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Preface

This volume contains the papers presented at AGI 2022, the 15th Conference on
Artificial General Intelligence. The conference took place at The Crocodile in Seat-
tle during August 19–22, 2022, and was broadcast live via Zoom and co-sponsored by
SingularityNET’s YouTube channel for online participants and viewers.

Spread over four days, the conference included two full-day and two half-day
workshops, eight keynote lectures, two fireside chats featuring AGI luminaries, two
panel sessions, a code demonstration, eight sessions of in-person and online contributed
papers and talks, two poster video sessions, and a full day of general audience sessions
with leading AGI researchers and leaders.

Learning from our first attempt at a hybrid conference at AGI 2021 in Palo Alto,
California, the AGI 2022 hybrid conference process went smoothly and included
additional time for online paper presentations. In addition to the full-day deep dives into
the NARS and OpenCog/Hyperon AGI systems that have become somewhat traditional
in the AGI conference series, this year’s conference also included half-day workshops
on Interpretable Natural Language Processing and AGI in FinTech, as well as a full-
day demonstration of FutureAI’s Brain Simulator II. The theme for this year’s general
audience day was Ethical Machine Creativity, which culminated in an evening concert
with a spectacular performance by the JamGalaxy band, featuring the Desdemona robot
singing AI-generated lyrics (albeit with some human curation).

Researchers from at least 19 countries attended AGI 2022, either in-person or online.
As always, conference activities spawned numerous deep discussions on incredibly
diverse topics outside of the venue itself.

This volume contains the contributed papers presented at AGI 2022. There were 61
submissions. Each submission was reviewed by at least two (on average 2.54) Program
Committeemembers. The committee decided to accept 31 long papers (51% acceptance)
for oral presentation, and an additional 13 submissions for poster presentations. As usual,
conference presentations and discussions spanned a wide and ever-evolving array of
topics. New this year were discussions on AGI hardware as well as the release of a
major open-source software tool, the DR-Learner.

Speakers and panelists for the general audience day included Sophia Robot (AGI
Ambassador), Joscha Bach (Principal AI Engineer, Intel Labs), Ben Goertzel (CEO,
OpenCog Foundation and SingularityNET andChair, AGI Society), Janet Adams (COO,
SingularityNET), Kyrtin Atreides (COO,AGI Laboratory), Gabriel AxelMontes (Music
Co-director, Jam Galaxy), Charles Simon (Founder and CEO, Future AI), Chris Poulin
(TrueAGIAdvisor), EdKeller (SingularityNET),DianneKrouse (JamGalaxy),Matt Iklé
(CAIO, SingularityNET, and Treasurer, AGI Society), and Douglas Miles (Logicmoo
and SingularityNET).



vi Preface

Three additional keynote speecheswere presentedby researchers fromboth academia
and industry. This year’s speakers and topics were as follows:

• NelsonNiu (Ph.D. student, University ofWashington), “Polynomial Functors: Natural
Formal Models of Interaction”

• Rachel St.Clair (Founder andCEO,Simuli), “ResourceManagement inAGISystems”
• Chris Poulin and Phil Tabor (Co-leader, DR-Learner), “Open Source Deep Reinforce-
ment Learning: Deep Dive”

Also included this year were two fireside chats

• Ben Goertzel and Rachel St. Clair, “Novel Hardware for Enabling AGI and Machine
Creativity”

• Ben Goertzel and Gary Marcus (Founder and CEO, Robust.AI), “Overcoming the
Obstacles Between Here and AGI”

Finally, there was one code demo:

• Dzvinka Yarish (Co-author, DR-Learner), “Demo of Open Source DR-Learner Tool”

We end by thanking everyone who made this successful conference event happen.
This includes all of our sponsors (SingularityNET for their incredible and hard-working
team that helped organize the event and handled the logistics, moderation, and live-
streaming of the conference; the AGI Society for organizing the conference series since
2008; Future AI for their generous financial support as a “Main AGI Session” sponsor;
TrueAGI for their in-kind support; and Springer for their contribution for the best paper
prize as well as their proceedings publishing support). It also includes every one of
our Program Committee members for their dedicated service to the review process, our
contributors, participants, and tutorial, workshop, and panel session organizers, without
whom the conference would not exist.

August 2022 Ben Goertzel
Matt Iklé

Denis Ponomaryov
Alexey Potapov
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A General-Purpose Machine Reasoning Engine

Cengiz Erbas(B)

Hacettepe University, Ankara 06800, Turkey
cengizerbas@hacettepe.edu.tr

Abstract. We are developing a machine reasoning engine that can learn arbitrary
concepts from small number of training samples, and generate explainable models
which can be visualized graphically. In this article, we present our intermediate
results by experimenting with problems that require reasoning with simple arith-
metic, geometric shapes, logical operators, simple program syntax, and regular
and context-free languages.

Keywords: Machine reasoning · Grammar induction · Explainable models

1 Introduction

Even though neural networks and deep learning are successful in solving problems in
numerous domains, there is an agreement that we need new complementary innovations
to be able to achieve human-level AI or more generally AGI [2, 7, 11]. Neural networks
operate at sub-symbolic level, and can learn complex statistical relationships. They are
robust for noise and scale up well. They are the engines of the current phase of AI
revolution. Neural networks however come with their weaknesses. They do not work
well if big data is not available for the problem at hand. They produce models that are not
explainable; and they are fragile in learning symbolic relationships. These weaknesses
seem to be characteristic for all approaches that belong to sub-symbolic AI. We need
new approaches to address them.

This article reports the intermediate results of one such attempt. We are developing a
machine reasoning engine that can learn and discover cognitive relationships that are out
of reach for neural networks, that can do this using only a few training samples and can
generate explainablemodels which can be visualized graphically.We have experimented
with the reasoning engine with problems in multiple domains. The prototype is able to
learn and reason with simple arithmetic and geometric concepts, logical operators, and
the syntax of simple programming language constructs using small number of training
samples and without requiring any problem-specific model development.

The reasoning engine is compute-bound, but fully-parallelizable; and availability
of more computing resources results in faster response. We have completed the imple-
mentation of the prototype in AWS Amazon Web Services [1] and made it accessible
to researchers for experimentation through a web interface. We are in the process of
enhancing the initial prototype to be able to solve more complex problems.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Goertzel et al. (Eds.): AGI 2022, LNAI 13539, pp. 3–13, 2023.
https://doi.org/10.1007/978-3-031-19907-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19907-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-19907-3_1
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2 Related Work

There is a growing literature that aims to address the limitations of neural networks by
borrowing ideas from traditional symbolic AI research. We can mention at least two
categories of research in this area. The first category includes the work to enhance the
capabilities of neural networks so that they can learn “programs”. The second category
consists of the efforts to enhance known symbolic systems, such as inductive logic
programming, to be trainable like neural networks through gradient decent.

An example for the first category is [8]. This work enriched the capabilities of
standard recurrent networks via a large addressable memory to be able to learn per-
forming algorithmic tasks. They developed, what they call, Neural Turing Machines,
which extended the capabilities of neural networks by linking them to external memory
resources. This system does not construct an explicit symbolic representation of a pro-
gram, but learn an implicit procedure that produces the intended results. This implicit
procedure in a way operates at a lower-level model of computation, similar to Turing
machines or pushdown automata, but it is differentiable end-to-end, making it possible
to be trained with gradient descent. This is achieved by defining fuzzy read and write
operations that interact with all the memory elements rather than addressing a single
element as in a normal Turing machine. The experiments demonstrated that Neural Tur-
ing Machine is capable of learning from example data simple algorithms, such as copy
operations, n-grams and priority sort.

As example for the second category, [5] proposed a differentiable Inductive Logic
Programming (ILP) framework. ILP is a set of techniques for constructing logic programs
from examples. The learned program in ILP is an explicit symbolic structure that can
be inspected and easier to understand than a large tensor of floating-point numbers; it
is able to generalize well from a small number of examples; and it enables continual
and transfer learning, as the learned programs are free from side-effects and can be
copied and pasted into the knowledge base. The main limitation of ILP is its inability to
handle noisy, erroneous, or ambiguous data. If training examples contain any mislabeled
data, ILP systems fails to learn the intended rule [3]. Differentiable ILP (dILP) aims to
address the weaknesses of ILP by using neural networks. [5] showed that dILP is able to
solve moderately complex tasks requiring recursion and predicate discovery. The main
component of this work is a differentiable implementation of deduction through forward
chaining on definite clauses. The main limitation of the dILP system is that it requires
significant memory resources, which limits the range of benchmark problems that the
system can be tested with.
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A comprehensive survey of the literature to integrate human designed symbolic
knowledge into neural networks-based models, which is also known as neural-symbolic
computing, can be found in [6]. There are various approaches to represent sym-
bolic knowledge in neural-symbolic systems, such as rule-based, formula-based and
embedding-based [6, 13]. It is worth mentioning two recent articles [9, 10] who explored
regular expressions as ameans to integrate human-designed rules with neural networks1.

3 Machine Reasoning Engine

3.1 Architecture

We are developing a Machine Reasoning (MR) Engine, called ALE – which stands for
Arbitrary Learning Engine. ALE aims to provide reasoning/induction capabilities that
are out of reach for the existing machine learning (ML) techniques. Our vision of how
AGI will be build is based on a combination of ML and MR models, and arbitrary
programs, where MR models integrate with and leverage the existing ML models and
knowledge coded in the form of general-purpose programs, as shown in Fig. 1.

Ar ficial General Intelligence Framework 

MR Models

PMR ML

ML Models

P

Programs

Fig. 1. The output of ML models is not within the space of the input features. The inputs and
outputs of MR models, however, will be within the same design space of concepts. The output
can be fed as an input to the same model recursively to build hierarchy of learned concepts.

If we look at the figure from right to left, it encapsulates three different ways of
building artificial intelligence capabilities, as follows:

1. In its simplest form, intelligent functions can be developed by handcrafting them in
the form of Programs (P). Early work in AI (including Expert Systems) falls into
this category.

2. Alternatively, we can build ML models such as neural networks that demonstrate
intelligent capabilities. ML models may use features extracted using programs as
input to do classification. However, it is important to note that the output of themodel
is not within the design space of the input features. We cannot feed the output of a
model to itself recursively to build hierarchy of learned concepts.

1 This work has been supported by TÜBİTAK under 2232 International Fellowship for Out-
standing Researchers Program (Project No: 118C228). However, the responsibility of the paper
belongs to the author. The financial support does not mean that the content of the publication
is approved in a scientific sense by TÜBİTAK.
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3. MR models will not have this limitation. MR models will operate at the “concept”
level. Both inputs and outputs of MR models will be within the same space of
concepts. The output of an MR model can therefore be fed into the same model
recursively to build hierarchy of learned concepts. MR Models will also be able
to use the existing ML models as well as other programs as input, leveraging the
existing AI systems.

The presentation in this paper focuses on the performance of ALE and the MR
models. The links betweenMRmodels andMLmodels are under development with two
integration scenarios. In the first one, ML model outputs are fed into MR models for
high-level reasoning. In the second, MR models work as feature extractors for the ML
models. This topic will be covered in a subsequent paper.

3.2 Algorithms

ALE applies induction [4] to recognize patterns and to reason about them. It can be
viewed as a scaled-down implementation of Solomonoff’s theory of universal inductive
inference [12] which reduces AI to a search problem within the space of all programs.
Even though this search space is nearly infinite, our experiments show that this framing is
effective when we look for discrete cognitive relationships among concepts. Solomonoff
induction is undecidable. To make the implementation tractable, we made 3 revisions to
tame the expansion of the design space. These are:

1. reducing the search space to context-free expressions,
2. building complexity from simple concepts through compositionality, and
3. exploring the design space using evolutionary mechanisms.

First, ALE avoids undecidability by reducing the design space to context-free expres-
sions, which is sufficient to express many interesting problems, in particular the ones
that are related to human faculties that require language understanding. Second, compo-
sitionality allows building complexity from simple concepts hierarchically, consistent
with how humans understand the nature. For example, we do not model human anatomy
at the atomic level. Rather, we build our knowledge hierarchically: physics works at the
atomic level; chemistry operates at molecular level; biology starts at cellular level, and
so on. ALE applies this exact principle, which in effect, reduces the search greatly, and
enables us to handle complexity. Finally, ALE imitates the nature which creates com-
plexity (and intelligence) through evolution by natural selection. It applies this principle
to eliminate the need to explore unproductive branches within the design space, speeding
up the search.

ALE currently works on decision (classification) problems, and it has supervised
and unsupervised learning capabilities. In the supervised training mode, it searches the
design space to locate the simplest theory to explain the annotated data. In thismode,ALE
can also discover relationships among learned concepts. We will see examples of this
for simple arithmetic and geometric concepts in the next section. In the unsupervised
training mode, it tries to build intermediate (new) vocabulary that can serve to form
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valid hierarchical representations of the training data. We will see an example of this in
Experiment 5 in the next section.

As opposed to the ML models, which consist of large tensor of floating-point num-
bers, and which cannot explain its decisions and actions to human users, ALE generates
explainable models that can be visualized so that the users can inspect and understand
its decision process.

ALE is compute-bound but fully parallelizable. It will be able to scale to consume
all the available processing resources to provide faster response. It is ported to AWS to
be able to leverage the inherent parallelism. We made it accessible to researchers for
experimentation through a web interface at https://www.ale-aws.com. The users will be
able to start with an empty knowledge base, and guide ALE to learn new concepts. There
are over 40 demo scripts that illustrates the general learning and reasoning capabilities
of ALE. The researchers are welcome to create and run their own test cases and provide
feedback.

4 Results

4.1 Command Line Interface

In this section, we provide the preliminary results of the experiments we performed.
We start with a brief overview of the command line interface of ALE. Let’s start with a
simple example. Each line gives a separate command to ALE, where the first letter (u,
l and c) indicates the command, and the rest provides the parameters.

ALE> u E+ xxxx
ALE> u E- x 
ALE> l E 
ALE> c E
ALE> u E? xxx

Here, we are training ALE to learn a concept E from two samples. The first line
provides a positive and the second line provides a negative sample. Thus, the string
“xxxx” is amember ofE, but the string “x” is not. The user can provide asmany training
samples as she likes. The third line asks ALE to learn the concept E; and the fourth line
produces a graphical representation of the model. Having learned the concept, the fifth
line asks ALE if the string “xxx” is a member of E. ALE responds to such questions
with Yes, No, or Unsure. If ALE is unsure, the user can provide additional training
data, invoke ALE update the model, and ask the question again.

4.2 Experiments

We performed numerous experiments to evaluate the general learning and reasoning
capabilities of ALE. The examples are from different problem domains, such as, arith-
metic, geometry, logic, programs, and regular and context-free expressions. In this

https://www.ale-aws.com
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section, we provide the results of 5 of these experiments. To demonstrate generality,
all the experiments are performed with the same ALE executables, and does not require
a problem-specific configuration. Table 1 gives an overview of each experiment, and
indicate the number of positive and negative training samples used.

Table 1. Overview of the experiments.

Experiment Train data count

Positive Negative

1 Odd/even numbers in unary, binary and quaternary form 4 3

2 Rules for integer ranges with logical operators 15 18

3 Learning syntax of recursive function calls in programs 8 12

4 Discovering geometric building blocks of a house image 6 21

5 Learning regular expressions by building hierarchy 2 4

We used the following notation when explaining the training scripts:

[x]n = “x” is repeated n times
[x]* = “x” is repeated 0 times or more
[0–9] = a digit between 0 and 9
[A–Z] = a letter between A and Z

4.3 Training Scripts and Results

Experiment 1: Learning Odd/Even Numbers
This experiment checks if ALE can learn the concept of odd (O) and even (E) numbers
from data in different formats. First, we tried with data in unary format as in [x]n.

Step 1: Provide positive [x]2, [x]8, and negative [x]5 training samples for E
Step 2: Learn E
Step 3: Provide positive [x]1, [x]5, and negative [x]2 training samples for O
Step 4: Learn O
Step 5: Reason with E = [x]4 and E ≠ [x]3

Step 6: Reason with O = [x]3 and O ≠ [x]2 

Here, Step 2 generates a model for E in the form of E= f1(x). Similarly, Step
4 generates a model O= f2(x). Then, we switch to the reasoning mode, and Step 5
and Step 6 generate models E= f3(x, O, E) and O= f4(x, E, O). Then, ALE
can demonstrate full understanding of these concepts by answering arbitrary questions
about the relationships among them, such as:
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O+1 -> E // Adding 1 to an odd number gives an even number
2O -> E   // Multiplying an odd number by 2 gives an even number
2E+3O -> O // 2 even and 3 odd numbers add up to an odd number

In this example, the numbers are provided to ALE in unary format, however, ALE
can learn these same concepts even if the data is provided in other formats, such as,
binary [0–1]* or quaternary [0–3]*. We do not provide any additional information to
ALE about the format of the training data. ALE figures out the concepts O and E all by
itself from the patterns in the data alone, without knowing the underlying format.

Experiment 2: Learning Rules for Integer Ranges with Logical Operators
This experiment checks if ALE can learn rules constructed using logical operators.
Assume that we collected data about the age (represented in 8 bits), education (Low,
Medium, High) and income potential (the concept Z) of individuals within a population.
Assume that the age and the education together determine the income potential, and the
following logical relationship exists in the raw data, but not explicitly stated:

Z = [0-63][H] or [128-191][H] or [128-191][M] 

ALE can discover this relationship from data without any guidance. In this exper-
iment, we provided ALE with (rather arbitrary) 15 positive and 19 negative training
samples. ALE is able to discover this simply in 2 steps as follows:

Step 1: Provide 15 positive and 19 negative samples for Z
Step 2: Learn Z

This generates several models for Z in the form of Z= f(0,1,L,M,H), where 0’s
and 1’s encode the age (in 8 bits), and L/M/H encodes the education. ALE is then able
to respond to the queries accurately.

Experiment 3: Learning Syntax of Recursive Function Calls
This experiment checks if ALE can learn F the syntax of recursive function calls in
programs. A syntactically correct function call includes 0 or more parameters v, where
each parameter can also be another function call recursively. The open and close brackets
for the whole string should match each other, such as:

A(A(v,A(v,v)),A(A(v),v),v) 

We provided 8 positive and 12 negative training samples. Example negative samples
areAvA andAv,v,v). ALE is able to discover the syntax from these 20 training samples
alone. The training sequence is simply as follows:
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Step 1: Provide positive and negative training samples for F
Step 2: Learn F

Step 2 generates a model for F as a function of F= f(A,v,’,’,’(‘,’)’). After
this step, ALE is able to respond to the queries correctly. Examples are:

ALE> u F? A(A(A(x),A(x,x)),A(x,A(x))) // returns YES
ALE> u F? A(A(x),A(x,x)),A(x,A(x,))) // returns NO

Experiment 4: Discovering Geometric Building Blocks for a House Image
This experiment checks if ALE can learn the concept of skeleton of house (H), which
consists of a triangle T (representing the roof) on top of a rectangle R (representing the
body). The training samples are provided as black and white bitmap images on a blank
background. ALE converts them into a 2D array of pixels on/off, as input for training.
The training sequence is simply as follows:

Step 1: Provide 2 positive and 9 negative training samples for R
Step 2: Learn R
Step 3: Provide 2 positive and 8 negative training samples for T
Step 4: Learn T
Step 5: Reason with H with 2 positive and 6 negative training samples

Step 5 expresses H as a function of R and T, and generates a model for H in the form
of H= f(R,T,on,off). ALE is then able to respond to the queries with other bitmap
images accurately. Even though it is trained with houses with 1 and 2 stories, it is able
to generalize it to n stories.

Experiment 5: Learning Regular Expressions by Building Hierarchy
Learning regular expressions from positive and negative training samples is a well-
studied problem [4]. This experiment checks if ALE can learn regular expressions
by building hierarchy, and compares its performance with the literature. As a specific
example, we check if ALE can learn the following arbitrarily picked expression:

A = [012]*[345]7[01]*[223]*

ALE was able to learn this from only 2 positive and 4 negative training data. The list
of positive samples used in this training are:
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[012]5[345]7[01]5[223]4 

[012]8[345]7[01]6[223]4 

Here is the list of negative samples used in this training:

[345]8[012]7 

[345]7[012]6[345]5[223]3 

[012]6[345]4[012]4[01]4[012][223]4 

[01]7[012][223]4[012]4[345]3 

The training sequence is simply as follows:

Step 1: Provide positive and negative training samples for A
Step 2: Explore the design space to select intermediate concept candidates
Step 3: Search (X,Y,Z,W,V) tuples to select the one that explains the data
Step 4: Learn A

Step 3 generates intermediate concepts X,Y,Z,W,V. Step 4 generates a model for
A in the form of A= f(X,Y,Z,W,V,0,1,2,3,4,5). After this step, ALE is able
to respond to the following strings accurately. A graphical illustration of this model is
given in Fig. 2.

Weprovided the same training data to theRPNI algorithm,which is a knowngrammar
induction algorithm [4]. RPNI was able to produce an FSA model, but was not able to
generalize it to the initial regular expression that we started with. Moreover, the model
that ALE produces is modular and provides a better and simpler graphical representation
compared to the FSA that RPNI generates.

To some up, the runtime of ALE for each experiment on Intel Core i7 @ 2.6 GHz
with no GPU accelerator is given in Table 2.

Table 2. Runtime for each experiment on Intel Core i7 @ 2.6 GHz with no GPU accelerator.

1 2 Experiments 3 4 5

Runtime 0.5 min 30 min 12 min 1.5 min 150 min
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Fig. 2. The hierarchical model generated for A= (012)*(345)7(01)*(223)*.Notice that
concept A is a function of V and Z. Concept V is a function of W, and the concept W is a function
of Z, and so on.

5 Conclusion

In this paper, we shared the results of 5 experiments that we performedwithALE, the rea-
soning engine thatwe are in the process of developing. In these experiments,we primarily
focused on demonstrating the general-purpose learning capabilities of ALE. To achieve
this, we picked problems from multiple domains, and performed all experiments with
the same ALE executables, which do not require a problem-specific configuration. ALE
is accessible at https://www.ale-aws.com. The researchers are welcome to experiment
with the 40+ test scripts provided, or create their own tests cases.

Our current research continues in multiple dimensions. First, we are working on par-
allelizing the code to be able to use GPUs, which will reduce the runtime significantly.
Second, we are working on neural network integration to demonstrate a hybrid perfor-
mance. Third, we are also working on the potential use cases for ALE. One promising
example is [14], where we used ALE to discover design patterns for city planning. We

https://www.ale-aws.com
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will continue enhancing the prototype to be able to solve more complex problems that
are closer to the real-world.
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Abstract. The use of Machine Learning (ML) algorithms in opinion mining, par-
ticularly supervised learning algorithms, requires an annotated corpus to train the
classification model in order to predict results that are close to reality. Unfortu-
nately, there are still no resources for the automatic processing of textual data
expressed in the Senegalese urban language.

The objective of this paper is to build a multilingual corpus for opinionmining
(COMFO). The process of building theCOMFOcorpus is composed of three steps:
presentation of the data source, data collection and preparation, and annotation by
lexical approach. The particularity of COMFO lies in the integration of foreign
languages (French and English) and local languages, particularly urban Wolof, in
order to reflect the collective opinion of Senegalese readers.

Keywords: Opinion mining · Online comment · Corpus building · COMFO

1 Introduction

Opinion Mining (OM) [1, 2] is a data analysis technique designed to explore comments
from social networks, commerce sites, news sites, etc. in order to determine the majority
opinion of Internet users. Today, we are witnessing a great deal of interest in this emerg-
ing technique with the use of Machine Learning (ML) algorithms. The application of
supervised learning algorithms in opinion mining requires an annotated corpus to train
the classification model in order to predict results close to reality.

The work we are conducting in this article finds its application context in the explo-
ration of comments from the Senegalese online press. In general, the structure of an
online comment is less organized. The use of punctuation is muchmore present, spelling
mistakes are very common. In addition, these comments are written in Senegalese urban
language. Unfortunately, few resources are available for the automatic processing of
textual data expressed in national languages.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Our objective is to build and make available a corpus of labeled opinions to facili-
tate the use of ML algorithms on Senegalese comments. The major innovation of this
COMFO-built resource lies in the integration of the Senegalese urban language in order
to properly interpret users’ opinions. First, we will review the state of the art of existing
works while insisting on their limitations. Then, wewill describe the annotationmethod-
ology of the COMFO corpus and the evaluation of the experts. In conclusion, we will
sum up the results and announce some perspectives.

