (32.0%) 699 (56.0%) 20267 (8.7%) 75336 (64.3%)

The convolution process has the highest resource allocation as a lot of pro-
cessing is required. It uses the majority of DSP blocks and in addition, a large
amount of BRAMs in order to implement the buffers used for the FIFOs and
the efficient separable convolution processes. FIFOs consume almost 4.2% of
BRAMs since a large depth is specified to avoid deadlock issues which can cause
FIFOs with a small depth size between these loops and functions to be filled and
thus blocking writing or reading to the FIFOs.
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5.2 Convolution Optimisations

In this section, optimisations were identified at the system level and algorithmic
level with the aim of reducing the FPGA resources. At algorithmic level, we
focused around exploiting common coefficients to employ common factor opti-
misation (CFO) to reduce the computational complexity [1,9] and also change
the order of the computation (re-ordering).

Hardware Sharing: With flip-flops readily available in both the programmable
logic and DSP48 blocks, pipelining can be used to increase the speed beyond that
required and folding then applied to reduce the resources usage. This optimi-
sation is available within the Vitis tools and was employed in the convolution
function by applying feature II of pipelined loops. The unroll function produces
multiple copies of the same function which are then folded onto one PE, leading
to a reduction in the resources. This reduces the number of DSPs to 15%, FFs
to 6%, and LUTs to 38% of the baseline design. However it also results in a
reduction in the clock rate well below the desired value, in this case 27 MHz.

Common Factor Optimisation: The Hessian matrix requires the compu-
tation of three second-order directional derivatives of enhanced image (Fig. 9)
requiring 3N multiplications and 3(N − 1) additions and associated row buffers.
The coefficients of (N × N) Gaussian kernels are determined by Eqs. (3), (4)
and (5) and can be decomposed into (1 × N) horizontal and (N × 1) vertical
kernels. These coefficients will be fixed for the convolution process. If we expand
the horizontal convolution expression in X direction, then for N is 19, this gives,

hxxhxn = hxxh1x1 + hxxh2x2 + hxxh3x3 + hxxh4x4 + hxxh5x5 + hxxh6x6

+ hxxh7x7 + hxxh8x8 + hxxh9x9 + hxxh10x10 + hxxh9vx11 + hxxh8x12 + hxxh7x13

+ hxxh6x14 + hxxh5x15 + hxxh4x16 + hxxh3x17 + hxxh2x18 + hxxh1x19

(9)

This will require 19 multiplications and 18 additions. However, we can exploit
the separability and symmetrical proprieties of Gaussian kernels and eliminate
zero values. For the specific xx direction, hxxh6 = hxxh7 and hxxh8 = 0. Exploit-
ing this and exploiting the symmetry in Eq. (9), we can reorganise this specific
computation into Eq. (10) as follows:

hxxhxn = hxxh1(x1 + x19) + hxxh2(x2 + x18) + hxxh3(x3 + x17)
+ hxxh4(x4 + x16) + hxxh5(x5 + x15) + hxxh6(x6 + x14 + x7 + x13)
+ hxxh9(x9 + x11) + hxxh10x10

(10)

This optimisation reduces the computation by 50% as only eight multiplica-
tions and sixteen additions are needed. When this is applied to the other hori-
zontal and vertical directional convolutions, hxy and hyy, it reduces the number
of DSPs by 50% compared to baseline process in Table 2 while still providing a
throughput of 114 FPS. The figures for this revised implementation are listed as
CFO in Table 2.
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Fig. 9. Baseline separable convolution design for three different kernels combined

Re-ordering: The separable 2D convolutions can be decomposed into a hor-
izontal followed by a vertical 1D-convolution each involving N multiplications
and N − 1 additions. The baseline design computes the horizontal followed by
the vertical 1D-convolution, requiring the intermediate storage of (3(N − 1))
buffers of length equal to an image row (Fig. 9), corresponding to (N −1) buffers
for each of the three different intermediate results produced by the horizontal
convolutions. However, if we reverse the order of operation such that we start
with vertical convolution, this will require only (N − 1) buffers since enhanced
pixels coming from CLAHE process are shared between the different directional
derivatives (Fig. 10). For (19 × 19) kernels, the number of BRAMs are reduced
from 54 to 18 which more than 60% saving in convolution process. This Reorder
design provides a 40% overall reduction in the baseline design in Table 2.

5.3 Combined Designs

In this section, we explore more about combined optimisations that would
eventually build efficient designs that achieve high performance with minimal
resource usage.

Combined: A more efficient design can be achieved by combining a number
of these algorithmic optimisations. We first apply the Re-order optimisation
to save in BRAMs usage and then the CFO option to reduce the complexity
of the convolution function. This provides an additional saving in DSPs usage.
The combined design (shown as Combined in Table. 2) achieved a 114 FPS
which fulfils the design requirement of 100 FPS and with a lower BRAMs and
DSPs resource usage. However, we expect a higher throughput after hardware
implementation due to high-level optimisations by the Vivado tool.
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Fig. 10. Re-ordered separable convolution implementation for three kernels

Combined+: Another obvious optimisation is to trade-off wordlength against
resolution due to the small size of the original image. It is clear that a floating-
point representation is unnecessarily large for circuit parts of the processing
chain. For this reason, we changed the data type for the Combined design from
32-bit floating-point to 18-bit fixed-point arithmetic in the convolution only. This
is organised into a 10-bit integer with the remaining 8 bits used for the fractional
part.

Sufficient performance quality or quality of results (QoR) was ensured by
assessing experimentally the visual impact and also measuring the structural
similarity index measure (SSIM) and image quality degradation by peak signal-
to-noise ratio (PSNR). Our results indicate that the 18-bit fixed-point represen-
tation scored on average 0.985 SSIM index and 40dB PSNR value compared to
32-bit floating-point results. The resource utilization labelled as Combined+ is
presented in Table 2 with the biggest saving is in DSP units where the 5 DSPs of
the floating-point can be reduced to a single DSP for the 18-bit fixed-point rep-
resentation. There is also been a small reduction in the number of flip-flops and
LUTs needed. As expected, there has only been a minimal change in throughput,
121 FPS, due the consistent use of pipelining.

5.4 Implementation Comparison

It is worth considering the performance issues when compared to a GPU imple-
mentation. For this reason, the same design was implemented on GPU and initial
results generated and compared to the best FPGA realisation. In the GPU reali-
sation, all optimisations were applied to ensure a high quality design. For exam-
ple, conditional statements used for sorting eigenvalues and in feature extraction
function had to be implemented solely using OpenCV-Cuda commands as it does
not have ready-to-use functions for this. This allowed the GPU implementation
to have a very fast execution compared to CPU.
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Table 2. Resource utilization of optimized designs on (Kria KV260 SOM)

Design BRAM
(288)

DSP
(1248)

FF
(234240)

LUT
(117120)

FPS

Baseline 95
(32%)

699
(56%)

20507
(8%)

76704
(65%)

114

CFO 95
(32%)

417
(33%)

14879
(6%)

58623
(50%)

114

Re-order 59
(20%)

684
(54%)

25055
(10%)

76240
(65%)

114

Combined 59
(20%)

422
(33%)

19479
(8%)

59480
(50%)

114

Combined+ 59
(20%)

142
(11%)

13687
(5%)

49426
(42%)

121

The resulting performance figures are shown in Table 3. As expected, the
GPU outperforms the CPU. However, the optimisation implemented in mapping
the design to FPGA has resulted in higher throughput when compared to the
GPU. The solid FPGA performance is largely achieved due to small image size.
The smaller size has resulted in an effective utilisation of the on-board FPGA
resources and avoided having to undertake off-chip memory accesses which would
compromised the performance. Use of the efficient design allows a throughput
rate that is nearly 1.4× as fast as the GPU. The lower power performance of
the FPGA device comes to the fore, but the overall System-on-Module (SoM)
power consumption results in comparable GPU FPS/W figure. This would be
much better if we use the single FPGA figure.

Table 3. Throughput and power comparison

Image size Jetson nano developer kit Kria vision AI starter kit

ARM A57 (CPU) Maxwell (GPU) Zynq UltraScale+MPSoC

(FPGA)

Baseline Combined+

Time (ms) 240 × 240 20.50 12.10 8.73 8.26

FPS 240 × 240 48.85 82.41 114.4 121

FPS/W 240 × 240 17.0 29.42 30.59 33.15

6 Conclusions

The paper presents details of an FPGA implementation of an intelligent surgi-
cal imaging system based on a ‘chip on tip’ camera system. The key challenge
is to be able to implement a low power embedded processing unit to be able
to enhance the image quality and in the future, provide increased intelligence.
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Results were presented on the implementation of the contrast limited adaptive
histogram equalization to suppress the contrast of each pixel based on its neigh-
bouring values, convolution procedures using the derivatives of Gaussian and the
construction of the Hessian matrix of each pixel with the eigenvalues used by a
ROI function. We are able to demonstrate savings in DSP processor resources by
up to 80% without a non-discernible loss in image quality. The work to date has
been important in ensuring that available FPGA real estate is created so that the
user can incorporate future functionality. Future work is targeted at providing
much more intelligence into the embedded system which will provide detection
capability for the surgeon. This will focus around building up a knowledge of
existing operations and providing embedded training on the device.
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Abstract. AI solutions, such as Deep Learning (DL), are becoming
increasingly prevalent in edge devices. Many of these applications require
low latency processing of large amounts of data within a tight power bud-
get. In this context, reconfigurable embedded devices make a compelling
option. Deploying DL models to reconfigurable devices does, however,
present considerable challenges. One key issue is reconciling the often
large compute requirements of DL models with the limited available
resources on edge devices. In this paper, we present a hardware-aware
optimization strategy for deploying DL neural networks to FPGAs, which
automatically identifies hardware configurations that maximize resource
utilization for a given level of computation throughput. We demonstrate
our optimization approach on a sample neural network containing a
combination of convolutional and fully connected layers, running on a
sample FPGA target device, achieving a factor of 3.5 reduction in DSP
block usage without affecting throughput when using performance mode.
When using the compact mode, a factor of 7.4 reduction in DSP block
usage is achieved, at the cost of 1.8 times decrease in throughput. Our
approach works completely automatically without the need for human
intervention or domain knowledge.

Keywords: Field-programmable gate array · High-level synthesis ·
Meta-programming · Particle physics

1 Introduction

While traditionally reserved for compute-intensive cloud based applications,
breakthroughs in hardware capabilities and efficient algorithms have led to AI
solutions, such as Deep Learning (DL), becoming increasingly ubiquitous in
lightweight edge devices. The clear utility of moving the implementation of DL
inference as close as possible to the data source and end user has already been
demonstrated with applications like wearable technology, manufacturing and
agriculture, highlighting the beginnings of a significant paradigm shift (Bierzyn-
ski et al. 2021).

FPGAs make a compelling option for deploying DL models to edge devices
due to their extreme parallelization capabilities as well as excellent power effi-
ciency. However, the combination of increasingly high compute demands of mod-
ern DL models and the inherently restricted hardware resources of reconfigurable
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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edge devices presents a clear challenge. If the model that one is attempting to
realize in a designated reconfigurable device requires compute resources exceed-
ing the amount available, one is left with three main options:

1. The size, and thereby computing cost, of the model can be compressed with
both pruning and quantization (Duarte et al. 2018), which requires expertise
and effort to prevent degrading the inference performance and accuracy;

2. The targeted device can be replaced by another device with a larger hardware
budget, which leads to additional monetary cost and possibly increase in
power consumption;

3. The synthesized design can be configured to share (reuse) hardware resources
within each DL layer. The use of such a “reuse factor”, n, for a given design,
would allow for a roughly n-fold reduction in DSP block usage, but accompa-
nied by a corresponding increase in the initiation interval (II) of the realized
design (Duarte et al. 2018). In other words, with this method, resource utili-
sation is decreased while maintaining the original accuracy, however compu-
tation throughput would be reduced by roughly a factor of n.

While using a single universal reuse factor across all layers of a DL neural
network would result in the aforementioned throughput penalty, previous works
(Que et al. 2021) have demonstrated that reuse factors for each layer of a neural
network can be set independently. More specifically, this work demonstrates
that the careful selection of layer-wise reuse factors can be performed in order to
balance the IIs of each layer of the deployed model, thereby potentially reducing
the hardware requirements of the design considerably without any changes to
its throughput.

Previous efforts to balance IIs using reuse factors relied on the time and atten-
tion of human programmers with domain knowledge. This work aims to entirely
automate this balancing process. To the best of our knowledge, this is the first
work that automatically determines a balancing configuration of reuse factors
for a neural network model with heterogeneous layers on FPGAs. Our method
will help accelerate the deployment of DL models in edge devices, enabling more
efficient usage of limited hardware resources. In particular, this work provides
the following key contributions:

C1. An approach that automatically balances the IIs of each computation stage
by iteratively modifying their individual sharing levels to reduce resource
utilisation while minimising performance degradation (Sect. 3);

C2. The implementation of our approach using the Artisan Metaprogramming
Framework (Vandebon et al. 2021), HLS4ML (Fahim et al. 2021) and Xilinx
Vivado HLS (Sect. 3.1);

C3. An evaluation of our approach under different settings for a sample neural
network (Sect. 4).
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2 Background

2.1 Neural Networks

Out of all methods falling under the large umbrella of Artificial Intelligence and
Machine Learning, none have been nearly as influential and widely employed
as the neural network, often called Deep Learning (DL). Though recent break-
throughs in the domain of DL have utilized more advanced techniques to achieve
impressive results, the basic mechanisms forming the foundation of neural net-
works are simple. The vast majority of neural networks can be divided into
layers (see Fig. 5), which transform one vector representation of a data sample,
known as tensors, into another (possibly of different dimensions). Mathemati-
cally, these layers can be generally formalized as affine transformations (a tensor
multiplication and an addition) followed by pointwise non-linearity. Simply hav-
ing a sufficient number of appropriately large layers provide neural networks
with the ability to approximate any function (Hornik et al. 1989), making them
conceptually simple, yet powerful function approximators.

Fully connected (alternatively linear or dense) layers denote layers where
every element in the output tensor is dependent on every element in the input
tensor. Convolutional layers, on the other hand, found in Convolutional Neural
Networks (CNNs) greatly save on memory and computation costs by allowing
each element in the output tensor to only be affected by a local neighborhood of
elements in the input tensor and by reusing the weights by which these param-
eters interact for the computation of each element.

From a computational standpoint, this layer-wise view of neural networks
allows us to treat them like computations consisting of stages which have to be
performed sequentially, but which internally are highly parallelizable.

2.2 Deep Learning on Edge Devices

Because of their typically resource-demanding nature, DL applications have tra-
ditionally been considered as confined to dedicated hardware accelerators in
central cloud systems. Continued innovation in the capabilities of lightweight
devices along with strategies for compressing and improving the efficiency of DL
models have challenged this notion, expanding the frontier of AI applications
to the edge. The prospect of enabling real-time AI inference of collected data,
without the need for constant communication with a central server present obvi-
ous benefits in applications ranging form wearable health devices to autonomous
vehicles.

A central challenge when deploying DL models to edge devices is ensuring
sufficient compute capabilities, particularly with respect to parallelization, in
order to achieve acceptable responsiveness. Another challenge is power efficiency,
as both battery life and thermal considerations typically weigh heavily in their
design specifications. Hence, reconfigurable devices, such as FPGAs, lend them-
selves particularly well to addressing these challenges, making them an exciting
tool in the deployment of AI at the edge (Bierzynski et al. 2021).
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Fig. 1. (Source: https://fastmachinelearning.org/hls4ml/ images/reuse factor paper
fig 8.png) The figure shows how increasing the reuse factor of a computation can reduce
the amount of hardware required at the cost of increased processing time.

2.3 Parallelization Optimizations Using HLS

There are many previous studies focusing on parallelization optimizations using
HLS (High-Level Synthesis) tools. MPSeeker (Zhong et al. 2017), a rapid per-
formance/area estimation framework, is proposed to explore various fine-grained
and coarse-grainded parallelism options for FPGA-based accelerators at an early
design stage without invoking HLS tools. The work in (Li et al. 2015) pro-
poses resource-aware throughput optimization using HLS for multi-loops. The
work (Oppermann et al. 2019) presents SkyCastle, a resource-aware multi-loop
scheduler, for HLS-based kernels composed of multiple, nested loops.

Reuse factors (Duarte et al. 2018) can be used to control the number of times
each computational unit should be reused in a given stage of the program, as
shown in Fig. 1. For the neural network used in this work, each of the 6 layers
has its own independent reuse factor which represents the number of time a
multiplier is used in the computation. In the case where all reuse factors are set
to 1, every single multiplication that needs to be performed over the course of the
program translates to a single multiplier unit on the FPGA. In the case where
the reuse factors are set to R, each multiplier unit performs R multiplications per
run of the program, and only 1

R of multipliers are needed with an increased IIs.
By adjusting the reuse factors of individual layers, it is possible to approximately
balance the IIs of the layers, resulting in equivalent throughput at potentially
much lower resource costs or a higher throughput with similar resource costs
(Que et al. 2021).

3 Approach

3.1 Design Flow

Figure 2 illustrates our design-flow, which automatically translates a Deep Learn-
ing Neural Network Architecture to an optimized RTL design, which we explain
next.

First, we employ the HLS4ML tool (Fahim et al. 2021) to convert the Tensor-
flow model to the corresponding C++ code, using 16-bit fixed point precision for
both weights and activations, which can be synthesized to hardware using Xilinx

https://fastmachinelearning.org/hls4ml/_images/reuse_factor_paper_fig_8.png
https://fastmachinelearning.org/hls4ml/_images/reuse_factor_paper_fig_8.png
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Vivado HLS. The initial C++ code version is configured to be fully parallelized,
with the reuse factor for each layer set to one. Because this initial code disables
resource sharing, it can potentially overmap on small FPGA devices, and thus
can benefit from our optimisation approach.

Once the initial C++ code is derived, we start the feedback loop cycle
and generate different C++ versions based on the original version, where we
experiment with different reuse factors for each layer. We use the Artisan meta-
programming framework (Vandebon et al. 2021) to manage different C++ ver-
sions, including cloning the original version, setting reuse factors based on the
optimization algorithm (see Sect. 3.2), running the Vivado HLS tool on the
cloned version, and interpreting the corresponding HLS reports.

