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Abstract. The Q-learning algorithm suffers from overestimation bias
due to the maximum operator appearing in its update rule. Other popu-
lar variants of Q-learning, like double Q-learning, can on the other hand
cause underestimation of the action values. In many stochastic environ-
ments both underestimation and overestimation can lead to sub-optimal
strategies. In this paper, we present a variation of Q-learning that uses
elements from Monte-Carlo Reinforcement Learning to correct for the
overestimation bias. Our method 1) makes no assumptions on the distri-
butions of the action values or the rewards, 2) does not require extensive
hyperparameter tuning unlike other popular variants proposed to deal
with the overestimation bias and 3) requires storing only two estimators,
similar to double Q-learning, along with the most recent episode. Our
method is shown to effectively control for the overestimation bias in a
number of simulated stochastic environments leading to better policies
with higher cumulative rewards and action values that are closer to the
optimal ones, as compared to a number of well-established approaches.
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1 Introduction

Reinforcement Learning (RL) is a control technique that enables an agent to
make informative decisions in unknown environments by interacting with them
in time [10]. The RL algorithms can be generally categorized in model-based
and model-free methods. Model-based methods learn the underlying dynamics
of the system and incorporate that information in the decision process. One of
the benefits of this line of work over model-free methods is the smaller amount
of data required to train the agents. On the other hand, model-free methods
directly estimate value functions or policies from interactions with the environ-
ment. Model-free methods do not suffer from model bias, which arises due to
the insufficient estimation of the underlying dynamics, as model-based methods
frequently do.

In this work, we focus on model-free methods and more specifically on vari-
ants of the celebrated Q-learning algorithm [12]. The wide popularity of Q-
learning can be attributed to the simplicity of the algorithm as it follows a
simple update rule that uses the current estimate of the action values of a state,
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the reward observed while transitioning from that state to the next and the max-
imum over all possible actions estimate of the action values at the next state.
Using the latter maximum operator however has been proven to cause Q-learning
to overestimate the action values. This overestimation is attributed to the uncer-
tainty in the estimates and the possible stochasticity of the environment. This
phenomenon frequently leads to poor policies [11].

To deal with the overestimation bias a number of variants of Q-learning have
been proposed in the literature. Double-Q learning [6] uses a double estima-
tor approach, where one estimator determines the maximizing action and the
other independently determines that action’s value. Despite the fact that dou-
ble Q-learning tends to underestimate the actual value functions, it is shown to
outperform Q-learning by leading to better policies in many environments. To
balance between over- and under-estimation [13] extend double Q-learning by
using an appropriately weighted sum of the single and double estimators in the
update rule. Weighted Q-learning [1] uses a weighted estimate among the action
values in the place of the maximum in the update rule. Furthermore, theoretically
backed bias correction techniques have been proposed in the asymptotic regime
for normally distributed rewards [8]. Finally, Maxmin Q-learning [7] uses a num-
ber of independent action value estimators and selects the maximizing action
by considering the minimum of these action values for each action. It should
be noted that overestimation bias has also been shown to affect policy gradient
algorithms which are predominantly used in continuous control applications [3].

Another branch of model-free learning algorithms, that is broadly related to
our work, is that of Monte Carlo (MC) based RL methods. The Monte Carlo
Exploring Starts (MCES) algorithm uses simulations to obtain estimates of the
cumulative discounted reward from a state-action pair to the end of the task
and uses those estimates to update the action value of that state-action pair
[10]. Although MC methods do not lead to overestimated action values they
tend to have high variance in their estimates compared to Q-learning [5].

In this paper we combine the Q-learning algorithm with MC techniques to
reduce the overestimation bias of the former in applications with finite state-
action spaces and episodic tasks. In summary, at the end of each episode of
the algorithm we compute the realized discounted cumulative reward from each
visited state-action pair. Given that and the current action value estimates we
can obtain an estimate for the bias incurred in each visited state-action pair,
which we then use to update a running bias estimator in our problem. That
bias estimate is subsequently subtracted from the action value estimates in the
Q-learning update rule to correct for the overestimation bias. We show in a
number of benchmark environments that our method consistently returns action
value estimates with low bias while producing policies that most of the times
outperform those from other approaches.

