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Abstract. Techniques honed for the induction of grammar from text
corpora can be extended to visual, auditory and other sensory domains,
providing a structure for such senses that can be understood in terms of
symbols and grammars. This simultaneously solves the classical “symbol
grounding problem” while also providing a pragmatic approach to devel-
oping practical software systems that can articulate the world around us
in a symbolic, communicable fashion.

1 Introduction

The symbolic approach to cognition is founded on the idea that observed nature
can be categorized into distinct entities which are involved in relationships with
one another. In this approach, the primary challenges are to recognize entities,
and to discover what relationships there are between them.

The recognition problem is to be applied to sensory input. That is, we cannot
know nature directly, as it is, but only by means of observation and sensing.
Conventionally, this can be taken to be the classical five senses: hearing, touch,
smell, vision, taste; or, more generally, scientific instruments and engineered
detectors. Such sensors generate collections of data; this may be time-ordered,
or simply a jumbled bag of data-points.

Out of this jumble of data, the goal of entity detection is to recognize group-
ings of data that always occur together. The adverb “always” here is key: entities
are those things that are not events: they have existence over extended periods
of time (Heidegger’s “Dasein”). The goal of relationship detection is to deter-
mine both the structure of entities (part-whole relationships) as well as events
(statistical co-occurrences and causation). If one is somehow able to detect and
discern entities, and observe frequent relationships between them, then the path
to symbolic processing becomes accessible. Each entity can be assigned a sym-
bol (thus resolving the famous “symbol grounding problem”), and conventional
ideas about information theory can be applied to perform reasoning, inference
and deduction.

The goal of this paper is to develop a general theory for the conversion of
sensory data into symbolic relationships. It is founded both on a collection of
mathematical formalisms and also on a collection of experimental results. The
experimental results are presented in a companion text; this text focuses on
presenting the mathematical foundations in as simple and direct a fashion as
possible.
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In the first section, the general relationship between graphs and gram-
mars is sketched out, attempting to illustrate just how broad, general and all-
encompassing this is. Next, it is shown how this symbolic structure can be
extended to visual and auditory perception. After this comes a mathematical
deep-dive, reviewing how statistical principles can be used to discern relation-
ships between entities. Working backwards, a practical algorithm is presented
for extracting entities themselves. To conclude, a collection of hypothesis and
wild speculations are presented.

2 From Graphs to Grammar

Assuming that sensory data can be categorized into entities and relationships,
the natural representation is that of graphs: each entity is represented by a
vertex, each relationship is represented by an edge. Vertexes are labeled with
symbols, edges with symbol pairs. An example is illustrated below.
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On the left is a conventional sparse graph of relationships between entities. On
the right is the same graph, with some of the edges cut into half-edges, with the
half-edge connectors labeled with what they can connect to. The connectors are
drawn with distinct shapes, intended to convey what they are allowed to connect
to. Such vertices, together with a collection of connectors, can be imagined to
be jigsaw puzzle pieces, waiting to be connected.

The simplicity of the above diagram is deceptive. There is a deep and broad
mathematical foundation: jigsaw pieces are the elements of a “monoidal cate-
gory” [7]. The connectors themselves are type-theoretic types. The jigsaw pieces
are the syntactical elements of a grammar. These last three statements arise
from a relatively well-known generalization of Curry-Howard correspondence:
for every category, there is a type theory, a grammar and a logic; from each, the
others can be determined [2].

The jigsaw paradigm in linguistics has been repeatedly rediscovered [4,11,
13,23]. The diagram below is taken from the first paper on Link Grammar [17].
Syntactically valid sentences are formed whenever all of the jigsaw connectors
fully mated. This fashion of specifying a grammar may feel unconventional; such
grammars can be automatically (i.e. algorithmically) transformed into equiv-
alent HPSG, DG, LFG, etc. style grammars. Link Grammar is equivalent to
Combinatory Categorial Grammar (CCG) [21].
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Compositionality and Sheaves. The naive replacement of entities by vertexes
and relationships by edges seems to have a problem with well-foundedness. If
an entity is made of parts, does this mean that a vertex is made of parts?
What are those parts made of? Is there an infinite regress? How might one
indicate the fact that some entity has a composite structure? These questions
are resolved by observing that a partially-assembled jigsaw puzzle resembles a
singular jigsaw piece: it externalizes as-yet unconnected connectors, while also
showing the connectivity of the assembled portions. Jigsaws resolve the part-
whole conundrum: the “whole” is a partially assembled jigsaw; the parts are
the individual pieces. The way that an entity can interact with other entities is
determined entirely through the as-yet unconnected connectors.