The optimization algorithm is heuristic-based and iterative, keeping track of
the designs that offer the best trade-off (Pareto points), while discarding all other
versions. The optimization algorithm operates using two modes: performance
mode and compact mode, which govern how aggressive the algorithm is with
reducing the hardware resource requirements. The performance mode attempts
to reduce space while preserving close to original performance, while compact
mode can offer substantial savings but at a greater hit in performance. The
optimization algorithm also allows to control the maximum number of iterations,
which corresponds to how exhaustive the algorithm should operate in cases where
it does not converge earlier.

Once the algorithm terminates, it outputs the RTL design with the optimized
reuse factors for each layer. The Verilog code can be further processed to generate
the bitstream to configure the FPGA device.

3.2 Optimization Algorithm

This section provides a high-level overview of how the proposed method balances
IIs using reuse factors. The basic idea of the algorithm centers on maintaining
piecewise linear estimates of how the IIs of the individual layers vary with their
reuse factors. The method iteratively selects the most balanced configuration of
reuse factors, according to these estimates, to simulate, and uses the result of this
simulation to further refine its estimates. Below follows a high-level step-by-step
overview of the main stages of the algorithm (see Algorithm 1).

1. A design using a reuse factor of 1 for all layers is synthesized, followed by a
design using a user-specified reuse factor, λ, for all layers. The layer with the
highest increase in II between these two syntheses is designated as the anchor
layer. (Lines 1–4).

2. For a fixed anchor reuse factor (initially 1), linear interpolation is used to
estimate the anchor’s II at this reuse factor. This II becomes the target for
this part of the balancing process, shown as a red line in Fig. 3. (Line 8)

3. For each other layer, the reuse factor which results in an II closest to the target
based on linear interpolation is selected. This is illustrated by the dashed blue
line in Fig. 3. (Lines 9–16)
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Fig. 2. The diagram illustrates the design-flow and the main feedback loop proposed
in this project.

4. An error metric is then calculated as the negative sum of relative deviations
from the highest estimated II. This metric is an estimate of the amount of
“wasted resources” due to II bottlenecking and is shaded red in Fig. 4.

5. Steps 2–4 are repeated for every anchor reuse factor up to a user-defined
maximum, M. As evident from line 7 of Algorithm 1, increasing this parameter
expands the search space of our method, enabling more aggressive increases
in reuse factors, leading to more hardware efficient designs at the cost of
reduced throughput.

6. The configuration of reuse factors which has the minimal estimated error, as
defined in step 4, is synthesized, reporting IIs for all layers. These values are
used to refine the II estimators for the method’s next iterations. (Lines 18,
22, 26)

7. Steps 2–6 are repeated until one of three things happen (Lines 19, 23, 28):
(a) The configuration suggested for synthesis has been suggested before;
(b) The set of IIs reported by the synthesis have been reported before;
(c) The method runs for a user-specified maximum number of iterations.

Note that in addition to the specification of the M-parameter, dictating
whether the method runs in performance (when M = 1) or compact mode (when
M ≥ 2), this algorithm relies on two user inputs which can affect the quality of
the solution: λ and the maximum number of iterations. The λ parameter defines
the range over which initial estimates for II gradients will be computed, and
should be of the same order of magnitude as the expected optimal reuse factors.
A value of λ = 10 is used in this work for this reason. The maximum number of
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Fig. 3. An illustration of how an optimal reuse factor (according to the estimate) is
selected to get as close to the target (red line) as possible. The red crosses indicate
previous synthesis data for this layer and the solid blue line represents the model’s
estimates of IIs for all reuse factors. The dotted blue line indicates the integer reuse
factor, in this case 3, which maps to the II closest to the target. (Color figure online)

iterators places an upper bound on the computation time of the algorithm, but
might cause the algorithm to terminate before convergence has occurred. We
used a value of 10 for this parameter, but the iteration limit was never invoked
during any of our evaluation.

4 Evaluation

4.1 Experimental Setup

In order to evaluate the performance of our method, we employ a neural net-
work designed to be deployed across numerous edge devices in the processing
pipeline of the Large Hadron Collider. This particular network, shown in Fig. 5,
classifies fundamental particles based on their jet substructure, and contains a
combination of convolutional and fully connected layers of various sizes, allow-
ing us to evaluate our method’s performance in a heterogeneous environment.
The network was specified and trained on the same dataset (training (60%),
validation (20%), and testing (20%)) as (Duarte et al. 2018) using Tensorflow
2.91, and converted to a C++ DL kernel using HLS4ML 0.6.0. This work splits
the whole model into several layers and utilizes a layer-wise hardware architec-
ture (Duarte et al. 2018; Tridgell et al. 2019; Nakahara, 2020) which maps all
the layers on-chip. It is flexible and able to take full advantage of the customiz-
ability of FPGAs. In addition, the design implements a coarse-grained pipeline
to further increase the design throughput.
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Algorithm 1. Balancing Optimization Algorithm
Input:

k � C++ DL kernel with N layers
M � resource efficiency level (high = more efficient)
λ � initiation parameter
max iterations � maximum number of iterations

Output:
C � optimized reuse factors for each layer [r1, r2, ..., rN ]

1: D ← ∅
2: D ← D ∪ hls synth(k, [1, 1, 1..., 1])
3: D ← D ∪ hls synth(k, [λ, λ, λ, ..., λ])
4: anchor ← argmax{D[i, λ] − D[i, 1], i ∈ 1..N}
5: iter ← 0
6: repeat
7: for m ← 1..M do
8: iitarget ← ln interpolation(D[anchor, :], m)
9: for layer ← 1..N do

10: if layer �= anchor then
11: E[m, layer] ← argmin{

|iitarget − ln interpolation(D[layer, :], r)|,
r ∈ N

12: }
13: else
14: E[m, layer] ← m
15: end if
16: end for
17: end for
18: C ← argmin{error estimate(E[m, :]), m ∈ 1..M}
19: if previously synthed(C) then
20: return C
21: end if
22: result ← hls synth(k, C)
23: if result ∈ D then
24: return C
25: end if
26: D ← D ∪ result
27: iter ← iter + 1
28: until iter == max iterations
29: return C

This project was then synthesized, with reuse factors for all layers set to
1, forming an unoptimized baseline for later comparison. Our method was
then applied, utilizing Artisan 1.0.7 and Vivado HLS 2019.2 to produce opti-
mized designs for two different parameter settings: performance and compact,
respectively. As previously mentioned, the performance mode (M = 1) aims to
reduce the hardware resource requirements with only zero to minor reductions
in throughput, while the compact mode (M ≥ 2), works more aggressively to
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Fig. 4. An illustration of how the estimated error for a given configuration of reuse
factors is computed. The IIs corresponding to the reuse factors are estimated from
interpolation, and the un-normalized error is then found by computing the negative
deviations from the highest of these II estimates, shown here as the area shaded light
red. The y-axis has been truncated to highlight this process. (Color figure online)

reduce DSP block usage at the expense of performance. The second synthesis
parameter, λ was set to 10 for both runs. We evaluate both settings in the
following subsections.

4.2 Performance Mode

By setting the M-parameter of the optimization algorithm to 1, the search space
of valid reuse factor configurations is restricted to the set for which the lowest
reuse factor of any layer is 1. This ensures that the total II of the full network
does not drastically increase, if at all.

After synthesizing the two cases of all reuse factors being 1 and all being 10,
the method converges after two iterations of the algorithm in performance mode.
The initial synthesis where all reuse factors are 1 as well as the two configurations
suggested by the algorithm are shown in Fig. 6. The synthesis where all reuse
factors were set to 10 is excluded from this and similar plots, as adjusting the
scale of the y-axis to fit the results of this simulation would make it difficult to
discern differences in the remaining groups of bars.

The proposed method came very close to finding the optimal configuration
with its first suggestion, setting every reuse factor to its optimal value apart from
that of layer 5. Examining why this happened highlights a key aspect of how
the algorithm works. Looking at Fig. 7, we can see the algorithm’s estimate of
how the II of layer 5 varies with respect to its reuse factor both before and after
synthesizing its first suggestion. The algorithm under-estimates the II of layer
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Fig. 5. An overview of the structure of the neural network optimized and synthesized
for an FPGA to evaluate our approach. The network consists of 6 total layers, 3 1D-
convolutions followed by 3 linear layers of shrinking size. The activation function fol-
lowing the first five layers is ReLU, and since the network aims to solve a classification
problem, the output activation function used is SoftMax.

5, but uses the information it gains from the penultimate synthesis to arrive at
the optimal reuse factor.

4.3 Compact Mode

If the balanced solution obtained with performance mode does not fit the target
device and a decrease in throughput can be tolerated, the value of M can be
increased (M ≥ 2) to enable the compact mode which explores configurations
with larger reuse factors.

For instance, setting M to 2 expands the search space to configurations where
the smallest reuse factor of any layer is no larger than 2. In this case, the algo-
rithm makes a total of 5 suggestions before converging. These suggestions, in
addition to the initial synthesis of all reuse factors set to 1, can be seen in Fig. 8.

While the algorithm using the performance mode terminates due to the algo-
rithm suggesting a configuration of reuse factors which has been previously sug-
gested and synthesized, the compact mode terminates because two consecutive
syntheses yield identical IIs for all layers. This early stopping criterion was imple-
mented in order to prevent fruitless gradual decrements of a single reuse factor
when the algorithm believes it is close to an optimal solution, when in reality it
already has one. Figure 9 illustrates how the II of layer 6 varies with its reuse
factor. Were it not for this early stopping criterion, the algorithm would continue
performing these marginally tweaked and expensive syntheses until a major drop
to an II of 24 cycles would occur at a reuse factor of 40, proving that an II of 35
was indeed the best II in this particular instance.
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Fig. 6. An overview of the configurations of reuse factors suggested by the performance
mode algorithm along with the base case of all reuse factors set to 1. Each of the three
groups of 6 bars represent a single synthesis. The heights of the bars correspond each
layer’s II using the configuration of reuse factors in brackets below each group of bars.

Fig. 7. These figures illustrate how the model uses information from simulations to
improve its estimates and give better suggestions. The first plot shows how the model
estimates the relationship between the II and reuse factor of layer 5 based on the two
initial simulations. The model under-estimates the gradient when extrapolating from a
reuse factor of 10, and suggests a reuse factor of 26. When the synthesis result informs
the model of its under-estimate, it finds the optimal reuse factor.
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Fig. 8. Configurations of reuse factors suggested by the algorithm in compact mode.
Each of the groups of 6 bars represent a single synthesis. The heights correspond to
the IIs using the reuse factors in brackets below each group.

4.4 Comparison Between Performance and Compact Modes

Table 1 shows II and latency, as well as DSP block, FF and LUT usage, for the
unoptimized design as well as designs optimized by the algorithm running in
both performance and compact mode. By looking specifically at the number of
DSP blocks used by each of the designs, we can see that the sample network
studied in this work would not fit on the sample target device, requiring more
than three times the available DSP blocks. By applying the performance mode of
the method outlined in this work, the DSP block usage was reduced by a factor of
3.5. This allows the network to fit the target device without any decrease to the
throughput compared with the original design, as is evident from the identical
II. Besides minor increases in FF and LUT resource usage, the balancing of IIs
by increasing reuse factors inevitably incurs an increase in latency.

If we wanted to realize the sample network shown in Fig. 5 in an FPGA with
even fewer available DSP blocks, such that the performance mode design would
not fit, we could apply the more aggressive compact mode of the method. In
this case, the DSP block usage was further decreased by a factor of 2.1. This,
however, forces the method to further increase both the latency and the II.
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Fig. 9. This figure shows how the II of layer 6 in the sample network varies with
its reuse factor. Each red cross represents an actual synthesis simulation (performed
independently of any execution mode of the balancing algorithm). (Color figure online)

Table 1. Performance and resource usage comparison between the unoptimized and
optimised versions automatically derived by our approach (performance and compact
modes, respectively). The rightmost column represents the case where all reuse factors
are set to 4 (discussed in Sect. 4.5). Resource usage percentage in brackets corresponds
to the proportion of available resources used (Xilinx Artix A200 ).

Unoptimized Performance Compact Homogeneous <4>

II 20 20 36 67

DSPs 2,269 (310%) 642 (87%) 308 (42%) 737 (100%)

Latency 45 88 150 87

FFs 45,954 (17%) 51,398 (19%) 52,729 (20%) 49,387 (18%)

LUTs 100,525 (75%) 108,248 (80%) 108,291 (80%) 118,586 (88%)

4.5 Comparison with State-of-the-Art

Duarte et al. (2018) uses reuse factors to trade increased IIs, and thus decreased
throughput, for reduced hardware requirements when deploying a neural net-
work to an FPGA. Unlike our approach, which allows the reuse factor of each
layer of the network to be set independently, Duarte et al. (2018) uses a single
homogeneous reuse factors for all layers. If this restriction of a singular reuse
factor were imposed on the sample network used for evaluation in this paper,
a reuse factor of 4 would need to be applied to all layers in order to fit within
the resource constraints of our chosen target device. As shown in the rightmost
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column of Table 1, this would lead to a factor 3.4 decrease in throughput when
compared to the design produced by our method in addition to requiring more
DSP blocks.

Que et al. (2021) balanced the IIs of the layers of a Recurrent Neural Network
(RNN) by modifying the reuse factors of each layer independently. However,
this was done manually using expert knowledge about the tools being used,
the specific properties of the network being synthesized and the target device.
Without this knowledge, a naive strategy for finding an optimal configuration of
reuse factor would be to synthesize designs using a singular reuse factor, n, across
all layers in some plausible range 1 ≤ n ≤ N , and then identifying an optimal
configuration by setting the reuse factor of each layer based on the results of this
simulation. As the highest reuse factor explored by our method in this evaluation
is 50, covering this design space with a brute force approach would require 50
such syntheses. In our evaluation, each synthesis of a relatively small neural
network takes approximately 10 min, thus the synthesis alone would take more
than 8 h of compute time to derive the optimal solution with the naive method.
Our method in its performance mode required only 4 such syntheses, rather than
50, while the compact mode, navigating a larger search space, required only 7.
As the computation time spent by the algorithm itself (that is, time not spent on
synthesis) is on the order of milliseconds and therefore negligible in this context,
our method achieved a factor 7–13 speedup of the DSE process compared to a
naive approach, enabling greatly accelerated iteration.

4.6 Further Work

As our method exclusively extracts II data from the HLS report, it is not able
to fully exploit all available DSP blocks on the target device. A future exten-
sion to the method could use additional available data, such as latency and
resource usage, to produce the configuration of reuse factors for a given DL
model which maximizes throughput given the resource constraints imposed by
the target device and a latency constraint manually specified by the user.

As explained in Sect. 3.2, we require a user-specified reuse factor, λ, to obtain
an initial estimate of the gradient of each layer’s II with respect to its reuse factor.
It is possible that a heterogeneous configuration of reuse factors could provide
more useful information. One extension might therefore be to compute such a
configuration using the IIs resulting from the first synthesis, which should give
some information about suitable orders of magnitude of the reuse factors in the
final solution.

Though our method’s performance has only been evaluated for one sample
network, the heterogeneous nature of this network suggests that the method
generalizes well across different types and sizes of neural network layers. Seeing
as our method makes no assumptions about the implementations of these layers,
other than that they are highly parallelizable stages of a computation, further
work could be done to evaluate our method on the synthesis of other non-DL
programs consisting of similarly parallelizable stages.
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Finally, another method for addressing a resource-constrained environment is
to perform quantization. Further work will examine how our II-balancing method
can be combined with quantization schemes for further hardware reductions.

5 Conclusion

This paper has outlined a method for automatically balancing the initiation
intervals (IIs) of sequential stages of a computation to iteratively modify reuse
factors for each stage. For one particular algorithm setting, this method reduced
the computational hardware requirement to realize a neural network by a factor
of 3.5 without affecting throughput. It was demonstrated that the use of this
method allowed the neural network to fit within the hardware resources of a
designated target device, which otherwise would have required more than three
times the available resources. If one wanted to target an even smaller device, a
more aggressive parameter setting of the algorithm was shown to decrease the
DSP block requirement by a factor of 7.4, while II increased by a factor of 1.8.
In contrast to previous efforts to balance IIs using reuse factors, the balancing
algorithm proposed in this paper is completely automatic.

In contrast to previous related works using one reuse factor for all layers, the
use of multiple reuse factors in our method facilitated a factor of 3.4 increase in
throughput from the same resources. Our approach is automatic and can achieve
a factor of 7.5–13 speed improvement over a naive exploration of the same search
space of reuse factors.
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Abstract. With growing FPGA capacities, the complexity of realiz-
able systems-on-chip grows as well. State-of-the-art FPGA accelerators
encompass many heterogeneous processing elements that often require
efficient Inter-PE communication, as well as with external interfaces, e.g.,
to the host or memory. While the toolflows and languages to create indi-
vidual processing elements have improved considerably in recent years,
the composition of multi-PE SoCs on FPGAs, including the required
custom interconnects and the creation of powerful APIs for a host to
interact with these complex accelerators, has been a largely manual and
error-prone ad-hoc process. The IPEC system described here aims to
automate much of this effort by offering the system architect selected
powerful primitives to easily describe even advanced SoC compositions.
Compared to traditional manual approaches, the length of the required
descriptions has been reduced by up to two orders of magnitude for the
real-world designs examined here. For easy usability, the open-source
IPEC system employs a domain-specific language embedded in Python.

Keywords: Automated on-chip interconnect · Task parallelism ·
Processing elements · TaPaSCo · FPGA design automation

1 Introduction

Reconfigurable logic devices such as FPGAs have been less affected by Moore’s
Law slowing down, and continue to offer larger capacities with each new gen-
eration. However, apart from specialized applications such as ASIC emulation,
actually putting all of that reconfigurable space to good use, e.g., for improved
computing performance, remains challenging.

Construction of individual PE improved significantly due to advances in HLS
and new hardware construction languages, but the assembly of a complete SoC
leveraging many heterogeneous PE and distributed memory still takes consider-
able effort.

Some aspects of this complexity have been addressed by abstraction frame-
works such as TaPaSCo [9] and others, as discussed in Sect. 3. These systems
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can automate much of the lower-level aspects of the SoC construction process,
and provide concise and efficient APIs for interacting with the host, hiding many
intricacies of the underlying mechanisms.

What is still lacking is support for more easily describing systems of many
parallel interacting PEs. While the connections can be created using tools such
as Xilinx IP Integrator, this is a laborious process when using the GUI. It is
possible to automate that process with Tcl scripts, but manually creating these
scripts is similarly tedious and highly error-prone, especially for complex designs.