2 Related Works

With the multilingual nature of social media data, much recent work in FO (or sentiment
analysis) incorporates multiple formal and/or informal languages. Proksch et al. [3]
presented a multilingual sentiment analysis approach for estimating legislative conflict
in most European parliaments in general. The corpus construction is based on European
parliamentary debates that are automatically translated using the Google dictionary.
The latter provides a reasonable basis for sentiment analysis in different languages.
Grljević et al. [4] presented the first manually annotated Serbian language corpus for
opinions in the field of higher education. Statistical and linguistic analyses of the corpus
revealed useful information for the development of manual sentiment analysis rules.
Hardalov et al. [5] proposed a method for sentiment analysis on a multilingual dataset
from several sources regarding a target. In this paper, the authors presented the results
of a comprehensive study conducted on 15 different datasets in 12 languages from 6
language families.

Although efforts have been made for multilingual sentiment analysis based on a
range of informal languages, no meaningful resources have been built for most local
languages [6]. Comments from the Senegalese online press are written in the Senegalese
urban language. This Senegalese urban language, on the one hand, includes expressions
from several languages (foreign and national) and, on the other hand, modifies the
orthographic and even grammatical characteristics of a language to reduce its length
[7]. It is in this context that we place ourselves to propose COMFO in order to try
to reflect the collective opinion of Senegalese readers. The related works above will
serve as sources of inspiration. Following this section, we will begin the methodology
of construction of our corpus.

3 Constitution of the COMFO Corpus

3.1 Collection and Cleaning of Journalistic Comments

The data that we manipulate, come from Seneweb1. This news site is considered one
of the favorite sources of Senegalese and diaspora Internet users. The enrichment and
proliferation of Seneweb’s data have made this source useful and attractive. For the
collection, we used the OpinionScraper tool [8] which is a scraper for collecting, merg-
ing and formatting journalistic data. In addition, we cleaned this data using regular
expressions.

1 http://www.seneweb.com/.

http://www.seneweb.com/
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In the end, we have 13,500 comments of which 60% are in French (with many
expressions of street or popular French) 37% in urban Wolof and 3% for languages.
Figure 1 is an illustration of sentences constructed from words or groups of words from
several languages including French, English and Wolof.

Fig. 1. Excerpt from Senegalese comments

3.2 Annotation by Lexical Approach

The annotation by the lexical approach consists, on the one hand, in deducing the opinion
expressed by a term with the help of a dictionary or a lexicon of opinions and, on the
other hand, in determining the polarity of a comment through the calculation of the score.

We used SenOpinion [9]which is an opinion lexicon developed to compensate for the
lack of opinion mining resources in the Senegalese context. It is a lexicon composed of
words, phrases and expressions in French or Wolof. This lexicon is exclusively intended
for tagging comments written in Senegalese urban language. In order to find matches
betweenwords fromour analysis database (list of input terms) and those fromour lexicon
without unique identifiers, we prefer to compare strings of letters in order to associate
labels to each term. This description can be translated into machine language to allow
the computer to perform automatic opinion labeling.

The calculation is based on the score measured according to the presence of terms
from the documents in COMFO. For this purpose, we are interested in the result of this
classical calculation (see Fig. 3) (Fig. 2):

• Let C = {t1, t2,…,tn} be a comment composed of n terms t1, t2,…, tn;
• Let P (Polarity) be the value of each term which can be −1 or 1.

The lexical approach has the main advantage of allowing fast computations on large
corpora [10]. However, the implementation of a resource adapted to the needs of specific
applications requires expert evaluation.
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Le score d’un commentaire C, noté Score(C) est par définition la 
somme des polarités de termes qui composent le commentaire

• Si Score(C) > 0 alors C a une orientation positive ; 
• Si Score(C) < 0 alors C a une orientation négative ; 
• Si Score(C) = 0 alors C n’a pas une orientation (neutre).

Fig. 2. Document classification by lexical approach

4 Evaluation of the COMFO Corpus

4.1 Evaluation of Experts

The role of experts is decisive in the process of building a linguistic resource such as
a training corpus. Their job is to verify, correct if necessary and validate the proposed
annotation. The experts are composed of linguists and data scientists. On the one hand,
we have data scientists from the Artificial Intelligence training program of the Virtual
University of Senegal (class 1) and, on the other hand, linguists from the Modern Let-
ter master’s program of the Assane Seck University of Ziguinchor. The experts assign
polarities to the comments.

The validation of the results from the manual annotation is based on the majority
voting system. This voting method determines the final polarity of a comment using the
median calculation. As an illustration, we can see the document polaritiesmore distinctly
in the figure below (see Fig. 4).

Fig. 3. Annotated commentary excerpt
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Once the documents are annotated, we can determine statistics with the data
through the comment level. During the discussion, we will provide precise explanations
concerning the irregularities or inequalities in the evolution of the trends.

4.2 Discussion

In total, we annotated a dataset of 13,000 comments whose statistics are provided in
Fig. 7.

Polarity Resources Tagging Expert Evaluation

Positive 42,7 % 33,4 %
Negative 19,9 % 57,5 %
Neutral 37,4 % 9,1 %

Fig. 4. Statistics of annotated data

Looking at these statistics, we can easily see a big difference between these two
annotation modes. This is due to the fact that the lexical approach compares strings of
letters in order to associate labels to each term. Such an approach ignores negations. The
problem of negations is a challenge that remains in opinion mining even with corpora
written in English. The complexity of negations lies in the fact that they change the
polarity of the comments initially expected. In addition, the complexity of the types of
comments that we have with the expressions from the Senegalese urban language.

5 Conclusion

Ultimately, the construction of an opinion mining corpus requires a lot of human effort,
especially in a contextwhere automatic natural language processing tools are almost non-
existent. It is a more specifically linguistic activity. This data collection and annotation
activity invites the experts to verify and validate the proposed results. This phase is quite
long but allows for much better performance. It provides a clean corpus that can be used
by ML models.

In the rest of our analysis, we will use the expert annotation. This annotation has
integrated negations and Senegalese urban language. This corpus will be made available
to the scientific community for validation purposes of the methods that are experimented
on these types of data. In the future, we plan to extend the experiments onML algorithms
to validate our tool.

Due to themultilingual nature of social media data, analysis based on a single official
languagemay run the risk of not capturing the overall sentiment of online content. Efforts
are beingmade to perform opinionmining or sentiment analysis in amultilingual context
across a range of informal languages.
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Abstract. Artificial approaches to intelligence depend on computational models
to process information and provide intelligent capabilities. Due to the absence
of uniform definitions of what constitutes intelligence and what is information,
the capabilities such models provide differ according to their interpretations of
intelligence and implicit assumptions about what is information. The variety of
interpretations of intelligence and information also indicate that existing computa-
tional models for intelligence provide specialized rather than general capabilities.
The study argues that achieving artificial general intelligence requires a unified,
universal definition of information,whichwould subsequently yield precise formal
insights intowhat constitutes intelligence. The paper provides a definition of infor-
mation as the level of entanglement between two agents—or between an agent and
its environment—measured in bits. Accordingly, intelligence is the agent’s con-
tinuous activity to maintain and maximize its entanglement with its environment
in the face of change. As the level of an agent’s entanglement with its environment
is a direct indicator of its ability to influence it and be influenced by it, we con-
clude that the change in an agent’s information is the primary control signal for
guiding entanglement maximization and, ultimately, the intelligent capabilities of
an agent. The paper then introduces a novel class of agents, the information digital
twin, which enables a system or agent to control its information and quantify its
intelligent activities and enable it to increase its information.

Keywords: Information definition · Entanglement · Information digital twin

1 Introduction

1.1 Computational Models as the Basis for Enabling Intelligent Behavior

Computational models are the dominant metaphor for building intelligent agents and
understanding how the brain perform intelligent tasks [6, 9]. Computational models rely
on algorithms to modify selected variables to imitate, reproduce, or explain intelligent
behavior [5]. On the one hand, the absence of a common understanding of the concept
of intelligence [2] means that the logic used in the various algorithms is dependent on
the assumptions of the algorithm developers, as opposed to a standard, unified logic
of the phenomena. Similar circumstances apply to the selected variables. As there is
no unified understanding of information [3, 14], the selection of these variables, their
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degree of relevance to the activities being modeled, and the relationships between them
dependon themodel developer assumptions ofwhat information is.Consequently, a large
number of computational models capture numerous specific aspects of intelligence (e.g.,
object recognition, language processing, or process automation), but there is no general
framework to integrate, leverage, and expand these specialized techniques to artificial
general intelligence (AGI)-level capabilities.

1.2 The Concept of Information is Central for Understanding Intelligence

When investigating new fields of science and technology, a lack of precise definitions
is a common issue. The construction of efficient heat engines, for instance, was only
possible after the formalization of rigorous and consistent thermodynamics rules. The
same is true for aircraft engineering and aerodynamics, communication systems, and
communication theory. In other words, the development of a general framework for
intelligent computational models requires a formal and consistent definition of infor-
mation and intelligence. Thus, we argue that the relationship between intelligence and
information is comparable to the relationship between heat and heat engines. In other
words, the “substance” of intelligent behavior is information. As a result, providing a
uniform and unified description of information will facilitate the development of more
general computational models for intelligence.

1.3 Proposed Unified Definitions of Information and Intelligence

The task of the study is thus to provide a unifying definition of information, specify
how to understand the phenomena of intelligence based on the definition of information,
and finally define a general computational framework that combines the two notions to
enable AGI. The proposed framework is implemented by a new type of gents we call
the information digital twin (IDT). An IDT is specific to a system, agent, or individual.
Assuming information as the level of agent entanglement with its environment and intel-
ligence as the computations required to maximize that information, the IDT first learns
the amount of information of its agent, monitors changes in that amount as the agent
interacts with its environment, uses the degree of change to guide a search for actions
to recover or increase the previous amount of information, and ultimately provides its
agent with action recommendations. The supported agent can then choose which action
to implement based on its overall objective.

1.4 Approach and Structure

Following the proposed definition of information, and according to control theory, the
study outlines the requirements a system must meet to control its information level. A
general definition of intelligence is then provided as the actions of controlling infor-
mation to achieve agent objectives. After providing a brief introduction to the notion
of industrial digital twins, the information digital twin (IDT) is discussed to indicate
how it implements the computations necessary to capture the agent’s information and
ultimately support intelligent behavior.
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2 A Unified Definition of Information

Introducing newdefinitions in a discipline necessitates comparing how the newdefinition
relates to or differs from existing definitions. However, the current research will focus
primarily on how the suggested definition facilitates an AGI framework. The focus of
later works will be on incorporating the new definition into the ongoing conversation
concerning the meaning of information.

2.1 Information as Entanglement

We propose defining information as the degree of entanglement between two agents or
between an agent and its environment. According to Schrodinger’s concept of quantum
entanglement, “entanglement consists in the fact that a single observable (or set of com-
muting observables) of one system is uniquely determined by a single observable (or
set of commuting observables) of the other” [10, p. 558]. In other words, entanglement
establishes predictability between systems. If a particular state in one system is entan-
gled with a specific state in the other, then knowing one of the states provides precise
knowledge about the other. In quantum mechanics entanglement is an intrinsic charac-
teristic of quantum systems. In the current context, however, entanglement between two
systems or agents is the result of exchanging signals or messages. Assume, for instance,
that agents X and Y each have four distinct states and that each state of Agent X is
entangled with a specific state of Agent Y (see Fig. 1. A). In this case, knowingMessage
y offers a complete knowledge of Message x and vice versa.
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Fig. 1. Entanglement between agents is indicated by their responses to the messages they
exchange. A message consists of one or more signals, and one or more signals represent a state.

The entanglement between Agent X and Agent Y means that each time Agent X sends
a particular message corresponding to one of its states, it has a complete knowledge of
Agent Y ’s response. If Agent X sends a message to Agent Y indicating that it is at state
S2, there is a probability of one that Agent Y will respond with a message indicating that
it is in state Sb, which is entangled with state S2. Entanglement between the two agents
thus shows that for Agent Y, the state Sb can be induced only by a specific message
from Agent X corresponding to state S2 or by any other agent capable of producing an
identical message. Entanglement then enables a system to predict its environment and
be predictable by other agents in it, which is a prerequisite for effective collaboration.
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2.2 Systems for Entanglement—Increasing Interactions Predictability

Entanglement can be considered to occur as a phenomenon anytime systems or agents
interact with one another or with their environment in general. Such interactions rely on
a variety of what might be called systems of entanglement. Language is an example of an
entanglement system.Assuming a community speaks the same language, each individual
can confidently assume that others associate the same unique concepts or behaviors with
an object such as a book. That is, the word “book” is entangled with specific concepts
that are evoked whenever the word is used. The four arbitrary symbols (letters) making
up the word book in that specific sequence are already associated with a specific set
of physical objects (books) and they cannot be used to describe, for example, a tree.
However, all language users can agree to dis-entangle the word book from the objects
and concepts it represents and re-entangle it with a new set of objects and concepts,
which is how languages actually evolve.

Cell communication, as well as communication in general, is another example of an
entanglement system. When a cell sends a signal to neighboring cells, the sender cell
can typically predict the signals produced by the receiving cells as a response. On the
flip side, it is possible to infer that a particular trigger signal was received by a cell by
examining its signaling activity. In other words, a cell establishes entanglement between
the signals it receives from its environment with the ones it sends back. Another example
of a system for entanglements is the DNA. During transcription, the DNA establishes
predictable, particular dependencies between one form of signal (RNA polymerase)
and another type of signals, the mRNA. In general, and assuming normal conditions,
knowing one signals provides precise knowledge of the other one.

There are systems of entanglement in every element of life where agents interact.
Their primary objective is to guarantee the predictability of different action-response
relationships among the various agents, i.e., to ensure a reliable degree of entanglement
that facilitates successful cooperation.

2.3 Information—Measuring Agent Level of Entanglement

The first step for an agent to manage and control its entanglement with its environment
is to quantify it. As demonstrated in the above examples, the probability that an agent
reacts to a message is a direct indicator of the extent of its entanglement with the source
of that message. If, in Fig. 1. A, each time Agent Y receives message S3, it responds
with message Sc, then Agent Y can assign probability of “one” to the entanglement of
this interaction. However, if Agent Y begins to respond with Sc just 8 out of 10 times,
then the probability of its entanglement drops to 0.8.

The corresponding information value calculation is based on Shannon’s communica-
tion theory [11] and is used as themetric for an agent tomeasure its level of entanglement
and generate a control signal to manage it. Consequently, (see Fig. 1. B) Agent X level
of entanglement is two bits of information, as all its four states are entangled with their
surroundings. The same holds for Agent Y. However, the situation is different for Agent
Z, as just three of its states are entangled with the environment, resulting in entanglement
value of 1,58 bits.
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However, Agent X may entangle with its surroundings by communicating 16 mes-
sages that reflect a mix of its four states. However, its actual amount of entanglement,
i.e., its information, is contingent on its ability to compel its environment to react to each
of the 16 messages with a unique response message. If it succeeds, then its information
is equivalent to 4 bits. However, if any of the corresponding responses occur with a
probability of less than one, then Agent X inforamtion decreases proportionally.

3 Agents Need to Control Their Entanglement to Achieve Their
Objectives

Agents interact with their environment to achieve specific goals. For example, animals
interact with their surroundings to obtain energy, avoid danger, and reproduce. Artificial
agents interactwith their environment to fulfill predefinedobjectives, such asmaintaining
a flight route or maximizing a specific process output. In any interaction scenario, agents
rely on their sensors to provide the values of the relevant parameter to their task, and on
their effectors tomodify these parameters in away they believewill provide some desired
results. Consequently, the sensors and effectors are the means through which agent-
environment entanglement is achieved. Nevertheless, the agent-environment entangle-
ment is subject to two significant sources of uncertainty: unforeseeable changes to the
agent’s operational conditions and communication uncertainties. Accordingly, for an
agent to accomplish its goals, it must manage both sources of uncertainty.

3.1 Agents Predictability Ensures Their Performance

Unanticipated changes in the environment or erosion of the agent structure would lead to
variation in the effective range of the sensors or effectors, their transduction efficiency,
or their numbers. In addition, while the agent exchanges messages with its environment
(i.e., communicates with it), this communication is prone to noise-induced uncertainty
[12].

Both forms of uncertainty alter the probability that different signals and messages
will produce the same reactions. The system’s capacity to predict its environment
and behave predictably is reduced accordingly. Even if the overall degree of agent-
environment entanglement in bits remains constant, uncertainties alter the patterns and
interdependence among the individual messages.

An agentmust then continuously evaluate and adjust its level of entanglementwith its
environment as it provides a direct indication of its performance.Moreover, an agentmay
utilize changes in the degree of entanglement to guide its actions towards maintaining or
improving its performance. An agent then needs a way to regulate its information value,
i.e., its level of entanglement with its environment.

3.2 Elements of a Control System

In general, there are three prerequisites for controlling a variable [1]. First, it must be
quantified, i.e., a measure representing its changes must be devised. The second step
entails evaluating a divergence from a desired target value, i.e., providing a control



Information as Entanglement—A Framework for Artificial General Intelligence 25

signal. The third condition is to define a relationship between the control signal and the
factors influencing the variable’s value. The temperature management in a room is a
typical example of a control system (see Fig. 2). Initially, the quantity of heat inside a
room ismeasured in terms of temperature. Second, a control signal is calculated based on
the difference between the desired room temperature and the actual temperature. Lastly,
a controller is used to correlate the value of the control signal to a quantity of energy to
the heater.

Actual Temp.

RoomEnergy

Desired Temp.

Control Signal

Controller Heater

Sensor

Fig. 2. General feedback control systemcomponents.Acontrol signal is required for the controller
to select the appropriate energy level to achieve the desired temperature.

For an agent to control its entanglement with the environment, it must then provide
the following: a metric indicating the level of its entanglement, a control signal that
determines changes in its entanglement, and a mechanism that modifies the level of
entanglement based on the control signal. Assuming information, measured in bits, as
the entanglement metric satisfies the first requirement. The next paragraphs present how
an agent can meet the other two requirements.

3.3 Defining an Entanglement Control Signal

When Agent X sends a message to Agent Y, it can only determine Y ’s reaction through
its own sensory states (Fig. 3. A). That is, regardless of how Y actually responds, Agent
X can only assess the response by analyzing its own sensory states as they capture
Y ’s response message. Accordingly, the only observable entanglement for Agent X is
between its output states and corresponding input states, or between its output and input
messages corresponding to each state. Agent X can then evaluate its entanglement with
its enviroenmtn based on the entanglement between its output and input messages.

If every time Agent X sends a messageMa to the environment, it receives a message
Mt, the two messages become entangled with probability of one. If, however, out of ten
times of sending message Ma, seven times the message Mt is received, and three times
message Mx, then the Ma-Mt entanglement decreases and the Ma-Mx entanglement
increases.

The probabilites involved across all corresponding input-output messages are then
used to calculate the overall agent level of entanglement. In addition, monitoring the
input-output entanglement value over time provides a control signal indicating the
variations in its value (see Fig. 3. B).



26 W. Hafez

A B
Agent X

Agent Y
I/P O/P

M
es

sa
ge

 m
 

M
es

sa
ge

 n
 

I/P O/P

Information
Agent X Control Signal

Fig. 3. Calculating the level of entanglement between the input and output messages—based on
their probability—to obtain the entanglement control signal.

3.4 Defining an Entanglement Controller

The final prerequisite to enable an agent to manage its entanglement is the controller:
how to use entanglement variations—the control signal—to correlate the input and out-
put states to maintain or increase the agent information (Fig. 4). The controller includes
the rules and logic that, given: a specific objective, an input message, and a control signal
selects an output message (action) to send back to the environment. It is understandable
that, for a complicated system, the controller’s activities and logic may also be exceed-
ingly complex; yet the point here is that the controller depends on the control signal to
guide its actions.

I/P O/P

I/
O

C
or

re
la

tio
n

Controller

Fig. 4. The controller determines the necessary input-output state interdependence for the agent
to attain its objectives.

3.5 Agent Architecture for Managing Entanglement Under Uncertainties

The relationship between the various elements for controlling entanglement is depicted in
Fig. 5. As previously established, for an agent to accomplish its goals, it must compel the
environment to send back desired input. Thus, given a particular objective, the controller
chooses an output message to send to the environment and causes it to respond with an
input message. If the response satisfies the system’s objective, the input-output messages
are entangled, and the amount of agent information grows. If the received message is
not the desired one, or if the message is no longer desired, the controller decouples it
from the related output message and begins searching for an alternative output message
that would provide the desired outcomes.

The ability to simulate the effect of selected outputmessages on the level of entangle-
ment is a defining characteristic of the configuration depicted in Fig. 5. In other words,
the input-output entanglement assessment module can provide the controller with a sig-
nal indicating how effectively a selected output affects entanglement. The controller may
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then choose to retain the output message or “try another one” to maintain or increase
the agent’s entanglement level.
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Fig. 5. General architecture for entanglement management.

4 The Information Digital Twin (IDT)

“A digital twin is a digital representation of a real-world entity or agent. The implemen-
tation of a digital twin is an encapsulated software object or model that mirrors a unique
physical object, process, organization, person, or other abstraction” [4]. Digital twins
are used to maximize the performance and lifetime of equipment by monitoring a piece
of equipment in real-time, comparing actual performance to expected performance and
predicting deviation, and intervening according to set rules. Digital twins are commonly
employed to support equipment like jet engines, wind turbines, or even human organs.
An information digital twin (IDT) is thus an agent that supports a system or another
agent in predicting its environment and being predictable by it [8, 11] (see Fig. 6).
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Fig. 6. Information Digital Twin which enables an agent to manage its information (level of
entanglement) as it interacts with its environment towards some desired goals.

The increased agent-environment mutual predictability increases their ability to col-
laborate and automate their interactions. The IDT accomplishes this by monitoring the
agent’s information value, predicting its variations along with agent-environment inter-
actions, and providing actionable recommendations to allow the supported agent to
maintain or increase its level of information (i.e., entanglement with its environment).
The IDT is a universal agent and does not rely on the kind or function of the system,
artificial agent, or person it supports. The IDT provides thus an additional, general con-
trol dimension to enable an agent to improve its performance. The IDT executes four
basic and interdependent computations:



28 W. Hafez

1. Represents input and output messages and signals following a probabilistic data
structure that enables a continuous evaluation of their probabilities.

2. Learns (using machine learning) signal and message dependencies and patterns.
3. Based on the learned patterns, calculates a real-time value of the agent information,

i.e., the level of agent-environment entanglement in bits, and its variation over time
as an information control signal.

4. Based on the learnedmessage patterns and dependencies (step 2) and the information
fluctuations (control signal) as rewards (step 3), the IDT uses reinforcement learning
to search for potential input-output message dependencies that would improve the
information value, i.e., the agent’s entanglement with its environment.

So far, we have developed the general architecture of the IDT with the necessary
data standards (step 1) as well as the algorithms for steps 2 and 3.

5 Discussion—Information as a General Metric for Intelligence

The study suggested that developing a computationalmodel ofAGI necessitates a general
metric, which is characterized as the system or agent’s level of entanglement with its
environment. Similar to how any material flow between a system and its environment
alters its energy, any message exchange between an agent and its environment alters
its information. Even when the net change, in either case, is zero, changes can be still
observed as a shift in the energy distribution or entanglement patterns across the system
parameters or messages. In other words, information, as defined in the study, reflects any
message exchange between a system or agent and its environment. As such, information
is a general metric which can be used to quantify and compare the activities and choices
underlying these exchanges.

Agent-environmentmessage exchanges towards some objectives is a diverse activity.
Itmay, for example, include interpreting the significance or relevance of input signals and
messages, determining themost relevant response or sequence of responses leading to the
system goals, capturing changes in the environment, adjusting objectives and responses
accordingly, and, in the case of living systems, developing new messaging capabilities,
i.e., new sensory and motor signals, or retiring ones that are no longer relevant. The
efficiency and speed with which a system does these tasks reveal its intelligence [2,
7]. On the other hand, each and every one of these activities modifies the probabilities
and dependencies of the involved signals and messages and accordingly the agent’s
information.

A key feature of the information control architecture depicted in Fig. 5 and enabled
by the IDT is that all messages have two copies; one is used—without modifications—
by the “I/O Ent.“ module to calculate agent information and the other is modified and
altered by the “Controller” module to best achieve the agent objectives. Manipulation
refers to the controllermodifying themessage structure and its probability of interactions
with other messages in its search for the optimal actions and responses to accomplish
the agent’s goals. We believe the proposed information control architecture has broad
similarities with the thalamus-cortex configuration [13] and might provide insights into
brain intelligent activities as well.
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6 Conclusion

Developing models of intelligence remains challenging. The research argued that intel-
ligent behavior increases an agent’s ability to interact with its environment, i.e., increase
the number of signals and messages it can send to and receive and their associated prob-
abilities. The agent’s capacity to communicate is ultimately indicated by how well it can
predict the environment and be predictable by it, which is defined as entanglement. As
entanglement depends on communication and the probabilities of how various signals
and messages are used and depend on one another, information is then suggested as
the metric for measuring entanglement. The coupling of information and entanglement
provides a unified, general definition of the nature of information, which then offers a
unified general metric for quantifying intelligent activities. Information as a general met-
ric offers an additional control dimension for directing intelligent actions. The described
method is implemented by introducing the information digital twin, which is specialized
in predicting the impact of system actions on its information and recommending actions
to retain its value or improving it.