The rest of the paper in organized in the following way. Section 2 introduces
basic concepts of Q-learning and tries to shed some light in the reasoning behind
the overestimation bias while Sect. 3 summarizes already established techniques
designed to tackle overestimation bias. Section 4 introduces in detail our bias
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correction method. Finally, Sect. 5 compares the performance of our method
with the alternatives in a number of simulated stochastic environments.

2 Preliminaries

Reinforcement Learning applies to problems in which an agent interacts with
an environment and uses that information for informative decision making with
the ultimate goal being utility maximization over a finite horizon T . We model
such environments with Markov Decision Processes (MDP) which are defined by
tuples (S,A, P,R, γ), where S denotes the state space, A the action space, P the
transition probabilities in the environment, R the reward function and γ ∈ (0, 1)
is the discount factor. We assume the state and action spaces are finite and
their cardinalities are denoted with |S| and |A| respectively and we use A(s)
for the set of available actions in state s. The system transition probabilities
P : S × A × S → [0, 1] are denoted with P (st+1|st, at). After each transition the
agent observes a reward R : S × A × S → R obtained at state st by applying
input at and transitioning to state st+1 denoted with Rat

(st, st+1). The discount
factor γ controls for the significance of short versus long term rewards. The goal
of the agent is to find an optimal policy π : S × A → [0, 1] that maximizes the
expected discounted sum of rewards Eπ

[∑T
i=0 γiRat

(st, st+1)
]

starting from an
initial state s0.

Such a policy can be found via Q-learning in which state-action dependent
Q-functions Q : S × A → R are estimated. Qπ(st, at) quantifies the cumulative
discounted reward from state st when applying action at and then following
policy π for the duration of the task. At iteration t+1 the Q-learning algorithm
with a learning rate α, which frequently is a function of the state-action pair,
uses the following update rule

Qt+1(st, at) = Qt(st, at) + α

(
Rat(st, st+1) + γ max

a∈A(st+1)
Qt(st+1, a) − Qt(st, at)

)
.

(1)

The set of available actions A(st+1) at state st+1 and the policy π from the
action values will be dropped in subsequent expressions for notational concise-
ness. The optimal policy can be derived by greedily choosing the action that cor-
responds to the highest action value from each state s, π∗ = arg maxa Q∗(s, a).

The term maxa Qt(st+1, a) appearing in (1) causes the action value estimates
to be positively biased. Ideally, the update rule would choose at time step t + 1
the action value with the highest expected value maxaE[Q(st+1, a)]. However,
the true underlying action values and consequently their expected values are
unknown and instead are substituted by the sample estimates maxaQ(st+1, a).
The action value samples though are polluted with noise, attributed to the
stochasticity of the environment and the estimation uncertainty of the action
values themselves. Even if the noise has zero mean the max operator will likely
still positively bias the action value estimates. For detailed proofs of the overes-
timation bias in Q-learning we refer the reader to [6,9]. To obtain some intuition
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Fig. 1. (left) 100 simulations, each with three samples from the three normal distri-
butions (blue dots) and the maximum of those three (red dots) and the empirical
distributions of Xi, i = 1, . . . , 3 and maxi Xi. The mean of the empirical distribution
of the maximum is 0.83. (right) Similar to the left but one of the normal distributions
has now mean 3. (Color figure online)

on the overestimation bias we include a simulation that showcases that effect.
Assume that we have N alternatives X1,X2, . . . , XN each associated with real-
ized rewards xi, i = 1, . . . , N coming from a normal distribution Ni(0, 1). We
repeatedly observe the realizations of all N rewards and we select the maximum
one maxi xi. It is known from extreme value theory that the maximum of these
standard normally distributed random variables will asymptotically converge to
a Gumbel distribution with positive mean [4]. Intuitively, since the distributions
have the same zero mean, it is highly likely that at least one of them in a real-
ization will be positive and since we are picking the maximum of the N samples,
maxi xi most of the times will be positive as well, thus biasing the estimator.
Figure 1 shows the effect of the discrepancy among the alternatives in the bias of
the maximum operator for N = 3. When one of the alternatives is distinctively
better - it comes from a distribution with higher mean - then we observe min-
imal overestimation, since the max function systematically selects the sample
that comes from the distribution with the higher mean. On the other hand, if
all distributions generate similar rewards as in the left figure, the effect of over-
estimation becomes significant. Frequently in applications the different action
alternatives of the action values are similar to each other leading to positive bias
in the estimates.