As an alternative to existing work, we contribute the Inter Processing Ele-
ment Communication (IPEC) framework, for automatically synthesizing com-
plex systems of interacting PEs. IPEC descriptions are formulated at higher
abstraction levels than IP Integrator and described in a concise DSL embedded
into Python. The toolflow then leverages the existing TaPaSCo framework to
create the lower-levels of the SoC, and also provides automated hardware/soft-
ware integration.

These high-level descriptions allow an easy scaling of architectures, and thus
enhance the portability of the same base-architecture across different device
sizes. By creating custom interconnect structures, the area and performance
overheads of using a general-purpose NoC can be optimized.

Even in its initial form described here, IPEC already enables higher produc-
tivity hardware designs by raising the abstraction level and degree of automa-
tion over existing solutions. But its underlying technologies, such as the IPEC
Intermediate Representation (IIR) used to internally represent entire accelerator-
heavy SoCs with their communication and synchronization mechanisms, forms
the basis for more advanced SoC-level optimization steps in further development.

Section 2 describes the fundamental ideas, protocols, and components IPEC
builds upon. Section 3 gives an overview over related work. Section 4 discusses
the primitives provided by IPEC, while Sect. 5 shows how the user can integrate
them into a design. Section 6 demonstrates IPEC for two different use-cases.
Section 7 concludes with future work.

2 Fundamentals and Terminology

Processing Elements (PEs), in the context of IPEC, describe a comput-
ing unit that can be instantiated multiple times. Depending on the individual
use-case, a design may either consist of homogeneous or varying purpose het-
erogeneous PEs. A PE may have access to local and global memories and may
be interconnected to other PEs. For use with TaPaSCo, PEs are packaged as
IP-XACT blocks [8].

Task Parallel System Composer (TaPaSCo) provides a toolflow to
automatically integrate user provided PEs into a composition, a set of inter-
connected PEs, which in the next step can be synthesized onto an FPGA [9].
TaPaSCo uses the notion of a task from the heterogeneous computing model,
which decomposes large computations into smaller tasks that can run concur-
rently. Tasks can be started on a PE from the host using the TaPaSCo API, or
from other PEs [10].
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Fig. 1. IPEC Toolflow: User-provided Python-based interconnect descriptions are con-
verted into an IPEC Intermediate Representation (IIR), compiled into Tcl, and packed
as IP-XACT core. TaPaSCo gets this core definition and creates the composition, which
is synthesized onto FPGA.

The Advanced eXtensible Interface (AXI) is part of the AMBA
(Advanced Microcontroller Bus Architecture) specification and is a freely-
available, open standard for the connection and management of functional blocks
in a system-on-chip (SoC) [1]. It is available in older and newer versions and also
includes a lightweight and streaming option.

On-Chip Interconnect Topology Existing on-chip Interconnect Topolo-
gies are often regular structures such as a ring, star, or fully meshed intercon-
nect. As part of this work, we will focus on user-defined and potentially irregular
topologies, with direct connections between PEs.

IPEC’s Toolflow is outlined in Fig. 1. The user first provides the design’s
PE and a high-level Python IPEC interconnect description to the IPEC frame-
work, which then auto-generates the interconnects in Tcl and packages the multi-
PE design as a single transparent IP-XACT core. This IPEC core is then sup-
plied to the existing TaPaSCo toolflow, which builds, synthesizes, and loads the
bitstream onto an FPGA.

3 Related Work

Different existing tools assist the user in generating FPGA designs comprised
from multiple accelerators. As part of this section, we will focus on those tools,
which also include active support for inter-PE communication.

TaPa follows a Task Parallel approach like TaPaSCo, but focusses more
on High-Level Synthesis (HLS) [3]. It generates PEs by applying HLS to the
compute kernels of an OpenCL program. The PEs are placed on the System on
Chip (SoC) and connected to a shared ring network. Each PE can put data onto
the network and peek at or pull from other PEs. TaPa provides C++ structs to
describe data exchanges between PEs. Using them from within a kernel will result
in the corresponding ring network accesses at runtime. Since all communication
takes place on the shared ring network, this can pose a bottleneck if many PEs
are active at the same time and try to communicate.

ESP generates a system from HW tiles [7]. A tile can be a processor, memory,
accelerator or auxiliary function. The processor and accelerator tiles include
a first level cache and a DMA engine for accessing the caches of other tiles,
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while memory tiles only include a last level cache. DMAs are routed over a
mesh network connecting all tiles. However, a potentially more efficient direct
communication between accelerators is not supported.

GENIE (GENeric Interconnect Engine) enables the user to connect compute
elements (CEs) according to user defined connection tables [16]. Hardware for
splitting and merging connections is generated automatically. It uses a custom
routed streaming protocol, which includes addressing by giving each slave an
ID. However, it only generates interconnect structures for its own protocol and
requires that CEs support it.

Archborn provides a Tcl abstraction layer, which enables the user to con-
cisely create PE and Memories, then connect them using busses [14]. The user
can attach PE to a bus, which in turn can be connected to create an NoC. How-
ever, the user has to manually create these structures and the framework does
not include conversion between protocols.

Cascabel is a TaPaSCo extension, which enables on-device dynamic dispatch
[10]. It replaces the default TaPaSCo scheduler with one that can process launch
requests from host and PEs. However, it can only launch one task at a time,
each with a limited number of task parameters. Already running PEs cannot
communicate directly.

A key limitation of the provided frameworks is that they mostly rely on
fixed protocols and interconnect topologies (e.g., mesh, star, ring). While this
does make sense for ASICs, the large multiplexers are often slow on FPGAs. In
contrast, IPEC generates custom interconnect structures matching the commu-
nication patterns of a specific application.

4 Capabilities

With TaPaSCo and other task parallel frameworks, the fundamental abstraction
is that of a task, which is submitted to one PE and processed in its entirety. IPEC,
on the other hand, uses task groups as the fundamental abstraction. A task
group comprises multiple tasks, which can exchange data using shared memory
or connections. Figure 2a shows such a task group as a Data-Flow Graph (DFG).

Each of the PE A to F represent one task of the entire group. Each task, in
turn, runs on a PE optimized for it. The host launches a task group together
with the necessary input parameters and is notified of its completion by using
the interrupt signal of a designated PE, usually either the first or last one in the
DFG. PEs can share data only along the edges of the DFG, this means that,
e.g., PE D has no means of communicating with PE C. Note that the DFG is a
directed graph, but which may contain cycles.

4.1 Connections

Every PE has one or more ports to send data to or receive data from other PE’s
ports and memory. IPEC supports three protocols from the AXI4 family for the
ports: AXI4, AXI4 Lite, and AXI4 Stream. Additionally, connecting individual
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Fig. 2. A sample data-flow graph and topology, which can be mapped using IPEC.

wires is possible as well. Using IPEC, the user can create arbitrary connections
between ports, e.g., as shown in Fig. 2b.

A single master port can have multiple outgoing connections to other slaves,
while a single slave can have multiple incoming connections from other masters.
After specifying all connections, IPEC automatically generates the correspond-
ing hardware and connections further described in Sect. 5.5. Interconnects are
created automatically when needed. For ports with many incoming or outgo-
ing connections, the design is automatically optimized by creating a hierarchical
interconnect structure. With address-based protocols like AXI4 and AXI4 Lite, a
master can send data to individual slaves by using an address map (described in
greater detail in Sect. 5.6). AXI4 Stream masters, on the other hand, broadcast
data to all of their slaves. AXI4 Stream slaves include a FIFO in order to act as
a buffer to avoid slowing-down the master in case a slave is not ready yet.

Furthermore, connecting ports with mismatching protocols is supported, but
may require the user to specify a conversion protocol. Converting AXI4 to AXI4
Lite is done automatically, while converting an AXI4 Stream to AXI4 requires
the user to specify a hardware module to do the conversion.

In order to save routing resources, connections between different ports can
be grouped to form a Channel. A Channel can have multiple input ports, which
are arbitrated onto a single connection. On the other end, the data is forwarded
to the single addressed slave, or broadcast in the case of streams.

4.2 Memory

One advantage of FPGAs is the availability of distributed memory and customiz-
able memory systems such as [11]. To exploit distributed memory, PEs can each
have a local BRAM attached, which can also be made accessible to other PEs.
Since BRAM on most modern FPGAs is dual-ported, IPEC exposes both ports
to the user, who can then decide whether to give a single PE exclusive access
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Fig. 3. Shared memory accesses using AXI4 Stream, require RMA converters, which
are auto-generated by IPEC. An RMA read has up to three parameters determining
which data words to return. An RMA write has at least one data packet, but will write
additional data to successive memory addresses.

to a port for minimum latency, or share it among multiple PE. Furthermore,
IPEC treats all types of memory identically, including BRAM, DRAM, HBM,
and register files. In the case of off-chip memory, IPEC delegates generating
the memory controller to TaPaSCo, but will create the necessary interconnects
for merging all connections accessing the same memory. PEs can perform their
memory accesses via AXI4, AXI4 Lite, and AXI4 Stream. For AXI4 Streams,
the required Remote Memory Access (RMA) converter units, as shown in Fig. 3,
are created automatically.

RMA Read. The PE has an address stream connected to the RMA unit and
a data stream back from the RMA unit. A read request contains up to three
parameters: the address, number of elements to read and the stride between
successive elements. After receiving a read request, the RMA unit will read the
data from memory and broadcast it to all receivers of the stream.

RMA Write. The PE has a combined address and data stream connected to
the RMA unit. A write request contains at least two parameters: the address and
the data. Sending more than one data packet will write to successive addresses.

Data stored inside a PE and shared memory is persistent across launches,
meaning it is still available when the next task or task group is started. However,
it falls to the user to ensure that, if a later task requires data from a previous
one, the new task or group is launched on the specific PEs that can physically
access that memory.

4.3 Dispatch - Starting PEs

Since a task group consists of multiple tasks, and therefore involves multiple
PEs, there has to be a way to start all PEs belonging to the same task group.
We discuss the two possibilities shown in Fig. 4.

Software Dispatch. Task groups can be launched under host control by assign-
ing each involved PE a unique ID. The host can then individually launch the
tasks in a group using the identified PEs. While very flexible, software dispatch
has a relatively high communication overhead, as each task requires two PCIe
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transfers. In the example at the top of Fig. 4, PEs A and B are launched as
group under host control. Afterwards, their respective tasks can communicate
using IPEC facilities.

Hardware Dispatch. Instead of being launched under host control, IPEC can
configure PEs to be launched on-chip, without host intervention. Therefore, PEs
are fitted with a Stream Starter, which accepts new launch requests, including
the required parameters, from an AXI4 Stream. This allows arrangements as
shown in the left part of Fig. 4, where only PE C is host-launchable by its ID.
The PE D is then launched on-chip over IPEC links. In the example, PE D
can receive additional data from and return its result to PE C over additional
streams. The Stream Starter blocks until its controlled PE becomes idle again.
Note that hardware dispatch requires some care from the user, as in some cases,
such as circular structures, there is the risk of deadlocks.

Locks for Stream Synchronization. To prevent multiple PE from inter-
fering with each other, including deadlocks, individual stream connections can
be blocked using a lock. Locks contain an accumulator register connected to an
AXI4 Stream slave. Each incoming packet increments the accumulator or applies
a simple binary operation with the data field of the packet. This way, accumu-
lators can realize atomic operations across multiple concurrently executing PEs.
Additionally, the lock is linked with a channel and blocks all communication
over the channel if the accumulator is non-zero. This allows the realization of
different synchronization schemes such as semaphores, and mutexes.

5 Using IPEC to Simplify SoC Implementation

This section details how the user can create compositions using the previously
discussed functionalities. For ease of use and to make it more accessible to users
inexperienced in hardware development, IPEC is controlled by high-level Python
descriptions. We chose Python specifically for lowering the hardware designer’s
entry barrier. With IPEC, not only single-PE but multi-PE HLS designs become
feasible without the need for Tcl or any HDL knowledge to interface with exist-
ing toolflows. Together with TaPaSCo’s HLS support, the user can now easily
generate a multi-PE SoC with custom interconnect structures.

Fig. 4. IPEC supports both host software and on-chip hardware dispatch. With soft-
ware dispatch, the host starts PEs individually. With hardware dispatch, PEs have
a Stream Starter attached to their configuration registers, which allows other PEs to
start tasks without host intervention.
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Listing 1.1. Python code for an introduc-
tory example of an IPEC composition.
1 pea = PEA(ID=1)

2 peb = PEB()

3 pec = PEC()

4 hbm = HBM()

5 c = Channel(pea.maxis0 ,peb.config)

6 lock = Lock(c)

7 Channel(peb.maxis ,pec.config)

8 Channel(pec.maxis ,peb.config)

9 Channel(pea.maxis1 ,pec.maxis1 ,lock)

10 for i in range(0, 10):

11 ped = PED(ID=i+1)

12 bram = BRAM(’16K’)

13 Channel(ped.maxi0 , bram.port0)

14 Channel(ped.maxi1 , hbm.saxi)

Fig. 5. Corresponding block design:
PE B and PE C form a cycle started
by PE A through a lock. Each PE
D has its own BRAM and a connec-
tion to shared HBM.

As shown previously in Fig. 1, using Python syntax, the user writes a script
instantiating all PEs, memories, and connections between them. Our library then
converts the given description into an intermediate representation, from which
the necessary converters and interconnects can be automatically inferred and
the address map is computed. Finally, from the extended intermediate repre-
sentation, an IP-XACT core containing all resources is created. For maximum
automation, IPEC is integrated into TaPaSCo. However, it can also be used in
a stand-alone manner in other design flows. Listing 1.1 is a simple introduc-
tory example for using IPEC to describe the block design shown in Fig. 5. More
complex real-world use-cases will be discussed in Sect. 6.

5.1 Device, PEs and Memory

When using IPEC, PEs can be instantiated by calling a Python constructor via
its identical name. To this end, IPEC reads the user’s TaPaSCo hardware cores
directory and automatically creates a Python class for every PE type found.
Note that IPEC adheres to TaPaSCo’s tenet of being language agnostic. Thus,
while the actual cores might have been created using Verilog HDL, Chisel, HLS,
Bluespec, or any other design flow, this no longer plays a role in their IPEC
composition. The code in Listing 1.1 creates the PEs PE A (Line 1), PE B
(Line 2), PE C (Line 3), and multiple instances of PE D (Line 11). Each PE
object contains member attributes for every interface the PE exposes with the
same name and protocol, thus making it easy for the user to reference a specific
PE port in the IPEC script. Other hardware modules are created similarly, for
example the yellow lock in Fig. 5 results from Line 6 in Listing 1.1.

In the case of PE A and PE D, the constructor includes the ID parameter,
thus making the PEs host-launchable using the TaPaSCo API. PE B and PE C,
on the other hand, are equipped with a PE Stream Starter created implicitly by
connecting an AXI4 Stream to master to their configuration registers. They can
thus be launched on-chip without host intervention.
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Memory instances are created similar to PEs by calling a Python constructor
of the same name. BRAM creates one block of BRAM of the specified size with
two access ports (Line 12). DRAM and HBM aggregate all connected ports to
a single interface, which can later be connected to a memory controller.

5.2 Connections

In Listing 1.1, different ports of PEs and memory are connected by creating
a channel. At least one master and one slave is to be specified per channel. If
multiple masters are part of a channel (Line 9), IPEC creates an interconnect
to arbitrate them onto a single connection. If multiple slaves are present in a
channel, the resulting interconnect will broadcast to all slaves for the case of the
slaves being AXI4 Streams, or unicast to the single specific slave as addressed by
AXI4 and AXI4 Lite interfaces. Multiple channels connected to the same port are
handled analogously. E.g., all PE D instances are connected to the same HBM
in Line 14. When creating the lock in Line 6, IPEC splits the given channel and
routes it through the lock.

5.3 Locks - Deadlock Avoidance

Locks offer a way to synchronize the execution of PEs, or prevent a deadlock.
In Fig. 5, PE A can start a cycle, which contains PE B and PE C, with PE B
starting PE C as it finishes, and vice versa. If PE A restarts PE B before this
cycle is over, PE C will wait for PE B to finish, which, in turn, waits for PE C
to finish, causing a deadlock. To prevent this, we add a lock in Line 6.

The channel in Line 9 connects PE A and PE C to the accumulator part of the
lock, allowing them to block the second channel through the lock. This second
channel allows PE A to start PE B, if the accumulator register is 0. After PE A
starts PE B, it increments the accumulator of the lock by one, thus blocking any
of its own future attempts of starting PE B. PE C’s way to start PE B (Line 8),
on the other hand, is not blocked by the lock and it can still restart PE B. When
no more iterations between PE B and PE C are required, PE C will reset the
lock, thus re-enabling PE A to launch PE B again, and start a new processing
cycle.

5.4 IPEC Intermediate Representation

For improved efficiency, the IPEC framework does not immediately generate
the corresponding hardware when the Python call is processed. Instead, the
calls construct the IPEC Intermediate Representation (IIR, see Fig. 1) in the
background, which is then processed in its entirety to generate the interconnects.
The IIR is graph-based and comprises cells, ports, and connections :

Cells are hardware modules available to IPEC as IP-XACT cores. While all
cells have ports to express their connection points, IIR distinguishes between
PEs, Memory, Stream Operations, Interconnects, and (AXI) Converters.
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Ports encapsulate all the low-level physical signals of a Cell associated with
a specific protocol into one user accessible object. IPEC differentiates between
AXI4, AXI4 Lite, AXI4 Stream, Clocks, Resets, Interrupts, and raw input and
output signals. Address based protocol ports are part of the address map gen-
eration.

Connections are point to point connections between ports. IPEC generates
a Tcl script from IIR, which, when used from within the context of the Xil-
inx IP Integrator, imports, creates, and configures every referenced IP and the
connections between them to generate an IP-XACT core.

5.5 Interconnect Generation

When the IIR is constructed, the protocols of connected ports may not match.
Ports may even have multi-protocol fanouts. This is resolved by first inserting
generic interconnects which lack all protocol information. Afterwards, protocol
information, such as type, data width, and address width, is propagated through
the connection graph, starting from each port with a known protocol. When
different protocol information is propagated to the same port, IPEC selects a
common “super” protocol on the master side, or a common “sub” protocol on
the slave side. As an example, in Listing 1.1, the data width of the lock is not
specified. If multiple masters propagate different data widths to the same slave
having an unknown data width, then the widest data width of all masters is
selected for the slave. Conversely, if multiple slaves connect to a single master,
the narrowest data width is selected. The user can control this process by spec-
ifying the protocol manually at key points, and then leave it to IPEC to infer
the remaining protocol parameters. After protocol propagation, IPEC inserts
converters between each pair of ports with mismatching protocol specifications.
Finally, each generic cell is replaced by one of the IP-cores that is available to
IPEC and has the required properties. While these capabilities are similar to
those in Xilinx Vivado, they allow IPEC to parameterize generic user IP cores
like the lock as needed.