References

1. Bubnicki, Z.: Modern Control Theory. Springer, Heidelberg (2005)
2. Chollet, F.: On the measure of intelligence. arXiv:1911.01547C (2019)
3. Floridi, L.: Open problems in the philosophy of information. Metaphilosophy 35(4), 554–582

(2004)
4. Gartner. https://www.gartner.com/en/information-technology/glossary/digital-twin. Last

Accessed 13 Mar 2022
5. Gershenson,C.: Intelligence as information processing: brains, swarms, and computers. Front.

Ecol. Evol. 9(755981) (2021)
6. Gershman, S., Horvitz, E., Tenenbaum, J.: Computational rationality: a converging paradigm

for intelligence in brains, minds, and machines. Science Magazine 349(6245 273), 273–278
(2015)

7. Goldstein, S., Princiotta, D., Naglieri, J. (eds.): Handbook of Intelligence. Springer, NewYork
(2015)

8. Hafez, W.: Information Digital twin—enabling agents to anticipate changes in their tasks. In:
Goertzel, B., Panov, A.I., Potapov, A., Yampolskiy, R. (eds.) AGI 2020. LNCS (LNAI), vol.
12177, pp. 183–192. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52152-3_19

9. Rescorla, M.: The computational theory of mind. In: Zalta, E. (ed.) The Stanford Encyclo-
pedia of Philosophy. https://plato.stanford.edu/archives/fall2020/entries/computational-mind
(2020)

10. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc.
the Camb. Philos. Soc. 31(4), 555–563 (1935)

11. Semarx Research Ltd. http://www.semarx.com
12. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423

(1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
13. Murray Sherman, S., Guillery, R.W.: Functional Connections of Cortical Areas: A New View

from the Thalamus. TheMITPress (2013). https://doi.org/10.7551/mitpress/9780262019309.
001.0001

14. Van Benthem, J., Van Rooy, J.: Connecting the different faces of information. J. Log. Lang.
Inf. 12, 375–379 (2003)

http://arxiv.org/abs/1911.01547C
https://www.gartner.com/en/information-technology/glossary/digital-twin
https://doi.org/10.1007/978-3-030-52152-3_19
https://plato.stanford.edu/archives/fall2020/entries/computational-mind
http://www.semarx.com
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.7551/mitpress/9780262019309.001.0001


Causal Analysis of Generic Time Series Data
Applied for Market Prediction

Anton Kolonin1,2,3(B) , Ali Raheman1, Mukul Vishwas1 , Ikram Ansari1 ,
Juan Pinzon1 , and Alice Ho1

1 Autonio Foundation Ltd., Bristol, UK
akolonin@gmail.com

2 SingularityNET Foundation, Amsterdam, The Netherlands
3 Novosibirsk State University, Novosibirsk, Russian Federation

Abstract. We explore the applicability of the causal analysis based on tempo-
rally shifted (lagged) Pearson correlation applied to diverse time series of dif-
ferent natures in context of the problem of financial market prediction. Theoret-
ical discussion is followed by description of the practical approach for specific
environment of time series data with diverse nature and sparsity, as applied for
environments of financial markets. The data involves various financial metrics
computable from raw market data such as real-time trades and snapshots of the
limit order book as well as metrics determined upon social media news streams
such as sentiment and different cognitive distortions. The approach is backed up
with presentation of algorithmic framework for data acquisition and analysis, con-
cluded with experimental results, and summary pointing out at the possibility to
discriminate causal connections between different sorts of real field market data
with further discussion on present issues and possible directions of the following
work.

Keywords: Causality · Causal analysis · Correlation · Financial market · Time
series

1 Introduction

1.1 Background for This Work

The motivation of this work is to figure out a suitable general purpose algorithmic
framework capable of figuring out causal connections across diverse time series data
from different sources, including sparse and unreliable ones. Themotivation is supported
by our further work on the generic architecture for active portfolio management [1]
employed by automated adaptive trading and market making agents [2] which need to
be capable to do predictions in respect to future market dynamics relying on diverse
temporal streams of data. This includes market data, social and online media news,
as well as so-called “on-chain” data computed from transactional activities on public
financial ecosystems such as blockchains.
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While we understand that the operations being performed by a hypothetical com-
pletely autonomous trading or market making agent might be considered as a narrow
artificial general intelligence (Narrow AGI), we want to have the operational environ-
ment of it to gain as much reach as possible, maximizing its capabilities for intelligent
decision making based on wide range of information sources, including market data and
technical indicators from different exchanges, fundamental and “on-chain” data, and
sentiment and emotional data from online and social media sources. That is why in this
work we explore the possibility of causal analytics for market prediction purposes for
as much information as possible given rather specific business case of the Bitcoin price
prediction on Binance exchange for BTC/USDT pair referring to Tether USD stable
coin.

1.2 Overview of the Field

The fundamental background for probabilistic causal analytics can be found in [3] with
application of predictive causal analytics to financial markets discussed in [4]. The
recent study of causal analytics applied to time series data is covered in [5]. Application
of sentiment analysis in respect to causal analysis of sentiment data and market volatility
on its basis is presented in [6]. The variety of features, metrics, and parameters then can
be derived from the market data, including the structure of the limit order book (LOB)
snapshots is covered in [7] and [8]. Finally, the very latest study discovers the connection
between patterns in political and economic history with so-called “cognitive behavioral
schemata” (CBS) patterns traditionally used in psychotherapy [9]. All the mentioned
studies have been accounted, extended and tailored to the specific problem in hands as
discussed further.

2 Practical Approach

2.1 Data Acquisition

Given the practical objective of our work is providing operations on crypto exchanges
such as Binance and the crypto finance is a domain being actively discussed on social
media channels such as Twitter and Reddit, we have tried to collect as much as possible
data from both kind of sources.

Market Data. In particular, the present data acquisition framework streams the live
market data fromBinance exchange, including both raw trades and snapshots of the LOB
at different sampling rates or granularity periods including 1 day, 1 h, 1min, and 1 s. Both
sorts of thementioned “raw” data were used to compute the “pre-processed” data such as
extended open-high-low-close-volume (OHLCV) frames, including volumes and counts
of “buy” and “sell” (from the regular trader perspective) traded, average prices for “buy”
and “sell” trades, including regular averages as well as weighted averages using both
base and quote currency for the averaging weights. All the counts, volumes, and average
prices for “buy” and “sell” are used to compute “imbalance” metrics indicating the skew
of the distribution towards either “buy” or “sell”. That is, we have substantially extended
the scope of features used in [7]. The use of LOB data has been rendered useful in [8], so
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we include more metrics shaping the distribution of the orders such as minimum “ask”
and maximum “bid” prices, average “ask” and “bid” prices with the averages weighted
by order volumes, “spread” and average “spreads” between different sorts of the “ask”
and “bid”, order volumes on each of the order book sides and all sorts of imbalances
on these “ask”/“bid” prices and volumes. The overall scope of the market data for the
BTC/USDT pair discussed in this work was covering almost 1.5 years fromAugust 2020
till December 2021.

The “pre-processed” data described above have been normalized in different alter-
native ways in order to turn them into stationary state in range between [−1.0, +1.0].
All the data was differentiated so the derivatives were computed on basis of the raw
data. Next, the differentiated data and the raw data has been turned too non-negative
logarithmic scale using operation log10(1+ x). Finally, from this point, both differenti-
ated and non-differentiated, logarithmic and non-logarithmic data has been normalized
using operation x/max(abs(x)) to ensure the range [−1.0, +1.0] regardless of the met-
ric sign. It worth noticing that at the earlier phase of the work different normalization
schemes were applied, however it was found that some of the metrics perform better in
the representations other than expected, so eventually we have decided to apply all sorts
of normalization to every metric at the cost of increased number of times series involved
in the analysis on the following phase.

Media Data. Two kinds of metrics were derived from the online social media data:
public posts from about 80 channels on Twitter and Reddit relevant to crypto market for
six months starting July 2021. First, it was the conventional sentiment as presented in
[6], computed as described below. Second, it was the “cognitive behavioral schemata”
(CBS) patterns evaluated according to [9]. The overall volume of the media content was
exceeding 100,000 posts across all channels.

The sentiment metrics were computed with help of Aigents®, which is “inter-
pretable” model based on “n-grams,” available as part of https://github.com/aigents/
aigents-java distribution and written in Java, which comes with “out-of-the-box” vocab-
ularies for n-grams associated with positive and negative sentiment. It has over 8,200
negative and over 3,800 positive n-grams and returns the overall sentiment/polarity of
the text based on the frequencies of occurrences of the reference n-grams in the text along
with independent positive and negative sentiment metrics. One of the specifics of the
model is implementation of the “priority on order” principle as discussed in [10]. In the
Aigents®-specific implementation it means precedence given for n-grams with higher
“n”, so whenever any n-gram is matched, all matches of any other n-grams being parts of
the former n-gram are disregarded. For instance, if tetragram [“not”, “a”, “bad”, “thing”]
is matched, then both bigram [“bad”, “thing”] and unigram [“bad”] are disregarded and
discounted. Similarly, matching bigram [“no”, “good”] disregards and discounts both
constituent unigrams [“no’] and [“good”]. In addition to that, the model has an option
to provide logarithmic scaling of the counted frequencies and our studies have revealed
that by enabling this option it provides better performance. The model provides four
basic sentiment metrics, so that, instead of addressing the sentiment analysis problem
as a plain classification (‘Positive’ vs. ‘Negative’ vs. ‘Neutral’), we were treating it as

https://github.com/aigents/aigents-java
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a multinomial classification problem in four independent dimensions corresponding to
the individual metrics discussed below:

sentiment (sen) – overall or compound sentiment/polarity in range [−1.0, +1.0], so its
value can be either negative or positive;
positive (pos) – canonical positive sentiment assessment in range [0.0,+1.0], so its value
can be only positive;
negative (neg) – canonical negative sentiment assessment in range [−1.0, 0.0], so its
value can be only negative;
contradictive (con) –mutual contradictiveness of the positive and negative assessments
computed as SQRT(positive * ABS(negative)).

All of the media metrics computed on basis of individual posts were aggregated
as mean/average per channel across all channels on either daily or hourly basis and the
aggregatedmean values were in turn normalized using operation x/max(abs(x)) to ensure
the range [− 1.0, +1.0].

2.2 Analytical Framework

Since the practical and goal of the study was the prediction of the market price, our
causal analytical framework was considering the price movement as a target “effect”
and all the other metrics as a potential “causes”. While the earlier work [7] refers to
stationary function of “log-return” as a target, we were dealing with price difference
(price derivative, PD) after finding that fundamental nature of results presented further
does not depend on that choice while use of PD had turned to be handier in practical
applications. That is, the PD was considered as the “effect”.

The conceptual causal frameworks [3] and [4] justifying our studies has turned
difficult to implement literally due to the lack of clearly identifiable “events” in the time
series data, even assuming the data is represented by stationary functions in the range
[−1.0, +1.0]. It was tempting to consider determination of events such as “price goes
up”, or “there is positive sentiment” but it was clear that it could be done on basis on
some thresholds which would be either subjective or become a source of extra errors
and uncertainties or both. On the other hand, the formal assessment of probability of
such “event” would become another problem. One would suggest using the values of
the “effect” and “cause” metric functions in the range [−1.0, +1.0] as probabilities
but it could be ambiguous either because of diversity of scaling factors for individual
metrics being forcefully aligned to the same normalization range. After all, we ended
up following the approach of temporally lagged/shifted correlation analysis applied to
time series data as described in [5] and [6]. That is, we were considering the causation
as the preceding correlation, or correlation of the “cause” function with the “effect”
function shifted back to certain lag on the temporal axis.

Given the rich data that we had, we were performing the causal analysis in three
dimensional space, with time t being the first dimension, channel c being the second
dimension and the metric m being the third one. The channel might be either actual
Twitter or Reddit channel used to derive the media metric or some source of the market
data (such as Binance) or “on-chain” data (such as Bitcoin) or third-party sources (such
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as Santiment or Glassnode services discussed further). The metrics would be specific
in respect to the channel. The results presented in the next section were derived on
basis of 80 media channels with 21 metrics in each and 111 metrics in single market
data channel corresponding to BTC/USDT trading pair on Binance exchange, so 1791
potential “causes” were explored in total, in different time sampling rates such as day,
hour, minute and second.

Fig. 1. Search for preceding correlation between the effect PD and synthetic additive cause indi-
cator (SACI) on different temporal horizons measured as shift of the effect function back in time
(negative shift to the left) or forward in time (positive shift to the right). The left bar charts present
respective Pearson correlation (PC) of the shifted price with SACI assembled using different sets
of media metrics across all Twitter and Reddit channels (top to down): sentiment with CBS with
word count and post count, sentiment with CBS, CBS only, sentiment only – everything on daily
basis. The right bar charts present PC of the shifted price with SACI assembled using all market
metrics based on Binance data (top to down): on daily basis, on hourly basis, on minutely basis,
on per-second basis.

The key studywas the process of findingwhatwe called synthetic additive cause indi-
cator (SACI) relying on the whole scope of sourcemetrics being treated as a hypothetical
causes. The probabilistic logic treats addition as logical disjunction and multiplication
as logical conjunction. In this work we were exploring only the disjunctive version of it,
so the assembly of the integrative SACI was involving addition of the perspective causes
in order to maximize the correlation with the effect at a particular target shift/lag. See
the discussion on the SACI performance presented on Fig. 1 in the following section.

The temporal causation study was run evaluating different time shifts/lags in days
[−10, +10] computing mutual Pearson correlation (PC) between each of the potential
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Fig. 2. Presentation of the “representability weight” of each of the media channels involved in
the search for the SACI on daily basis, the study is showing that account on the weight while
assembling the SACI improves the fitting of the cause-effect correlation on the training data set.
The top channels with the weight equal to 1.0 have posts on every day while channels at the bottom
with the weight close to zero have just few posts per month/week.

causes and the price difference and retaining the “correlation weights” of the com-
puted value P(l,c,m) for every time lag l, news channel c, and metric m. Also, the
channels c were optionally weighted with the “representability weight” asW(c) accord-
ing to the percentage of days (or hours) with news present on such time intervals, as
shown on Fig. 2. Then, for every lag l, the compound SACI metric time series Y(l,d)
= ΣX(c,m,d) * P(l,c,m) * W(c) for every day d have been built from the original raw
metrics X(c,m,d). The compound SACI metric building process was implemented start-
ing from channels with the highest W(c) and P(l,c,m) adding ingredients up to Y(l,d)
incrementally, as long as the correlation between the target price difference function and
the current content of summed up Y(l,d) series for given time lag l keeps increasing.

3 Experimental Results

The causal connectivity as a preceding correlation has been studied on the full scope of
the media and market data described above with major results presented on Fig. 1. It is
clearly seen that ability to build thewell-correlated SACI frommedia data at the point one
day before the anticipated “effect” is dominating all other time lags/shifts so we can with
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Fig. 3. Study of the “correlation weights” for one single media channel being part of the model as
preceding PC at shift/lag one day before an “effect”, showing that the most impactful on the price
change appear to be the specific cognitive distortions called “labeling” and “catastrophizing”. The
positive weight means that either increase of these distortions is preceding price increase, which
appears more reasonable due to the expectedly speculative nature of the crypto market or decrease
of them is preceding the price decline. It is noticeable that negativeweight of the “overgeneralizing”
distortion apparently corresponds to the opposite – either increase of this distortion is preceding
price decline, which appears more reasonable, or decrease of it is preceding the price increase.
In accordance with the findings discussed regarding the Fig. 1, the sentiment metrics (pos, con
and neg) appears much less impactful in respect to the price change, rendering the high degree of
contradictiveness in respect to each other.

a greater certainty state that some combination of themetrics represented by the “model”
of the SACI is having the causal connection with the target price change. In turn, the
“model” of the SACI represented by the number of the channels and metrics involved in
it along with their “correlation weights” and “representability weight” are determining
the fine-grained causal structure of it discussed further. It is also seen that sentiment
doesn’t have significant impact on the causation alone (PC = 0.56), the involvement of
word and news counts make the results a little bit worse (PC going down from 0.8 to
0.78), the CBS alone provides PC = 0.79 and CBS with sentiment together bring it to
the maximum (PC = 0.8).

While the sentiment metrics have appeared promising thus far, the market metrics
have turned to be substantially less inspiring. The daily study for market metrics on
Fig. 1 do render promising correlation of the SACI one day before the “effect”, however
the low PC = 0.25 at this shift is much less than in case of using media metric and
there is much more expressive correlation coinciding with the “effect” at zero shift/lag
with almost the same PC value (negative in this case). Moreover, the studies for hourly,
minutely and by-second sampling rates do not render noticeable preceding correlations
at all.

The extra data involved for this kind of analysis were the pre-syndicated media,
market and related data by third-party providers. Specifically, we explored the daily and
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Fig. 4. A Study of the “correlation weights” for the market metrics, showing the less expres-
sion of the preceding PC at one day shift/lag before an “effect”. The capital letters in feature
suffixes correspond to involved “pre-processing” applied in left-to-right order: D – derivative or
differential, L – decimal logarithm, N – normalization to range [−1.0, +1.0]. It is clearly seen
that the most impactful features (PC > 0.1) appear to be the volumes of “sell” and “buy” trades
and the imbalance between them denominated by the price change magnitude at the moment
(trade_quote_volume_imbalance_by_change). Also, in accordance with discussion on Fig. 1, the
PC assessments for market metrics are substantially less impressive than for media metrics.

hourly data feeds from Santiment (https://api.santiment.net) to check for sentiment and
on-chain metrics both and Glassnode (https://glassnode.com) to check for on-chain data
only. The on-chain metrics are indicators derived from different sorts of transnational
activity on blockchain such as Bitcoin. The period for studywas taken the same as for the
social media feeds discussed above – nearly half year starting July 2021. While working
with the Santiment API, we looked at various channels like Telegram, Reddit, Twitter
and Bitcointalk with each of the channels supplied with negative and positive sentiment
metrics provided by Santiment service. We also considered non-sentiment metrics from
it, like circulating supply, active addresses, andGitHub activity available on the platform.
But we could not identify any metrics that could impact the price prediction. The on-
chain metrics used from Glassnode involved active address count, transactions count,
transactions rate, blockchain count, blockchain height, grayscale holdings, to name a few.
The study has shown many metrics having positive Pearson correlation synchronously,
at the same day or hour with the price change (measured as price derivative or “log
return”), yet no one was showing expressed causal connection with the price change in
terms of preceding correlation on the shifted time series, so no further studies has been
done on this data. Notably, the synchronous and preceding correlations were higher on
daily data but muchweaker on hourly data as it was found for other data discussed above.

https://api.santiment.net
https://glassnode.com
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The causal structure of the additive ingredients of the SACI rendering the highest
preceding PC scores at one day lag/shift before the price change “effect” was done as
shown on the Fig. 3 and Fig. 4 for media and market metrics, respectively. It shows
confirmation on the greater potential applicability of the media metrics over the market
metrics and use of the cognitive distortions over the sentiment, specifically.

3.1 Practical Applications

The results presented above have been tried to get applied for price prediction of the
BTC/USDT (Bitcoin to USD Tether) trading pair on Binance exchange. The objective
has been set to hit two targets. First, we were looking to exceed the baseline provided
by “prediction” made just by copying the “last known price” (LKP) and approach the
“prediction” made by looking up the “future known price” (FKP) in historical test data.
The performance has been evaluated on basis of both Mean Average Percentage Error
(MAPE) and Directional Accuracy (DA). The data used for experiments were the same
as discussed above. Second, we were using our backtesting framework [1, 2] to use
obtained predictions by the market making bots according to their strategies.

So far, in order to accomplish the goal, we tried classical Machine Learning algo-
rithms such as Linear Regression, Ridge, Lasso regressions andElasticNet among others
without any clear success to outperform the LKP baseline. We experimented with the
Long Short-Term Memory (LSTM) artificial recurrent neural network architecture. We
did extensive feature engineering ending up with 53 input features for our LSTMmodel,
these features were from OHLCV and Limit Order Book data plus calculating some
basic Technical Analysis indicators such as RSI, MACD and Moving Averages among
others. Normalizing our feature set was required to transform all features into homoge-
neous values, MinMax scaler proved to provide better results. We tested our model with
different amounts of training data, historical intervals and different hyper-parameters
for different data intervals, 1 min, 1 h, 4 h and 1 day. Only when we did an ‘Ensemble’
of 5 of our tested LSTM configurations predictions we managed to outperform the Last
Known Price baseline when predicting a couple of days of June 2021. Unfortunately,
these results did not translate when predicting full month periods or in our backtesting
framework across most of the months over the years 2020–2021. Our LSTM Ensemble
model proved to be very susceptible to market conditions, where bearish market con-
ditions in May 2021 made possible some surprisingly good results in our backtesting
framework, so the market making agents using the predictions were getting substantially
larger revenues than the agents not using the predictions, even though MAPE and DA
of these predictions was not exceeding the LKP as an average.

4 Conclusion

We found a way to determine causal connections in massive time series data. Also, we
discovered such connections between the price change as an effect caused by combina-
tions of specific cognitive distortions and sentiment patterns in online media content as
well as changes of trade sell and buy volumes and imbalances between them on daily
basis applied to Bitcoin cryptocurrency. That gives us hope to build a solution for reliable
price prediction mechanisms usable for financial applications.
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Abstract. Artificial general intelligence (AGI) should be founded on a
suitable framework, e.g. a rule-based design or Deep Learning (DL). Here
we choose the DL to be the basis for AGI. An appropriate AGI is defined,
followed by its appropriate DL implementation. We introduce an AGI, in
the form of cognitive architecture, which is based on Global Workspace
Theory (GWT). It consists of a supervisor, a working memory, special-
ized memory units, and processing units. Additional discussion about
the uniqueness of the visual and the auditory sensory channels is con-
ducted. Next, we introduce our DL module, which is dynamic, flexible,
and evolving or growing. It can be also considered as a Network Archi-
tecture Search (NAS) method. It is a spatial-temporal model, with a
hierarchy of both features and tasks, tasks such as objects or events.

Keywords: Deep learning · General intelligence · Evolving · Growing

1 Introduction

DL, as one of the Artificial intelligence (AI) approaches, is not as fully exploited
as it could be. First, deep neural networks (DNNs) are passive models, since they
have a fixed structure, while in reality there are dynamic processes, such as the
neurons’ construction/destruction in the brain. Second, Learning in DL is simply
a categorization process without involving any thinking or imagination. Next, a
successful DL model (DLM) requires its designers to know the system, i.e., apply
implicit or explicit prior knowledge in the DLM. Moreover, a carefully designed
rule-based system may outperform a DLM, due to its dataset limitation, while
a rule-based system is designed for much broader and more diverse scenarios.
Finally, DL is highly task-specific. Even multi-tasking in DL requires all tasks
to be pre-defined. However, real AGI can generalize not only to unseen data but
also to unseen tasks (as in transfer/continual/meta learning). Nevertheless, we
propose a dynamic and flexible DLM that can be extended to AGI.

Next, we present an AGI architecture and a DLM, which can function as a
module in this AGI architecture, e.g. in the perception/actuation module.

Please note that this paper presents a short version. The DLM and espe-
cially the AGI are preliminary ideas, and described roughly and generally, with-
out mathematical details or implementation/results.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Goertzel et al. (Eds.): AGI 2022, LNAI 13539, pp. 40–50, 2023.
https://doi.org/10.1007/978-3-031-19907-3_5
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2 Proposed AGI Model

A general AGI model sketch is shown in Fig. 1. This AGI is based on GWT [17],
describing a multi-agent system, where the agents are local controllers behaving
reactively, and competing with each other over access to the working memory.

Fig. 1. AGI proposed architecture

Our AGI, however, has no com-
petition among its different and
independent modules, i.e. processors
and memories. Instead, it has cen-
tralized control with different ele-
ments, where each element has a spe-
cific function.

Examples of similar cognitive
architectures are in Appendix 4
in [9].

2.1 AGI Function

Here the function of the proposed AGI in Fig. 1 is described.
As in humans, our AGI uses 1D (audio) input and 3D (visual) input, however,

it also uses them as outputs. Moreover, the visual channel can be extended to 1
or more dimensions, depending on the environment our agent is deployed in.