Sheaf theory [8] provides the formal setting for working with such part-whole
relationships. The sheaf axioms describe how jigsaw pieces connect [20]. The
appeal of sheaf theory is it’s broad foundational and descriptive power: the sheaf
axioms describe topology and logic (via the extended Curry-Howard correspon-
dence mentioned above). Natural language can be taken in this broader setting.

Pervasiveness. After becoming familiar with the jigsaw paradigm, it becomes
evident that it is absolutely pervasive. A common depiction of DNA uses jigsaw
connectors for the amino acids ATGC. The antibody (immunoglobulin) is con-
ventionally depicted in terms of jigsaws. Chemical reactions can be depicted as
the assembly of jigsaw pieces.

Composition (beta reduction) in term algebra can be seen as the act of con-
necting jigsaws. Consider a term (or “function symbol”) f (x) with typed variable
x. Constants are type instances; for example, the integer 42. Beta reduction is
the act of “plugging in”: f (x) : 42 �→ f (42). Re-interpreted as jigsaw connec-
tors, the term f (x) is a female-coded jigsaw, and 42 is a male-coded jigsaw. To
connect, the types must match (the variable x must be typed as integer). This
kind of plugging-in or composition (with explicit or implicit type constraints) is
rampant throughout mathematics. Examples can be found in proof theory, [19]
lambda calculus, [3] term algebras [1] and model theory [5].

Vision and Sound. Shapes have a structural grammar, too. The connectors
can specify location, color, shape, texture. The structural decomposition is that it
is not about pixels! The structural decomposition is scale-invariant (more or less,
unless some connector fixes the scale) and rotationally invariant (unless some
connector fixes direction). The structural grammar captures the morphology of
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the shape, it’s general properties It can omit details when they are impertinent,
and capture them when they are important.
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Audio data can also be given a jigsaw structure. On the left is a spectro-
gram of a whale song; time along the horizontal axis, frequency on the vertical,
intensity depicted as a color.

Lopass chirp filter
100 Hz center

Finite impulse filter
2 second fullwidth

Time

A midsection of the song is shown as jigsaws: the number of repetitions (six),
the frequency distribution (its a chirp, which can be discovered with a chirp
filter.) Individual repetitions can be spotted with a finite impulse response filter.
Sensory information can be described in grammatical terms.

3 Symbolic Learning

In order for a graphical, sheaf-theoretic, grammatical theory of structure to serve
as a foundation stone for AGI, there most be a practical algorithm for extracting
structure from sensory data. This can be achieved in three steps. The first step
is chunking (tokenization), the division of sensory data into candidate entities
and interactions. The second step takes a collection of candidate graphs, splits
them into jigsaw pieces, and then classifies jigsaw pieces into common categories,
based on their commonalities. The third step is a recursive step, to repeat the
process again, but this time taking the discovered structure as the sensory input.
It is meant to be a hierarchical crawl up the semantic ladder.

Tokenization, induction of grammar, entity detection and predicate-argument
structure have been experimentally explored in linguistics for decades; a review
cannot be given here. What has been missing until now is a unified framework in
which sensory (visual and audio) data can be processed on the same footing as
linguistic structure. The OpenCog system, specifically the AtomSpace and the
Learn project,1 provide an implementation of that unified framework. Research
has focused on the second step of the above algorithm; extensive research diaries

1 See the “AtomSpace” and “Learn project” in github.
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log the results.2 A summary of these results is presented as a companion paper
to this one. Explorations of the first and third steps have hardly begun. It is
easiest to describe the second step first.

Grammatical Induction. In linguistics, one is presented with a tokenized
sequence of words; the conversion of raw sound into phonemes and then words
is presumed to have already occurred. The task is to extract a more-or-less con-
ventional lexical grammar, given a corpus of text. This may be done as follows.
First, perform a Maximum Spanning Tree (MST) parse; next, split the MST
parse into jigsaw pieces; finally, classify those pieces into lexical vectors. The
process is inherently statistical.