5.6 Address Map Generation

In contrast to AXI4 Streams, AXI4 and AXI4 Lite require assigned addresses for
communication. Thus, each master has an address space containing the address
segments of every slave it is connected to. IPEC automatically creates these
address maps for each master by inserting the slaves in the order specified by
the user into the masters address space. IPEC may leave parts of the address
space unassigned to ensure each slaves’ address segment starts at an aligned
address divisible by its own size to allow more efficient address decoding.

5.7 Advantages of Embedding IPEC in Python

IPEC profits from being a Domain-Specific Language embedded into a high-level
language, namely Python. This is exploited in Listing 1.1 by using a for -loop
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to concisely create multiple PEs, BRAM, and the connections between them.
Note that only a single HBM instance is created (Line 4), which has multiple
connections created in Line 14. IPEC will create an interconnect block merging
all of the individual links.

While these abstractions could be implemented in Tcl, which is directly sup-
ported by Vivado, we chose Python to accommodate non-hardware designers,
who can use it in combination with HLS to employ reconfigurable computing.

6 Evaluation

This section discusses two real-world case studies which successfully leverage
IPEC. Both projects initially relied on the Xilinx IP Integrator GUI to manually
create communication structures between PEs, before being migrated to IPEC.
For both use-cases, other approaches would either not provide sufficient band-
width (e.g., a single global shared memory), or require more FPGA resources
(e.g., an NoC in soft-logic). The final composition when using IPEC is identical
to the previous manually created composition. Since the design, and therefore
the performance is identical, the focus of this study will thus be on the pro-
ductivity gains achievable using IPEC, as compared to the Xilinx IP Integrator
GUI. As simple measure for the productivity gains, we compare the lines of
IPEC Python code with the number drag-and-drop user actions required in the
GUI, which is reflected by the number of corresponding Tcl lines automatically
created by the IP Integrator tool. In our experience, the number of Tcl lines is
a good estimation for the number drag-and-drop operations, ignoring grouping
commands.

By using IPEC, it becomes much easier to perform design space exploration
by varying parameters of a composition, or to scale an IPEC design up or down
to target different FPGAs.

6.1 Case Study I: neoDB Database System

Many modern Data Base Management Systems (DBMSs) use multi-versioning to
enable consistency and high parallelism for both long-running analytical queries
(reads), and low-latency update transactions (writes) [18]. In this scheme, the
DBMS holds multiple versions of the same tuple linked with timestamps to
determine which single version is the current one (visible) to a given transac-
tion or query. This visibility check requires loading tuples and comparing their
timestamp against the timestamp of the ongoing query.

In practice, the number of active versions can reach several hundred millions
[12], resulting in many entries being evicted from fast memory to cold stor-
age. Thus, in today’s DBMSs, analytical queries may be slowed by high latency
memory accesses when checking tuples for visibility.

neoDB is a next-gen DBMS based on PostgreSQL that uses FPGA-
accelerated Near-Data Processing (NDP) to address many traditional bottle-
necks [2]. The example employed as use-case for IPEC performs visibility checks
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Fig. 6. System composition of
neoDB. Configuration connections
are not shown for clarity.

Listing 1.2. IPEC code for NeoDB
1 dram = DRAM()

2 for i in range (0 ,2): # 0..1

3 pe2 = NDP_Accelerator(ID=2)

4 for j in range (0 ,16): # 0..15

5 pe1 = MicroBlaze(ID=1)

6 Channel(pe1.maxis , pe2.saxis)

7 Channel(pe1.maxi , dram.saxi)

8 pe3 = Stream_Preparation(ID=3)

9 pe4 = Stream_to_Memory(ID=4)

10 Channel(pe2.maxis , pe3.saxis)

11 Channel(pe3.maxis , pe4.saxis)

12 Channel(pe4.maxi , dram.saxi)

on the FPGA in NDP-fashion to determine the visible records. These can then
be returned back to the host, or be forwarded to further NDP accelerators on
the FPGA. In both cases, the results are written back to host memory.

The neoDB composition examined here comprises four types of PE working
together to perform an NDP-operation. MicroBlaze softcores load tuples from
memory and perform the visibility checking, forwarding only the visible tuples
over an AXI4 Stream. Next, a specialized NDP accelerator continues to process
the visible tuples, using a complex data analytics operation in the actual system.
The third PE transforms the analytics accelerator results in preparation for
writing them to host memory, which is performed by the final PE. These four
PE types form a cluster, which can be replicated on larger target FPGAs. The
host only interacts with the first PE of each cluster, launching parallel tasks on
multiple softcores.

Figure 6 shows an example of a composition for this architecture, including
multiple clusters each containing multiple softcores and an analytics accelerator
each. Listing 1.2 shows the IPEC code describing this composition, having two
clusters and 16 MicroBlaze softcores per cluster. The Tcl script to generate the
composition contains almost 1,000 lines, each line representing one manual and
error prone action the user performed when using the Xilinx IP Integrator. Even
when using TaPaSCo to create much of the low-level infrastructure, more than
200 Tcl lines remain just to realize the inter-PE communication patterns. IPEC
can express these in just 12 code lines and allows to flexibly balance the different
processing pipeline parts to match throughputs across stages.

Furthermore, in the future, neoDB will require far more complex communica-
tion topologies, as well as support for fast atomic operations for synchronization.
IPEC already supports both of these functionalities.
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Fig. 7. System Diagram of the Fuzzing Accelerator. Note that a fuzzing cluster of PE
1–4 can be replicated on larger chips for higher fuzzing throughput. Since PE 2–4 are
only configured and started by the host once, their connections to the host interconnect
are omitted for clarity.

6.2 Case Study II: Hardware Fuzzing Accelerator

Fuzzing is an automated method for finding vulnerabilities in applications using
a large number of computer generated test cases as input [15]. A black-box fuzzer
will randomly create such test cases and then externally observe the program
for unexpected behavior. In contrast, gray-box and white-box fuzzers indirectly
or directly obtain the program-internal state. Control flow information helps
guiding test case generation towards higher coverage, thereby increasing the
chance to actually find unintended program states or vulnerabilities [13].

Traditionally, software-based fuzzing frameworks such as AFL++ [5,6] are
used to perform this fuzzing-process. A program is iteratively executed and mon-
itored for any still undiscovered and possibly hazardous state. In software, the
monitoring aspect is typically realized by statically or dynamically inserting new
tracing instructions into the program. When fuzzing a program in a non-native
ISA, an emulator has to be employed.

Alternatively, the process of patching, emulating program execution, and
monitoring program states can be accelerated on an FPGA. In this manner, a
potentially large number of ISA-native processor cores may execute the program
with higher efficiency than emulation could achieve. Also, the program state
can be monitored via dedicated hardware blocks without the need for special
instructions. Beyond uncompressed monitoring, dedicated hardware may also
generate and continuously update a condensed trace of the program execution
and finally write it into the FPGA’s DDR-SDRAM. This coverage information
then guides the host in its generation of new and tighter test cases.

In its current version, the fuzzer is limited to executing baremetal-only appli-
cations without the capability of including any non-statically linked libraries.
Even with these limitations, though, it is suitable to demonstrate IPEC’s capa-
bilities.

The fuzzing accelerator is organized into clusters, each holding four com-
municating PEs as shown in Fig. 7. The first PE contains the processor core
and a tracing interface. Depending on the specific core’s capabilities, the Real-
Time Lightweight Integrity enForcement intErface (RT-LIFE) [17] or the RISC-
V Trace (interface) Specification [4] are used to monitor the instruction stream.
The raw trace output is hardwired to the second PE, which transforms the trace
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Listing 1.3. IPEC code for 25 fuzzing
clusters.
1 dram = DRAM()

2 for i in range (0 ,25): # 0..24

3 pe1 = RISC_V_Core_PE(ID=i*4+1)

4 pe2 = Converter_PE(ID=i*4+2)

5 pe3 = Compressor_PE(ID=i*4+3)

6 pe4 = MemoryWr_PE(ID=i*4+4)

7 Channel(pe1.o_data , pe2.i_data)

8 Channel(pe2.maxis , pe3.saxis)

9 Channel(pe3.maxis , pe4.saxis)

10 Channel(pe4.maxi , dram.saxi)
Fig. 8. Resulting block design.

into an AXI4 Stream. The trace is compressed in the third PE. Finally, the
fourth PE writes the compressed tracing information into the FPGA’s DDR-
SDRAM. Each PE communicates with the next one via a hardwired connection,
or an AXI4 Stream, while the last PE is connected to DRAM.

The block design for a system containing 25 fuzzing clusters requires a total
of 2,000 lines of Tcl to describe, each representing one user interaction with
the GUI. Even with the automation already provided by TaPaSCo, up to 600
additional design elements have to be manually formulated just for the inter-PE
communication, requiring a line of Tcl for each element. The IPEC automation
reduces this description to just 10 lines, shown in Lisitng 1.3. The resulting block
design with 25 fuzzing clusters is shown in Fig. 8, highlighting the error-proneness
of the manual process.

Scaling the number of fuzzing clusters up or down becomes trivial when
using IPEC. Combined with the existing TaPaSCo framework, this enables a
high degree of portability and very simple design space exploration.

As a result, IPEC allowed to explore compositions with a varying number
of fuzzing clusters, and to select the composition yielding the highest wallclock
throughput, i.e. fuzzing jobs-per-time, by trading-off parallelism and achievable
clock frequency for different FPGAs.

7 Conclusion and Future Work

IPEC provides a solution for building complex SoCs with many interconnected
accelerator units. For the two real-world use-cases discussed here, the tool already
has significantly improved designer productivity and will enable much more com-
prehensive design space explorations than feasible using the traditional manual
approaches.

Future work on IPEC will build on the existing foundations. Specifically,
we will examine high performance off/on-chip task dispatch using the hardware
structures introduced in this work, and extending its capabilities to start a pre-
defined set of multiple PEs with a single launch command, including some form
of on-device scheduling to maximize utilization of available PEs.



148 D. Volz et al.

IPEC will be released as open-source software under the GNU LGPL v3
license at https://git.esa.informatik.tu-darmstadt.de/ipec/ipec.
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Abstract. Permutation is a fundamental way of data augmentation.
However, it is not commonly used in image based systems with hardware
acceleration due to distortion of spatial correlation and generation com-
plexity. This paper proposes Restricted Permutation Network (RPN), a
scalable architecture to automatically generate a restricted subset of local
permutation, preserving the features of the dataset while simplifying the
generation to improve scalability. RPN reduces the spatial complexity
from O(Nlog(N)) to O(N), making it easily scalable to 64 inputs and
beyond, with 21 times speed up in generation and significantly reducing
data storage and transfer, while maintaining the same level of accuracy as
the original dataset for deep learning training. Experiments show Convo-
lutional Neural Networks (CNNs) trained by the augmented dataset can
be as accurate as the original one. Combining three to five networks in
general improves the network accuracy by 5%. Network training can be
accelerated by training multiple sub-networks in parallel with a reduced
training data set and epochs, resulting in up to 5 times speed up with a
negligible loss in accuracy. This opens up the opportunity to easily split
long iterative training process into independent parallelizable processes,
facilitating the trade off between resources and run time.

1 Introduction

A Convolutional Neural Network (CNN) is well-known for its ability to process
and model images for a wide range of applications. Its success is tied to the
availability of large datasets for training the CNN models.

However, obtaining a sufficiently large dataset for training is not always
practical. It may require manual labelling of training samples by experts, and
data harvesting can be difficult. The US-HHS Influenza activity level is recorded
weekly in 10 regions of mainland US, even 10 years worth of data would only
be 10× 520 data points [1]. Lack of data could also be a problem for inference.
Image classification relying only on a single image can be error-prone, for example
suffering from adversarial attack. Unlike video classification where consecutive
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Gan et al. (Eds.): ARC 2022, LNCS 13569, pp. 150–165, 2022.
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frames can be used to classify the same given object to improve accuracy, there
is usually no multiple representation of a particular object in an image dataset.

Data augmentation is a commonly used approach for computer vision appli-
cations to enlarge an existing dataset. Research [2–4] showed that randomized
data obtained by permutation of the original images are still useful in training
and inference for image classification and time-series prediction tasks. However,
there are three major challenges hindering the potential of such method.

The first challenge is the spatial correlation distortion for inference. Per-
mutation would inevitably destroy the spatial correlation of the original image.
The generated image would have very different features compared to the original
image, reducing the classification accuracy.

The second challenge is having inconsistent features for training. As different
permutations would have different underlying features, using random permuta-
tions to train a network would make the feature to be learnt inconsistent during
training. It would be more difficult for the model to converge, leading to longer
training time, and reducing the accuracy.

The third challenge is the data generation complexity and memory foot-
print. The routing algorithms for existing permutation generators are often very
complicated. It is not easy to figure out the required control for a particular
permutation. The generated data also need to be stored, increasing the data
storage requirement and memory transfer bottleneck.

This paper introduces a novel architecture to automatically generate per-
mutations of the original image efficiently. The key idea is to apply restricted
local row permutation by swapping neighbouring rows of the original image. The
architecture has 3 major features, each addressing one of the above challenges:

(a) Minimal spatial correlation distortion of images. Local row-swapping can
preserve the feature of the original image, reducing the drop in accuracy
when using the permuted image for inference.

(b) Automatic generation of a pre-defined set of permutations. By generating a
deterministic set of permutations, the underlying characteristic of the image
can be maintained consistently within each set of permutations for training.

(c) Simple and scalable structure. Hardware can be simplified and optimized to
efficiently generate a deterministic set of local row permutations, reducing its
complexity. It allows the permutation to be generated on the fly on FPGA,
reducing data storage and transfer between the FPGA and its host.

This paper also proposes the ensemble method to make use of the aug-
mented data based on row permutation. For inference using existing models,
several permuted images would be fed to the model. The overall result would be
obtained by majority voting (for classification task) or averaging (for time-series
prediction task) of the individual results. To benefit from the augmented data
for training, an ensemble of networks would be used, similar to the random for-
est method. Each set of permutations would be used to train one sub-network,
and the result of all sub-networks would be combined to determine the overall
outcome. As the training of an individual sub-network is independent of other
sub-networks, this opens up the opportunity to train the sub-networks in par-
allel, reducing the overall training time. The boosting effect of the ensemble
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method can also improve the overall accuracy even though each sub-network
may have lower accuracy, providing another possibility to trade-off accuracy for
training time required.

The major contributions of this paper are:

1. RPN (Restricted Permutation Network), a simple and scalable parametric
design for efficient hardware implementations of restricted permutations.

2. Illustration of the generated permutation as a valid and effective data aug-
mentation technique for applications such as deep learning training.

3. An ensemble method to use augmented data for both inference and training
to improve accuracy while reducing training time.

2 Background

2.1 Data Augmentation

Data augmentation is a common approach to synthesise new training samples for
deep learning models. Conventional image processing techniques have been used
widely for data augmentation, such as applying additive noise [5], reflections
and colour perturbation [6], skew, rotation and scaling [7]. Despite providing
simple generation methods, it is difficult to generate diverse data samples based
on image processing while preserving the ground truth label.

Deep Generative Models, such as Generative Adversarial Networks (GANs)
[8], are alternatives for data generation. The generator and discriminator of GAN
play a two-player minimax game during training. The generator tries to generate
images similar to the given image, while the discriminator tries to identify the
generated one from the given images. To preserve the temporal dynamics of time-
series models, TimeGAN [9] is proposed to generate images utilizing temporal
correlations. A Bayesian data augmentation method [10] is also proposed based
on GAN, using one generation model and two discriminative models. It treats
the synthetic data points as instances of a random latent variable drawn from
a distribution learnt from the given set of annotated training data, iteratively
generating new data points. With proper training, GAN can produce very diverse
images, however, the training process is usually time-consuming, and fine-tuning
is required to generate images of different sizes.

2.2 Permutation Generation Network

Beneš network [11] and butterfly network [12] are both recursively defined net-
works that are used for signal permutation. The major drawback is the low
scalability of the networks due to implementation difficulty caused by routing
the interleaving wires between each stage, reducing the operating frequency and
input size. A Beneš network with arbitrary input size [13] is proposed to relax
the constraint of having 2n input ports, reducing unnecessary resources con-
sumed by unused ports. However, the connection is more complex, making the
design much less regular, thus more difficult to implement. Another difficulty is
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Fig. 1. Architecture of the restricted permutation network

determining which permutation to produce. A hardware indexing system [14] is
proposed to map each index to a specific permutation. However, the method is
not very scalable as there is a factorial growth of available permutations.

3 Accelerator Architecture

The two key features of the permutation generated by the proposed Restricted
Permutation Network (RPN) are:

1. Local row permutation
2. Restricted and pre-determined permutation

The key idea of the RPN is to generate permutations by swapping neighbouring
rows of the original image. This ensures each row of the permuted image would
at most be 1 row away from its original position, persevering mostly the origi-
nal spatial correlation. A pre-determined set of permutations can be chosen to
simplify the control of the network, avoiding any data collision and congestion.

The RPN has 3 parameters, N , k, and d. N is the length of the network,
defining the range for permutation, as well as resource usage. k refers to the
number of stages, trading off resources for reduced latency. d is the group size,
defining the maximum displacement of each element, and also the available per-
mutations before repeating.

3.1 Network Structure

The RPN consists of a single layer of N multiplexing elements. As shown in
Fig. 1a, each element is a 4-to-1 multiplexor with a FIFO. The elements are only
connected to their neighbours, forming a 1 dimensional chain. This provides a
compact design with simple routing. Figure 1b shows a network with N = 4.
Each element is responsible for handling the value of one row. Each row of the
original image is being fed to the input port of the corresponding multiplexing
element. The original image would be output without permutation done in the
base iteration, and it would also be stored in the FIFO.