There is separate sequential processing of 1D and multi-D data, for fea-
ture extraction and categorization of objects (static entities) or events (dynamic
entities). Next, these objects/events propagate into the WM. Finally, an out-
put is produced either through the 1D or the multi-D channel. If the output
is an emerging idea/thought, it can be expressed via a 1D channel, similarly
to humans describing verbally their inner thoughts to the outer world. Alter-
natively, it can be expressed via the multi-D channel, thus can be regarded as
screening imagination, which is like projecting the current thought into a screen.

Additionally, 1D information (such as language) has a shared memory for
input, output, and WM, denoted as 1D memory. This is also true for the multi-D
information. The bidirectional arrows in Fig. 1 represent the acquisition (reading)
and the update (writing) operations with the storage module.

The output communication of 1D and multi-D information can have various
modes, such as continuously monitoring thoughts or waiting for a meaningful
output. In addition, the AGI may have a degree of independent choice of when
to interact and through which of the two channels.

This particular AGI is based upon Stimulus-Response behavioral theory [19],
which states that the mind can be communicated with, although unobservable.
This assumption is similar to the Chinese Room Argument, since there is only
direct access to the output of the agent and not to the operations within. In
other words, there is no explainability over the AGI’s inner operations (it is a
black-box), and so only the output can be analyzed. It is referred to as intelligent
behavior, which is also expressed by human productivity over time, in fields such
as science, psychology, and technology.
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Fig. 2. Comparison between AI and AGI comprehending the environment.

This AGI does more than static/dynamic object identification or scene under-
standing [10], as in DL. It extends to the temporal dimension, by including:
events, objects’ behavior and function, associations from past experiences, etc.
It is illustrated by comparing the current AI and the proposed AGI, in Fig. 2.

Just like Einstein’s relativity theory, space and time are not separated, but
treated as one whole concept. Similarly, our DLM is based on this hypothesis.

2.2 AGI Characteristics

Firstly, we consider AGI’s main purpose to be organizing information to be
utilized optimally in a variety of tasks. Hence, the self-supervision approach is a
suitable tool to estimate this main goal. Additionally, DNN is an efficient model
and memory structure, which can achieve this goal, in the sense that it organizes
the data with the intention of recovering it later, see more in Appendix 5 in [9].

Secondly, we advocate that efficiency is more important than effectiveness, in
AGI, since it is about the exploitation of available resources, while effectiveness
is about how well a goal is achieved [1], e.g. the common attitude in DL to
compare performances.

Finally, other characteristics an AGI should have are those imitating humans,
such as having human guidance and support as in infant-parent and student-
teacher interactions, having a correct teaching order (simple to complex), and
the ability to grow/evolve in compulsory stages.

2.3 Two Information Types in AGI

Here we discuss and propose a rationale behind the unique functioning of the
visual and auditory channels.

Firstly, we examine why humans do not possess an imagery output tool like
the multi-D output we permit in our AGI. One can argue it would hurt our
basic desire for privacy, but then just as we choose whether to talk or not, we
can similarly choose when to turn this tool on. Another argument could be due
to evolutionary survival reasons. Our current opinion is that the world we see
with our eyes is what we all agree upon. Other than that, our inner models of
the world are totally different.
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Secondly, we reflect upon the reasons for humans not having a symbolic or lin-
guistic channel to be objective as vision, i.e. why we end up with inner and unique
symbolic representation. We think it is because language is highly context-
dependent, and since each person has different contexts along his life, or different
experiences, then he develops a different meaning/feeling/understanding of the
objective concepts we all agree upon. Hence, the concepts we use in external
communication are objective and common to all people, but their interpretation
is different for each one. Therefore, the visual perception purpose is nothing but
the objective agreement for effective communication between humans, realized
via language. In other words, vision is not the main communicative channel for
us, though, deaf people can bypass it by using sign language and textual format.

Consequently, the purpose of having two channel types is to distinguish the
outer and inner world that the agent interacts with. Furthermore, humans (as
should be followed by AGI) base their inner representation on spatio-temporal
events, or operational language. A language comprised of objects, actions, and
attributes, and expressed by words/symbols. Therefore spatio-temporal infor-
mation can be transferred to humans not only by the static/objective world, but
even more broadly by language. Agents denoted as green circles, communicating
via 1D and individually perceiving multi-D input are illustrated in Fig. 3.

Fig. 3. Objective (right) verse Subjective inner representation (left).

3 Proposed DLM

Until now we presented a general AGI model. Now we turn to discuss which DLM
can implement such AGI, or implement each or some of its different modules.

Any DLM requires some prior knowledge, also known as inductive bias. Then
due to difficulties with matching the most proper prior knowledge to each specific
problem we encounter - many studies try different hyper-parameters or archi-
tectures, to get better performance, e.g. they use Network Architecture Search.
See more about it in Appendix 6 in [9].

Therefore, the DLM we propose is adaptive for continuous learning and can
serve also as a NAS method.
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3.1 Proposed DLM Function

Our proposed DLM is based on the inductive bias principle. It states that small
data requires simpler model while bigger data requires a more complex one. Com-
plexity in DLMs is expressed in the NN size. Hence, assuming gradual learning
like in infants, we propose evolving DLM, starting from small NN, extending
successively to a bigger one, following abstraction, while encountering new data.

In the following, we describe our DLM evolution with comparison to an
infant, while perceiving a spatial-temporal type of data.

We presume, that an infant does not have any supervised learning at the
beginning of his life, but rather an unsupervised one. Only later that he fuses
multi-modal information about objects and their meaning.

The first thing he does is segment the time period into simple events. But he
starts with a single event detection (e.g. his total waking period) through some
initial DNN with several layers. See Fig. 4(a).

After a while, when enough counts detected the single event, a split of this
event is performed into two (or more) classes of events, e.g. day and night,
see Fig. 4(b). Counts are the number of times the output class was triggered.
Now, the agent can differentiate two events, sharing the same features. Later it
can extend the number of events, and recognize as many events as necessary.
Consequently, it is an adaptive NN structure, adaptive by necessity.

At some point of evolution, when connections (weights in DNN) and event
identification (output layer’s counts) are strengthened and established, the model
can change its attention or free its resources, since the given level had become
more automatic, similar to the idea in [7]. It can now build a new layer/level
on top of the previous ones, if a simultaneous re-occurrence of several events
is detected. For example, the re-occurrence of seeing the mom appearing and
preparing herself to give milk suggests to the infant that it is a composite event
on its own, see Fig. 4(c), where yellow = visual sensors, and green = neurons.

Fig. 4. Neuron separation and composition in the proposed approach (Ev. = Event).

Opposite structure-changing operations could be (i) deleting extremely rare
nodes/edges in the DNN, a bit similar to dropout regularization in DL; and (ii)
decomposing an event, if it appears to be more complex than it was supposed to
be. In other words, if previously it was treated as a specific-level event, now it is
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fine-grained, thus decomposed into simpler events (refinement). It is decomposed
into either existing events or new ones. If new ones, then they have to be attached
to lower-level events/features, e.g. see Fig. 5, where the “ball in the air” event is
decomposed into its three basics: throwing, moving in the air, and being caught.

Fig. 5. Neuron decomposition in the proposed approach (Ev. = Event).

Decomposition is a highly uncertain operation, since it is unknown whether
an event is compositional, and if it does - how many events it consists of, and
which of these events are new and which are not. There are numerous ways to
deal with it, e.g. see studies in 3.5, but it is out of the scope of this paper.

For this dynamic algorithm to work, the number of visits has to be stored
for each weight (edge in DNN) and each neuron (node). If scalability is an issue
for large DNNs, the visits memorization can be reduced from being stored for
each neuron to being stored in each cluster of neurons in a large enough DNN.

Furthermore, the visits can be counted during waking periods (when the
DNN is fixed), and the structure update can be done during sleeping periods,
when there is no stimulus from the sensors, while the trajectory frequency within
the DNN is stored in the neurons themselves, as mentioned above. The rate of
structure changing can also be modeled with a learning rate as in RL, where at
first it is mostly exploration (i.e. fast NN growth), and then lesser exploration and
more exploitation. Finally, a finite number of nodes and connections is presumed,
i.e. limited resources (so that it would not grow infinitely), thus resulting in
adjusting the learning rate accordingly.

Finally, additional aspects for the DLM are presented in Appendix 7 in [9].

3.2 Advantages of the Proposed DLM

This approach is self-supervised and not unsupervised, since it is not about
clustering into a pre-defined number of categories. Here, similar to NAS, the
number of categories and connections are all dynamic, and change according to
the decision of some supervising algorithm.

Another reason for this dynamic algorithm is that real intelligence does not
end up with categories like cat/dog (it evolves into more complex models). More-
over, most AI research works backward. It always starts from high-complexity
data and tries to learn it from scratch, instead of simple to complex learning as
it should be in an evolving AGI.
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Additionally, this dynamic algorithm is less computationally expensive since
it has fewer connections compared to FC NN, similar to sparse NN.

Finally, NAS is used to find some optimal hierarchical structure of features
represented via neurons for a given dataset. Thus, it is probably wrong to guess
the number of best-describing features at each layer. Dynamic NN deals with
this issue, by keeping only the relevant and true features/events.

3.3 Task Hierarchy in the Proposed DLM

The extending of classes converts this DLM into a hierarchical multi-class DNN.
Such DNNs exist in the literature. In [3] we have feature layers and then task
layers. Sometimes these layers can be mixed up. Labels’ structure can be found
separately from the model [4,12], or as a part of the model [6,10,11]. All the tasks
can be learned over one classifier, i.e. globally or in the last layer of the NN [4], or
alternatively, intermediate tasks can be inserted inside the NN, i.e. locally [3,11].
The structure can be learned from the data [10], e.g. by unsupervised clustering
of the labels via some similarity measure [12], or it can be imported from external
knowledge base [5], or used to change this structure [4,6].

Similar to these papers, additional features can be inserted between task
layers in our proposed DLM, for example.

Additionally, unlike features that are distributive representatives of data,
holding only some piece of the actual information, tasks are end-point indepen-
dent data representatives, thus ruining in a way, NN’s distributive nature.

However, this is not their main drawback. The fact that they are informa-
tional points - enforces a huge memory, since we need lots of them to represent
a huge amount of terms/concepts. As opposed to a small group of inter-related
features, which can characterize an enormous amount of input data. Thus, at
some point, replacing/converting tasks with/into features should be considered.

Fig. 6. Branching due to multiple hierarchies.

Generally, there may be different hierarchies besides compositional ones, e.g.:
family tree, parts of speech, table of contents, topics, and sub-topics. One solution
could be, is for the evolution to develop into different hierarchies, just like tree
expansion: in different locations of a given NN and in different structures. An
illustration of multiple hierarchies formed in a given NN is in Fig. 6.
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3.4 Temporal Dimension of the DLM

Until now the presented DNNs in the proposed DLM were represented via static
structure, i.e. a single simultaneous set of inputs produced a single simultaneous
set of outputs. In other words, there were no recurrent connections to include a
temporal sequence of inputs.

Usually, spatial-temporal models combine CNN with RNN in different
ways. Either separately: CNN→RNN or interchangeably: CNN→RNN→CNN→
RNN... Another way is to separate CNN and RNN to separate inputs, e.g. textual
for RNN and visual for CNN, with a fusion module at the end. In conclusion,
event tasks, such as classification/clustering, can be done using the methods
above.

Nonetheless, regular FC DNNs are used for spatial object tasks. But if our
goal is to extract features along the temporal dimension also, a simple addition
of recurrent connections could be made. Alternatively, an extension of the DNN
could be done to include a temporal dimension, without changing the spatial
dimension, i.e. orthogonal to it. See Fig. 7 for static and dynamic object tasks.

Fig. 7. Spatio-temporal DNN model.

In Fig. 7 it is shown a FC NN. However, if required, it could be specialized
in different ways, e.g. by shared connections/parameters or convolutions. And it
can be done for either the spatial or temporal dimensions, or both.

3.5 Related Work

Several topics are involved with our DLM: continual/lifelong learning; unsu-
pervised learning, specifically deep and non-deep clustering; event detection;
multi-label and multi-task learning; Network Architecture Search, and more.

From the aspect of our task, video recognition tasks such as event detec-
tion [20] is a large topic in computer vision, and the most relevant to our DLM,
whose task is the continual refinement of events. However, these tasks mostly
involve batch learning, not continual learning, and utilize fixed architectures.
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One practical application of our task, is for navigating robots to recognize
events, e.g. in [14]. However, they use time series of sensor and motor signals to
recognize important events, i.e. they do not use fully visual spatial data.

From the aspect of our architecture, similar models are belong to the family
of growing networks [2,8], e.g. Incremental Grid Growing (IGG), Growing Cell
Structure (GCS), Growing Self-Organizing-Map (GSOM), Growing Neural-Gas
(GNG), and their variations. They all are unsupervised methods, learning the
data distribution. However, they are based on shallow NNs with designed fea-
tures [18], while we are focused on DNNs that automatically extract features, to
allow learning of more complex and diverse events.

Also, some of the methods above [2], utilize an age counter, similar to the
number of visitations in our model, which in general can be extended to other
counters, holding additional information for better clustering.

Nevertheless, there are variations of SOM that produce non-flat data struc-
ture, e.g. the growing hierarchical SOM (GHSOM) [2,16], which induces hierar-
chical bias over the data to be learned. However, it implements only a top-down
generating hierarchy, which is equivalent to our decomposition operation and
can act as a legitimate implementation of this operation. We also implement
bottom-up operations such as splitting and merging. We actually construct the
hierarchy bottom-up, and the top-down is just an additional option.

Hierarchical clustering is usually illustrated via dendrogram, and it exists
also in other models, such as in Linkage based clustering, Tree-Structured SOM,
and Hierarchical Feature Map [2,16].

Nevertheless, [18] combines the two aspects, by using GSOM for anomaly
detection in changing surveillance scenes, i.e. same task in similar online set-
tings as we have. However since they use the shallow NNs described above, the
features are engineered, in this case behavioral features of the scenes. More-
over, its growing feature is used only for adapting to changing events, i.e. to
find anomalies in a changing environment. It is not made for gradual learning
of events. Also, unlike the anomaly detection task, our task is to learn normal
recurrent events.

All the methods above use different heuristics to improve clustering in differ-
ent tasks. Additionally, the search for the closest neuron to a given input (like in
k-nearest neighbor clustering) is the most expensive task, a step that is absent
in our approach. Finally, these methods, including ours, are of the clustering
type, and all have in common the problem of how to choose the suitable mea-
sure/distance. Hence, a more adaptive approach is needed, e.g. a deep clustering
topic that exists in DL.

Similarly, our DL approach, suggests the hierarchy will not include only the
neurons representing events, but also feature neurons in-between, to enable more
flexible learning and clustering of events.

Besides, there are growing networks for supervised learning [15], especially for
continual learning to avoid catastrophic forgetting [13]. Networks that involve
both growing and pruning, such as Progressive Neural Networks (PNN) and
Dynamically Expandable NetworkS (DEN) [13].
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3.6 Contribution

Finally, the novelty/contribution of this paper is the notion that spatial-temporal
dimension is inseparable, hence it should be learned as it is right from the start,
contrary to the object detection tasks and alike. In addition, the learning must
be gradual, continual, and unsupervised all the time, and as our DLM demon-
strated, it must also practice gradual growth accordingly. Both of these principles
are essential for an AGI agent. Consequently, some ideas were formed from the
principles above, and should be refined further.
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Abstract. This paper proposes two models. The first one is designed
bottom-up, i.e., mostly based on DL and Jeff Hawkins’ temporal prin-
ciple. The second one tackles some aspects of intelligence, specifically
concerning the thinking process. It is designed top-down, i.e., mainly
based on cognition and communication.

Additionally, this paper not only exhibits top-down verse bottom-up
approaches, but also presents the two edges of evolution: the DL model
considers the beginning state of learning, while the knowledge represen-
tation model considers the saturated/mature/final state of learning.

Keywords: Hierarchical · Temporal · Deep · Associative
representation

1 Introduction

An AGI design should handle a large variety of scenarios and have many vital
features. Features such as: flexible, fluid, adaptive, and evolving.

We first propose a DL Model (DLM) originated mainly from the neural model
in [4]. Then, we propose a model for the important components of an AGI agent:
thinking and memory. It models the representation of elements in a memory,
and describes how the thinking process accesses them and manipulates them for
different tasks. It also encourages flexibility and adaptivity.

It is evident in neuroscience and DL that knowledge has a hierarchical struc-
ture, though there is a controversy about which type is it. In DL and [4] it is a
hierarchy of features, while in [5] it is about the compositionality of objects. In
this paper, our DLM is mainly established on temporal hierarchy. Whereas our
knowledge representation model is based upon associative hierarchy, designated
for efficient memory access.

Finally, both of our presented models are based on the System 1 and 2 prin-
ciple [2], on a neuro-symbolic combination by converting raw features into oper-
ational concepts, and on the stimulus-response principle, since we believe that
one of AGI’s characteristics is that knowledge is operational. In other words,
elements that are learned are either objects or their attributes or actions which
act upon them. This notion is presented in many papers on associative memory
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or associative NNs, where an association is a response to a stimulus, which can
be either other stimuli [13] or a behavioral response (action).

Please note the DLM, and especially the AKREM, are preliminary ideas.
Also, the DLM is constructed from common and well defined components, and
cited papers are given as suggestions to implement some of these components.

2 The Proposed DLM

Our DLM is inspired by the neural models and DLMs such as caption generation
[15] and Visual-Question-Answering [3]. As shown in Fig. 1(a), the idea is to
unwrap the percept-predict structure from the neural model [4] on the left, into
a discriminative-generative or an encoder-decoder structure on the right.

The proposed DLM is illustrated in Fig. 1(b). In this structure the data com-
ing from text and sensors is encoded. The text includes both information and
instructions. Finally, this data is encoded into some extracted features repre-
senting the whole situation, including what the model is requested to do, and
then up-sample it to the actuators (the decoding process).

Fig. 1. Sensory data, text and response in the proposed DLM.

Our DLM purpose is to be able to plan and respond to inputs according to
symbolic representation, which is derived from raw sensory data.

It is aimed to accomplish this by gradual learning in the following phases.
First, it learns to fuse multi-modal inputs, to establish basic semantic concepts.
Next, its objective is to learn two types of data: objects and their inter-relations.
Hence, it starts by learning basic elements/objects, and then continue with com-
posite objects and relations.

After this proper symbolic comprehension, it turns to learn how to respond
correctly within the common supervised learning approach. Only it does so
within several temporal resolutions: from fast to slow perception and response.

In the next section, we elaborate on these phases.
The gradual temporal representation and learning, implemented in the

encoder and the decoder of our DLM, is based on the hierarchical temporal
principle proposed in Jeff Hawkins’ first book [4].

The proposed DLM, as any DLM, is not sufficient to serve as an AGI. Some
issues are addressed in “Issues with the proposed DLM” in Appendix 4 in [9].
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2.1 Proposed DLM Function

A more detailed implementation of the proposed DLM is discussed.
The DLM has a hierarchical temporal structure, and it is mainly based on two

ideas: the joint learning of multi-modal input, and the learning of intermediate
tasks [6]. The latter is used to implement scene understanding within different
time scales (short, mid, and long terms). For more details about these and other
aspects, see in Appendix 4 in [9].

The first idea is about extracting features separately from sensors and text,
then learning them together via joint embedding space [14]. Thus, the assump-
tion here is that these inputs are complementary. Since if they are trained
together, then if one of them is missing, it is sufficient for recognition as if
the second one was there too. These fused features represent spatio-temporal
information for the short-term temporal resolution. In the next phase of learn-
ing, these joint features are extracted further into longer time scales, by freezing
first the short-term RNN layers and activating mid-term layers only. The same
goes for the long-range layers afterward.

The second idea is generally about hierarchical learning of tasks [1,11],
whereby several layers of tasks are learned instead of the usual single output
layer of tasks. In temporal hierarchical learning, the current layer of tasks is
learned first, then later more complex tasks are learned in a new layer, based on
the previous tasks.

In our DLM, it is realized by intermediate tasks via RNNs. Using the first
idea, the features are extracted in different time resolutions. These features are
the hidden and the output layers in RNN. However, to include intermediate tasks
for different time resolutions, the encoder-decoder structure of RNN is used, as
in translation tasks. In other words, the intermediate tasks are connected to the
context signal(s) of the RNN, not to its hidden/output signal(s). A decoder is
attached to the context or to the encoder layer in the RNN. Thus, the interme-
diate tasks are the outputs of each of these decoders. See more in [11], and in
“Hierarchical Learning” in Appendix 4 in [9].

In conclusion, there are two ways to implement hierarchical temporal learn-
ing. Either via the first idea, thus to learn multi-modal data in joint embed-
ding space, at different time scales. Or, via the second idea, where features
are extracted hierarchically temporarily (via RNN output/hidden layers), and
intermediate tasks are inserted into the temporal structure. Tasks assisting in
forming correct and more appropriate (guided) features, as in [1,11]. Thus, after
the recognition of spatio-temporal objects in the features extracted from the
two inputs, their relationships should be recognized too. Hence, the intermedi-
ate tasks derive these relationships between objects. Some papers [16] focus on
pairwise interactions between perceived objects in an image, e.g. via a 2D graph
matrix, whereas [10] models high-order interactions between arbitrary subgroups
of objects.

The full sketch of the proposed DLM is shown in Fig. 2. It is seen that
the decoder is also hierarchically-temporarily constructed, as a mirror image
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of the perceptual encoder, with skip connections, whose function may be: copy,
normalization, or addition.

Fig. 2. Hierarchy-temporal DLM.

3 Associative Knowledge Representation Model
(AKREM)

In this section, a model of AGI’s knowledge representation is described. As
explained in 3.3, it can utilize our general DLM, 2, as its base memory. This
model tries to encapsulate a few cognitive important elements: short-term mem-
ory (STM), long-term memory (LTM), working memory (WM), and thinking.
As mentioned in the abstract, it is designed in a top-down fashion. Specifically,
it originates from our communication model.

3.1 Communication

Principles. Our fundamental assumption about human-human communication
is that each person is a “black box”. Thus, we do not have access to the actual
inner interpretation and representation of persons’ knowledge. In other words, we
communicate externally, via objective tools (the language), but we have hidden
subjective perspectives or world models, constructed during a lifetime via differ-
ent circumstances and experiences. This assumption is illustrated in Fig. 3(a),
where the inner representation of the same message varies among people.

Next, our communication model consists of several principles. (i) The sending
process is about converting an abstract message, such as a story or technical
procedure, into a sequence of words. Hence, this process is generative. It is
about decomposing a high-level idea into low-level concepts. Exactly opposite is
the receiving process. In it, the recipient tries to assemble the idea from the low-
level concepts, hence it is a discriminative process. These processes are visualized
in Fig. 3(a). (ii) These couple of processes can be viewed also temporarily. The
sender’s thought is materialized fully when he begins his sentence(s). But to fully
capture his message, the recipient has to wait till the end of the message. Hence,
the end of the thought is the beginning of the message, while its start is the
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ending of the message. (iii) Additionally, it is about context. Due to the “black-
box” assumption, to be maximally understood, the sender must start in the
most general context, or common ground, to fit the message to a wide range of
different recipients, with a different states of mind. And then gradually lead the
recipient to his specific message. Such a chronological process would be optimal
for delivering the message as accurately as possible. (iv) Finally, to make the
message clearer, both communicators should hold the models of all the relevant
participants in the conversation (the recipient, the sender, their shared common
knowledge, and their self-models). For principles (ii)-(iv) see Fig. 3(b).

Fig. 3. Communication basics.

Models in Communication. More generally, principle (iv) reveals that
human-AGI communication requires something more than merely a set of mod-
els. It requires that the AGI itself hold human-like cognitive properties and capa-
bilities, so that humans and AGI agents would be synchronized during commu-
nication and understand each other. Hence, the AGI should have characteristics
such as episodic memory, continual learning, abstraction, and generalization.

Furthermore, a more broad interpretation of principle (iv), suggest that
humans are actually modeling everything. Although, we model each thing differ-
ently - depending on our interaction with it. It applies to both different people
(different interactions) and different groups of people. Similarly, it applies to each
object/animal or their groups. Interaction with human(s) is unique because it
creates a model by conversational interaction. This idea is illustrated in Fig. 4.

Fig. 4. Human create models from interaction.
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We probably have also self-modeling, i.e. expectations from us, in the oppo-
site direction of the interaction. In other words, how a person should behave in
different groups, with different people, and with different animals and objects.
Moreover, we can model ourselves, while viewing ourselves externally (as if we
are another person), to learn and perhaps change our behavior.