Maximum Planar Graph Parsing. MST parsing is described by Yuret [22].
Starting with a corpus, maintain a count N (u,w) of nearby word-pairs (u,w).
The frequentist probability p (u,w) = N (u,w) /N (∗, ∗) is the count of a given
word-pair divided by the total count of all word-pairs. The star indicates a
marginal sum, so that p (u, ∗) =

∑
w p (u,w) = N (u, ∗) /N (∗, ∗). The Lexical

Attraction between word-pairs is

MI (u,w) = log2
p (u,w)

p (u, ∗) p (∗, w)

This lexical attraction is just the mutual information; it has a somewhat unusual
form, as word-pairs are necessarily not symmetric: (u,w) �= (w, u). The MI may
be negative! The range of values depends on the size of the corpus; for a “typical”
corpus, it ranges from −10 to +30.

The MST parse of a sentence is obtained by considering all possible trees,
and selecting the one with the largest possible total MI. The example below
is, taken from Yuret’s thesis. The numbers in the links are the MI between the
indicated words.

Maximal planar graphs (MPG) (graphs with loops, but no intersecting links)
appear to offer experimentally-observable advantages over trees, they constrain
the grammar more tightly and offer advantages similar to those of catena-based
linguistic theory [14]. MST parses are linguistically plausible: they correspond,
more or less, to what trained linguists would write down for a parse. The accuracy
is reasonably high. Perfect accuracy is not needed, as later stages make up for
this. Yuret indicates that the best results are obtained when one accumulates
at least a million sentences. This is not outrageous: work in child psychology
indicates that human babies hear several million sentences by the age of two
years.
2 See the diaries in the aforementioned project.
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Lexical Entries. Given an MST or MPG parse, the lexis is constructed by
chopping up the parse into jigsaw pieces, and then accumulating the counts on
the jigsaw pieces. This is shown below.

Several kinds of notation are in common use such lexical entries. In tensorial
notation, ball :

∣
∣
∣
←−
the

〉
⊗

∣
∣
∣
←−−−
throw

〉
. In Link Grammar, ball : the−& throw−; the

minus signs indicate connections to the left. The ampersand is the conjunction
operator from a fragment of linear logic; it demands that both connectors be
present. Linear logic is the logic of tensor algebras (by the aforementioned Curry-
Howard correspondence.) Unlike tensor algebras, natural language has a distinct
left-right asymmetry, and so the corresponding logic (of the monoidal category
of natural language) is just a fragment of linear logic. Note that all of quantum
mechanics lies inside of the tensor algebra; this explains why assorted quantum
concepts seem to recur in natural language discussions.

Connector sequences such as
∣
∣
∣
←−
the

〉
⊗

∣
∣
∣
←−−−
throw

〉
are disjoined in the lexis; each

such sequence is called a disjunct. Given a word w, a lexical entry consists of
all word-disjunct pairs (w, d) together with their observed count N (w, d). The
normalized frequency is p (w, d) = N (w, d) /N (∗, ∗) where N (∗, ∗) is the sum
over all word-disjunct pairs. A lexical entry is thus a sparse skip-gram-like vector:

−→w = p (w, d1) ê1 + · · · + p (w, dn) ên

The logical disjunction “or” can be used in place of the plus sign; this would be
the “choice” operator in linear logic (as in “menu choice”: pick one or another).
The basis vectors êk are short-hand for the skip-gram disjuncts

∣
∣
∣
←−
the

〉
⊗

∣
∣
∣
←−−−
throw

〉
.