For each permutation iteration, the multiplexing unit can either output the
FIFO value, indicating no swapping done, or the value from its left or right
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Table 1. Control for RPN with odd and even swap

Left Edge (M0) Odd element
(M2m+1)

Even element
(M2m+2)

Right Edge
(MN )

Direction of data
movement

– Odd iteration Right Left Right Left

– Even iteration No swap Right Left No swap

Control bits

– Odd iteration 01 10 01 10

– Even iteration 11 01 10 11

Control signal Toggle Toggle Toggle Toggle

Generation bit 1 both bits both bits bit 0

neighbour. The output value would be stored in the FIFO to be used in the next
iteration to generate the next permutation.

As the row permutation has to be done without replacement, i.e. each row
has to appear exactly once in the permuted image, swapping has to be done
in pairs. When the multiplexing element Mi outputs the value from its right
neighbour Mi+1, Mi+1 has to output the value of its left neighbour, Mi.

For input image of size R×C, the length of network, N , is set as the number
of rows of the image, R, to allow permutation to be done on every row, while
the FIFO depth is set to C, which is the length of each row.

3.2 Permutation Selection

To simplify the control signal generation while keeping the diversity of permu-
tations, odd and even swap is implemented.

The red arrows in Fig. 1b indicate the data flow. For the base case, the image
comes in from the input, and is output without any permutation. For iteration
1, M0 swaps with M1, and M2 swaps with M3. For iteration 2, edge element M0

and M3 remain unchanged, while M1 swap with M2.
A generalized swapping algorithm and the corresponding control is shown in

Table 1. Elements swap with its left and right neighbour alternatively in consec-
utive iterations. Edge element would remain its value every other iteration as it
only has one neighbour to swap with.

The odd and even swap greatly simplifies the control of RPN. For any iter-
ation, there is no need to compute the corresponding control for individual
elements, or store a predefined set of control signals. The control signals are
generated simply by toggling the initial control bits.

With such a simple generation method, when using N elements in the net-
work, 2N permutations can be generated before repeating. Every row would be
at most j rows away from its base position in the jth permutation, restricting the
permutation to be relatively local. The permutation order is fixed and determin-
istic, facilitating the identification and grouping of the augmented data within
the same permutation.
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Fig. 2. Available configurations for restricted permutation network

3.3 Further Optimization

Simple modifications can be made to address different design specifications and
constraints, further optimizing the network for specific applications as shown in
Fig. 2.

Multi-stage configuration - For a fully pipelined design with only a few
permutations required, k networks with the FIFO removed can be cascaded to
form a k-stage network. All k permutations can be produced within a pipeline,
speeding up the generation k times while reducing the memory requirement. k
offers the trade off between resource usage and latency.

Segmented configuration - To better preserve the local spatial correlation
for large images, multiple smaller RPNs can be used instead of using one for the
entire image. By grouping every d adjacent rows, the maximum displacement of
each row is limited from R to d, while reducing the non-repeating permutations
from 2R to 2d. d = 5 is chosen to balance the preservation of local correlation
and available permutations.

Partial configuration - Another optimization to reduce resource usage
and memory requirement is permuting only a subset of rows. By setting N < R,
only N adjacent rows of the image would be permuted, while the remaining
R − N rows are unchanged. The resultant permutations would still be valid
permutations preserving the local spatial correlation, with only N/R of resources
used. N is used to balance resource usage and available permutations.

Each of the three configurations addresses a different type of design specifi-
cation. The implementation of the modifications is independent of each other,
giving the flexibility for users to apply more than one optimization to the same
design. For example, configuring the RPN to have multiple stages applying only
on a selected set of adjacent rows, with segmented configuration, achieving a
multi-stage partial segmented design.

4 Evaluation

4.1 Effect of Using Different Permutations

Experiments are conducted to show the effect of using RPN for both training
and inference on image classification and time-series prediction tasks.

i. Inference - To test the quality of images generated by RPN, images of
different maximum displacement (d) are tested with DeepVariant [15] to classify
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Fig. 3. Image classification accuracy with permutation of different maximum displace-
ment. The F1-score is the harmonic mean of precision and recall of a classifier. It ranges
from 0 to1, with a higher score indicating a better classifier.

the type of genetic variant. DeepVariant first compiles rows of DNA sequences
into pileup images, then uses CNN for image classification. Two different types of
variants, indel and SNP, are being tested. Each image consists of 100 independent
rows of DNA sequences with 221 characters each. DNA sequences are taken from
the publicly available HG002 Illumina WGS reads, with the Genome in a Bottle
small variant benchmarks for HG002. 1193 images are used for each test. For each
displacement case, 20 permutations are randomly selected to test for accuracy.

As seen in Fig. 3, the F1 scores of both indel and SNP drop and get more
diverse as d increases. Small values of d restrict row swapping to be take place
locally, preserving the original spatial correlation of the image, thus leading to
higher accuracy of classification. For large values of d, the accuracy can still be
maintained at a high level for some images. This is because some permutations
could retain the original correlation despite having a global swap, for example
flipping the entire image upside down. However, in general, the spatial correlation
is getting more distorted as d increases. This leads to diverse result of accuracy as
d increases. By a reasonable choice of d (d < 10), the F1 score can be maintained
above 0.97, showing that the RPN provides high quality augmented data.

d can be adjusted using the segmented configuration of RPN, as shown in
Fig. 2b, balancing the need to preserving spatial correlation for inference of image
classification and available permutations.

ii. Training - As mentioned in [2], CNNs trained with random permutation
are less accurate compared to the ones trained with the original dataset due to
the inconsistency in underlying features of images with different permutations.
This issue can be addressed by only using images with the same permutation to
train the CNN model.

To test the dataset generated by RPN, CNNs, each trained with different
permutation sets, are compared to the CNN trained with the original dataset for
time-series prediction task, DL4Epi [1]. DL4Epi uses RNN to capture long term
correlation and CNN to fuse information of the US-HHS dataset. It consists of
weekly influenza activity levels for the 10 districts of the mainland U.S. measured
using the weighted ILI metric. As the order of the 10 districts is independent,
permuting the rows should give the same information.
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Fig. 4. Training result of time-series prediction with permuted dataset

The original training set and all 19 augmented datasets generated by the RPN
are used to train different CNN models. The best model for each permutation is
used here.

The normalised Pearson correlation score and root-mean-square error (rmse)
of the CNNs are shown in Fig. 4a and 4b respectively. The x-axis indicates the
permutation set of the training dataset (with 1 being the original dataset), and
the y-axis represents the permutation set for testing data. The correlation scores
are normalized by the baseline CNN trained with the original dataset. Red in
Figure 4a means the CNN outperforms the baseline system, white refers to sim-
ilar performance and blue indicates worse. Along the diagonal of the grid, the
cells are mostly white or red, indicating when tested with the dataset of the
same permutation, most models can perform as well as the baseline. The same
trend is also shown for rmse, with minimal error along the diagonal.

Despite having the same high quality data compared to the original set, all the
generated set are significantly different, as shown by the decrease in correlation
and increase in error when training and testing set mismatch, indicated by the
elements not on the main diagonal. It shows that models trained by different
permutation sets would capture significantly different spatial correlation of the
images. This helps introducing diversity to the network ensemble when different
permutation of the data is used to train the individual network of the ensemble.

4.2 Comparison to Existing Data Augmentation Methods

The RPN is compared against common data augmentation method for images,
Generative Adversarial Network (GAN) [9], and addition of white Gaussian noise
[5]. Software code runs on a 6-core Intel Core i7 at 2.6 GHz, with 16 GB RAM.
The parameters and details of the RPN used are listed in Table 2.

i. Image Quality and Accuracy - Figure 5a shows the comparison of the
accuracy of images with Gaussian noise addition and RPN images. Structural
Similarity Index Measure (SSIM) is used to quantify the effect of the noise
addition. SSIM ranges from 0 to 1, the higher value indicates the more similar
the new image is compared to the original one.
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Table 2. Parameters and resource usage of RPN for image generation

Target device Xilinx Virtex-7 FPGA

Operating frequency 400 MHz

# Input ports (N) 200

# Stages (k) 1

Group size (d) 5

Resource usage 6660 LUT (∼1%)

6687 Flip-Flop (∼0.5%)

Power consumption 1.12 W

Fig. 5. Comparison of software data augmentation and RPN

As the effect of noise is the same for different datasets, the variance of the
noise is selected by a sweep for mean SSIM of different noise magnitudes over
300 images of the US-HHS dataset. To achieve SSIM of 0.5, 0.7, and 0.9, the
variance of the Gaussian noise added are 0.8, 0.5, and 0.25 respectively.

As seen in the figure, images generated by RPN in general preserves the
high correlation and low root-mean-square error. The accuracy of Gaussian noise
images worsens as noise increases. For actual hardware implementation, depend-
ing on the choice of precision, it can be difficult to inject exactly the required
amount of noise to achieve the desired SSIM. This leads to another uncertainty
in the data augmentation.

RPN is a simple and robust data augmentation method, as it can generate
images without having to analyze the dataset in advance, and the quality of the
generated images is independent of the precision used in the system.

ii. Generation Complexity and Performance - Different software row
permutation generation methods are being tested with TimeGAN and Gaussian
noise addition using Python built-in functions to augment images of size n x n.

The speed up of RPN is plotted in Fig. 5b, using the RPN full image gen-
eration as the normalisation reference. For full image generation, the FPGA
implementation of RPN is 21 times faster than the software version of RPN for
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Table 3. Comparison of the restricted permutation network and existing permutation
architecture

Beneš network Butterfly
network

RPN single
stage

RPN
multi-stage

Diameter 2log(N) + 1 log(N) + 2 1 k

Basic unit 2 × 2 switch 2 × 2 switch 4–1 MUX 4–1 MUX

# element 2log(N) Nlog(N) + N N kN

Congestion (Worst Case) Fixed(1) Variable (
√
N) Fixed(1) Fixed(1)

Connection distance (max) N/2 N/2 1 1

Latency C C C C/k

Permutation exploration All All 2d 2d

Memory requirement None None N FIFO of
size C

None

n = 200, and over 100 times faster than other software augmentation meth-
ods, such as random permutation and Guassian noise addition. For convolution
computation, it would only add 10 extra cycles for d = 5. This is a negligible
overhead added to the time taken to complete the entire 2D convolution of the
image. It shows that the architecture is best used as a lightweight parametric
library element for pre-processing of FPGA applications.

TimeGAN is 28 times slower than RPN for n = 33. It also requires at least
hours to train and the generation does not scale with different image sizes, mak-
ing it the least flexible way of data augmentation among the methods compared.

iii. Data Storage and Transfer - The generation of TimeGAN involves
the generation of a random seed, while the Gaussian noise is also generated
randomly. To keep track of the augmented dataset, the dataset must be stored
in memory, resulting in a larger memory footprint.

For the permutation method, the data augmentation is reproducible given the
permutation order. With odd-even swap, the permutation set is pre-determined
and can be computed on the fly. No extra storage is needed while unblocking
the data transfer bottleneck to the FPGA.

4.3 Comparison to Existing Permutation Architectures

The RPN is compared against two most common permutation networks, Beneš
network and butterfly network in Table 3.

Apart from reducing the network complexity from Nlog(N) to N , the con-
nection among elements is also greatly simplified by reducing the connection
distance. Both Beneš and Bufferfly networks connect elements across the stages,
with a maximum of N/2 elements apart, creating a lot of wire interleaves, as
shown in Fig. 6a. The interleaving problem worsens as input size N increases.
This imposes difficulties in routing, leading to reduced operating frequency and
possible input size.
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Fig. 6. Illustration of simplification done on RPN

RPN addresses the problem of interleaving wires by only connecting elements
within the distance of 1, i.e. the neighbouring elements. This leads to a more
compact design, improving the scalability and regularity of the architecture,
as shown in Figure 6b. RPN can easily be scaled to any N , while Beneš and
Bufferfly networks only work best for N being powers of 2, with place and route
become significantly more difficult when N > 64.

5 Applications

To benefit from data augmentation with permutation, the ensemble method is
used for both DeepVariant inference and DL4Epi training to improve the accu-
racy while reducing training time. As there is no other published hardware that
implements the target applications, RPN results are compared to the software
counterpart. The parameters and details of the RPN used are shown in Table 4.
RPN serves as a lightweight parametric add-on for pre-processing of FPGA
applications, adding only a negligible amount of hardware resource and power
consumption on top of the main application.

Table 4. Parameters and resource usage of RPN for DeepVariant and DL4Epi

Target device Xilinx Virtex-7 FPGA Xilinx Virtex-7 FPGA

Operating frequency 400 MHz 400 MHz

Target application DeepVariant (Inference) [15] DL4Epi (Training) [1]

# Input ports (N) 100 10

# Stages (k) 1 1

Group size (d) 5 10

Resource usage 3336 LUT (∼0.5%) 342 LUT (∼0.05%)

3325 Flip-Flop (∼0.2%) 339 Flip-Flop (∼0.02%)

Power consumption 0.665 W 0.233 W
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Fig. 7. Image classification accuracy with permutation of different available reads

5.1 Inference

For image classification tasks, the decision is made based on a single image.
Unlike video classification that consecutive frames can be used to identify the
same object, it is difficult to do the same for image classification to generate
different images from just 1 image.

Permutation provides a convenient way to generate multiple images from just
1 image to improve the accuracy of image classification with ensemble method,
for example, majority voting or weighted sum. Local permutations are preferred
to preserve the spatial correlation of the original image.

The effect of using permutation ensemble is shown using DeepVariant.
Despite having high accuracy, it is very difficult to retrain the network based
on different scenarios, as it requires months of training with lots of data. The
following are 2 cases that DeepVariant suffers from loss in accuracy.

i. Fewer Reads Available - A common problem for genetic variant call
is not having enough reads for a particular position. This would mean having
fewer rows with data in the image.

To simulate the effect of having fewer available reads, only every ith row of
the image is kept, then the image is padded with rows of zeros at the bottom.
Permuted images are generated by the segmented RPN, with d = 5, N = 100.

As seen in Fig. 7, the F1 scores drop as the number of reads reduces. The recall
is still maintained in a high level, indicating very few false negatives (FN). The
drop in accuracy is caused by the increase in false positives (FP). The model can
still identify most true positives (TP) correctly with different permuted images
but with less precision, each having different FP. Majority voting is used to
identify the TP and rule out FP. Combining the result of permuted images, in
general, F1 scores can be improved by 5%. Having more permuted images could
keep improving the combined result. However, 3 images in total (base case with
2 permuted images) would be a good trade off between accuracy improvement
and resources to generate the additional results.

ii. Shorter Reads Available - The read length of the dataset is dependant
on the samples and the DNA sequencer. Having shorter reads means the compiled
image has fewer columns. Ideally, the network should be retrained according to
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Fig. 8. Image classification accuracy with permutation of different maximum read
length

the read length. However, due to the difficulty to retrain the network and for
flexibility of the system to take input of slightly different sizes, zero padding is
used to make up the size of the image to 100× 221. However, having a shorter
read would means more zero padded columns at the 2 ends of the image.

The effect of reduced read length is shown in Fig. 8. As the read length is
around 100–150 for the HG002 dataset, there is no drop in F1 scores until the
maximum read length drop to below 150. The F1 scores of both indel and SNP
keep dropping as maximum read length reduces.

The results show that DeepVariant maintains very high precision, i.e. having
very few FP, with reducing read length. The drop in F1 scores is caused by the
increase in FN, as it fails to identify the presence of genetic variant. This also
applies to the result of the permuted images. All of them have very few FP, and
each identifies different TP.

Based on such feature, instead of using majority voting to determine the
TP, the union of the results is used. As each of the permuted images covers a
slightly different set of TP, the union of TP greatly reduces the FN. Although
it would also lead to the increase of FP, it is not causing a problem as the
union set of FP is still very small compared to the TP, about 5 FP in 700 TP.
Figure 8 shows the combined result of 3, 5, 7, 9 permuted images. It can be
seen that the combined result in general increases the F1 scores by 0.1. The
combined result keeps improving as more permuted images are used. However,
further improvement is not as obvious. Using 3 images in total (base case with 2
permuted images) would be a good trade off between improvement in accuracy
and resources to generate the additional results.

5.2 Training

As different permutations have different spatial correlations, using all generated
images with different permutations to train one network is not ideal.

The augmented dataset can benefit an ensemble of networks, each trained
with a particular set of permutations. Results of the sub-networks can be com-
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Fig. 9. Combined time-series prediction with partial training dataset

bined to determine the overall result. The ensemble diversity brought by permu-
tation would improve the accuracy compared to individual sub-network.

As the training of each sub-network is independent of each other, they can
be trained in parallel. By using the ensemble method, accuracy can be restored
by combining the results of different sub-networks. This relaxes the accuracy
requirement of each sub-network, leading to further opportunities to speed up
training, for example, reducing the training set and reducing the training epoch.

The idea of an ensemble of networks trained with permutations of data is
tested with DL4Epi. Permuted images are generated by RPN with d = 10,
N = 10. The result of time-series prediction is combined by taking arithmetic
mean.

i. Reduced Training Set - Figure 9 shows the effect of reducing the training
set. Reducing the training dataset would reduce corr and increase rmse. To
compensate for the reduction in network accuracy, results of multiple networks
are combined to improve the quality of the prediction. In general, having 3
sub-networks increases corr by around 0.05 and reduces rmse by 10%. Further
increase in the number of sub-networks does not show significant improvement.

Having 5 networks, each trained with 20% of the original training set, has
similar performance compared to the baseline network trained with the entire
dataset. This can be seen as successfully augmented the dataset 5 times for
training. It indicates the potential to speed up the training time by 5 times
when the networks are trained in parallel.

However, the improvement brought by combining sub-networks is not lim-
itless. The combined result appears to converge beyond 5 networks used. This
would imply that the base network still has to be reasonably accurate, other-
wise even with the improvement brought by permuted dataset and ensemble,
the overall performance of the network would not be of acceptable quality. For
example, in the DL4Epi case, training with 1% of training dataset resulted in
corr = 0.46, with the best combined result being 0.61, which is still far worse
than the base network trained with 20% training set.

ii. Reduced Training Epoch - The rate of improvement for network train-
ing diminishes as the network converges after training with more epochs. Instead
of training a more accurate network with more epochs, multiple networks, each
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Fig. 10. Combined time-series prediction with reduced epoch

trained with fewer epochs, can be combined to speed up training by training in
parallel.

Figure 10 shows the effect of reducing the training epoch. For the base case,
training the network with 500 epochs can already achieve 0.75 for corr. However,
it takes another 1500 epochs to further increase it by 0.05. The same applies to
rmse, having 500 epochs reduces the error from 1 to 0.7, but a further reduction
of 0.1 would require 1500 more epochs.