Additionally, we perform a passive interaction, i.e. a simple observation. For
example, infants mimicking when observing other humans (e.g. parents/siblings).

All the above describes the theory of embodiment, expressed by the bound-
aries an agent creates between different entities and between them and itself.

3.2 Detailed AKREM

Based on the communication principles above, AKREM is derived, expressing
how information is represented in a memory, and to serve as a basis for cognition.

Function. Our AKREM is mainly originated from two aspects: (i) the phe-
nomenon of random bouncing from one thought to another; and (ii) the commu-
nicative hypothesis of converting an idea to low-level concepts and vice versa.
This model shows how information is represented. In the decoding of a message,
it is represented via the dynamic construction of hierarchical structures, simi-
larly to constructing syntactic trees of sentences in Natural Language Processing
(NLP). While in the encoding of a message, it is about descending a given hier-
archy, according to a chronological order, gathering lowest-level facts and thus
producing a sequence. A video demonstrating how a specific story is generating
an associative hierarchy, is in: “AKREM decoding” in [7].

It can be seen in the video, that when a new unrelated piece of knowledge
enters the input, the previous pieces are grouped in form of association(s). It is
a bit similar to the dynamic event detection [8], where a sequence is discrim-
inated into a set of events. As here, the task is accomplished by recognizing
similarities and dissimilarities in a sequence. Only the difference is, that there
is only event discrimination, while here it is about constructing a plot out of
the recognized events. Moreover, the DNN stores any new (frequent enough)
composite event, which results in combinatorial explosion issue, while here it
does not store any combination of events as a new event. In other words, unlike
dynamic event detection, which has to store and define each new combination
of events, here the knowledge storage is separated into two types of memory:
concepts/procedural memories to store basic events, and episodic memory, to
store any new encountered combination of basic events, which is constructed
dynamically.

Hence, AKREM can be considered as an upgraded model of the dynamic
event detection model. The next paper extends this associative model even fur-
ther, into a model of models.

Next, we formalize this model as a general structure of some plot/message.
We can imagine first details about a scene are triggered one by one, and placed
in level 0 of the newly generated hierarchy. Next, another scene is introduced.
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Each scene is represented by combining all its details in level 1. At the end of
Chapter 1, a few scenes were gathered. After finishing Chapter 2, both chapters
are connected to be in level 2. And it can go on and on. See Fig. 5(b).

In order to both generate a hierarchy from a sequence or vice versa, some
kind of order has to be stored, e.g. chronological/causal, in all the levels of the
plot, see for example the temporal trail in Fig. 5(a). But the direction in con-
nections can be extended further. It can represent different types of connections,
e.g. between the levels and between the hierarchies; abstraction/generalization;
various associative connections, e.g.: comparison, analogy, causality, and corre-
lation.

It is seen that the lowest level (0) is the most general with the most objective
context, since the low-level concepts have so many associations, that they lose
almost entirely their specificity. However, as one goes higher in the levels, the
more specific the context becomes, since it is constructed underneath a more
specific structure. Hence, the highest levels hold the essence of all levels below.
Thus, they possess the most accurate message.

The meaning of low-level concepts having the most associations is that they
are connected to a huge amount of such hierarchies in the memory, gathered so
far. The higher one goes in a hierarchy, the fewer associations it has with other
hierarchies, until one reaches the levels separating this hierarchy from the rest.

Note that how the grouping occurs was not specified. For now, the grouping
can be considered as summarizing or finding the essence of distinct items, but the
grouping can also be treated as finding some common meaning or a purpose. See
for example in the video, that for every grouping one can ask the question “why”
regarding the meaning of the items in the group, whose answer is representing
the grouping.

Thus we presume that our thinking is purposeful. We assume that in
active/generative mode we have a purpose and we construct a hierarchy keep-
ing in mind the purpose the whole time (perhaps in a top-down fashion), while
in passive/receiving mode we construct the sender message from details, i.e.
bottom-up, reconstructing its purpose.

Fig. 5. Associative thinking via associative trajectories.
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At other times, we can have a no-purpose thinking. It can be viewed as
a wandering between existing hierarchies, and randomly jumping from one to
another, at random levels within them. This is the first aspect mentioned above.

Characteristics. Associative thinking occurs all the time in our opinion.
For example, daily, where the hierarchy is constructed like a long narrative,

with some experience at the top of the narrative’s trajectory, made out of all
separate events that occurred during this day. But it can also be attached to a
previous hierarchy of the previous day, and even the previous week/month/year.

We use associative thinking in most of our cognitive tasks: in generat-
ing/perceiving a story/event/message, which is some (non-)linear plot of details;
and in planning/simulating/contemplating/problem solving, which is also a
series of possible actions and outcomes.

This AKREM is like a holographic memory, where the triggered neurons are
shown in Fig. 5(b) on the yellow surface at the bottom. They belong to the DLM
presented in Fig. 1. Hence, this holographic memory is orthogonal to this DNN.
In other words, we can consider triggered neurons in this DNN, producing this
hierarchical dynamic structure.

We propose that the perception operation in AKREM would be similar to
the one in [2]. In it, perception occurs via system 1, a multi-agent system, where
agents compete parallelly with each other to decide which pattern is perceived
correctly from the senses, and hence also decide which response is suitable for
it. A similar idea is presented in [5], where this competition is via triggering
all relevant neurons, and then filtering out all irrelevant ones as more clues are
coming from the senses. Irrelevant ones predict worse than others, hence we are
left eventually with the correct pattern. The process above describes recalling,
hence if no pattern is recognized, a new hierarchy/memory is generated.

Both in [4] and AKREM this perception idea is expressed by ascending mul-
tiple triggered memorized hierarchies, and then descending for prediction or
verification. Thus, filtering all the non-relevant memories. When partial, cor-
rupted, or unorganized information is encountered, it can be validated not only
by descending, but also by moving in all the different directions in the hierar-
chies. For example, in recalling a story from a scene, the agent has the freedom
to move back and forth temporarily in the hierarchies.

Associative thinking/approach is much more effective than context alone,
since context might consist of many details, while associations can reduce the
detail level and emphasize the abstract structure of the details. Additionally, this
allows for minimal communication and minimal resources in cognitive processes,
enabling very few items in the WM, e.g. 7± 2 items.

It is important to note that AKREM is a data representation model, not
yet developed into a fully working NN model. Emerging hierarchies in the WM
can be implemented e.g. by some non-parametric method, such as via decision
trees, since their structure is dynamic. Moreover, the number of visitations of
each node and connection can be stored in these hierarchies, to distinguish this
way STM from LTM.
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Additionally, AKREM is a mature model, i.e., it is in the state of adulthood,
which is the state reached after there has been some learning stabilization. Hence,
this model also lacks the evolution of memory till its mature state. Thus, it is
missing all the primary learning and adaptation. It could be fulfilled, for example,
via self-supervising learning of predicting the missing/next sensory inputs.

Finally, this model has many implications, similarities with other techniques,
examples, and other considerations, which should be deeply discussed in a
broader paper. Additional notes (e.g. limitations and contribution): in Appendix
5 in [9].

3.3 Memories in AKREM

Besides having our associative hierarchical structures, as elements in some mem-
ory, we also should address the memory structure itself.

As in humans, systems 0, 1 and 2 [12] should be realized here too. Systems
0 and 1 are expressed when the most frequent memory is used, in cases when
automatic or no-thinking tasks are performed. Whereas system 2 is expressed
by thinking, such as in problem solving, and it activates LTM and WM. A
partial AGI model, consisting of AKREM and some DLM as its basis would also
enable cases where the system is fully utilized, i.e. simultaneously thinking and
performing automatic tasks.

We can assume that simple sensory perception is using base memory, similar
to system 0 automatic system (no thinking), see Fig. 1. Then it provokes LTM
concepts or events, “uploading” them to the WM (or STM), see Fig. 6(a). During
a sleeping period, the system somehow decides what to consolidate into LTM
and what not, due to unimportance or similar memories that already exist there.
LTM and WM do not have direct contact with the sensors and executions,
perhaps since this is abstract thinking, in which the thinking, depending on some
externally-driven task, is moving in purposeful trajectories/hierarchies, mostly
regardless of the inputs.

We assume that humans have permanent associative wandering in LTM,
producing some final or intermediate results that are updated in WM. Differently,
the wandering in AGI must have some purpose. Hence there are some external
instructions inserted in this process, guiding it. See Fig. 6(a).

We believe that humans solve any situation/problem this way, i.e. by jumping
associatively from element to element with some guiding will, searching for some-
thing, meanwhile gathering some intermediate insights, to eventually resolve
with some response (good/no/bad solution).

Alternatively, we can regard the base memories, to be simply a part of the
LTM. Hence, they represent the most frequent (nearly automatic) part of it.
Thus, the least frequently used memory is at the bottom, while the most used
memory is at a higher level, while WM serves as the currently used memory, and
is located on top of this LTM unit. See Fig. 6(b).

Finally, additional aspect of generalization is addressed in Appendix 6 in [9].
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Fig. 6. Memories in the associative thinking model.
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MARTI-4: New Model of Human Brain,
Considering Neocortex and Basal Ganglia

– Learns to Play Atari Game by Reinforcement
Learning on a Single CPU
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Abstract. We present Deep Control – new ML architecture of cortico-striatal
brain circuits, which use whole cortical column as a structural element, instead
of a singe neuron. Based on this architecture, we present MARTI - new model
of human brain, considering neocortex and basal ganglia. This model is designed
to implement expedient behavior and is capable to learn and achieve goals in
unknown environments. We introduce a novel surprise feeling mechanism, that
significantly improves reinforcement learning process through inner rewards. We
use OpenAI Gym environment to demonstrate MARTI learning on a single CPU
just in several hours.

Keywords: Machine learning · Reinforcement learning · Basal ganglia ·
Surprise feeling · Self rewards

1 Introduction

In this work we introduce two new concepts. First is Deep Control Architecture - new
hierarchical model of cortico-striatal brain circuits, which use a cortical column as a
structural element, instead of a singe neuron. DCA is a hybrid vector-symbolic model,
making native representations from high dimensional vector space to symbols and vice
versa. Through this,DCA is very fast and compactway for real time learning, hierarchical
analysis of environment, hierarchical planning and executing.

Second is MARTI – new ML model of human brain, built on Deep Control Archi-
tecture, implementing neocortex and basal ganglia. It runs ensemble of cortical columns
simultaneously, orchestrated by basal ganglia, which is selecting the winner and inhibit-
ing the rest of columns. Basal ganglia also maintains surprise feeling, which is a mech-
anism of implementation of inner rewards, allowing model to learn much faster. This
multi-agent model is capable of learning by reinforcement learning to achieve goals in
unknown environments.

To demonstrate MARTI capabilities, we use OpenAI Gym Atari game Ping-Pong.
We run both MARTI and Gym on a usual single CPUmachine. Using this setup MARTI
robustly learns to play Ping-Pong game in several hours.
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In thisworkwe show the role of basal ganglia in awhole decisionmaking process and
conclude, that Deep Control Architecture is a new promising way of modeling human
brain, especially where fast performance is needed with limited resources.

2 Background

Deep neural network is a low-level model of human neocortex, particularly visual cortex,
which is perfectly designed for object detection/classification. However, DNN results
in other domains, e.g. planning, decision making and appropriate behavior are far less
impressive. Possibly, this is because behavior tasks are mostly implemented in other
parts of human brain, besides neocortex.

Neocortex receives sensorimotor information, classify it and build «map of objects»
and their relations. Positive feedback loops between thalamus and cortex supports long-
time cortex activation, to allow synchronization between distant parts of brain. Basal
ganglia, being themain keepers of values, can inhibit or disinhibit these positive feedback
loops, being the main conductor of the cortex activity. Finally, cerebellum helps to
maintain routine operations, adopting patterns, that were found previously by neocortex
and basal ganglia [1].

In this process neocortex plays important role, analyzing situation and predicting
situation development, but it is basal ganglia, that plays key role in deciding on variants
and implementation of most valuable variant. To implement behaivour tasks, one should
propose a unified model of basal ganglia and neocortex.

3 Related Work

Deep Control architecture proposed in this paper reflects biological mechanisms of the
brain, namely the concept of hierarchical predictive coding of information in the neocor-
tex [2–5] Unlike other models of the neocortex [6–8], Deep Control integrates Hebbian
learning in the cortex with reinforcement learning in basal ganglia, implementing so
called super-learning architecture [9].

Learning hierarchies of policies is a long-standing problem in RL [10, 11]. Namely
[12] introduced the concept of options as closed-loop policies for taking action over a
period of time, and [13] proposed option-critic architecture as an important step toward
end-to-end hierarchical reinforcement learning. In these and similar works [14, 15] both
goals and subgoals are defined in the same sensory-motor space. In our approach, each
level operates in its own space using increasingly abstract representations to formulate
higher levels plans.

4 Reinforcement Learning Environment

Toevaluate behavioral tasksweuse reinforcement learning approach. In currentwork,we
used OpenAI Gym Atari games environment [16] and particularly Ping-Pong (PONG)
game.
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The Atari 2600 PONG game is one of the most complex games for reinforcement
learning. Games can easily last 10,000 time steps (compared to 200–1000 in other
domains); observations are also more complex, containing the two players’ score and
side walls. Pong paddle control is nonlinear: simple experimentation shows that fully
predicting the player’s paddle requires knowledge of the last 18 actions [17]. Finally,
sparse rewards makes Pong quite complex game for RL.

We consider tasks in which an agent interacts with an environment E (in this case
the OpenAI Gym Atari emulator) in a sequence of actions, observations and rewards.
At each time-step the agent selects an action at from the set of available game actions,
A = {0, … K}. The action is passed to the emulator and modifies its internal state and
the game score. Agent observes the E state st (it can be an image of current screen
or any other representation of E state). In addition it receives a reward rt representing
the change in game score. (In general the game score depends on the prior sequence
of actions and observations and feedback about current action may only be received
after many hundreds or thousands of time-steps have elapsed - this is so called sparse
rewards.)

In thiswork our agent observes emulator state calledRAM- bitmemory state ofAtari
computer. As it was shown in [16], RAM state does not give some special advantages
to agent and even controversial - it appears that screen image carries more structural
information that is not easily extracted from the RAM bits, so neural networks usually
learn better using screen image. But we use RAM representation here as a very rough
model, based on idea, that behavioral centers of the human brain deal with preprocessed
and good prepared data, not with raw images.

The goal of the agent is to interact with the emulator by selecting actions in a way
that maximizes future rewards. Such model is not a perfect, but reasonable way to test
abilities of ML model to learn and achieve goals in uncertain environments.

5 Deep Control Architecture (DCA)

Deep Control Architecture is a novel hierarchical model of human brain, including
neocortex interaction with basal ganglia. First, we will discuss main ideas of DCA and
then talk about current realization.

5.1 Main Ideas of DCA

DCA represents a hierarchy ofmodules learning to jointly implement predictive behavior
control with reinforcing signals coming from the dopamine system of the midbrain [18].
DCA comprise:

• a hierarchy of self-organizing maps of cortical modules, predicting activity of lower
level cortical modules with primary sensory-motor modules at the lowest level;

• each hierarchical level corrects its predictions based on long-term predictions of the
higher level and actual signals from the lower level;

• basal ganglia assess the usefulness of various patterns of cortical activity and select
the winning pattern, implementing reinforcement learning
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In general, DCA is based on the following premises:
First, DCA uses cortical columns rather than neurons as main functional units of

neocortex. Thus, one have no more need to model each neuron. Considering various
neurophysiological data, the basic structural elements of neocortex are cortical columns,
each working with ~ 20–30 symbols.

Second,our conjecture is that several columnswith local reciprocal connections form
hypercolumn, capable of memorizing typical temporal patterns - sequences of symbols.

Third idea is about hierarchy.Hypercolumns alone cannot predict far enough into the
future to solve complex tasks. But being organized in a hierarchy, higher levels operate
at ever greater time scales, using sequences of lower level symbols as their input.

5.2 DCA Structure

Based on these ideas, we introduce DCA as follows:
Cortical hypercolumn (CHC) is an autonomous module, working with vector data.

CHC consists of two parts:

• Coder/Decoder – preprocessing high dimensional input vectors to discrete symbolic
representation and back.

• Parser – processes symbolic data flow, finds patterns and regularity in data and predicts
next symbols.

To create a new CHC, initial dataset of input vectors is needed. Then Coder/Decoder
runs clusterization of this dataset (we use K-means clustering), mapping input vec-
tors to K clusters. These clusters (or cluster numbers, if you like) become symbols for
Parser. From this point, each new vector, received by CHC, is converted to symbol by
Coder/Decoder and then processed by Parser.

5.3 Learning

Parser – processes symbolic data flow, finds patterns and regularity in data and predicts
next symbol. For this purposes Parser has it’s vocabulary S with all the symbols and
correlation table C, that keeps correlations between symbols. Each time Parser receives
new symbol, C is updated:

sn =>C sn−1, sn = C sn−1, sn + 1

If Parser has m symbols in vocabulary and two symbols sn−1 and sn are correlated
more then defined threshold T, a new symbol (word) is formed and added to vocabulary:

if C sn−1, sn > T => sm+1 = sn−1sn

Parser has predefined capacity of vocabulary size andword length, e.g. 1000 symbols
and max word length = 3. Parser learns regularities in data and predicts next symbol.
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5.4 Prediction

Prediction canbebasedon the correlation statistics – thenwecall it “situationprediction”.
In this case Parser predicts next symbol as follows:

sn+1 =>maxi(Csn, si)

Prediction can be based on value function. For this purposes Parser can keep reward
table R, that keeps rewards received after symbols. Each time Parser receives a non-zero
reward, R is updated:

rn =>Rsn−1, sn = Rsn−1, sn + rn
Rsn−2, sn−1 = Rsn−2, sn−1 + rn ∗ k

Rsn−m−1, sn−m = Rsn−m−1, sn−m + rn ∗ km,

. . .

where m is predefined memory size

As a result, parser hasworkingmemory of rewards it received in particular situations.
Based onR table, parser can predict desired next symbolwithmaximumexpected reward
(reward forecast):

sn+1 =>maxi(Rsn, si)

Prediction is always a pair – next symbol sn+1 and reward forecast of that next symbol
Rsn+1. Which kind of prediction specific parser will use depends on architecture; we
will discuss this in 6.

DCA use semantic coding to move to the next level of the hierarchy. State sequences
of the lower level are mapped to the states of a higher level via clustering of probability
vectors of their successors and predecessors. All hierarchical levels interact with each
other, looking for a way to implement the abstract plan of a higher level, consistent with
the newly received data from the lower one. The number of hierarchical levels increases
with the increase in the amount of data collected when interacting with the environment.
So does planning horizon, which makes the Deep Control architecture a good candidate
for AGI.

6 MARTI

Furthermore, we present MARTI (Modular ARTificial Intelligence) – new model of
human brain, built on Deep Control Architecture. In this work we present MARTI-4
prototype, implementing neocortex, basal ganglia and thalamus at a object level.

Neocortex is a set of hypercolumns, each of which acts as a autonomous agent,
receives partial information from thalamus, converts it to it’s own symbol representa-
tion and tries to predict next symbol. Basal ganglia striatum receive predictions from all
columns and tries to figure out the most valuable action to continue with, selects the win-
ner column and inhibits the rest. Thalamus serves as a main information hub, processing
sensor and actuator information from outside, providing it to cortical hypercolumns and
to basal ganglia and back. Thalamus also inhibits execution of hypercolumns, that do
not have new input data.

MARTI-4 receives sensor data (environment state) st and actuator data at as input
data, as well as current reward rt .
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6.1 First Layer Hypercolumns

At the initialization, thalamus uses randomsampling to create p subsets of sizem from the
initial sensor data st . For each of this subsets thalamus creates s cortical hypercolumns.
Then, each time upon receiving new data, thalamus repeats this sampling to p parts and
feeds each part to corresponding column Coder.

At first steps, there is no learning. At this stage Coder of each CHC is gathering
data to create Parser. The condition of creating a Parser is that number of unique vectors
received by this Coder exceeds given limit v. (Most of Coders never exceed this limit,
because of different frequency of each of coordinates in initial vector). After limit v is
reached, Coder creates corresponding Parser as follows:

• Coder run clusterization of v vectors, dividing vectors subset to K clusters
• Each cluster receives a symbolic name – a letter in UTF-8, e.g. “A” to “Z”
• Parser object is created with this alphabet

From this step, each time Coder receives a new vector, it classifies this vector (based
on it’s clusterization) and gives Parser corresponding cluster symbolic name as an input.

Parser of 1st layer in MARTI-4 is created with those restrictions:

• maximum word length = 1
• prediction type = situation (correlation based)

Parser task is to parse it’s symbolic inputs and build a correlation table C, using
which it can predict next symbol. This parser also has reward table R, but it is not used
for predictions, it is used for calculating surprise feeling, which we will discuss later.
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So, Parsers of 1st layer are very simple and fast, they do not build new symbols and
work only with letters. They predict the most probable next symbol.

6.2 Action Coder/Decoder

After creating at least one Parser, thalamus creates special actuator Coder A for actuator
data at as follows:

• Coder A runs clusterization of actuator vectors subset at , dividing it to K clusters
• Each cluster receives a symbolic name – a letter in UTF-8, e.g. “a” to “z”
• no Parser is created for this Coder A

From this step, each actuator vector is classified by Coder A (based on it’s clusteriza-
tion) and converted to corresponding cluster symbolic name - which represents current
action.

6.3 Second Layer Hypercolumns

After creation of at least 3 hypercolumns of 1st layer, next layer is created as follows:

• Each 3 hypercolumns of 1st layer become a substrate to create hypercolumn of 2nd

layer.
• Coder of 2nd layer hypercolumn combines symbols of 1st layer subcolumns with

current action symbol to build symbol for it’s Parser.

So, Parsers of 2nd layer works with symbols, combined from lower sensor symbols
and action symbol, starting from action e.g. “nABC” or “dXYZ”.They are created with
restrictions:

• max word length = 4
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• max vocabulary size = 5000
• prediction type = value (reward based)

Parsers of 2nd layer has reward table R, keeping summarized reward received after
each symbol as was discussed in Sect. 5.2.

At each step each Parser predicts most valuable next symbol, which will maximize
the future reward. Besides it, each Parser calculate it’s «positive feeling» of all possible
actions. It is calculated as overall number of positive reward symbols, beginning from
this action:

Fc(ai) = �j1
∣
∣R

(

sn, sj
)

> 0 where sj
∣
∣ sj ∈ ai

6.4 Basal Ganglia

After all hypercolumns made their predictions, thalamus passes all the data to basal
ganglia (striatum) to find the best prediction and, as a result, choose next action.

This is the most intriguing part of this paper, because most of usual RL approaches to
choose next action does not work properly in this situation. We did a lot of experiments
to find out working solution.

Usually, our intuition says, that in reinforcement learning approach model should
take next action, which has maximum value function (or maximum future reward). In
this case, that could mean choosing hypercolumn with maximum predicted reward. But
suprisingly, at every moment we can find a hypercolumn giving a very high predicted
reward combined with a wrong action. No separate hypercolumn can give a good predic-
tion, because all of them have only partial sensor information. This is like CHC-1 “sees”
only X coordinate of an object and CHC-2 “sees” only Y coordinate. Their predictions
are always biased with their information.

That’s why, to obtain better prediction, an ensemble of hypercolumns is needed. And
the task of basal ganglia is to choose most promising way to increase future rewards.

In MARTI-4 basal ganglia striatum works as follows:

• For each action ai calculate “basal positive feeling” as number of CHC, that hasFc(ai)
> 0

Fb(ai) = �j1 |Fc
j (ai) > 0

• Choose next action ai, which has maximum Fb(ai)
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• Select as a winner CHC, that predicted next symbol with this action ai, which has
maximum predicted future reward.

6.5 Surprise Feeling and Inner Rewards

Another important task of basal ganglia is maintaining a surprise feeling, which helps the
model understand what was done right. In reinforcement learning environment sparse
rewards are big issue, because reward can be received after many hundreds or thousands
of steps have elapsed. In this case, it will be nice to have any way of understanding, that
something has been done properly right now, without waiting too long for a distant (and
rare) reward.

To do it, basal ganglia analyze the state of each hypercolumn just after it received new
data but before it made any predictions. Each parser compares new data with previous
prediction it made. Prediction is always a pair – next symbol sn+1 and reward forecast of
that next symbol Rsn+1. Similarly, received data also constructs a pair – symbol received
stand reward forecast of this symbol Rst . And if st ! = sn+1 then reward forecast may
have changed.