Similarity. The lexis generated above contains individual words with connec-
tors to other, specific words. Taken as a matrix, the lexis is sparse but still quite
large. To obtain a conventional grammar in terms of nouns, verbs and adjectives,
dimensional reduction must be performed. This can be achieved by clustering
with respect to a similarity metric. A conventional similarity metric is the cosine
distance

cos θ = −→w · −→v =
∑

d

p (w, d) p (v, d)

As a metric, it fails, because the space spanned by these vectors is not
Euclidean space! It is a probability space, with unit-length probability vectors:
1 =

∑
w,d p (w, d). The correct similarity is the mutual information:

MI (w, v) = log2
−→w · −→v

(−→w · −→∗ ) (−→∗ · −→v ) where −→w · −→∗ =
∑

d

p (w, d) p (∗, d)
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Experimentally, the distribution of the MI for word pairs is Gaussian.3 This
is remarkable: it implies that the word vectors are uniformly distributed on
the surface of a (high-dimensional) sphere: a Gaussian Orthogonal Ensemble (a
spin glass) [18]. In this sense, one can see that natural language is maximally
disambiguating.

In this way, after transforming to a sphere, a plain cosine distance be used.
The sphere vectors are given by

⇒
w =

∑
v MI(w, v)v̂. The center of the sphere

must be subtracted, and the vectors normalized to unit length before taking a
dot product.

Classification. In practice, clustering is not straightforward. One wishes to
first cluster the most frequent words first, whereas the highest MI pairs are very
rare. This suggests defining a ranked-MI, adjusted by the average log frequency:

MIrank (w, v) = MI (w, v) +
log2 p (w, ∗) + log2 p (v, ∗)

2
= log2

−→w · −→v√(−→w · −→∗ ) (−→∗ · −→v )

Experimentally, this just shifts the Gaussian to the right.

Word-Sense Disambiguation. Words can have multiple meanings. Two
words may be deemed to be similar, but not all of the disjuncts can be dumped
into a common class; some of the disjuncts may belong to other word-senses.
For example, a portion of the word-vector for “saw” can be clustered with other
cutting tools, while the remainder can be clustered with viewing verbs. This
presents a practical difficulty: off-the-shelf clustering algorithms cannot perform
word-sense disambiguation.

Connectors must also be merged. The rewriting of connector sequences is
subtle, as it affects word-vectors outside of those being merged (the merged
connectors might appear anywhere). To maintain coherency, “detailed balance”
must be preserved: the grand total counts must remain the same both before
and after merge.

Factorization. The clustering described above can be understood to be a form
of matrix factorization. The word-disjunct matrix p (w, d) is factorized into three
matrices LCR as

p (w, d) =
∑

g,g′
pL (w, g) pC (g, g′) pR (g′, d)

where g is a “word class” (e.g. common noun, transitive verb) and g′ is a “gram-
matical relation” (e.g. subject, object, modifier). The matrices L and R are very
sparse, which C is compact, dense and highly connected. A sense of the scale

3 See the Language Learning Diary Part Three, op. cit.
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of factorization can be obtained from the hand-curated English-language dictio-
nary. It consists of about 100K words, 2K word classes, several hundred gram-
matical relations (LG “macros”) and 30 million disjuncts. In other words, the
central component is quite small. Factorization provides an aid to interpretabil-
ity. Instead of a morass of matrix elements, word-classes are recognizable as such,
as is the predicate-argument structure. This is the power of a symbolic, lexical
approach.

4 Chunking/Tokenization

The relatively straightforward tokenization of written English hides the diffi-
culty of chunking in general. How can one obtain a comparable chunking of raw
audio or visual data? The goal is to obtain, by automatic means, a sequence of
transducers, from sounds to phonemes and syllables and words.

High MI?

Haar wavelet
order (2,5)

Filter Sequence B

Chirp
filter

Filter Sequence A

Lo pass filter
  300 Hz

Audio in

Threshold
detector

Threshold
detector

Finite Impulse
Response Filter
1 mSec

A pair of transducers in block-diagram form is shown. The generation of such
sequences can be managed through genetic program (GP) learning techniques.
An example of a GP system is provided by MOSES [9,10]. Given a collection of
“okay” filter sequences, GP can explore both the parameter space to provide a
better tuning, and, by means of mutation and cross-over, generate other filter
sequences. The goal is to find high-quality “feature recognizers”, indicating the
presence of a salient feature in the sensory environment.

Learning in GP systems is guided by maximizing a utility (scoring) function.
But what should that function be, in an unsupervised setting? Just as one discov-
ered structure in language through entropy maximization, one can use the same
ideas here. For all features (filter sets) currently under consideration, one looks
for high-MI correlations. Features that are poorly detected have poor correlation
and low information content; crisp recognizers should be sharply correlated.