By combining the results from 5 networks each trained with 500 epochs, the
overall result is comparable to the baseline network trained with 2000 epochs.
Although the total training time to train all 5 networks appears to be 25%
more than the baseline, the ensemble method provides the possibility to split
the training task, and spread the computation load among different devices in
parallel. The 5 networks can be trained on different devices in parallel, achieving
a 4 times speed up. Instead of having one long iterative process that can not be
easily parallelized to utilize the existing resources, the ensemble method opens
up the opportunity to speed up training by trading resources for time.

In order to properly apply the ensemble method, the epoch used has to
be carefully determined so that each sub-network is of reasonable quality. For
instance, combining multiple networks trained with only 1 epoch would not be
improved by the ensemble method, as the networks are not useful at this point.
A more appropriate time to terminate training is when the gain from each epoch
has drastically dropped over a few epochs, which would indicate the network has
already learnt a significant amount of features from the dataset, and would take
much longer to further improve.

6 Conclusion

This paper presents a novel scalable architecture to automatically generate
restricted local permutation efficiently, preserving the spatial correlation of the
original image while reducing memory footprint and transfer. The Restricted
Permutation Network, RPN, is fully pipelined with deterministic and regular
latency, making it a perfect light weight parametric library element for data
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augmentation for FPGA applications. Together with the ensemble method, per-
muted images can improve accuracy and training time for CNN inference and
training, improving the accuracy of image classification by around 5%, and
speeding up training by 4 to 5 times with a negligible drop in accuracy. Future
work includes automating parametric analysis and extending the RPN architec-
ture to cover other permutation applications.
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Abstract. Object tracking is an essential element of visual percep-
tion systems. It is used in advanced video surveillance systems (AVSS),
autonomous vehicles, robotics, and many more. For applications such as
autonomous robots, the system must be implemented on some embedded
platform with limited computing performance and power. Furthermore,
sufficiently fast response is required from the tracking system in order to
perform some real-time tasks. Discriminative Correlation Filter (DCF)
based tracking algorithms are popular for such applications, as they offer
state-of-the-art performance while not being too computationally com-
plex. In this paper, an FPGA implementation of the DCF tracking algo-
rithm using convolutional features is presented. The ZCU104 board is
used as a platform, and the performance is evaluated on the VOT2015
dataset. In contrast to other implementations that use HOG (Histogram
of Oriented Gradients) features, this implementation achieves better
results for 64 × 64 filter size while being able to potentially operate at
higher speeds (over 467 fps per scale).

Keywords: Discriminative correlation filter · Object tracking ·
FPGA · Real-time image processing

1 Introduction

Object tracking is one of the basic tasks of computer vision. In general, it can be
described as determining the objects’ positions in consecutive frames. Tracking is
used in many civilian applications (autonomous vehicles, advanced surveillance,
robotics, human-computer interfaces) and military applications (air defence, tar-
geting systems, missile control systems). Depending on what data the tracking
system has and what we expect at the output, there are several subtypes of
this problem. We can assume tracking of only one object (VOT – Visual Object
Tracking) or several (MOT – Multiple Object Tracking), and decide whether it is
necessary to reidentify the object after it has been lost (long-term vs. short-term
tracking). It is also important if we track classes of objects known in advance
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(model-based tracking) or whether we should be ready to track any arbitrarily
indicated fragment of an image. A final distinction is whether we only use the
current and previous frames (casual tracker), or whether we also have access to
future frames of the image (for example, post-processing of a video surveillance
camera recording).

This paper addresses the issue of single object, short-term, model-free and
online tracking, which is the premise of the short-term challenge of the VOT
Challenge [16]. In addition to the effectiveness of the task itself in predicting the
displacement of an object between successive frames, another very important
parameter of the tracking system is the processing speed. If the time between
successive predictions of the tracking system is too long, it may result in a
too large change in the position or appearance of the object, resulting in poor
performance. Moreover, in some systems, the energy efficiency is also crucial.
Examples are solutions for autonomous vehicles in the broad sense.

In recent years, the use of convolutional networks for the generation of image
features in computer vision algorithms has become increasingly popular. These
features usually allow algorithms to achieve greater efficiency than the image
itself or the so-called hand-crafted features like HOG (Histogram of Oriented
Gradients) or Colour Attributes [10]. However, convolutional networks, partic-
ularly deep networks, require a lot of computing power to work in real-time.
It is helpful to use platforms that support parallel computing, such as FPGA
(Field-Programmable Gate Array) or GPU (Graphics Processing Unit). Specifi-
cally, the first one provides the ability to obtain high processing speed and low
energy consumption, thanks to the possibility of optimising the computational
architecture and precision of calculations to a specific algorithm. Quantisation
of neural networks, i.e. reduction of the number of bits in the representation of
processed data and model parameters, allows for a significant reduction of com-
putational and memory complexity of algorithms with little loss of performance
[3,21].

In this paper, a hardware implementation of the deepDCF tracking algo-
rithm is presented. Using the FINN compiler for neural network acceleration
and parallel computations in FPGA devices we were able to achieve an average
processing speed of 467,3 fps (frames per second) per scale at 64 × 64 filter size.

The main contributions of this paper include:

– Optimisation and analysis of a deepDCF tracking algorithm for implemen-
tation on an embedded computing platform and evaluation on the VOT2015
dataset.

– Implementation of a tracking system based on correlation filters using convo-
lutional network features. The system outperforms other similar approaches
in tracking performance and speed.

To our knowledge, no paper has been published in which the deepDCF algorithm
has been implemented in an FPGA.

The remainder of this paper is organised as follows. Section 2 describes object-
tracking methods using correlation filters. Section 3 discusses the state-of-the-
art of implementing correlation filters on embedded FPGA platforms. Section 4
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presents the evaluation of the software model, the quantisation process of the
convolutional network, and the hardware implementation. The last section con-
tains a discussion of the results obtained and directions for further research.

2 Object Tracking with Correlation Filters

In this section, we present the first algorithm in the correlation filter family
– MOSSE (Minimum Output Sum of Squared Error) [4], and its subsequent
improvements that have been implemented on embedded platforms. It should be
noted that there are also other modifications to the algorithm, such as SRDCF
(Spatially Regularized Discriminative Correlation Filters), however, they have a
much higher computational complexity and are therefore currently not consid-
ered for implementation on embedded vision platforms.

The following algorithms share a simple concept. The tracked object model is
initialised in the first frame of the video sequence. In subsequent tracking frames,
a filter response is obtained by correlating the current object model with a part of
the image around the last known object position. The location of the maximum
correlation value in the response is used to predict the new object’s position.
Also, the model is updated taking into account the new, potentially changed,
appearance of the object.

2.1 MOSSE

The goal of the MOSSE algorithm is to find an optimal filter w ∈ R
M×N (where

M × N is the size of the filter and the tracked region) which is defined by the
following LS (Least Squares) regression problem:

arg min
ŵ

N∑

i=1

||ŵ∗ � x̂i − ŷi||2 (1)

where � means element-wise multiplication, ·̂ hat denotes a discrete Fourier
transform (DFT) of some signal and ∗ is a complex conjugate. The problem is
defined in the frequency domain because using the FFT algorithm (Fast Fourier
Transform) and the convolution theorem, the computational complexity of the
correlation can be lowered from O(M2N2) to O(MNlogMN). The training set
consists of (xi, yi) pairs, where xi ∈ R

M×N is a grayscale image patch centered
around the target object in the first frame. The samples are generated by aplying
random affine transformations to the initial object’s appearance. For regression
targets yi ∈ R

M×N , a discrete two-dimensional Gaussian is used.
The problem (1) has a closed-form solution given by:

ŵ =
∑N

i=1 ŷi
∗ � x̂i∑N

i=1 x̂i
∗ � x̂i

(2)
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The prediction of object’s position is done by computing filter response in
pixel coordinates space by using inverse, discrete Fourier transform (IDFT):

g = F−1(ŵ∗
t−1 � x̂t) (3)

After every prediction, the filter is updated using a running average to address
changes in the object’s appearance:

ât = ηŷ∗ � x̂t + (1 − η)ât−1 (4)

b̂t = ηx̂t
∗ � x̂t + (1 − η)b̂t−1 (5)

where ŵt = ât

b̂t
(element-wise division), and η ∈ [0, 1] is a learning rate parameter.

2.2 KCF

The correlation filter tracker was further improved by considering tracking as a
linear ridge regression problem [13,14]. The method is called KCF (Kernelized
Correlation Filter) and the goal is to find a linear function f(z) = wT z which
minimises the error between samples xi ∈ R

d and regression targets yi ∈ R:

ε =
∑

i

(f(xi) − yi)2 + λ||w||2 (6)

An interesting conclusion from these works is, that if data matrix X is cir-
culant, the regression problem (6) is equivalent to the MOSSE filter (1) for one
sample (n = 1). The advantage of such representation of the problem (6) is a
possibility to solve it in some nonlinear space ϕ(x) using the kernel trick [19].
In brief, a kernel function κ(x, z) must be defined which acts as a dot product
in non-linear space ϕ(x). For that purpose, a so-called kernel correlation vector
is computed:

kxz = exp
(

− 1
σ2

(
||x||2 + ||z||2 − 2F−1

( C∑

l

x̂l
∗ � ẑl

)))
(7)

For tracking, the filter is initialised by:

α̂ =
ŷ

k̂xx + λ
(8)

Prediction:
f(z) = F−1(k̂xz � α̂) (9)

Update:
α̂t = (1 − η)α̂t−1 + ηα̂ (10)

x̂t = (1 − η)x̂t−1 + ηx̂ (11)

The algorithm offers an improvement in tracking performance compared to
MOSSE with a little extra computational complexity that comes from the need to
compute the kernel correlation vector (7). Computing the IDFT F−1 and DFTs
x̂l

∗ is necessary in the MOSSE algorithm anyway and the exponent function
operation can be for example stored in LUTs (Look Up Tables) on the target
hardware platform.
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2.3 DSST

Scale estimation in the tracking system is typically done by predicting the filter
at multiple scales. In that case, the object scale corresponds to the largest cor-
relation score obtained. In the paper [8], the concept of DSST (Discriminative
Scale Space Tracking) is presented. The method uses an additional correlation
filter dedicated to predicting the change in scale. Training and prediction sam-
ples x ∈ R

S×D are constructed by generating one-dimensional feature vectors
xs ∈ R

D of the object for several scales s ∈ [1, S]. Each vector is extracted from
an image patch of size βnH×βnW centered around the object’s position. β > 1 is
a scale factor parameter (typically around 1.01) and n ∈

{⌊− S−1
2

⌋
, . . . ,

⌊
S−1
2

⌋}
.

This solution to scale prediction has shown better performance while also
reducing computational complexity compared to estimating the filter in multiple
scales.

2.4 Convolutional Features

Another improvement to the MOSSE algorithm was to use multidimensional
image features [9,14] like histograms of oriented gradients (HOG) or generated
by a convolutional neural network. Such algorithms are often called DCF (Dis-
criminative Correlation Filters). In such a case, for initialisation, update and
prediction, multidimensional samples x ∈ R

[C×H×W ] are used, as well as D
filters, each for one feature channel.

ŵl =
ŷ∗ � x̂l

∑C
l=1 x̂l∗ � x̂l

(12)

âl
t = ηŷ∗ � x̂t

l + (1 − η)âl
t−1 (13)

b̂t = η

C∑

l=1

x̂t
l∗ � x̂t

l + (1 − η)b̂t−1 (14)

g = F−1
( C∑

l=1

ŵl∗
t−1 � x̂l

t

)
(15)

In the paper [6], the deepDCF algorithm is presented which utilises a con-
volutional network to generate image features in the DCF framework. A vgg-
2048 [5] model trained for the classification task was used on the ImageNet [11]
dataset. The image features x in Eqs. (12)–(15) are generated by the network
after applying a preprocessing consisting of scaling the image to a fixed size
(in [6], a 224 × 224 window was used) and normalisation. The output features
are then multiplied by a Hann window before applying them to the tracking
algorithm.

Only by using convolutional features (in fact, only the first layer), the sim-
ple DCF algorithms gave better tracking performance than more complicated
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Fig. 1. The comparison of tracking performance of correlation filter based algorithms
on the OTB-50 dataset (source: [6]).

methods. The comparison on the OTB-50 dataset [23] with other state-of-the-
art tracking algorithms, including other correlation filter methods, is shown in
Fig. 1. It is worth mentioning that the KCF and DSST algorithms can be applied
regardless of the feature extraction method as long as the features are spatially
correlated.

3 Previous Work

The implementation of correlation filters in FPGA devices has been addressed
in a number of research papers. The paper [22] presents the implementation of
the DCF + DSST algorithm on the Zynq ZedBoard platform (xc7z020clg484-1).
The architecture implemented with the Vivado HLS tool offers image process-
ing with a resolution of 320 × 240 at an average rate of 25.38 fps. An FPGA
implementation of the HOG generation presented in the article [12] is used
as image features. The authors analyse the basic computational steps of the
algorithm: SVD (Singular Value Decomposition), QR decomposition (used in
feature dimensionality reduction) and the determination of the two-dimensional
discrete Fourier transform. The architecture of the QR decomposition algorithm
has been optimised and uses 2.3 times less computational resources. The SVD
computation has been accelerated nearly 3.8 times with respect to the known
FPGA implementation [18], but consumes about twice as many computational
resources. The authors did not provide information about the tracking perfor-
mance after applying the proposed optimisations.

The authors of the article [24] implemented a three-scale KCF algorithm
based on HOG features using the Vivado HLS tool. They used the Zynq ZCU102
MPSoC platform and achieved 30 fps for a 960 × 540 resolution. A brief anal-
ysis of the parallelisation of HOG feature generation operations by using the
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PIPELINE, ARRAY PARTITION and DATAFLOW directives of the HLS tool
was performed. Attention was also drawn to the possibility of parallelising the
computation of kernel feature correlation (Eq. (7)), detection (Eq. (9)) and fil-
ter update (Eq. (8)). No optimisation of the Fourier transform calculation was
performed, and the function available in the HLS library was used. The effective-
ness of the algorithm was compared with other state-of-the-art methods on the
UAV123 set, however, only a selected part of the test sequences was used. The
comparison is not very reliable if only for the reason that the authors obtained
a better result with the KCF algorithm than with SRDCF, which is directly a
better algorithm in other comparisons in the literature [7].

The work [17] presents an implementation of the KCF + DSST algorithm
using the Vivado HLS tool. A processing rate of 25 fps was achieved, although
it is not clear for which frame size and filter size. The HOG features were used.
Only a qualitative (visualisation of sample frames from the sequence) evaluation
of the tracking performance on sequences prepared by the authors and selected
from the OTB set was presented. No quantitative evaluation and comparison
with other methods or implementations in view of the applied optimisations was
provided.

The publication [15] describes the implementation of the MOSSE algorithm
in one scale on the Zynq UltraScale+ MPSoC ZCU104 platform. The Verilog
hardware description language was used, which generally allows for lower FPGA
resource requirements (for example, for the dot product operation [3]). Filter ini-
tialisation procedure was implemented on the processing system of the platform
due to iterative operation and the need to implement affine transformations.
The two-dimensional discrete Fourier transform was implemented by utilising
two Xilinx FFT modules for one-dimensional signals and a BRAM to transpose
the data. The system operates on a real-time video stream at 60 fps for 64 × 64
filter size.

The paper [25] presents a single scale KCF + HOG algorithm on the ZYNQ-
7000 (xc7z100ffg900-2) platform implemented in Vivado HLS. A simpler linear
kernel function was used and the filter update mechanism was abandoned in
favour of lower computational complexity. An evaluation of the tracking effi-
ciency of the implemented system was performed based on a set of own 5
sequences containing drones. No comparison of effectiveness with state of the
art on common benchmarks was provided. A processing speed of 41 fps was
obtained.

In the work [20], the authors describe an FPGA implementation of the DCF
+ DSST filter on the XC7K325T FPGA device. The system achieves processing
speed of 153 fps on 33 image channels (one grayscale and 32 HOG) with filter
size of 32 × 32. However, the paper does not include any evaluation results of
the tracking performance. Also, no implementation details are mentioned (HLS
or VHDL, Verilog).

The works presented in this section mostly lack evaluation of tracking quality
and comparison to other implementations. All described hardware implemen-
tations are using HOG or greyscale features, which impacts processing speed
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or tracking performance. Additionally, most implementations utilise HLS (High
Level Synthesis) tools for development, which introduces resource usage overhead
compared to hardware description languages approaches like VHDL or Verilog.
This issue was discussed in detail in [3] in the case of dot product computation.

In this paper, we present the use of convolutional features to achieve higher
tracking performance with less computational complexity than HOG feature-
based solutions, which further allows for higher processing speed.

4 The Proposed CF Implementation

The main concept of this paper is to prove that choosing a convolutional network
as a feature extractor for correlation filter tracking not only gives better perfor-
mance than HOG features, but also can be efficiently accelerated on FPGA to
achieve high processing speeds. The work started with the Python implemen-
tation of a software model of the deepDCF algorithm. The environment was
chosen mainly due to the presence of libraries suitable for testing and training
neural networks such as PyTorch. It was also possible to use the official evalua-
tion tools for the VOT Challenge, which are available in Python. In addition, it
was possible to use the Brevitas tool, which is a wrapper for the PyTorch library
and performs neural network calculations, with a fixed precision (for instance, 8
bits or even 1 bit).

4.1 CNN Quantisation Using Knowledge Transfer

First, the quantisation of the convolutional layer generating features for the filter
was performed. For this purpose, the PyTorch library was used to implement
learning on the ImageNet set. The training was organised in the knowledge
transfer style, i.e. it assumes the presence of a teacher model performing the
computation in full precision and a quantised student model. The teacher model
was the first layer (including maxpooling and ReLU (Rectified Linear Unit))
of the VGG11 network, pre-trained for the classification task on the ImageNet
set. In preliminary experiments, it was noted that reducing the precision in the
representation of weights and activations to four bits did not introduce a large
increase in learning error. Additional experiments could be conducted to test
the effect of different degrees of quantisation of the feature-generating network
on tracking quality. Furthermore, the architecture of the student was identical
to that of the teacher. The student model was also initialised with the weights
of the teacher model. The cost function was the mean square error between
the features returned by the teacher model and the student model, while the
training was carried out with the SGD (Stochastic Gradient Descent) algorithm
with parameters learning rate = 0.01,momentum = 0.9, weight decay = 10−4.