3 Related Works

The aforementioned max-operator bias frequently leads the Q-learning algorithm
to overestimate action values. A number of methods have been proposed to
alleviate this problem most of which resolve to using more than one estimator
for the action values to tackle overestimation.

Double Q-learning [6] uses two independent estimators for the action val-
ues, one to choose the optimal action and another to extract the action
value. It requires storing two tables QA and QB and the agent follows an ε-
greedy policy in which actions can be selected using both tables, for instance
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a∗ = arg maxa QA(s, a) + QB(s, a). At each iteration one of the Q-tables is
randomly chosen to be updated. When table i ∈ {A,B} is updated then
the target in expression (1) is equal to Rat

(st, st+1) + γQ−i
t (st+1, a

∗), where
a∗ = arg maxa Qi(st+1, a). The notation −i denotes the alternative choice to i.

The structure of the weighted double Q-learning algorithm [13] is similar to
that of double Q-learning as it also employs two Q-tables A and B. The major
difference is that it uses a weight that is a function of both Q-tables at each
iteration to update a randomly chosen Q-table with the weighted average of the
two tables. When table i is updated the target value in the update rule becomes
Rat

(st, st+1) + γ(βiQi
t(st+1, a

∗) + (1 − βi)Q−i
t (st+1, a

∗)), where βi is a weight
parameter depending on the Q-values evaluated at a∗ = arg maxa Qi(st+1, a),
aL = arg mina Qi(st+1, a) and c is a user specified hyperparameter.

Maxmin Q-learning [7] employs m independent Q-tables to balance between
over- and under-estimation bias, where the number of Q-tables is another hyper-
parameter of the algorithm. Both the optimal action choice of the agent as well
as the Q-table update rule uses the Qmin table which for a state s is constructed
as Qmin(s, a) = mini∈{1,...,m} Qi(s, a), ∀a. The Maxmin Q-learning target is
Rat

(st, st+1) + γ maxa Qmin(st+1, a)). For some value m > 0 the Maxmin Q-
learning estimates switch from being overestimated to being underestimated and
depending on which of the two, if any, is beneficial for a particular environment
the user can tune m appropriately.

4 Monte Carlo Bias Correction

Most of the aforementioned methods utilize a multiple estimator scheme to
tackle the overestimation bias. In the process of creating estimates with reduced
bias the double weighted and Maxmin variants of Q-learning need extra hyper-
parameter tuning. Our method exploits already available information from the
realized trajectories in order to reduce bias without requiring significantly more
tuning than the original Q-learning algorithm. The intuition behind the algo-
rithm is to use information obtained during an episode to construct bias esti-
mates of the action values and use those to correct for the bias. More specifically,
at the end of each episode we compute the realized discounted cumulative reward
from each state-action pair visited to the end of that episode. Given the current
action value estimates we compute an estimate for the bias at state-action pair
s, a by subtracting the realized action values from the current action value esti-
mates (2). That estimate is then used to update a bias table, which is similar in
dimensions to the Q-table, for that particular pair (3). At each iteration of the
Q-learning algorithm the bias term is subtracted from the max action value to
compensate for the overestimation bias. Our algorithm can be broadly seen as
a combination of the Q-learning algorithm with elements from a variant of the
Monte Carlo Exploring Starts (MCES) algorithm [10].

In more detail, during each episode at each time step the agent acts in the
environment using an ε-greedy policy. During the episode, the sequence of state-
action pairs visited and rewards observed is saved. Once the episode is done
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after Tep steps, for each state-action pair in the trajectory si, ai, i = Tep, . . . , 1
we compute the realized cumulative discounted reward sequence Q̂(si, ai) from
time step i until the end of that episode. This realized Q̂ value is an estimate
of the action value that is not biased by the max operator and can be used
to obtain a sample estimate for the bias incurred at state-action pair si, ai as
follows

B̂(si, ai) = Q(si, ai) − Q̂(si, ai). (2)