Hypercolumn surprise feeling can be defined as unexpected improving of reward
forecast:

Sc(st) > 0 |Rst >>Rsn+1

Note, that, especially for parsers of 1st layer, usually parser receives (statistically)
expected data and usually has expected deterioration of the reward forecast.

But single surprise of single hypercolumn is not enough to be sure, that overall
forecast became better. Basal ganglia observes all hypercolumns and calculate “basal
surprise feeling” based on simultaneous surprises of different columns or sequential
surprises of single column. When this overall surprise feeling becomes greater than
given threshold St a one time inner reward is given to all hypercolumns:

Sb(st) = �j1 | Scj (st) > 0

rt = 1 | Sb(st) > St

This mechanism of surprise feeling allows model to learn much faster through
implementation of inner rewards in addition to usual environment rewards.
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6.6 Whole Cycle of Analysing/predicting

Finally, let’s have an overview of the whole model work.
Each step thalamus receives sensor data st , actuator data at , current reward rt . It

samples st to p parts and feed each part to CHC of the 1st layer.
Each CHC of 1st layer encodes it’s input vector to it’s own symbols and processes

symbol parsing taking into account “column surprise feeling” based on match between
predicted and received symbols. After parsing, CHC makes prediction of next symbol
and reward forecast.

Each CHC of 2nd layer receives symbols from 1st layers as an input and encodes
them to own symbol representation. Then it processes symbol parsing taking into account
“column surprise feeling”. After parsing, CHC calculates next symbol prediction and
“column positive feeling” for every potential action.

Basal ganglia striatum observe “column surprise feelings” from all CHC and cal-
culates “basal surprise feeling” Sb(st). If it is greater then a threshold St then one time
inner reward is given to all CHC.

Basal ganglia striatum receive predictions from CHC of 2nd layer and calculates
“basal positive feeling” for each potential action. Then it chooses the winner, that has
maximum future reward for action with maximum “basal positive feeling”.

Coder A decodes predicted action back to actuator terms at and it is returned back
by thalamus to environment as a next action.

6.7 World Model and Prediction Horizon

In terms of reinforcement learning, MARTI-4 is a model-based agent, because it builds
it’s own “worldmodel” and use the information about last steps to understand it’s position
in this world model. However, prediction horizon in MARTI-4 is usually 2–3 steps
forward, because it has only 2 hierarchical layers and the prediction horizon in DCA
depends only on hierarchy levels. This will be the subject of future works.

7 Experiments

Experimental setup was standalone single CPU test machine (AMD A8–9600 10 com-
pute cores 16GbRAM).We used Ubuntu 18.04, python 3.6.9, OpenAI Gym library, Java
OpenJDK 11.0.13 installed. Marti-4 is written in Java and is using simple TCP/IP socket
interface to receive and send data. To connect it with OpenAI Gym, we use additional
python script, which receive data from Gym and send it to Marti via socket. WhenMarti
have processed sensor data, it sends back actuator data to script, which sends it to Gym.

In previous works [17, 19], to set an experiment to test a model performance in
PONG game, researches choose to run it up to 18,000 game steps or up to score 21.
We found this setup not the best way to reveal model performance, because of specific
Pong game nature: if model learns how to beat back the ball in some situations, that
usually will not lead to win the game or even to win a single play in a game, because
other side (Gym) will beat back the ball in most cases and finally win the game play. In
other words, even when model steadily learns how to play, it still loses when play up to
21 score or 18,000 steps.



72 I. Pivovarov and S. Shumsky

So, in our setup we choose to run the game up to 500 steps. If the model is not able
to beat back at all, overall score is usually around 0:15. But when model steadily learns
to play and beats back more and more, the plays become longer and longer and score
looks like 1:1 or 3:4 or something like that.

To perform an experiment, both MARTI and Gym are executed on a test machine.
CPU load is about 40% for Gym and 60% for MARTI. MARTI size in memory is ~
8Gb. Using this setup MARTI robustly learns to play Ping-Pong game in 500–700 game
plays (3–4 h).

Typical experimental run is shown in Fig. 1. One can see, that starting from typical
score 0:15with average goal difference is -15,MARTImakes quick progress and reaches
typical scores 2:2, 1:0 with average goal difference -1 in 500–700 games.

Fig. 1. On X-axe there is number of games played, each 500 steps. On Y-axe there are points:
blue dots are Gym goals in the game, green dots are Marti goals in the game, orange points are
goal difference between Gym and Marti calculated as average last at 30 games..

For purposes of comparison with previous works, we also preformed evaluation of
model performance as in [19]. An episode starts on the frame that follows the reset
command, and terminates when the end-of-game condition is detected or after 5 min of
real-time play (18,000 frames), whichever comes first. A trial consists of 500 training
episodes, followed by 500 evaluation episodes. Agent’s performance was measured as
the average score achieved during the evaluation episodes across 3 sequential trials. This
setup is consistent to setups used in [17, 19] with the only difference, that MARTI-4
does not show significant improvement after 500 training episodes, so training episodes
were lowered to 500. Table 1 shows MARTI performance, compared to previous works
in this setup gives a summary of all heading levels.

Since MARTI-4 has only 2 layers, it can hardly been compared with deep networks
like DQN. However, even this small model shows comparable results with models like
Sarsa.



MARTI-4 73

Table 1. Performance of different algorithms on PONG game.

ALGORITHM PONG

Random [17] −20.9

Sarsa [17] −19

MARTI-4 −15,8

Human [19] −3

UCT [17] 21

8 Discussion

Current model has modest results and never get to score 21:0. This is because current
prototype has only 2 hierarchical layers of hypercolumns and full power of DCA will
be obtained, when there will be much more layers of hypercolumns, hierarchically
organized. So, current work can be considered only as a testbed for this way of modeling.
However, we demonstrate that even this simple model is capable to learn in unknown
environment and show quick progress.

One of the reasons, DCA architecture is very fast is because model is building “on
the fly” from zero, model size and hierarchy depends only on the amount and variety
of input data. This is in contrast to deep neural networks, that are build initially huge
and one have a need to run calculations forward and back through all this billions on
neurons.

DCA perfectly suited to work with data preprocessed with DNN. Next thing to do is
to make model input not a RAM state, but raw screen images, preprocessed with CNN.
This will be more similar to real process, which take place in human brain.

Last but not least final technical issue is that neither OpenAI GymAtari emulator nor
ALE Atari emulator are providing fully reliable and expected behavior of Atari game.
Namely, in some cases (1 of ~ 50 games) some unexpected behavior of Atari emulator
occurs, when the gameplay is already finished, new gameplay should start, but screen
remains unchanged for some time and model continues to receive some environmental
data which makes no sense. In some games (Atari Breakout for example) this can last for
30,000 steps and more. This makes the learning process significantly more complicated.

9 Conclusion

We showed, that Deep Control Architecture is a hybrid vector-symbolic ML architec-
ture, making native representations from high dimensional vector space to symbols and
back. Through this, DCA is very fast and compact way for real time learning, hierarchi-
cal analysis of environment, hierarchical planning and executing, especially where fast
performance with low resources is needed.

We presented MARTI - novel ML model of human brain, implementing neocor-
tex, basal ganglia and thalamus, capable to learn by reinforcement learning to achieve
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goals in unknown environments. We presented a novel surprise feelingmechanism, that
significantly improves reinforcement learning process through inner rewards.

Through this work we also tried to show the role and potential mechanism of basal
ganglia work in human brain in a whole decision making process.

Disclaimer. Igor Pivovarov works part time in Moscow Institute of Physics and Technologies,
Huawei, Skoltech, Bauman University and IP Laboratories. Sergey Shumsky works part time in
Moscow Institute of Physics and Technologies and Bauman University. However, the whole scope
of current work was made by authors solely in free time without any support or participation of
any entities.

References

1. Shumsky, S.A.: Machine intelligence. Essays on the theory of machine learning and artificial
intelligence. RIOR Publishing, Moscow (2019). ISBN 978-5-369-02011-1.

2. Friston, K.: A theory of cortical responses. Philos. Trans. R. Soc. B: Biol. Sci. 360(1456),
815–836 (2005)

3. Bastos, A.M., et al.: Canonical microcircuits for predictive coding. Neuron 76(4), 695–711
(2012)

4. Clark, A.: Surfing Uncertainty: Prediction, Action, and The Embodied Mind. Oxford
University Press, Oxford (2015)

5. Spratling, M.W.: A review of predictive coding algorithms. Brain Cogn. 112, 92–97 (2017)
6. Hawkins, J., Ahmad, S.: Why neurons have thousands of synapses, a theory of sequence

memory in neocortex. Front. Neural Circuits 10, 23 (2016)
7. Hawkins, J., Ahmad, S., Cui, Y.: A theory of how columns in the neocortex enable learning

the structure of the world. Front. Neural Circuits 11, 81 (2017)
8. Laukien, E., Richard C., Fergal B.: Feynman machine: the universal dynamical systems

computer. arXiv preprint arXiv:1609.03971 (2016)
9. Caligiore, D., et al.: The super-learning hypothesis: integrating learning processes across

cortex, cerebellum and basal ganglia. Neurosci. Biobehav. Rev. 100, 19–34 (2019)
10. Botvinick, M.M.: Hierarchical reinforcement learning and decision making. Curr. Opin.

Neurobiol. 22(6), 956–962 (2012)
11. Pateria, S., et al.:Hierarchical reinforcement learning: a comprehensive survey.ACMComput.

Surv. (CSUR) 54(5), 1–35 (2021)
12. Sutton,R.S., Precup,D., Singh, S.: BetweenMDPs and semi-MDPs: a framework for temporal

abstraction in reinforcement learning. Artif. Intell. 112(1–2), 181–211 (1999)
13. Bacon, P.L., H, J., Precup, D.: The option-critic architecture. In: Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 31, no. 1 (2017)
14. Vezhnevets, A.S, et al.: Feudal networks for hierarchical reinforcement learning. In:

International Conference on Machine Learning. PMLR (2017)
15. Nachum, O., et al.: Data-efficient hierarchical reinforcement learning.arXiv preprint arXiv:

1805.08296 (2018)
16. Brockman, G., et al.: Open AI Gym.arXiv 2016
17. Marc, B.G., et al.: The arcade learning environment: an evaluation platform for general agents.

J. Artif. Intell. Res. 47, 253–279 (2013)
18. Shumsky, S.A.:Deep structural learning: a new look at reinforcement learning. In:XXRussian

Scientific Conference NEUROINFORMATICS 2018. Lectures on Neuroinformatics, pp. 11–
43 (2018)

19. Mnih, V., et al.: Playing Atari with Deep Reinforcement Learning. arXiv 2013

http://arxiv.org/abs/1805.08296


General-Purpose Minecraft Agents and Hybrid
AGI

Alexey Potapov(B) , Anatoly Belikov , Oleg Scherbakov, and Vitaly Bogdanov

SingularityNET Foundation, Amsterdam, The Netherlands
{alexey,abelikov,olegshcherbakov,vitaly}@singularitynet.io

Abstract. We consider the problem of creating general-purposeMinecraft agents
capable of solving a wide range of goals in a complex environment as a testbed for
studying hybrid neural-symbolic architectures for Artificial General Intelligence
(AGI). We analyze the desirable behavior of such agents and sketch out an archi-
tecture for it.We implement a prototype of the agent, which is capable of achieving
various goals in the Minecraft world and to perform exploration, and discuss the
utility of more advanced AGI components to be developed and integrated into the
agent in future.

Keywords: AGI · Neural-symbolic integration · Minecraft agents

1 Introduction

Different approaches to Artificial General Intelligence (AGI) focus on different aspects
of the problem be that theory vs practice or knowledge representation and reasoning vs
end-to-end learning. Each approach focuses on tasks, benchmarks and challenges that
suit them better. In order to pursue a cross-paradigm approach, one needs a task, which
solution is difficult for separate approaches, but each of the approaches can contribute
to the solution. We consider Minecraft as one of environments, on which example a
cross-paradigm approach to AGI can be fruitfully studied and discussed.

The idea to use Minecraft is not new. Two prominent examples are

• MarLÖ 2018 – Multi-Agent Reinforcement Learning in Minecraft Competition (an
extension of the Malmo Collaborative AI Challenge) [1];

• MineRL Competition 2019 and 2021 [2, 3].

However, as we will discuss below, these competitions favor specific research topics
and approaches, which don’t explicitly facilitate cross-paradigm studies. In this paper,
we propose to study the problem of achieving complex goals in complex environments
(in accordance to one of definitions of AGI [4]) on example of Minecraft, and discuss
implications for AGI design principles. We also describe a prototype of the Minecraft
agent, which follows these principles on ad hoc level and can achieve various goals.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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2 Minecraft as Testbed for Cross-Paradigm AGI

Let us consider the existing Minecraft-based AI competitions. MarLÖ provides simpli-
fied Minecraft worlds as environments (like a fenced area of 5 × 5 blocks) with tasks
like chasing a pig, which seems not too difficult for Reinforcement Learning (RL). The
challenge is for multiple agents to collaborate in achieving the common goal by rec-
ognizing intents and strategies of each other just from their in-game behavior. While
emergence of collaborative behavior is an important research topic, the tasks for agents
are quite restricted and means of communication are limited. While the challenge itself
is interesting, its restrictions are not very natural. Humans learn to communicate using
language in different settings, and direct communications between agents in MarLÖ are
not introduced not because it would be non-AGI-ish or less beneficial for collaborative
behavior, but because it doesn’t correspond specifically to subsymbolic RL methodol-
ogy. If we wanted to put this competition into the AGI context, we would consider more
complex tasks and allow more communication channels including symbolic ones.

MineRL, in turn, doesn’t suppose multi-agent collaborations, but considers large
(default) Minecraft environments with a distant goal. The diamond competition [2]
consisted in acquiring a diamond, which requires first to cut some wood, then to craft
wood planks, wooden pickaxe, mining cobblestone, crafting stone pickaxe, and digging
deep, while avoiding lava. This goal is far from most distant in Minecraft, but deep RL
agents fail to learn how to achieve it without hints. The competition proposes to train RL
agents using records of human player walkthroughs. This is “one of the largest imitation
learning datasets with over 60 million frames of recorded human player data”.

The agent also receives auxiliary rewards for obtaining prerequisite items in addi-
tion to a high reward for obtaining a diamond. Moreover, in the navigation subtask,
additional rewards are given for approaching the provided location. That is, the agent is
consequently trained to navigate, to gather one prerequisite item after another. Although
diamond acquisition is a reasonably complex goal in a reasonably complex environment,
agents are intensively trained to achieve only one goal. Although the problem of creating
models capable of achieving multiple goals via different policies is considered in RL,
these models can be assisted by environment models and use some specific tricks (e.g.
[5]). In any case, they have not been used in Diamond competition.

AGI methodology supposes that an agent should be capable of achieving a wide
range of goals (in a wide range of environments or in a rich and complex environment
such as the real world) [4, 6]. Minecraft provides a really wide range of goals including
not only acquiring various items, but also visiting all biomes, encountering all breeds
of cats, etc. Gathering huge imitation learning datasets and training separate agents for
each of such tasks is neither practical nor AGI-ish.

More recently, the BASALT competition [3] hasmore interesting and less formalized
tasks such as “Find Cave”, “Make Waterfall”, “Create Village Animal Pen”, and “Build
VillageHouse”.Unfortunately, these are still very concrete goals.Of course, it is amazing
if agents can achieve these goals in randomly generated Minecraft worlds, but they learn
to imitate sequences of human actions without obtaining general-purpose capabilities to
achieve novel goals.
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A wide range of environments is provided by the set of 57 Atari 2600 games, and the
challenge is to make a single agent capable of mastering them all (which was accom-
plished by Agent57 [7]). However, it still corresponds to a finite set of goals, each of
which the model is intensively trained to achieve separately. Minecraft provides one
environment, but it is much richer (one may say that it contains a lot of related sub-
environments). It raises an even stronger long-term credit assignment problem. It pro-
vides such settings, in which it is sensible to consider building not just one model with
different instances, but one agent capable of achieving a wide range of complex goals
simultaneously, which are of our primary interest.

3 Brief Analysis of Human Player Behavior

Human players intensively utilize knowledge. It is enough to know that you need an iron
pickaxe in order tomine diamonds, and the goal to get a diamondwill immediately imply
that getting an iron pickaxe should be done first. If the necessary crafting receipts are
known, then a lengthy planwill be constructed startingwith the subgoal of obtaining logs.
This fits into a fairly simple classical symbolic planning. But it is still productively used
by humans, who can achieve any goal decomposable into known subgoals. If crafting
a lever requires cobblestone and sticks, achieving this goal is not really different from
crafting a stone pickaxe (up to the number of required resources). Humans do not require
additional training or practice for this.

Human players reason over not only item crafting and block mining. They explicitly
understand, for example, that block mining is possible from a certain distance, so the
block should be approached first. However, while the reasoning can go down to quite
fine granular subgoals, humans construct plans up to not elementary actions, but fairly
large imperative policies. In some cases, these policies are explicit but still imperative
algorithms, e.g., “mine until the block is destroyed”. In other cases, these policies are
implicit and subconscious. This is especially true for controlling keyboard and mouse
with own body actions. If we are approaching one block and notice another useful block,
we orient ourselves towards the new block not by an imperative rule or reflex, but decide
to change our plans or not, while aiming at the new block is executed with much less
conscious control, reasoning, planning, etc.

The main problem with reasoning and planning arises due to unknowns and uncer-
tainties. If we are asked to get a diamond, but we don’t know how to do this, we will
not construct a huge branchy plan or enumerate all possible sequences of elementary
actions.Wewill just explore. Similarly, if we know that logs are needed to craft pickaxes,
which are needed for gathering other required resources, but we don’t see trees around
us, we will just search for trees. The search process can rely on some knowledge. For
example, we will not search for trees in a sea or among icebergs, but our plans related
to searching will be coarse grained.

Knowledge-based planning (or at least behavior guidance) plays prominent role in
how humans play Minecraft. This side of human thinking is not captured by contempo-
rary deep RL models. However, high-level plans are not enough to achieve goals and
subgoals without lower-level skills and behavior policies.

Providing explicit knowledge to AI agents should not be considered non-AGI-ish by
itself, because humans rely on this knowledge themselves. Training Minecraft agents
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from scratch is interesting, but not obligatory fromAGI standpoint. What is more impor-
tant is that agent’s capabilities are not limited to knowledge, skills, or imitation-learning
training sets provided a priori. Minecraft is a good testbed for this, because many things
can be discovered and invented, all of which are infeasible to cover in ontologies.

Let us consider the following situation. A human player while running somewhere
encounters a steepmountain for the first time, which should be somehow passed through.
The player will not just try random actions, but insteadwill consider larger-scale options.
“Going around” or “climbing up” strategies are borrowed from the real world, but “min-
ing through” is more specific to Minecraft. The player first invents the idea to mine
through the obstacle and then tests it. Similarly, the general idea of “climbing up” can be
implemented very differently. It is very natural for the player to try jumping on reachable
blocks with increasing height. This strategy follows (as one of options) from the subgoal
“climb higher”. But what to do if there is no block to jump on in the middle of execution
of this strategy? The player can give up and go down. But there are other options. It is
possible to destroy blocks to carve stairs in the stone. It is possible to attach blocks to
the wall to build stairs. These options can also be invented with help of deduction.

One more interesting and less obvious for human players option is to look down,
jump, and during the jump to put a block under oneself. It is really difficult to do this
accidentally, so RL agents will unlikely learn this trick without guidance. In turn, human
players cannot be sure that this trickwillwork.Whatwe can see is that exploratory actions
are based on randomness introduced not only on the level of basic motor commands,
but also on higher behavioral levels. Human players may need some practice to master
such skills as jumping on blocks in arbitrary conditions, and this practice looks more
like traditional RL, but with rewards formed by reasoning.

Of course, if we consider infants in the real world, their learning will look more RL-
like, but it will evolve towhat is outlined above in contrast tomost animals, which are also
quite capable in RL. Thus, such form of neural-symbolic learning and decision-making
should at least be architecturally supported.

4 Universal Agents with Reasoning

A distinct approach to AGI is a top-down approach based on universal models of intelli-
gence [8]. However, traditional universal models don’t include goal-oriented reasoning
and planning. Thus, it is interesting to establish connection between such models and
human behavior in Minecraft. Let us consider the basic model, AIXI, that performs
Solomonoff induction to predict future rewards and observations, and enumerates all
sequences of elementary actions to maximize expected future rewards.

Initially, AIXI will perform actions in accordance with priors imposed by its ref-
erence machine. But with the growth of interaction history, posterior distribution of
predicted responses of the environment to agent’s actions will converge to true rewards
and observations. Basically, Solomonoff induction will (theoretically, provided nearly
infinite amount of resources) reconstruct theMinecraft game engine (its part, with which
the agent has already interacted).

AIXI reconstructs simulation models of the environment. Such a first-principles
model as the Minecraft engine itself will not contain abstractions used by humans. Such
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concepts as “jump on a block”, “climb on the tree”, or “waterfall rafting” will not be
presented there as well as concepts describing configurations of blocks not used by the
world generator, e.g., “bridge over the canyon”, “stairs to the mine”, etc. At the same
time, this model provides a perfect generalization of the interaction history. The question
arises –why dowe need redundant abstractions?Arguably, AIXIwill be able to construct
stairs or bridge without any notion of them and to make best possible predictions without
additional abstractions by marginalizing unknowns out.

Let us note that using full Minecraft model is not more computationally efficient
than enumerating all sequences of actions in Minecraft itself. There is not too much
computational difference whether to run copies of a randomly acting agent countless
times in Minecraft itself or to do the same using a precise model of Minecraft. While the
theoretical possibility to reconstruct themodel of theMinecraft engine using Solomonoff
induction is fascinating, the rest sounds not too intelligent. Thus, essence of intelligence
is in efficient use of resources (which is not a new idea for sure), and we can suppose
that “redundant abstractions” have to do with it.

However, planning is usually performed in terms of environment state, while there is
noMarkov assumption in AIXI, and states (even hidden) are not introduced (while goal-
oriented RL relies on states [5]). Moreover, goals are somewhat different from rewards.
Nevertheless, such goal as “obtain a diamond” is turned into a reward in RL settings,
and receiving such discrete reward can be straightforwardly turned back into the goal.

In AIXI, rewards are predicted by environment models consistent with interaction
history. Consider one world model q such that

U (q, a1:m) = o1:mr1:m,

whereU is a Universal TuringMachine, a1:m is a vector of actions executed by the agent,
o1:m and r1:m are vectors of observations and rewards. These vectors may include past
values a1:t , o1:t and r1:t for some t < m as well as possible future actions at+1:m and
predicted observations ot+1:m and rewards rt+1:m (which are produced by q).

It would be nice to describe goals and subgoals in terms of components of world
model q, but it is not convenient while q is a program for UTM. We also don’t have
world states, so we cannot describe goals as families of desirable states. However, we
can use interaction history instead. Let us consider arbitrary predicates p over the history
computable on UTM: U(p, a1:m, o1:m, r1:m) ∈ {0, 1}.

We can suppose that goals can be represented as such predicates. In case of “obtaining
a diamond”, we can either calculate this predicate from observations (ObservationFrom-
FullInventory in Malmo []) or from rewards (the reward is received; thus, the goal is
achieved) depending on concrete settings. Some goals are more difficult to hand-code
as predicates (e.g., “build a bridge”), but they can be represented as programs similar to
world models. Achieving goal p within model q can be reduced to searching for such
at+1:m thatU(p, a1:m,U(q, a1:m))= 1. Then, it is trivial to marginalize over (with weights
2–length(q)) all models compatible with the observation history and to state the task of
maximizing probability of p becoming true.
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Now, let us introduce causal relations. We consider two predicates p1 and p2, and
say that p1 causally precedes p2 within environment model q if

(∀a1:m, o1:m, r1:m : U (q, a1:m) = o1:mr1:m)U (p2, a1:m, o1:m, r1:m) = 1 =>

(∃m′ < m)U (p1, a1:m′ , o1:m′ , r1:m′) = 1

The truth or falsity of this condition is determined solely by programs p1, p2, and q
themselves. Causal relation between p1 and p2 is actually a statement about q (which,
in turn, should be consistent with the agent’s past). Marginalization over all consistent
q will give the probability of relation conditioned on the agent’s history.

If the agent knows such a relation for the goal, it can reduce the depth of action
enumeration. Indeed, if p2 is a goal, and p1 causally precedes p2, then the agent can
first try achieving p1, which will take less time. With linear increase in the number of
subgoals, computational complexity of choosing actions can decrease exponentially in
AIXI. Causal relations can be enriched with the use of logical operators. For example,
achieving p3 can depend on conjunction or disjunction of p1 and p2. For example, crafting
a stone pickaxe requires both sticks and cobblestone in the inventory, while mining coal
ore requires either wooden or stone pickaxe. Instead of having large black-box programs
pi, we can have smaller pi, which can be combined in a declarativeway. This can simplify
discovery of causally related predicates and enable their reuse for describing different
goals and subgoals.