4.2 Software Model Evaluation on VOT2015

The VOT (Visual Object Tracking) challenge environment was used to evaluate
the tracking performance of the software model. Our results were compared with
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those of the KCF and DSST algorithms published by the organisers of the VOT
challenge 2015 [2]. Accuracy (A) represents the average IoU (Intersection over
Union) between the object position returned by the algorithm and the reference
position in each image frame (both described by bounding boxes). Robustness
(R), on the other hand, is the ratio of frames in which the object was lost to all
frames in the tested sequence. The decisive metric in ranking the algorithms in
the competition is EAO (Expected Average Overlap), which takes into account
both accuracy and robustness. The data is summarised in Table 1.

Table 1. The table compares our software model to the state-of-the-art correlation
filter tracking algorithms used in FPGA implementations. The bolded, underlined
model was implemented in hardware and discussed in Sect. 4. The evaluation was done
on the VOT 2015 dataset. Arrows denote whether more is better ↑ or less is better ↓ for
a given evaluation metric. Using just 8 channels of convolutional features and 3 scales
for 64×64 filter gives better results than KCF and DSST filters on HOG features used
in current hardware implementations.

Algorithm Features ROI size A↑ R↓ EAO↑
deepDCF (multiscale, not
precised) (original impl.
[6])

CONV (96 channels
float precision)

224× 224
(112× 112 filter)

0.48 1.75 (not given)

deepDCF (5 scales) (our
implementation)

CONV (32 channels
4bit quantisation)

224× 224
(112× 112 filter)

0.505 1.829 0.207

deepDCF (5 scales) (our
implementation)

CONV (64 channels
4bit quantisation)

224× 224
(112× 112 filter)

0.484 1.879 0.203

deepDCF (3 scales) (our
implementation)

CONV (32 channels
4bit quantisation)

128× 128
(64× 64 filter)

0.494 1.92 0.184

deepDCF (3 scales)
(our implementation)

CONV (8 channels
4bit quantisation)

128× 128
(64× 64 filter)

0.491 2.082 0.183

deepDCF (3 scales) (our
implementation)

CONV (16 channels
4bit quantisation)

128× 128
(64× 64 filter)

0.487 1.975 0.174

DSST (evaluated by VOT
commitee)

HOG 2 × target size
(same as filter)

0.54 2.56 0.17

KCF (evaluated by VOT
commitee)

HOG 2.5 × target size 0.48 2.17 0.17

deepDCF (3 scales) (our
implementation)

CONV (4 channels
4bit quantisation)

128× 128
(64× 64 filter)

0.456 2.611 0.145

The results in Table 1 confirm that the use of features from a single con-
volutional layer instead of HOG provides better results. The thesis is further
strengthened by the fact that the mechanisms of better and faster scale predic-
tion (DSST) and nonlinear regression (KCF) can also be used with convolutional
features, which is one of the directions of our further work. In addition, an inter-
esting finding is that it was possible to reduce the channels used by the filter to
eight (in the deepDCF work there were 96 channels originally) without a signif-
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icant decrease in tracking performance. The difference becomes only significant
when the number of channels is reduced to 4.

4.3 Multichannel MOSSE Filter Implementation on FPGA

Based on the software model, the deepDCF algorithm was implemented in the
SystemVerilog hardware description language. The work started with the analy-
sis of the project [15], in which the single-channel MOSSE algorithm was imple-
mented. The solution used as a video source a 4K video stream fed to the pro-
grammable logic (PL) through an HDMI port. The first change was to switch to
communication between the PL and the processing system (PS, ARM-based in
the considered device) to send image data and receive the new object’s position.
This makes hardware debugging easier because one can easily verify intermedi-
ate data like image features and current filter coefficients using DMA in PYNQ
environment. The input images are cropped by the PS and the ROI is send to the
PL via DMA transfer. However, it is also possible to restore the original video
source by adding a module that crops the object from the image and scales it to
the desired size. This is one of our future steps.

The top-level diagram is shown in Fig. 2. DMA communicates with the PS
through the memory-mapped AXI interface and provides AXI Stream ports to
send video to the convolutional network module and to receive the filter response.
The task of the PS is to read a video frame, crop an image patch at the current
position of the object, and send this fragment to the PL. The image is processed
by the convolutional network and the filter module, which finally returns the
object’s position displacement and any possible change in scale.

The FINN [3,21] tool was used to implement the trained convolutional layer
in the FPGA. This is an experimental environment from AMD Xilinx for imple-
menting neural networks in selected MPSoCs1. The tool is based on the finn-
hlslib library [1] in which basic modules are defined, and a compiler that trans-
forms the network architecture description from Brevitas to a graph composed
of these basic modules. FINN also offers the generation of a processing system
driver to communicate with the FPGA, but this feature was not used in this
project.

The schematic of the DCF multichannel filter module is shown in Fig. 3. All
channels of a given DCNN feature pixel are fed in parallel to the module input.
The BRAM modules were used as read-only memories for the Hann window
parameters and for the two-dimensional Gaussian distribution pre-calculated in
the software model. The input feature channels are split into parallel Channel
filter modules, each implements Eqs. (12)–(15) for its channel. For the predic-
tion step (logic highlighted in green in the diagrams), the filter responses from
each channel are summed, and then the inverse Fourier transform (Eq. (15)) is
computed. The prediction is followed by the filter update step (logic highlighted
in red), for which the sum of the energy spectrums over all input channels must

1 In previous FINN versions, Alveo boards were also supported (up to v0.7).
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Fig. 2. Top level diagram of the implemented design. The image patch containing the
tracked object is prepared by the Processing System by cropping and resizing the video
frame. It is sent to the Programmable Logic via DMA (Direct Memory Access) module
which streams the data to the convolutional network module generated by FINN. The
tracking is done in the Multichannel DCF module which outputs the predicted object
displacement back to the DMA.

Fig. 3. Diagram of the main filter module. One of the advantages of the algorithm is
the possibility of full parallelisation among channels. Hann BRAM and Gauss BRAM
are used as read-only memory for storing pre-computed windowing function and the
Gaussian distribution.

be computed (Eq. (14)). Since each filter channel is updated independently, the
sum from the red adder tree is returned to the Channel filter module.

The Channel filter module is part of the design proposed in [15] with some
modifications. The schematic is shown in Fig. 4. Although object features of size
64 × 64 are processed for prediction (this is also the size of the filter), a wider
image context is sent to the module because the update must be performed on a
new object position. For this purpose, the entire wider image context is written to
BRAM in parallel. After the prediction is completed (i.e., after the responses from
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Fig. 4. Diagram of the module responsible for a single input feature channel. It imple-
ments multichannel DCF filter Eqs. (12)–(15). Logic responsible for update and pre-
diction are highlightened in red and green respectively. Because the filter needs to be
updated at the new, predicted object location, a wider context of the object features
must be saved in the Big window BRAM.

the individual channels are summed up and the IFFT is calculated), the position
of the feature patch is known and needs to be read from Big window BRAM.

To implement the two-dimensional Fourier transform, the IP provided by
Xilinx was used to calculate the one-dimensional transform of each row of input
data. These results are then stored in BRAM, from which they are read column-
wise into a second one-dimensional transform module.

The hardware implementation was validated using the software model and
yielded the same results on sequences from the VOT2015 set. The FPGA
resource consumption of the system implementation for an eight-channel 64×64
filter is shown in Table 2. We used 32-bit fixed point precision in the calculations
required by the filter and the system currently operates in one scale.
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Table 2. Resource utilisation for the implemented tracking system with 64 × 64 filter
and 8 feature channels. Notice that the convolutional layer module uses only a small
portion of all FPGA resources utilised by the system.

Resource Used Available % utilisation % utilisation (CNN only)

LUT 156663 230400 68,00 5,40

LUTRAM 15436 101760 15,17 1,77

FF 334373 460800 72,56 3,18

BRAM 270, 5 312 86,70 1,92

DSP 480 1728 27,78 0

For the above implementation, an average reprogrammable logic processing
speed of 467.3 fps was obtained for a 375 MHz clock (single ROI processing).
The processing time is limited by the convolutional network module, which cur-
rently computes one output pixel at a time. Even faster feature extraction could
be achieved by computing multiple output pixels in parallel. Assuming sequen-
tial processing of the 3 scales, tracking speeds reaching 150 fps can be expected,
which exceeds the speeds achieved by existing hardware implementations.

5 Conclusion

In this paper, we presented a real-time FPGA implementation of deepDCF track-
ing algorithm. We evaluated the performance of the proposed solution and com-
pared it with other similar approaches on the VOT2015 benchmark. The use
of convolutional features in correlation filter-based object tracking offered an
improvement in comparison to the often used HOG features. Next, we imple-
mented the proposed method in a SoC FPGA device, which allowed us to take
advantage of the computation parallelisation and quantisation. We also demon-
strated that the models generated by the FINN compiler can be successfully
used with one’s own design implemented in a hardware description language.

The used filter size of 64 × 64 offers higher accuracy (EAO 0.183 on the
VOT2015 benchmark) than the algorithms implemented on FPGAs in the other
articles discussed here while maintaining an average processing speed of 467.3 fps
per scale. It is possible to select a larger filter, for example 112 × 112 to achieve
even higher tracking quality but at the expense of processing speed. A lower
FPGA clock could also be used to achieve lower power consumption depending
on the particular application of the tracking system.

As part of future research, we plan to implement sequential processing of
several scales or an application of the DSST filter. It is also worth investigat-
ing the possibility of using a nonlinear KCF filter by adding a kernel func-
tion computation to the existing implementation. We will also investigate the
impact of the number of bits in the representation of the filter computation, as
this potentially could reduce the FPGA resource consumption. The source code
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of the implementation is available at https://github.com/mdanilow/MOSSE
fpga/tree/deep features.
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Abstract. As FPGAs provide tremendous improvements in performance
and energy efficiency in a wide range of workloads, cloud infrastructures
increasingly incorporate them in their infrastructure for on-demand appli-
cation acceleration. However, accelerator development remains challeng-
ing, and ways to program, deploy and securely utilize FPGAs are still
difficult to manage both for provider and developer alike. The complex-
ity of such systems is compounded when moving to multi-tenant envi-
ronments, where cloud providers seek to multiplex tenants on a single
FPGA platform to increase their return of investment. To this end, we
present VenOS, a full-stack framework that enables multiple application
hosting on FPGAs. VenOS exposes a high-level API for developers to eas-
ily and securely offload data execution to hardware. Under the hood, it
utilizes a simple -yet efficient- NoC approach for sharing FPGA resources
among tenants, virtualizes memory and I/Os operations and offers strong
data isolation against malicious transactions. Finally, VenOS comprises
a resource manager based on memory segmentation, along with isolation
modules that offer a protection layer between the accelerators and the sys-
tem. Experimental results suggest that VenOS is a befitting platform that,
despite its ease of use, benefits applications by 1.15x–2x, while introduc-
ing a resource overhead of only 11%. Finally, our system scales by up to
3.79x when four accelerators are mapped.

Keywords: FPGA · Multi-tenancy · Virtualization · Network-on-chip

1 Introduction

FPGAs are now commonly used on data centers and cloud infrastructure for
on-demand acceleration. FPGAs provide more flexibility than their ASIC and
GPU counterparts, while application acceleration on these devices deliver com-
petitive performance at a greatly improved energy efficiency for a wide range of
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applications. However, typical kernels utilize only a small fraction of the avail-
able resources, leading to poor logic and memory utilization. To increase return
of investment (RoI), cloud providers seek to host multiple customer kernels on a
single FPGA platform [1–3,9]. However, application development remains chal-
lenging, and ways to program, deploy and securely utilize FPGAs are still dif-
ficult to manage from both provider’s and developer’s perspectives. To make
things worse, additional challenges arise when moving on multi-tenant environ-
ments, where fair resource allocation, isolation and protection mechanisms must
be introduced to manage FPGA platforms.

State-of-the-art FPGAs offer a large pool of memory and reconfigurable
resources. To manage such a large pool, a more dynamic and scalable approach is
needed, especially when moving on scale-out environments and more FPGAs are
accessible. Moreover, cloud FPGAs are typically used for prototyping develop-
ing and accelerator testing, so it is important to facilitate the development and
deployment of accelerators, by keeping the already well-known existing environ-
ments, without introducing additional concepts to developers. Finally, data and
functional isolation are essential when moving on multi-tenant environments, as
malicious tenants have the opportunity to interfere with other users on two lev-
els; by either using a malicious accelerator or accessing an FPGA unauthorized
memory space from host.

To this end, we propose VenOS, a virtualization framework for multiple ten-
ant accommodation on reconfigurable platforms. VenOS uses a simple - yet effi-
cient NoC to spatially multiplex and fairly share the large pool of reconfigurable
and memory resources amongst tenants. VenOS strongly focuses on data and
functional isolation of tenants to prevent malicious users to access unauthorized
data or interfere with the execution of accelerators. Our work targets the Plat-
form as a Service (PaaS) model, where the system is abstracted by the user, while
I/O interface and FPGA resources are virtualized. This model hides unnecessary
low-level hardware and platform specific details from developers, who can focus
on developing and testing their accelerator.

Our work makes the following contributions:

– We propose VenOS, a novel virtualization framework for accommodating mul-
tiple tenants on FPGA platforms. Tenants and memory dies appear as dis-
tinct nodes of a network on chip, where the network provides an efficient, fair,
flexibile and scalable sharing of FPGA resources.

– We provide strong data isolation mechanisms on two levels; a) on the host
machine by proposing a memory segmentation method for managing and allo-
cating FPGA memory address space, and b) on the FPGA by proposing a
protection layer that blocks invalid memory requests and malicious or incor-
rect data for accessing unauthorized address space or polluting the memory
and network.

– We provide a quantitative evaluation of VenOS using five real-world applica-
tions. Results show that VenOS occupies 11% of FPGA resources and benefits
the runtime of accelerators by 1.15×–2×, while it scales by up to 3.79× when
four accelerators are mapped. Finally, we show that VenOS can adopt differ-
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ent topologies, based on system requirements, while the use of a network on
chip greatly helps fair sharing of FPGA resources.

The rest of the paper is organized as follows: Sect. 2 discusses the related
work on the field of FPGA virtualization and multi-tenancy. Section 3 presents
VenOS and provides all necessary details regarding our framework. Section 4
presents the evaluation results, followed by Sect. 5 to conclude the paper.

2 Related Work

A considerable amount of research has been done on FPGA virtualization and
management of FPGAs on cloud environments. Amazon [2] and Alibaba [1]
utilize the Vitis Unified Software Platform [24] to enable application development
and deployment on their FPGA instances. By using Vitis, an FPGA platform is
divided into static and dynamic regions, where an application can be exchanged
at run time with the help of partial reconfiguration. However, there is no support
for I/O abstraction or for multi-tenant environments.

Recent surveys give excellent overviews of the work generated by the com-
munity. Quraishi et al. [20] present a survey of works in the field of FPGA vir-
tualization, review the existing systems based on their architecture and discuss
the key objectives of FPGA virtualization. Wulf et al. [23] focus on hypervisor-
based virtualization of embedded reconfigurable systems, where host and FPGA
share the same address space. In this section, we focus on more recent works
that virtualize FPGAs on cloud and support multi-tenants environments.

AmorphOS [5] offers two modes to increase FPGA utilization: a) “low
latency” where each accelerator operates in a distinct dynamic region, and b)
“throughput” where all kernels are synthesized into a single bitstream. Mecha-
nisms for correct checkpoint and resume are required to alternate between the
two modes, which introduce development and deployment overheads to tenants.
Moreover, AmorphOS dedicates an even share of I/O and memory bandwidth to
each tenant. Coyote [10] aims to provide an OS-centric approach, by providing
a suite of OS abstractions working with the host OS. They pair each accelerator
with a TLB and custom MMU, which unifies the memories of the FPGA and
host machine. Coyote aims to make the FPGA part of host’s software system.

In Optimus [14], accelerators are organized as leaves of a binary tree,
while intermediate nodes control the data flow. Accelerators access the memory
through a virtual address space. Meanwhile, they cannot be moved using partial
reconfiguration, but Optimus offers time-division multiplexing with mechanisms
similar to AmorphOS. Host and FPGA share the same address space, however, a
host process cannot access the address space of a vFPGA. Megatron [12] is based
on Optimus system to provide virtualization through a hardware TLB, a ring
buffer for writing and a software table walker to serve the misses. Moreover, [12]
provides a extensive analysis of performance to demonstrate the competitiveness
of the customizable translation service.

Vital [26] focuses on maximizing the per-FPGA area utilization, by seg-
menting the design on multiple smaller bitstreams and accommodating them
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on vFPGA slots. It targets homogeneous multi-fpga environments and offers an
augmented compiler that supports bitstream segmentation and mapping. Hetero-
Vital [27] extends the previous work between heterogeneous platforms, mitigates
the communication overheads across bitstream segments, but introduces large
compilations.

Chen et al. [7] enable FPGAs on the cloud by using Linux-KVM, deployed in
a modified OpenStack cloud environment. Other similar works [15,16] are based
on overlay techniques for virtualization, while CPM [18] focuses on an efficient
area sharing methodology amongst tasks by creating a single large bitstream
through clever clustering and custom, task-specific partitioning. Synergy [11]
propose a runtime-based compiler which integrates suspend and resume mecha-
nisms on accelerators to enable time multiplexing. Finally, RACOS [22] provides
a simple and intuitive software interface to load/unload reconfigurable hardware
accelerators and perform data I/Os transparently to the user.

Compared to previous work, VenOS takes a more FPGA-centric approach,
by implementing a simple network on chip for accommodating multiple tenants
and sharing the FPGA resources amongst them. Our work focuses on strong
data isolation between accelerators by providing protection mechanisms both
on the Host and the FPGA platform. Furthermore, VenOS does not introduce
any development overheads to tenants, as it utilizes well-known existing environ-
ments. In a few words, VenOS provides a solution for flexible, scalable and fair
sharing of FPGA resources, I/O and hardware details abstraction and strong
data isolation mechanisms.

On the field of FPGA OSes, BORPH [6,21] offers a homogeneous UNIX
interface for both software and hardware processes, by providing native kernel
support. ReconOS [13] and Hthreads [19] extend the multi-thread programming
model to a FPGA, and provide support for inter-thread communication and
synchronization. Meanwhile, LEAP [8,17] provides OS-managed communication
channels between different hardware modules and a dynamically partitioning
algorithm to share the on-board memory. Unlike these works, VenOS focuses on
accommodating multiple tenants on a single FPGA platform, virtualizing FPGA
as a set of accelerators, abstracting I/O operations from application developers
while providing fair, flexible and scalable sharing of FPGA resources.