The samples in (2) are then used to update a running average of the bias for
each si, ai similar to the update rule in (1)

Bt+1(st, at) = Bt(st, at) + α′
(
B̂(st, at) − Bt(st, at)

)
, (3)

where we allow for the use of a different learning rate α′ from the one used in (1).
The target value in the Q-learning update rule of our method is

Qt+1(st, at) =
Qt(st, at) + α (Rat

(st, st+1) + γ(Qt(st+1, a
∗) − Bt(st+1, a

∗)) − Qt(st, at)) , (4)

Algorithm 1: Monte-Carlo Bias Corrected Q-learning (MBCQ)
Choose learning rates α, α′

Initialize Q(s, a) randomly, B(s, a) = 0 ∀s, a
Repeat until convergence

Tep ← 0
While episode not over:

Choose action a in state s using policy derived from Q (e.g. ε-greedy)
Move to state s′ and observe reward Ra(s, s

′)
a∗ ← arg maxa Q(s′, a)
δ ← Ra(s, s

′) + γ(Q(s′, a∗) − B(s′, a∗))
Q(s, a) ← (1 − α)Q(s, a) + αδ
Store s, a, Ra

Tep ← Tep + 1
s ← s′

Q̂ ← RaTep
(sTep)

For each uniquely visited tuple (si, ai, Rai), i = Tep − 1, . . . , 1:
Q̂ ← Rai(si, si+1) + γQ̂
B̂ ← Q(si, ai) − Q̂
B(si, ai) ← (1 − α′)B(si, ai) + α′B̂

where a∗ = arg maxa Q(st+1, a). More details on our approach can be seen in
Algorithm 1. It should be noted that our method requires the storage of the
most recent trajectory along with the bias table B. For tasks in which episodes
have a large duration and γ < 1 a more computationally efficient rolling window
scheme can be used to approximate the total reward from a particular state. In
the following section we compare the effectiveness of our method with that of
other popular methods designed to tackle overestimation bias in Q-learning.
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5 Experiments

This section quantifies the performance of our method, abbreviated to MBCQ
to denote the Monte Carlo-like bias correction, in a number of stochastic bench-
mark environments both with discrete and continuous state spaces. We compare
the performance of our method with that of single Q-learning (Q), Double Q-
learning (DQ), Weighted Double Q-learning (WDQ) and MaxMin Q-learning
(MMQ). The last three of the aforementioned methods are some of the primary
approaches in literature that deal with the overestimation bias.

In all experiments we choose a polynomial learning rate for the Q-learning
update α(s, a) = 1/n(s, a)0.8, where n(s, a) denotes the number of times the
state-action pair s, a has been visited. For algorithms that require more than one
Q-table we use distinct learning rates for each table i, αi(s, a) = 1/ni(s, a)0.8.
The probability of randomly choosing an action in the ε-greedy policy also dimin-
ishes with a polynomial rate, ε = 1/

√
n(s, a). For the learning rate of the bias

update we select a constant rate α′ = 0.01. In all the experiments the discount
factor γ is set to 0.95.

5.1 Roulette

Roulette is a stochastic environment consisting of a single state and 171 actions.
The 170 betting actions include betting on individual numbers, red or black
color, odd or even numbers, etc. The 171th action is a termination action with
zero reward after which the agent walks away from the table. The agent bets
each time 1$, with no budget constraints, and the average expected reward from
each betting action is 0.947$, leading to an expected loss of 0.053$ for each bet.
The optimal strategy for the agent is to clearly walk away. All actions return to
the same state except for when the agent decides to walk away.

We sequentially update the action values for each action for 105 trials. We
repeat this experiment 10 times. We compute and report the mean of the action
values over all actions, averaged over the 10 experiments for all five methods as
shown in Table 1. All the methods overestimate the maximum action value as
the optimal one is equal to zero. Q-learning suffers from excessive overestimation
while weighted double Q-learning has diminishing bias for growing c. Double and
Maxmin Q-learning show significantly lower overestimation compared to single
Q-learning. On the other hand our method obtains estimates that approach the
actual action values.

Table 1. Average over all non-terminating actions of the action values.