The Symbol Grounding Problem and the Frame Problem. An old prob-
lem in philosophy (dating back to Socrates) is the symbol grounding problem.4

When one says the word “chair”, what does that mean? Both extensional lists of
things one can sit and intensional lists of properties fail; they are never complete.
Affordances provide the answer: to be a chair, an object must be sit-on-able. The
DSP filter sequence is precisely an affordance-detector.

A simpler example. If someone says “I hear whistling in the distance”, what
does the word “whistling” actually mean? How to describe it? What is the
4 See the Stanford Encyclopedia of Philosophy, “Frame Problem” and “Embodied
Cognition”.
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grounding for the symbol “whistling”? Filter sequences explicitly manifest the
grounding. “Whistling” is a certain kind of hi-pass filter attached to a chirp filter
with a certain finite impulse response time. That is what “whistling” is. What
else could it possibly have been?

The Frame Problem posits that the number of objects and events overwhelms
the current focus. Entropy-maximizing training of filter sequences solves this.
Mutual information tells you what things “go together”. The grammatical struc-
ture reveals how those things go together. The vast ocean of sensory stimulus
is reduced to a trickle of symbolic relationships, arriving either in a regular,
expected pattern (and thus ignorable), or arriving in unexpected, surprising
ways, demanding attention.

5 Abstraction and Recursion

The above presented techniques for moving from sensory input to the lower
reaches of semantics. Can one go farther, and arrive at common-sense reasoning,
one of the Holy Grails of AGI? The author wishes to argue that the techniques
described above are sufficient to reach up into the highest levels of abstraction
and general intelligence. It is a ladder to be climbed, repeating the same opera-
tions on each new layer of abstraction.

The next few rungs of the ladder can be found in linguistics. The MST parsing
algorithm given above was presented at the word-pair level. When applied at the
semantic level, it becomes the Mihalcea algorithm [12].

In lexical semantics, there is an idea of “lexical implication rules” [15]. These
are rules that control how words used in one context can be used in a different
context. The discovery of these rules be automated: each rule has the form of
a jigsaw, and the algorithm for inferring jigsaws has already been presented.
Jigsaw assembly is parsing: given a set of constraints (for example, a sequence
of words) parsing is the act of finding jigsaw pieces that fit the word-sequence.
Parsing technologies, and their more general cousins, the theorem-provers, are
well-understood.

Lexical implication rules generalize to the “lexical functions” (LF) of
Meaning-Text Theory (MTT) [6]. The MTT is a well-developed theory of the
“semantic” layer of linguistics, sitting atop surface syntax. An algorithm for
learning LF’s is described by Poon & Domingos [16]. The relationship to the
current work is obscured by their use of jigsaws written as lambdas; rephras-
ing as jigsaws makes it clear that it is just a hunt for equivalent jigsaw sub-
assemblies (synonymous phrases). Anaphora resolution, reference resolution and
entity detection are well-explored topics in computational linguistics. The jig-
saw metaphor demonstrates precisely how one can climb the rungs of the ladder:
from pair-wise correlations up to grammars. In the presence of a grammar, we
once again know what is ordinary, and can then renew the search for surprising
pair-wise correlations, this time at the next layer of abstraction.
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5.1 Common Sense

Can this be used to learn common sense? I believe so. How might this work?
Let me illustrate by explaining an old joke: “Doctor Doctor, it hurts when I do
this! Well, don’t do that!”. The explanation is shown below, in the form of a
rule, using the notation from proof theory. The thick horizontal bar separates
the premises from the conclusions. It is labeled as “Joke” to indicate what kind
of rule it is.

Raise elbow

Turn wrist

Motor Sequence H
Anaphora connector

Joke

The “sequent” is the anaphora connector, which connects the word “this”
the a specific motor sequence. Which motor sequence? Well, presumably one
that was learned, by automatic process (perhaps GP), to move a limb. All of the
components of this diagram are jigsaw pieces. All of the pieces can be discovered
probabilistically. All of the connectors can be connected probabilistically. The
learning algorithm shows how to discern structure from what is superficially
seems like a chaotic stream of sensory input. Common sense can be learned.
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