However, searching for new predicates and proving their causal relations can be dif-
ficult, when environment models are imperative. The problem is that universal induction
needs complete generative models, which precisely reproduce all observations. If the
environment is described with the use of separate predicates or features (without gener-
ative component in style of universal autoencoders []), it is impossible to estimate how
much information is lost in this description and thus to assess the model quality. Also, as
was mentioned, these descriptions have more pragmatic than inductive meaning. They
can contain useful abstractions, which are, however, redundant from purely inductive
standpoint.

One possibility to make proving causal relations within generative models of envi-
ronment feasible is connected to Curry–Howard isomorphism. Suppose, for example,
that these models are programs in a dependently typed language. These programs will
contain types, which will correspond to certain propositions, and more propositions as
dependent types can be formed on top of them. If goals are described in the same lan-
guage, causal relations can be represented as (dependent) function types and proven by
finding a function implementation that type-checks.

For example, the fact that diamonds are mined from ore only with iron or diamond
pickaxes can be represented not as a piece of imperative code, but as a type in program q
(if the reference machine in universal induction is a dependently typed language). Then,
proof that possessing such a pickaxe is a prerequisite for mining a diamond within qwill
be trivial.

Detailed development of a goal-oriented version of AIXI model based on, e.g., a
language with probabilistic dependent types, proofs of causal relations, and action selec-
tion guided by reasoning goes beyond the scope of this paper. Our goal is to develop
a practically usable prototype of a Minecraft agent capable of achieving a wide range
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of goals. The presented informal sketch of this possibility, which shows that our intro-
spection of human problem-solving in Minecraft can be aligned with improvements in
AIXI efficiency, can justify the choice of architecture of such Minecraft agent from AGI
standpoint.

5 Minecraft Agent Design

Weare prototyping a hybridMinecraftAI agent, which uses explicit symbolic knowledge
and reasoning together with subsymbolic skills. We use seed ontology with knowledge
about crafting receipts (which is a limitation ofMalmo,which crafting command requires
to specify the result). It can also include some entries describing mining results from
blocks with tools, although this knowledge can be enriched via learning. This seed
ontology is used instead of indirect prior information provided to the agent in the form
of imitation learning training set in MineRL.

This knowledge can be straightforwardly used to infer what blocks should be mined
to gather necessary resources for crafting necessary tools for mining other necessary
blocks, etc. Similar to subgoals in the sketched above version of AIXI, knowing “what
to do” is not detailed enough to infer immediate elementary actions. Our architecture
includes “how-to” procedural knowledge to break subgoals down into finer-grained tasks
such as “approach the block”, “look at the block”, “attack the block”, etc., and even finer-
grained tasks and procedural knowledge entries as “run towards the block to approach
it”, “strafe to avoid think obstacles”, etc. Apparently, we can express this in natural
language.

Such rules do not composewell. For example, the rule to float in order not to suffocate
can contradict to the rule of shortening the distance for approaching the desirable block,
when this block is under water. We can imagine a rule that block can be mined under
water for a certain time and then it is necessary to surface. However, all such situations
cannot be envisioned a priori. It should be noted that a deep RL agents are also not able
to deal with novel situations, which do not resemble situations from training sets. This
particular situation could be dealt with via reasoning at least by humans. Procedural
knowledge can be considered as the result of caching of declarative knowledge-based
inference. However, procedural knowledge can be formed before declarative, thus we
consider it as a separate subsystem. Declarative knowledge is preferrable, since it can
tell what to do in unexpected situations. However, such rules as “if the block location is
known, approach it instead of search of a new block of interest” can be more difficult
to prove from declarative knowledge (which can be absent) than to infer it inductively
from practice. In any case, there are subsymbolic skills at the bottom, and procedural
knowledge is aimed to glue declarative knowledge and these skills.

If procedural knowledge is not enough to answer what to do, search behavior is
activated. For example, if the agent knows that achieving a goal requires certain blocks,
but these blocks are not observed and their location is unknown, the agent will search
for them. If the agent knows that some ingredient is needed to achieve the goal, but it
doesn’t know, what block this ingredient is obtained from, the agent will search for novel
blocks and try mining them. Exploration of the world can be a separate goal or can be
activated as a subgoal of another goal the way to achieve which is not known.
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Subsymbolic skills produce basic actions, although actions (e.g., crafting an object)
can be inferred from knowledge. Skills can be built-in into the agent as instinct, and can
be trainable. The reason for the latter is also the lack of information, which is also solved
by exploration, but on the level of individual actions. Rewards for such skills are formed
by the symbolic system. The agent knows what is necessary to achieve by the skill,
but necessary actions for this are not yet known and to be explored. This should not be
necessarily estimated by a binary predicate “the task is solved by the skill” (e.g., the block
is approached or mined) as in our sketched AIXI modification, but can be an estimate of
the progress towards the goal (e.g., the distance to the block to be approached). Forming
the latter automatically has not yet been implemented.

It is important to note that exploratory behavior was crucial for Agent57 to
achieve superhuman performance in all 57 game [7]. Exploration was stimulated by
intrinsic rewards based on novelty. The main new feature there was to adapt explo-
ration/exploitation tradeoff to a current environment. In our case, exploration is activated
at different levels of abstraction and explicitly depends on a goal and lack of knowledge
how to achieve it. Exploration can be a separate goal in a conjunction with another goal,
which will be equivalent to a sum of extrinsic and intrinsic rewards, but even in this case
exploration on the top level will be guided by knowledge.

The sketched AIXI modification performs action selection, learning, and reason-
ing simultaneously at each time step. While this computationally infeasible, it doesn’t
encounter the problems of replanning and plan recovery. Our prototype constructs a
graph of subgoals and skills, which is also dynamically updated. However, only reeval-
uation of goal statuses and preconditions is performed at each step, while replanning is
performed only when such statuses are changed. For example, if the agent has the plan
to cut some wood to make a wooden pickaxe to mine cobblestone and is on search for
wood, but notices a cobblestone item (appeared, e.g., due to explosion of a creeper), it
will approach the item and pick it up directly, because picking a cobblestone is a part
of the goal-skill graph with the subgoal of determining a cobblestone location, which
status changes when a cobblestone is noticed.

Our prototype has domain-specific components. AlthoughMalmoprovides symbolic
entities as raw observations (e.g., observationFromFullInventory, observationFromRay),
such notions as “mining a block”, “picking up an item”, “approaching location” are
introduced manually. Inferring arbitrary symbolic concepts as well as introduction of
brand-new skills was not considered in the current prototype, while it is the most inter-
esting part in context of AGI. However, a working agent was implemented, which can
achieve a wide range of goals without additional data provided by humans. Its behavior
can still be made much more general-purpose and open-ended that will require more
AGI-ish features. The prototype enables the study of these features in non-trivial settings
with clear demonstration of their usefulness.

6 AGENt’s Capabilities

Let us consider some examples of agent’s capabilities to clarify them. The agent uses
vision (Fig. 1), which guides its search for and navigation towards known blocks as well
as attention towards novel blocks.
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Fig. 1. Noticing and approaching trees via vision

In the course of free exploration, the agent can collect items, which are mined from
the blocks that can be found both under and above the surface (Fig. 2). The agent has
prior knowledge about tools, and decides to craft them as a subgoal of exploration when
necessary.

Fig. 2. Intermediate exploration results

The agent doesn’t have a one-way behavior like agents in the MineRL diamond
competition, where they utilize a simple strategy to dig straight down after obtaining
enough wood. Our agent navigates in arbitrary directions depending on its goal (Fig. 3).
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Fig. 3. Mining coal ore and granite as novel blocks, climbing to surface for further exploration,
returning back for obtaining iron_pickaxe as a goal, finding iron ore

7 Conclusion

We have implemented the prototype of a neural-symbolic Minecraft agent capable
of achieving a wide range of complex goals of obtaining various items. Knowledge-
based reasoning dynamically orchestrates subsymbolic skills, and guides learning and
exploratory behavior. The agent can freely navigate in the world without getting stuck
in the course or after achieving each goal. While the prototype contains ad hoc com-
ponents, it serves as a proof-of-concept that the hybrid approach can be efficient in
general-purpose open-ended Minecraft agents.

The prototype agent doesn’t produce new symbolic knowledge besides establishing
relations between known concepts. Thus, it also doesn’t produce brand-new DNNmod-
ules for novel skills. For example, it cannot master swimming up a waterfall, because it
doesn’t have a notion of waterfall as well as constructions (block compositions) in gen-
eral. These are themain topics of our further research, which can be studied in non-trivial
settings with the use of the developed prototype.
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Abstract. In the paper, we consider the task of Visual Question
Answering, an important task for creating General Artificial Intelligence
(AI) systems. We propose an interpretable model called GS-VQA. The
main idea behind it is that a complex compositional question could be
decomposed into a sequence of simple questions about objects’ proper-
ties and their relations. We use the Unified estimator to answer questions
from that sequence and test the proposed model on CLEVR and THOR-
VQA datasets. The GS-VQA model demonstrates results comparable to
the state of the art while maintaining transparency and interpretability
of the response generation process.

Keywords: Interpretable visual question answering · Graph
explanations · Unified estimator

1 Introduction

Visual Question Answering (VQA) is one of the important tasks in the field
of Artificial Intelligence (AI), which assumes an answer to a natural language
question about a given image. In the most general setting, questions are free-form
and open-ended. There are several public benchmarks for the task, including
CLEVR [15] and VQA [3]. The performance of VQA algorithms have improved
significantly over the years [20,26], but the gap between the best methods and
humans [3] still exists.

VQA requires a rich understanding of both the visual content of images and
the textual content of questions. The model should be able to detect objects
and activities, ground words to the objects on the image, and perform common-
sense reasoning. Thus, VQA unifies several research areas, including Computer
Vision, Natural Language Processing, and Knowledge Representation & Rea-
soning, that, together with a well-defined quantitative evaluation metric, make
it an AI-complete task [3].
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VQA systems have a variety of applications as they improve human-computer
interaction by simplifying visual content retrieval. Special applications of VQA
include the support for automatic intelligent medical diagnosis [12], the aid to
visually impaired people to better perceive the environment [9], help to perform
household tasks [16], and unattended surveillance with detection of anomalous
situations [30]. Another possible application is smart and customer-tailored com-
mercial advertisements [14].

Considering the potential of their practical use, VQA systems require relia-
bility of the predicted answer [22] and robustness (insensitivity to visual content
manipulation [1], answer distribution shift [2], linguistic variations in input ques-
tions [28], and others disturbances). This can be achieved by using interpretable
models, so humans can trace their decisions and understand the reasoning pro-
cess [19,24], unlike in unexplainable “black box” approaches.

We introduce a Graph Strategy for VQA (GS-VQA) framework for solv-
ing the VQA problem in an interpretable way. CS-VQA implements mapping of
a question into the graph representation, object detection, and recursive graph
traversal in order to connect the objects from the image with the appropriate con-
cepts from the question to retrieve the correct answer. Special trainable modules
(estimators) check the correspondence of objects and graph nodes by determin-
ing the specific objects properties and relations between them. GS-VQA exists
in two versions of architecture. The first version, GS-VQA-v1, is based on the
ideas of the UnCoRd model proposed in [31] with changes in the graph traversal
procedure and estimators’ architectures. In the second version, GS-VQA-v21 we
replaced a set of estimators with a single Unified estimator (UE) capable of
working with visual and textual features.

The main idea behind GS-VQA is that a complex compositional question can
be broken down into a number of simple questions about objects’ properties or
they relations. These questions are fed into the UE. Depending on its answers,
a decision is made based on the conformity of the object to a graph node. Thus,
we simplify the initial question by decomposing it into a set of classification
problems that are easier to interpret. Moreover, the UE is trained only once to
determine all properties and relationships present in the dataset, unlike multiple
estimators, each of which is trained separately on different data, which is a
laborious task for a large number of objects’ attributes.

2 Related Works

Deep Learning Approaches. The general VQA pipeline is to extract a joint
representation of images and questions using various neural architectures and
then solve a classification problem to find an answer. For example, a simple
baseline [36] separately encodes image with a pre-trained convolutional neu-
ral network (CNN) and text with a Bag-of-Words model, while more recent
approaches [29] learn multimodal representations. Besides being uninterpretable,

1 The code for GS-VQA-v2 model is available on https://github.com/cds-mipt/x-vqa.

https://github.com/cds-mipt/x-vqa
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deep learning models have a disadvantage in that they rely on biases in the data,
e.g. the visual priming bias [35], the language bias [7], or the linguistic bias, when
the answer may depend on the linguistic form of the sentence, so the model may
provide different answers to the same question if it is paraphrased [25].

Interpretable VQA. Taxonomy for Interpretable Visual Reasoning (IVR) pro-
posed in a recent survey [10] divides the models into four categories according to
the way they achieve interpretability. Visual explanations [4,8] highlight semanti-
cally important regions of an image and are used in attention-based models. Text
explanations [21] can provide attributes, relationships, or commonsense knowl-
edge, but are mainly oriented at reasoning results. Symbol explanations [32] are
expressed in programs or logical rules and can trace the intermediate results
of each reasoning step, ensuring better model transparency. Graph explana-
tions [5,33] use its structure to provide more intuitive information on objects
relationships(explicit, e.g. spatial or semantic, or implicit, captured by an atten-
tion module), representing either an image or a question. The answering proce-
dure in the approaches that use an image-constructed scene graph is mainly not
interpretable. More generally, “an explanation usually relates the feature values
of an instance to its model prediction in a humanly understandable way” [24].

Graph Explanations. In this paper, we focus on a graph explanations app-
roach that represents the question text in the form of a graph (question graph). It
allows us to achieve a deep linguistic understanding of the question and associate
it with objects in the image. In [13], the authors proposed dividing the question
into several sub-tasks (e.g. filter, count) corresponding to individual neural mod-
ules with the attention mechanism. A sequence of modules application is pre-
dicted by a policy and represented as a linearized syntax tree. Noteworthy are
the approaches that use the dependency trees obtained with the help of off-the-
shelf text parsers [4]. Each node in such trees is represented by a sentence word,
and the edges denote syntactic links between words. The model output depends
solely on the syntactic structure of the question and does not require additional
training set labeling, which is a step toward generalizing the model to different
subject areas. There are promising works [23] that use both scene graphs and
question graphs and explore the possibility of bringing them together. A remark-
able approach with transparent interpretability and without explicit end-to-end
training on (question, image) pairs is proposed in [31]. In the UnCoRd model,
the VQA problem is reformulated as a directed graph traversal problem, i.e.,
nodes represent the objects mentioned in the text of the question, and the edges
are the relationships between the objects. A key feature of the UnCoRd model is
visual estimators, which are either trainable or rule-based models for determin-
ing the attributes of image objects. A separate visual estimator is used for each
attribute or relation. The problem is that with a large number of attributes,
it becomes difficult to train many estimators, think through the architecture,
label training data, and invent manual rules for each attribute individually. In
GS-VQA-v2, we propose replacing multiple estimators with one trainable Uni-
fied estimator that performs similar functions but is trained once to simplify the
estimators training process.
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3 Task Statement

We formulate the Interpretable Visual Question Answering task as the devel-
opment of an interpretable model a = 〈D,S,R,Gq〉 capable of predicting the
correct answer to the question given the input image I and the question q. D
is a description of an image: D = Detect(I), where Detect() returns a set of
regions of interest for objects. S is a set of scene states, where Si ∈ S is the
set of correspondences of detected objects from D to question tokens, S0 = ∅.
R : {R1, ..., Rk} denotes a set of rules that transform the current scene state
St into a new state St+1: St+1 = Ri(St). Gq denotes a strategy based on the
question q, which, using the rules R, transforms the initial description S0 into
the final state leading to the answer to the question:

Gq(S0) = Ri1 ◦ Ri2 ... ◦ Rim(S0) = Sfinal.

As a strategy Gq, we consider the depth-first search (DFS) traversal of the
question’s graph representation. Each node must be assigned to a set of objects
that satisfy the characteristics of the node, e.g., a node with the properties “red
color” and “cube shape” will be assigned to all the red cubes in the image.
The rules R are characterized by sub-procedures called during the graph traver-
sal, which are responsible for applying the appropriate estimator to the scene
objects. The estimator is either one or a set of models with trainable weights
designed to define queried properties and relationships of scene objects. Given a
scene’s objects subset O ∈ D, associated with some image regions, and a queried
attribute (property or relation name) attr, the estimator is to predict attribute
value v̂ in the candidate answer set V such that:

v̂ = argmax
v∈V

Pθ(v|O, attr),

where θ denotes the weights of the estimator. The estimator’s response deter-
mines what the next scene state Si will be, i.e., how the rule will affect the
current state and which scene objects satisfy the requirements of the rule. Max-
imizing the estimator’s accuracy will lead us to the correct application of the
rules and, therefore, the correct construction of a strategy for answering the
question q. Thus, the model provides not only an answer to the question but
also an interpretable explanation that illustrates the relationship of scene objects
with objects mentioned in the question’s text. In addition, the obtained history
of scene states [S0, S1, ..., Sfinal] allows us to trace the reasoning process.

4 GS-VQA Model Overview

A schematic illustration of the GS-VQA model is shown in Fig. 1. The question
q is fed into the Question-to-graph model, while the image I is processed by the
Object detector. The Answering procedure implements the strategy Gq. Having
received a graph representation and a set of objects D as input, it performs
the graph traversal with a successive call of the necessary estimators to check
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if the scene object matches the node’s characteristics. The final state Sfinal

corresponds to a graph, where all nodes are assigned to objects, from which the
information required in the question can be extracted by special sub-procedures
built into Answering procedure.

Question :
What is the material of the 
yellow sphere to the left of 
the small gray ball?

Question-to-graph
(NMT)

Image

Bounding boxes

Shape: sphere
Size: small
Color: gray

left

Graph sequence

Answering procedure

Graph traversal

Unified 
estimator
(VL-BERT)

(b)

Answer: rubber

Shape: sphere
Color: yellow
Material: ?Object detector

(Faster RCNN)

Estimators set
(CNNs and MLPs)

(a)

Fig. 1. An architecture of the GS-VQA model. In GS-VQA-v1 a set of estimators is
used (a), while in GS-VQA-v2 it is replaced by the Unified estimator (b).

Question-to-Graph Model. A Question-to-graph model is used to trans-
late the initial question text into graph representation. As a Question-to-graph
model, we chose a seq-to-seq model from the OpenNMT library in PyTorch [17].
The model consists of eight encoders and eight decoders of the transformer archi-
tecture. The training set consists of pairs of the questions’ texts and their graph
representations serialized to sequences.

Object Detector. We used the Faster R-CNN [27] model as an object detec-
tor, which determines object classes and bounding box coordinates. Unlike the
multiclass object detector in the original UnCoRd implementation, we predict
only one abstract class “object to which all the image objects are assigned. The
object class is one of the properties that have to be determined using a suitable
estimator.

Answering Procedure. The answering procedure is a modified DFS graph
traversal. The graph is traversed only from parent nodes to child nodes, starting
with the first node of the Question-to-graph model output sequence. For each
node, two sets are formed: a set of current objects—scene objects matching node
properties—and a set of candidate objects that are in an edge-defined relationship
with the current objects. Checking properties and relationships is done by calling
the required estimator within a procedure. At each step of the algorithm, an
intermediate answer is formed, depending on the success or failure of the property
or relation check (yes or no). The final answer is extracted from the deepest node
of the graph. The constructed graph with the scene objects assigned to the nodes
after the answering procedure is shown in Fig. 2. The algorithm allows answering
all types of questions in CLEVR. To check the correctness of the answering
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procedure independently of the performance of other models, the outputs of
Question-to-graph and Computer Vision components were temporarily replaced
with their ground truth representations. The algorithm was tested on 10,000
questions of the CLEVR validation set, with the resulting accuracy of 100%.
The answering procedure pseudocode can be found in Appendix A.

Question:There is a large block that is behind the block to the left of the big blue thing; what is it made of?

Answer: 
metal

Shape: cube
Size: large
Color: blue

Size: large
Shape: cube
Material: ?

left behind

Fig. 2. Question graph visualization with objects assigned to nodes, built by the ques-
tion answering procedure.

Estimators. In GS-VQA-v1, we have trained eight separate estimators for the
CLEVR dataset to predict object properties and relations. We used estimators
with three convolutional and three fully connected layers with ReLU activation to
predict an object’s color, material, and shape. We used multilayer perceptrons to
determine the size and spatial relationships. The input for the size estimator is a
bounding box corresponding to the given object. For spatial relations estimators,
bounding boxes of queried objects are used as input.

In GS-VQA-v2, we consider VL-BERT [29] as a Unified estimator. VL-BERT
works with textual and visual data and can be adapted for different visual-
linguistic tasks by modifying input and output formats. The UE predicts answers
for simple questions about properties and relations, so we modified VL-BERT to
receive an input in the form of the name of a queried property (e.g., material) or
a relation (e.g., left). VL-BERT also receives the entire image and the regions of
interest specified by objects’ bounding boxes. Depending on whether we need to
know a property or a relation, the number of bounding boxes is equal to one or
two, respectively. The VL-BERT possible answers includes all properties values
from the dataset and the answers yes and no for the case when we want to
confirm or deny the relationship between objects. Thus, VL-BERT can be used
for both properties and relationships.

5 Experiments

We validate the proposed model on the CLEVR [15] and THOR-VQA datasets.

CLEVR. CLEVR [15] is a synthetic VQA dataset that contains images of 3D-
rendered objects and compositional questions of five types: Exist (E), Count (C),
Compare Integer (CI), Query Attribute (QA), and Compare Attribute (CA).
Each image in CLEVR is provided with a detailed description of the objects in
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the scene, their position in space, and the spatial relations between the objects.
The question can be generated from a functional program that shows which
reasoning steps should lead to the answer. A scene object can be characterized
by its shape, material, color, and size. There are five types of relations between
objects that characterize the relative position in space in four directions—right,
left, front, and behind—and the equality/inequality of objects’ properties (e.g.
same color). The example of image and question pair is shown in Fig. 3a.

Q:What color is the small shiny cube?
A: Brown

Q:Wha� s on a plate?
A: Egg(a) (b)

Fig. 3. Image-question pair examples from CLEVR (a) and THOR-VQA (b) datasets.

Experiments and Results on CLEVR. We first trained the Question-to-
graph model on a set of pairs of questions and their graph representations,
generated from the functional programs of CLEVR, with the obtained accuracy
of 99.97%. The training set of bounding boxes for the Object detector was formed
using scene descriptions from CLEVR2, the mAP is 83%. For GS-VQA-v1, we
trained the set of estimators described in Sect. 4. The labeling of the training sets
was also carried out using scene descriptions from CLEVR; the size of training
set for each estimator was 60,000 training samples. For each estimator we got
fairly high accuracy values around 98%–99%. All of the trained models were
built into the answering procedure and tested on the CLEVR validation set,
with the overall accuracy of 95.4%. See Table 1.

To train VL-BERT for GS-VQA-v2, a training set was collected from scene
descriptions and images. The training set was balanced so that each question and
answer occurred in it approximately the same number of times. VL-BERT was
trained on 90,000 samples and validated on a set of size 20,000. The obtained
accuracy for VL-BERT is 99.84%. The entire GS-VQA-v2 model accuracy values
for each type of CLEVR questions are shown in Table 1.

The results show that GS-VQA-v2 outperforms GS-VQA-v1. However, it
does not exceed the UnCoRd result, which is 99.74%. This may be due to the
insufficiently good mAP of the Object detector, because as an Object detec-
tor, we chose Faster-RCNN instead of Mask-RCNN [11] used in UnCoRd. After

2 https://github.com/larchen/clevr-vqa/blob/master/bounding box.py.
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Table 1. Accuracy on the CLEVR dataset for different question types. *Results for
GS-VQA-v1 are given on the CLEVR validation set.

Model E C CA CI QA Overall

UnCoRd [31] 99.89 99.54 99.80 99.91 99.74 99.74

NS-VQA [34] 99.9 99.7 99.8 99.9 99.8 99.8

GS-VQA-v1∗ 97.58 92.82 96.23 96.8 95.49 95.4

GS-VQA-v2 99.18 95.47 99.18 97.76 99.14 98.2

analyzing the situations in which our model makes mistakes, we can conclude
that the model most often makes mistakes when the object in the image is not
completely visible: for example, it is overlapped by another object, so an object
detection error occurs. Also in UnCoRd, some estimators use hand-crafted rules
rather than learning ones, which increases the quality but complicates their con-
struction.