Q DQ WDQ (c = 10) WDQ (c = 100) MMQ MBCQ

9.70$ 0.02$ 5.57$ 0.025$ 0.15$ 6.3 · 10−4$
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5.2 Grid World

The grid world environment (see Fig. 2 in [6]) consists of a n × n dimensional
grid in which the agent starts from the bottom left cell s0 and tries to navigate
towards the top right cell, which is the terminal state sg. At each cell the agent
can choose one of the possible actions {north, east, south,west}. If any of the
actions taken leads the agent off the grid then the agent remains in the same cell.
The agent receives equally likely a reward of −4 or 2 for any action leading to
a non-terminal state and a reward of 15 or −5 for successfully reaching the goal
state. The optimal strategy of the agent is to follow the shortest path towards
the terminal state. During the experiments we record the value function of the
starting state V (s0) = maxaQ(s0, a) and the average reward per time step. The
duration of the task is 104 iterations. The plotted curves have been smoothed
with an exponential kernel with parameter 0.1 for better exposition.

Fig. 2. Maximum action value for s0 and average reward per step for two different
grid sizes averaged over 1000 runs. The green dotted lines correspond to the optimal
maximum action values and average rewards. (Color figure online)

Q-learning and double Q-learning consistently over- and under-estimate the
action values respectively, as expected from their theoretical analysis. On the
other hand weighted double Q-learning tends to suffer less from overestimation.
Our method consistently approaches the optimal action values in all the exper-
iments and is never far off. The average reward obtained using our method is
consistently higher compared to all others. We also report in Table 2 the values
of V (s0) that all five algorithms converged to after 105 iterations for grid sizes
n = 3, 4, 5 and 6. The results were averaged over 1000 runs. The optimal value
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Table 2. Maximum action values V (s0) after 105 iterations.

n V ∗(s0) Q DQ WDQ (c = 10) MMQ (N = 4) MBCQ

3 0.36 0.37 −0.65 −0.18 −0.09 0.36

4 −1.62 −1.58 −2.79 −2.25 −2.43 −1.66

5 −3.41 −3.30 −4.69 −4.15 −4.75 −3.46

6 −5.03 −4.76 −6.53 −5.82 −7.17 −5.09

function as a function of the grid size is given by V ∗(s0) = 5γ2(N−1)−∑2N−3
i=0 γi.

Our method consistently manages to approach the optimal values of V ∗(s0)
closer than any of the other methods.

5.3 Taxi

The Taxi environment [2] is the last domain we will test our algorithm. In this
environment the agent can pick up a passenger who is in any of the R,G,Y,B
locations and transport the passenger to one of the remaining locations. For
each allowed move on the map that does not deliver a passenger to the specified
location the agent incurs a cost of 1. Regarding the rest of the rewards we will be
studying two cases, one with deterministic and one with stochastic rewards. In
the deterministic case, for illegal actions like trying to drop a passenger on the
wrong location, the agent incurs a reward of −4 while the reward for correctly
delivering the passenger to the specified location is 8. In the stochastic case, for
misplaced passenger deliveries the agent incurs a reward of −10 or 2 and for
correct deliveries the agent obtains a reward of 20 or −4, where all alternatives
have equal probability of occurring.

Fig. 3. Average reward per episode in Taxi environment with deterministic and
stochastic rewards. Results averaged over 100 runs.

We report the average reward per iteration for 2000 iterations averaged over
100 runs. The resulting curves have also been smoothed with an exponential
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kernel with parameter 0.1. Figure 3 shows the average reward plots for the deter-
ministic and stochastic cases. MBCQ clearly outperforms all the other methods
on both cases by leading to policies that obtain higher rewards.

6 Summary

Overestimation bias is a flaw of the Q-learning algorithm that usually leads to
overestimated action values and frequently to suboptimal policies. We presented
a novel algorithm that combines the Q-learning algorithm with Monte Carlo
methods to obtain action value estimates with reduced bias. Our method utilizes
information already gathered through past trajectories to construct estimates of
the bias and uses these estimates in the Q-learning update rule to compensate for
the maximization bias. Our method consistently outperforms the current state
of the art approaches in a number of stochastic environments with discrete state
spaces without requiring extensive hyperparameter tuning. It should be noted
that most of the methods presented in this work assume fully observable states.
We leave possible extensions to POMDPs for future work.
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