3 VenOS Framework

In this section, we propose the VenOS framework. At first, we present a high-level
view of VenOS architecture and provide information about its implementation.
Next, we focus on the two main building blocks: Memory and User Nodes. We
describe their functionality and importance in the overall framework. Finally,
we present the resource manager, which is responsible for accommodating the
tenants into users nodes and managing the FPGA memory address space.

3.1 VenOS Architecture

The VenOS architecture is outlined in Fig. 1. VenOS considers the FPGA as a
distinct platform with its own dedicated memory for accelerating specific work-
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Fig. 1. High level view of VenOS architecture. User and Memory Nodes are connected

through a network on chip. Host machine is responsible to load (step 1 ) an acceler-

ator, perform read (step 2 ) and write (step 3 ) operations, and configure the user

nodes (step 4 ) to initiate the execution of an accelerator.

loads. The FPGA is connected to the host system through a PCIe interface for
transferring data, accessing the ICAP, and controlling User Nodes. Both accel-
erators from tenants and memory dies are connected through their respective
nodes via a network on chip. A User Node is responsible for creating memory
requests according to the accelerator it services, and facilitates hardware protec-
tion between the VenOS system and the accelerator. Similarly, a Memory Node
is responsible for serving the memory requests from different accelerators and
route data between its memory and NoC. This offers great flexibility as memory
processes are decoupled from compute, while communication between nodes is
hidden under the computation of other accelerators. Moreover, the utilization of
NoC enables performance scalability, as either memory dies or accelerators from
tenants can be added as distinct nodes to the network.

The programming model of VenOS does not deviate from other well-known
and established existing tools for FPGAs, such as Vitis. Application developers
utilize an easy-to-use OpenCL-like software programming API, which abstracts
all low-level hardware and platform details of an FPGA, as well as I/O opera-
tions. The integration of a kernel on VenOS system takes place by using a load
command (step 1 ), which performs partial reconfiguration through the ICAP
module to reconfigure a user node with the desired bitstream. Read (step 2 )
and write (step 3 ) commands are used for transferring data between the host
machine and FPGA memories, through the PCIe interface. Finally, developers
can initiate the execution (step 4 ) of their accelerator. In this step, informa-
tion about memory allocations of the user and metadata are passed on special
modules, and control commands are used to initiate the execution of the kernel.

The VenOS architecture can integrate accelerators written on HDL lan-
guages, such as VHDL or Verilog, as well as designs developed on HLS. To this
end, VenOS does not introduce any increase in the learning curve of application
developers, making our platform also ideal for prototyping developing.
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Fig. 2. Memory Node Architecture. A Router and a DMA Engine are used for memory
and network transactions respectively. The Hardware Driver controls the DMA Engine,
while Packetizer converts data to messages and vice-versa.
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Fig. 3. User Node architecture. It operates as a hardware wrapper that hosts the
accelerator and provide access to the NoC, through the router. A special Packetizer
and an Accelerator Segment Table (AST) module are designed to provide isolation and
protection between the accelerator and VenOS system.

3.2 Memory Node

Memory Nodes are responsible for serving memory requests generated by the
accelerators and routing data between the network and FPGA Memory. The
components of a Memory Node are shown in Fig. 2. The Router is responsi-
ble for controlling the traffic on the node. The design of the router is directly
related to the network topology, which can be easily configured on VenOS archi-
tecture based on system requirements. Data messages from both DMA engine
and network are directed to Packetizer, which converts data into messages and
vice-versa.

VenOS offers a lightweight, yet efficient DMA Hardware Module that initiates
DMA memory transactions, fully decoupled from the CPU. Each accelerator, by
sending memory request messages, can indirectly initiate memory transactions
to either fetch or store data to a memory bank. The DMA Hardware Module is
responsible to control the DMA engine, check its status or interrupts, and assign
the starting address and length of the memory transactions. The communication
between the driver and the DMA Engine is done by using the AXI4-Lite protocol.
Two streaming interface are connected with the Packetizer, each responsible
for fetching data into the memory or for exporting them to Packetizer, always
depending on the type of the request that the hardware driver serves.
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3.3 User Node

Accelerators from tenants are mapped on preconfigured regions by using par-
tial reconfiguration, a feature enabled with ICAP. Each partial reconfigurable
region employs exactly one tenant, guaranteeing functional isolation among oth-
ers. Malicious accelerators cannot interfere with other accelerators, as each User
Node is an autonomous node, while nodes only share the network on chip. To
successfully integrate multiple accelerators on VenOS, we have designed a com-
mon IP wrapper, which provides a standard interface between the accelerator
and the rest of the system. The IP wrapper includes a set of streaming interfaces,
responsible for memory operations, as well as for inputs and outputs. This choice
offers significant advantages: a) developers can focus on the computational part
of their kernel and b) the streaming interface offers better compatibility with
the pipeline and dataflow HLS primitives. Figure 3 shows the rest components
of the node.

The Router is responsible for controlling the traffic on the node. VenOS archi-
tecture gives the flexibility to adopt different network topologies, depending on
system requirements. Currently, the design of the router is directly related to
the topology, and further analysis is left for future work. A novelty of VenOS is
that it provides a special hardware module for isolating and preventing accel-
erators for accessing memory addresses outside the range that users have pre-
viously allocated. To enable this feature, we have implemented two modules: a)
the Accelerator Segment Table (AST) which is responsible for generating valid
memory requests, and b) the Packetizer which buffers and prevents malicious
or incorrect data to access the network. Combined together, they form an isola-
tion layer between each accelerator and the rest of the system. The Packetizer
feeds the accelerator with incoming data, fetched only by a valid read request.
On the other direction, outgoing data are transmitted into the network only if
the AST module determines that the corresponding write request addresses a
valid address location in memory. If not, the outgoing data are dropped, in order
to not harm the bandwidth of the network and the memory addresses of other
tenants.

AST is responsible for generating valid memory request messages, according
to the memory operations produced by the associated accelerator. This proce-
dure is depicted in Fig. 4. Rows in AST provide metadata about the variables of
the accelerator, such as the starting address, the size of the variable in memory
and the bank which is stored. All information is initialized right before the exe-
cution of the kernel. To generate a memory request message, an accelerator has
to provide the tag of the requested variable, the length of the request and an
address offset. The AST module checks whether the variable is part of the pro-
gram and extracts the necessary information to generate the memory request.
A memory request message is divided into four fields: the Address, which is cal-
culated by the starting address and the offset, the length of the request, the
memory operation, and finally the memory bank which will serve the request.
The valid requests are passed into the network, as well as the Packetizer, to
allow outgoing data accessing the network.
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Fig. 4. Memory Requests of an accelerator are based on a content addressable memory.
Both the Accelerator Segment Table (AST) module and the Packetizer operate as data
protection layer by isolating addresses through user’s metadata.

3.4 Resource Manager

The Resource Manager is responsible for managing and allocating the address
space of the FPGA memory and the partial reconfigurable regions across tenants.
By using the VenOS API, tenants can allocate or free FPGA memory, request
to load a bitstream, or access the FPGA memory address space. To this end, the
VenOS resource manager is responsible for providing both functional and data
isolation between tenants. While for the former case is sufficient to look for an idle
User Node on VenOS system and load the accelerator, providing data isolation is
more complicated. We implement a memory segmentation method in software,
which allocates and manages the FPGA address space between tenants and
stores the memory footprint on hash tables. To reduce memory fragmentation,
VenOS adopts a best-fit algorithm, which returns the smallest available segment
according to the request from tenant.

Figure 5 shows the memory segmentation method as part of the resource
manager in VenOS. Tenants submit requests to perform memory operations,
such as memory allocation and data transfers between Host and FPGA. For
each tenant, a unique userID key is assigned by VenOS and is used as identifier
to keep the memory footprint of each tenant. The memory footprint is essential
for our protection mechanism, as VenOS allows data transactions only if the
requested address and memory block are contained by the memory footprint. So,
by keeping the memory footprint for each tenant along with the use of memory
segmentation method, VenOS provides strong data isolation against malicious
activities, as tenants can only access and manage FPGA address spaces that
have been previously allocated.
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4 Evaluation

4.1 Experimental Setup

VenOS is implemented on AlveoU250 Data Center acceleration card using Vitis
HLS 2020.2 and Vivado 2020.2 development environments. The FPGA is con-
nected through a PCIe link to a host machine that features a Xeon Gold 5120
CPU running at 2.20 GHz, paired with 252 GB of DRAM. To evaluate VenOS,
we use five real-world benchmarks: SHA256 Hashing and AES256 Encryption
algorithms from the cryptography IP cores [4], and the 3D-Rendering (3DR)
and Face Detection (FD) applications from Rosetta Benchmark [25]. Further-
more, we designed a Pointer Chasing (PC) application that sequentially reads
and writes data from/to memory; this corresponds to worst-case DMA patterns
and creates a latency bottleneck. We choose a transfer size of 64 bytes from and
to memory, that corresponds to the data width of the DDR memory controller.

Unless stated otherwise, in our experiments, we use a simple ring topology
to connect all nodes across the FPGA fabric. Other topologies could be imple-
mented at the expense of FPGA resources, but our goal is to evaluate the use
of a network on chip on VenOS architecture, and not its topology. The system
clock frequency is set at 130 MHz, which drives the DMA hardware Driver, user
and memory nodes, as well as accelerators.

4.2 Resource Overhead

Performance is not the only metric for consideration when designing a system
for accommodating multiple tenants on FPGAs. The resource overhead is just
as important, because the overhead created by the system reduces the avail-
able reconfigurable resources which can be utilized either from tenants or for
multiplexing more of them.

Figure 6 presents the resource utilization overhead of VenOS, on various case
scenarios for a varying number of memories and tenants. When VenOS includes
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Fig. 6. Resource Utilization (%) of VenOS on various case scenarios. Each scenario on
x-axis is described as {#Memory,#User} nodes on VenOS system.

Fig. 7. Normalized Runtime of VenOS architecture compared to Vitis (smaller is bet-
ter).

a single Memory and User Node, it utilizes 5% of LUTs and BRAMs. When
multiplexing more tenants, VenOS needs less than 1% of LUTs, BRAM and
FFs per User Node. Most of resources are for storing the memory footprint and
metadata of the tenant before the execution of the accelerator. VenOS needs an
extra 2% of LUTs and 1% on both FFs and BRAMs for an additional Memory
Node, respectively. In an extreme case where 4 Users Nodes are multiplexed with
4 Memory Nodes, VenOS utilize only 11% of the overall resources, leaving the
largest part of the reconfigure fabric for the accelerators.

Future FPGAs is likely to offer a larger pool of reconfigurable resources.
Therefore, FPGAs can accommodate even more tenants, so the system requires
to be scalable in order to integrate them without significant changes. By using
VenOS, new user nodes can be mapped to multiplex even a greater number of
tenants, while network on chip offers great and easy scalability in order to share
the FPGA resources amongst accelerators.

4.3 Virtualization Overhead

The first step for evaluating VenOS is to compare it with a complete, mature
environment. We choose Vitis framework which is utilized by Alibaba and Ama-
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Fig. 8. Performance benchmarks of the applications running in VenOS framework,
showing the ability of VenOS architecture to scale with respect to the number of
accelerators. All results are normalized on the single Memory-User Node scenario.
Each scenario on legend is described as {#Memory,#User} nodes on VenOS system.

zon F1 instances. From a such coarse-grain comparison, it is hard to draw exact
conclusions, but our goal is to prove that VenOS is a befitting platform for
application development both in terms of performance and in terms of ease of
deployment. On Fig. 7, we present the results for the five benchmark accelerators
on VenOS compared to ones developed on Vitis.

Four out of five applications benefit from VenOS architecture in terms of per-
formance. 3D-Rendering application and SHA256 hashing algorithm present a
1.2× speedup compared with the corresponding application developed on Vitis,
while Face-Detection application benefits by 15%. Meanwhile, AES present great
improvement, almost 2× against Vitis. The reason is that it has small compu-
tation time compared to the communication with the memory, and VenOS can
fetch all data into the accelerator with a single memory request, significantly
increasing the runtime. The achieved speedup on these applications is attributed
to the following reasons: a) VenOS depends on streaming interfaces for fetching
data on accelerators, which is way more efficient compared to the memory map
used by Vitis and b) each accelerator can initiate indirectly a memory request by
using the DMA hardware driver, a module which accelerates the memory request
processing time. On the other hand, VenOS introduce performance penalties on
pointer chasing application. The accelerator produces a high number of memory
operations, which VenOS should validate and transform into memory request
messages. This repetitive procedure increases the latency, which also worsens
with the use of the network on chip and DMA Engine.

Nevertheless, we can conclude that VenOS does not introduce significant
performance penalties. On the contrary, the majority of applications benefit
from our system, as they show increased performance compared to Vitis.

4.4 Performance Scalability of VenOS Architecture

One of VenOS contributions is that implements a network on chip to offer
scalable, flexible and fairly resource sharing of FPGA resources. The first step
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towards evaluating this choice is to prove that our architecture scales on respect
to the number of User and Memory Nodes. The results of our tests are reported
on Fig. 8.

When a single Memory Node is accessible through the network, SHA256,
FD and 3DR accelerators show significant scalability regardless of the number
of compute units. On the other hand, AES accelerator struggles to scale for
four compute units, as its high communication time with memory compared
to computation, affects negatively the performance, as memory requests from
all compute units target a single Memory. The same phenomenon is observed as
well with PC accelerator, where all memory requests are serialized and introduce
significant overheads in performance.

On the other hand, when more Memory Nodes are accessible through our
network, memory requests are distributed amongst them. This distribution of
memory requests significantly boosts the performance on both AES and PC
accelerators, compared to baseline, specially when the number of Memory Nodes
are equal to User Nodes. The other three accelerators present a negligible increase
in performance.

VenOS architecture has the advantage of adopting different network topolo-
gies based on system requirements. We also implement a crossbar interconnect
between the nodes and compared it with the results taken by using Ring topol-
ogy. The use of a crossbar seems beneficial to AES accelerator where the perfor-
mance is boosted from 2.17× to 3.07× compared to baseline. This phenomenon
is attributed to the fact that crossbar topology helps data and requests to reach
faster their respective nodes compared to Ring, significantly reducing the com-
munication time with the Memory. Corresponding results on a much smaller
scale are also observed for the other accelerators, pointing out that topology
affects the performance of the kernels, always in relation to workload and the
type of accelerator. Further analysis is left for future work.

Nonetheless, the choice to base VenOS architecture on NoC is proved ben-
eficial, because the overall performance of our system scales in relation to the
number of User Nodes. Meanwhile, accelerators with higher communication time
with memory or with a large number of memory requests are significantly assisted
from more Memory Nodes, as memory requests can be distributed amongst them
and DMA engines perform parallel accesses to FPGA Memory dies.

4.5 Interference Among Collocated Accelerators

Finally, we evaluate VenOS when multiple different applications are running in
parallel. We introduce interference, a metric that shows the percentage drop in
the performance of an accelerator when another accelerator is running in parallel,
while their memory transactions target the same Memory Node. Consequently,
we show how accelerators are affected when sharing the resources of an FPGA.
The results are shown on Fig. 9, where the interference for each accelerator is
reported.

When two accelerators are running in parallel on VenOS system, the maxi-
mum observed interference is 29%, reported for two AES accelerators. Moreover,
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Fig. 9. Performance of collocated accelerators running simultaneously on VenOS archi-
tecture, sharing both Memory Node and Network. The results shows the interfer-
ence between the accelerators and are normalized when the accelerator solely occupies
VenOS system (smaller is better).

for the majority of our test cases, we observe an almost 18%–23% of interference
between two collocated accelerators. An exception occurs with 3DR application
where the interference decreases at 6.5%. We found out that the interference of
our accelerators is mostly connected by their scalability when memory trans-
actions target the same Memory Node, shown during the previous subsection,
rather than from the accelerator that runs in parallel.

However, PC benchmark shows an irregular behaviour regardless of the col-
located accelerator, which is attributed to two main factors. First, the position
of the accelerator on the network can increase the latency of data transmission,
as messages cross a larger number of nodes until find their destination. Second,
the large workload on a Memory Node also increases the response latency, which
negatively affects the performance of latency sensitive applications. This can be
observed when PC runs with a Face Detection accelerator, where the interference
is larger than 27%.

Finally, we expand our previous results by collocating three accelerators.
We sample among all possible combinations and present four interesting sce-
narios, based on the results occurred by the previous experiments. The results
strengthen our previous statements that accelerators are mostly affected by their
scalability trend, when they are collocated with other accelerators and share the
FPGA resources. An exception is observed with AES accelerator as its interfer-
ence is increased to 32% and 40%, due to the high workload on the Memory
Node. Similar behavior to a lesser extent is also reported with PC accelerator,
where its interference exceeds 20%, regardless of the scenario.

To this end, we show that the utilization of a network on chip in VenOS
architecture is proved beneficial, as memory requests can be dynamically and
fairly served, even by a single Memory Node. When a single accelerator occupies
the VenOS architecture, our system provides it the maximum possible resources
to achieve high performance. Otherwise, the interference of an accelerator is con-
nected to its scalability trend, as VenOS does not introduce extra performance
overheads when FPGA resources are shared.
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5 Conclusions

In this paper, we present VenOS, a virtualization framework for multiple ten-
ant accommodation on reconfigurable platform. VenOS provides a flexible, scal-
able and efficient architecture to dynamically share the available resources of a
FPGA platform. VenOS provides protection layers both on software and hard-
ware to allow tenants to securely access and manage their accelerators, prevent-
ing malicious users to interfere with their execution. Finally, VenOS abstracts
from developers all the hardware details of the architecture as well the I/Os
operations. Furthermore, VenOS enhances ease of deployment, as developers
can utilize already existing well known development tools.

Our results show that VenOS is a resource efficient befitting platform for
real-world applications, which benefits their performance from 1.15× to 2×.
Furthermore, the use of a NoC for multiplexing multiple tenants on a single
FPGA platform is proved beneficial, as our system scale by up to 3.79× when
four accelerators are mapped on User Nodes. Finally, the resource overhead
of VenOS is 11%, leaving the largest part of FPGA fabric to users, while its
architecture provides dynamic, fair and secure share of FPGA resources, without
introducing extra performance penalties.
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