We also added an NS-VQA model [34] to a comparison, which processes the
question and the image separately and achieves the best results on CLEVR. The
main feature of this model is that it first parses the image into a scene description
in the form of a table listing all objects with their properties. After that, the
question is translated into a deterministic sequence of executable procedures
(table filtering) and applied to the scene description. This approach allows us to
track the steps performed by the system, but does not provide binding specific
scene objects to question tokens, as shown in Fig. 2.

THOR-VQA. The THOR Visual Question Answering dataset (THOR-VQA)
was generated in AI2-THOR [18], a near photo-realistic 3D environment, using
its Python API. The generation procedure is based on on IQUAD [6]; 25 kitchen
scenes and 36 types of objects in them were used. On average, about 1,000
questions per room were generated for each of eight types (Existence, Logical,
Counting, Preposition, Material, Compare Material, Compare Size, Compare
Distance). In experiments, we used only three types of questions (Existence,
Preposition, Material) since those questions can be answered using a single
image. All question templates and counts can be found in Appendix B and
Appendix C, respectively. The generation process is a random search of seeds
for the scenes. The procedure of generating a question for a given scene number
and question type is shown in Fig. 4. We use a random number generator (RNG)
to sample object classes for the question and a scene seed. The question is ini-
tialized using object classes and a given question type. The episode initialization
consists of three stages: choosing objects, spawning the objects in the scene,
and removing 25% of the objects to even out the distribution. If the question is
valid, i.e., objects for answering the question are present in the scene and can be
reached by the agent, it is saved. If not, the new episode is initialized, and the
validation procedure is repeated. For Existence, Logical, and Counting types,
all possible answers are generated for the sampled objects to keep the answers
evenly distributed. An example from THOR-VQA is shown in Fig. 3b.
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Fig. 4. Procedure of a question generation.

Experiments and Results on THOR-VQA. We followed the same train-
ing scheme for the THOR-VQA dataset as for CLEVR. For GS-VQA-v2, the
Question-to-graph model, the Object detector, and the VL-BERT estimator were
first pretrained on data generated from THOR-QAD. We followed the scheme for
the CLEVR dataset to train the GS-VQA-v2 model on the THOR-VQA dataset.
The Question-to-graph model achieved 100.0% accuracy on validation, which can
be explained by a small number of question templates: nine in total. The Faster
R-CNN detector achieved mAP of 86.2. The Unified estimator achieved 95.8
accuracy score on validation. The results are shown in Table 2.

Table 2. Accuracy on the THOR-VQA dataset for different question types.

Model Existence Preposition Material

CNN-BoW 66.8 41.7 96.4

GS-VQA-v2 90.8 82.7 94.2

We used CNN-BoW model from [36] as a baseline for THOR-VQA. The
baseline model outperforms GS-VQA-v2 on material questions due to the strong
language bias, i.e., the model learns the mapping from the object type to the
answer. The GS-VQA model archives the close score on material questions and
drastically improves results on other question types. We assume that a better
detector would further boost the performance.

6 Conclusion

In this paper, we propose the GS-VQA model for interpretable VQA. As has
been mentioned, GS-VQA decomposes a complex compositional question into a
sequence of simple questions. We used a graph strategy for decomposition and
apply Unified estimator for resulting questions. The Unified estimator simplified
the model training procedure since it maintained a single format for input and
output data, regardless of the attribute type, and is trained for all attributes.
As a result, the model’s responses remained fully interpretable due to the fixed
answering procedure and simple questions. We tested the proposed model on the
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CLEVR dataset and on a collected THOR-VQA dataset. Experiments showed
that the model performed comparably to the existing state-of-the-art methods.
The problem of adapting GS-VQA to real-life VQA datasets is considered as
further research.

Acknowledgments. This work was supported by the Ministry of Science and Higher
Education of the Russian Federation under Project 075-15-2020-799.

A Answering Procedure Algorithm

Algorithm A.1 getAnswer procedure.
Require: The graph node, Node;

The scene objects set (object detection results), objects;
The objects set obtained from the previous node, candidate objects;
The dictionary storing the labels of visited nodes and the objects sets corresponding
to them, visited nodes;

Ensure: answer;
1: cur objects = find matching objects(Node, candidate objects);
2: if cur objects �= ∅ then
3: answer = yes;
4: else
5: answer = no;
6: visited nodes[Node] := cur objects;
7: if exist(child nodes) ∧ cur objects �= ∅ then
8: for child node in unvisited child nodes do
9: related objects := find related objects(Node, candidate objects, objects);

10: answer = getAnswer(child node, objects, related objects, visited nodes);
11: else if exist(parent nodes) ∧ cur objects �= ∅ then
12: for parent node in unvisited parent nodes do
13: for cur obj in cur objects do
14: parent objects = find parent objects(parent node, cur obj, objects);
15: if parent objects = ∅ then
16: cur objects := cur objects − cur obj;
17: visited nodes[Node] = cur objects;
18: if cur objects = ∅ then
19: answer = no;
20: else
21: for node in unvisited nodes do
22: valid objects := objects;
23: answer = getAnswer(node, objects, valid objects, visited nodes);
24: break;
25: if exist(required property) ∧ cur objects �= ∅ then
26: answer = get property(Node, cur objects, required property);
27: return answer
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B THOR-VQA Question Templates

Table 3. Templates for THOR-VQA questions.

Question type Templates

Existence Is there OBJ in the room?

Please tell me if there is OBJ somewhere in the room

Is there OBJ somewhere in the room?

Is there OBJ somewhere nearby?

I think OBJ is in the room. Is that correct?

Do we have any OBJs?

Logical Is there OBJ1 and/or OBJ2 in the room?

Please tell me if there is OBJ1 and/or OBJ2 somewhere in
the room

Is there OBJ1 and/or OBJ2 somewhere in the room?

Is there OBJ1 and/or OBJ2 somewhere nearby?

I think OBJ1 and/or OBJ2 is in the room. Is that correct?

Counting How many OBJs are there in the room?

There are between 0 and 3 OBJs in the room. How many
are there?

Please tell me how many OBJs there are somewhere in the
room?

Please tell me how many OBJs are around here?

Count the number of OBJs in this room

Preposition What is on/in OBJ ?

There is something on/in OBJ. What is it?

Material There is OBJ somewhere in the room. What material is it
made of?

What material is the OBJ in the room made of?

Compare material Does OBJ1 share same material as OBJ2 in the room?

There is OBJ1 and a OBJ2 in the room. Are they made of
the same material?

Compare size Is OBJ1 smaller than OBJ2 in the room?

Is OBJ2 bigger than OBJ1 in the room?

Compare distance Is OBJ1 closer to OBJ2 than OBJ3 in the room?

Is OBJ3 farther from OBJ2 than OBJ1 in the room?
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C THOR-VQA Question Counts

Table 4. Counts for THOR-VQA questions.

Question type Counts

Train val/seen val/unseen total

Existence 12990 5251 7442 25683

Logical 31951 4584 6015 42550

Counting 34257 4403 7226 45886

Preposition 39095 1609 6083 46787

Material 16650 5431 5264 27345

Compare material 23754 3174 4163 31091

Compare size 21341 720 3491 25552

Compare distance 16742 3822 4031 24595
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Abstract. The Causal Cognitive Architecture 3 is a biologically inspired cogni-
tive architecture based heavily on navigation maps—arrays holding spatial navi-
gation information about the external environment but also coopted by the archi-
tecture for much of its data storage and representational requirements. Sensory
information is stored in navigation maps and operated on in the architecture.
Enhancement of feedback pathways in the architecture allows the intermediate
results of operations on navigation maps to be re-processed in the next operating
cycle and has been shown to allow the architecture to generate causal behavior.
Here it is shown that this also can readily allow the emergence of analogical pro-
cessing as a core mechanism in the architecture. If a navigation map cannot be
processed to yield an actionable output, then it is compared to a similar navigation
map and automatically an analogical result is produced which the architecture can
possibly use as an output. Analogical processing as a core mechanism may be
advantageous in creating more capable artificial general intelligence systems.

Keywords: Analogies · Causality · Cognitive architecture · Artificial general
intelligence

1 Introduction

Analogiesmay lie at the heart of human cognition [1].Analogical problem solving allows
us to solve day to day problems, make sense of novel situations and to plan behavior,
and thus it is of relevance to creating a working artificial general intelligence (AGI).
We describe here how in the development of a brain-inspired cognitive architecture,
analogical reasoning appears to readily emerge, not as some specialized skill (e.g., to
be used when performing human intelligence tests) but rather as a ubiquitous, core
mechanism of cognition of the architecture.

The Causal Cognitive Architecture 3 (CCA3) is a biologically inspired cognitive
architecture loosely inspired by the mammalian brain, in particular the mammalian
hippocampus, and based heavily on navigation maps [2, 3]. The navigation maps in
the simulated architecture [3] are arbitrarily limited size 6 × 6 × 6 arrays holding
spatial navigation information about the external environment but also coopted by the
architecture for much of its data storage and representational requirements, as well as
for the various small algorithms, termed “primitives” it uses.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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The key components of the CCA3 are shown in Fig. 1. The architecture takes as an
input the set of sensory features streaming in from different perceptual sensors. Objects
detected in this stream of sensory features are segmented, and visual, auditory, and
other sensory features of each segmented object are spatially mapped onto navigation
maps dedicated to one sensory modality. These single-sensory navigation maps are
then mapped onto a best matching multi-sensory navigation map taken from the Causal
Memory Module and operated on in the Navigation Module. Instinctive and learned
primitives, essentially small rules or productions, themselves using modified navigation
maps, are then applied onto the navigation map in the Navigation Module, producing a
signal to the Output Vector Association Module and then to the external embodiment.

There are extensive feedback pathways throughout the architecture—states of a
downstream module can influence the recognition and processing of more upstream
sensory inputs. In the Causal Cognitive Architecture 3, the feedback pathways between
the Navigation Module/Object Segmentation Gateway Module and the Input Sensory
Vectors Association Modules are enhanced allowing intermediate results from the Nav-
igation Module to be stored in the Input Sensory Vectors Association Modules. If so, in
the next cognitive cycle (i.e., cycles of passing input sensory vectors into and through
the architecture), these intermediate results will automatically be considered as the input
sensory information and propagated to theNavigationModule and operated on again. By
feeding back and re-operating on the intermediate results, the Causal Cognitive Archi-
tecture is able to formulate and explore possible cause and effect of actions, i.e., generate
causal behavior [3].

Below we show that a consequence of this enhancement in feedback processing
of the intermediate results of the architecture is not only the ability to generate causal
(or pseudo-causal) behavior [3] but that the architecture now readily uses analogical
reasoning as a central and core mechanism of action.

2 Functioning of the Causal Cognitive Architecture 3 (CCA3)

We will work through the operation of the Causal Cognitive Architecture 3 (CCA3)
shown in an overview in Fig. 1. A series of equations presented below describes the oper-
ation of the key modules in Fig. 1. These equations effectively represent a pseudocode
for the architecture. Named procedures in some equations represent blocks of pseu-
docode. For example, Input_Sens_Vect_Shaping_Modules.normalize()
in (10) represents the code for transforming arrays of input sensory data into arrays with
the same dimensions used by the other modules of the architecture. Additional details
about specific equations/pseudocode can be found in reference Schneider [3].

2.1 Input Sensory Vectors Shaping Modules

Inputs for any sense modality are sensed (or simulated) as a 2D or 3D spatial array of
inputs, which vary with time (2, 4, 6).We arbitrary assume visual, auditory, and olfactory
inputs in our current model, but sensorymodalities, of course, can be expanded. A vector
s(t) holds the arrays representing the sensory inputs Sσ,t of different sensory systems (9).
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It is transformed into a normalized s′(t) (10). Any input sensory system inputs S′
σ,t are

now in an array of dimensions (m, n, o) (11).

S1 ∈ Rm_1xn_1xo_1 (1)

S1,t := visual_inputs(t) (2)

S2 ∈ Rm_2xn_2xo_2 (3)

S2,t := auditory_inputs(t) (4)

S3 ∈ Rm_3xn_3xo_3 (5)

S3,t := olfactory_inputs(t) (6)

σ := sensory system identification code ∈ N (7)

n_σ := total number of sensory systems ∈ N (8)

s(t) = [S1,t,S2,t,S3,t, ...,Sn_σ,t] (9)

s’(t) = Input_Sens_Vect_Shaping_Modules.normalize(s(t)) = [S’1,t, S’2,t, …,  S’n_σ,t]

(10)

∴ S′
σ,t ∈ Rmxnxo (11)

2.2 Input Sensory Vectors Associations Modules

There is a separate Input SensoryVectors AssociationModule for each sensorymodality.
A “local” navigation map refers to a navigation map dedicated to one sensory modality.
The first operation on an array S′

σ,t is to match it against all the existing local navigation
maps LNM in the Input Sensory Vectors Association Module σ. For example, the visual
processed inputs S′

1,t are matched against all_maps1,t which represents all the local
navigation maps in the visual Input Sensory Vectors Association Module (15, 16, 17).
The next operation is to update the best-matched local navigation map LNM(σ, ϓ,t) with
the actual sensory input S′

σ,t (20, 21). The best-matching and updated local navigation
mapsLNM′

(σ, ϓ, t) of all the different sensory systems of the CCA3 are then represented
in vector lnmt (22).

mapno := map identification code ∈ N (12)

θ := total number of local navigationmaps in a sensory system σ ∈ N (13)
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Fig. 1. Overview of the Causal Cognitive Architecture 3 (CCA3)

LNM(σ,mapno),WNM′
t ∈ Rmxnxo (14)

all_mapsσ,t = [LNM(σ ,1,t),LNM(σ ,2,t),LNM(σ ,3,t), . . . ,LNM(σ ,θ , t)] (15)

ϒ := mapno of best matchingmap in a given set of navigationmaps ∈ mapno (16)

LNM(σ, ϓ ,t) = Input_Assocn_Moduleσ.match_best_local_navmap( S’σ,t, WNM’t-1)

(17)

h = number of differences allowed to be copied onto existingmap ∈ R (18)

new_map := mapno of new local navmap added to sensory system σ ∈ mapno (19)

|differences(S′
σ,t,LNM(σ,ϒ ,t)

)| ≤ h ,⇒ LNM′
(σ,ϒ ,t) = LNM(σ,ϒ ,t) ∪ S′

σ,t (20)

|differences(S′
σ,t,LNM(σ,ϒ ,t)

)| > h ,⇒ LNM′
(σ,ϒ ,t) = LNM(σ,new_map,t) ∪ S′

σ,t
(21)

lnmt = [LNM′
(1, ϒ ,t),LNM′

(2, ϒ ,t),LNM′
(3, ϒ ,t), . . . , LNM′

(n_σ,ϒ ,t)] (22)
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2.3 Navigation Maps

NMmapno represents a multi-sensory navigationmap stored in the CausalMemoryMod-
ule. IPMmapno and LPMmapno represent navigation maps used to respectively store
instinctive and learned primitives. Note below that we define cubefeaturesχ to be fea-
turevalues in a cube (i.e., x, y, z location) in a navigationmapanywhere in the architecture
at address χ (35). At present, the CCA3 takes a simplistic approach to the grounding
problem: every cube in a navigation map with contents must contain a grounded feature,
or else at least contain a link somewhere, as shown by (41) and (42).

NMmapno ∈ Rmxnxo, IPMmapno ∈ Rmxnxo,LPMmapno ∈ Rmxnxo (23)

θ_NM := total NM′s ∈ N, θ_IPM := total IPM′s ∈ N, θ_LPM := total LPM′s ∈ N
(24)

all_LNMst := [all_maps1,t, all_maps2,t, all_maps3,t, . . . , all_mapsn_σ,t] (25)

all_NMst := [NM1,t, NM2,t, NM3,t, . . . , NMθ_NM ,t] (26)

all_IPMst := [IPM1,t, IPM2,t, IPM3,t, . . . , IPMθ_IPM ,t] (27)

all_LPMst := [LPM1,t, LPM2,t, LPM3,t, . . . ,LPMθ_LPM,t] (28)

all_navmapst := [all_LNMst, all_NMst, all_IPMst, all_LPMst] (29)

modcode := module identification code ∈ N (30)

mapcode := [modcode,mapno] (31)

χ := [mapcode, x, y, z] (32)

feature ∈ R, action ∈ R (33)

�_feature := last feature contained by a cube,�_action := last action contained by a cube,

�_χ := lastχ(i.e., address to link to)contained by a cube
(34)

cubefeaturesχ,t := [feature1,t, feature2,t, feature3,t, . . . , feature�_feature,t] (35)

cubeactionsχ,t := [action1,t, action2,t, action3,t, . . . , action�_action,t] (36)

linkaddressesχ,t := [χ1,t,χ2,t,χ3,t, . . . , χ�_χ,t] (37)
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cubevaluesχ,t := [cubefeaturesχ,t, cubeactionsχ,t, linkaddressesχ,t] (38)

cubevaluesχ,t = all_navmapsχ,t (39)

linkaddressesχ,t = link(χ, t) (40)

grounded_feature := ∀feature : feature ∈ all_LNMsχ (41)

∀χ,t : all_navmapsχ,t = grounded_featureOR link(all_navmapsχ,t) �= [ ]
OR all_navmapsχ,t = [ ]

(42)

2.4 Sequential/Error Correcting Module

Binding temporal features as spatial features in the navigation maps is described in more
detail in [3] via directing the sensory inputs in a parallel path through the Sequential/Error
Correcting Module, as depicted in Fig. 1. For example, Vector Navigation Map VNM
binds the visual_motion(t) in similar navigation map coordinates as the other sensory
inputs (49). The navigationmapVNM′′

t containing the visual motion and audio changes
(50), and navigation map AVNMt containing processed sound patterns (51), are then
sent to the Object Segmentation Gateway Module/Navigation Module. Computation of
VSNM′ (55) requires VSNM which is discussed in the next module.

s′_series(t) = [
s′(t − 3), s′(t − 2), s′(t − 1), s′(t)

]
(43)

visual_series(t) = SeqError_Correct_Mod.visual_inputs( s’_series(t) )  (44)

auditory_series(t) = SeqError_Correct_Mod.auditory_inputs( s’_series(t) )  (45)

visual_motion(t) = SeqError_Correct_Mod.visual_match( visual_series(t) )  (46)

auditory_motion(t) = SeqError_Correct_Mod.auditory_match( auditory_series(t) )

(47)

VNM ∈ Rmxnxo,AVNM ∈ Rmxnxo (48)

VNM′
t = VNMt ∪ visual_motion(t) (49)

VNM′′
t = VNM′

t ∪ auditory_motion(t) (50)

AVNMt = SeqError_Correct_Mod.auditory_match_process( auditory_series(t) )

(51)
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VSNM ∈ Rmxnxo (52)

visual_segment_series(t) = [VSNMt−3,VSNMt−2,VSNMt−1, andVSNMt] (53)

visseg_motion(t) = SeqError_Correct_Mod.visual_match(visual_segment_series(t))  
(54)

VSNM′
t = VSNMt ∪ visseg_motion(t) (55)

2.5 Object Segmentation Gateway Module

The Object Segmentation Gateway Module attempts to segment a sensory scene into
objects of interest. In theory all sensorymodalities can be segmented, but at present, only
the visual local sensory map LNM′

(1, ϓ,t) is segmented (56–60).WNM is the “working
navigation map” which is held in the Navigation Module and upon which operations of
the instinctive and learned primitives can be applied. VSNMt(60) is transformed into
VSNM′

t (52–55) and then contains visual sensory information segmented into different
objects as well as binding information about the motion for each of these segments.
CONTEXT is a contextual value which presently is assigned to the value of the previous
WNM.

LNM′
(1,ϒ ,t) = lnmt[0] (56)

CONTEXT :=∈ Rmxnxo (57)

WNM :=∈ Rmxnxo (58)

CONTEXTt = WNMt−1 (59)

VSNMt = Object_Seg_Mod.visualsegment(LNM’(1, ϓ ,t), VNM’’t, CONTEXTt ) (60)

2.6 Causal Memory Module

The single sensory LNM′s are then matched against previously stored multi-sensory
navigation maps stored in the Causal MemoryModule. The best matched map is used as
the working navigation map WNM (61). Actualt (63) is a representation of VSNM′

t,
containing objects and motion from the visual sensory inputs,AVNMt containing audio
information from the auditory sensory inputs, and LNM′

(3, ϓ,t) containing information
from the olfactory sensory inputs.WNMt is then updated with the current sensory input
and transformed into WNM′

t (65, 66).

WNMt = Causal_Memory_Module.match_best_multisensory_navmap
(VSNM’t , AVNMt , LNM’(3, ϓ ,t), LNM’(4, ϓ ,t), …, LNM’(n_σ, ϓ ,t))

(61)
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h′ = number of differences allowed to be copied onto existing navigation map ∈ R
(62)

actualt = [VSNM′
t,AVNMt,LNM′

(3,ϒ ,t),LNM′
(4,ϒ ,t), . . . ,LNM′

n_σ,ϒ ,t] (63)

NewNM ∈ Rmxnxo (64)

|differences(actualt,WNMt) | ≤ h′ ,⇒ WNM′
t = WNMt ∪ actualt (65)

|differences(actualt,WNMt) | > h′ ,⇒ WNM′
t = NewNMt ∪ actualt (66)

2.7 Navigation Module

Each cognitive cycle there is always a “working primitive” WPR (which is the best
matching instinctive primitive (WIP) or learned primitive (WLP)) applied on the work-
ing navigation map WNM’ in the Navigation Module, resulting in an action value
(76–78). Normally the action value is then propagated to the output stages of the archi-
tecture and an action is taken in the real world (80–83). However, if the action value
does not contain “move” (i.e., it is not actionable) then the output of the Navigation
Module is instead fed back to the Input Sensory Vectors Association Modules (84).
(Which from a biological evolutionary point of view, would have required only minor
enhancements.) In the next cognitive cycle these intermediate results are returned to the
Navigation Module (85) and operated on again. (The Input Sensory Vectors Associa-
tion Modules automatically treat these intermediate results as if they are LMN’s of new
sensory inputs, and automatically propagate them to the Navigation Module complex.)

emotion ∈ R (67)

GOAL ∈ Rmxnxo (68)

autonomic ∈ R (69)

[emotiont, GOALt] = Goal/Emotion_Mod.set_emotion_goal( autonomict, WNM’t )

(70)

WIP ∈ Rmxnxo (71)

WIPt = Instinctive_Prims_Mod.match_primitive( actualt, emotiont, GOALt ) (72)

WLP ∈ Rmxnxo (73)

WLPt = Learned_Prims_Mod.match_primitive( actualt, emotiont, GOALt ) (74)
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WPR ∈ Rmxnxo (75)

WLPt = [ ],⇒ WPRt = WIPt (76)

WLPt �= [ ],⇒ WPRt = WLPt (77)

actiont = Navigation_Module.apply_primitive(WPRt, WNM’t) (78)

output_vector ∈ Rn′
(79)

actiont =“move*”,
output_vectort =OutVect_Module.action_to_output(actiont, WNM’t )

(80)

motion_correction ∈ R2 (81)

actiont  = “move*”, motion_correctiont  = SeqError_Correct_Mod.motion_correc-
tion ( actiont, WNM’t, visual_series(t) )

(82)

output_vector’t = OutVector_Module.apply_motion_correction
( output_vectort, motion_correctiont  )

(83)

(actiont  ≠ “move*” and WPRt  ≠ [“discard*”])  or  WPRt = [“feedback*”],
Navigation_Module.feedback_intermediate(WNM’t)

(84)

(actiont-1  ≠ “move*” and WPRt-1  ≠ [“discard*”])  or  WPRt-1 = [“feedback*”],
σ : LNM(σ, ϓ ,t) = Input_Assoc_Moduleσ.extract_σ( WNM’t-1 )

(85)

3 Analogical Feedback

3.1 The Problem of Processing the Intermediate Results

As noted above, when an operation on a navigation map does not result in an actionable
output, rather than wait for another sensory input to be processed in the next cognitive
cycle, the Causal Cognitive Architecture will feed back these intermediate outputs of the
Navigation Module and re-process them in the next cognitive cycle. While for certain
combinations of sensory inputs and instinctive or learned primitives this may eventually
give a useful output, even a causally related output [3], often it does not.

We describe here an algorithm which emerges readily from the architecture for
processing of the intermediate results whereby analogical results are generated that
may be more useful than simply feeding back and returning the intermediate results
unchanged in the next cognitive cycle as occurs in the previous architecture [3]. As well,
from the biologically inspired point of view, note that this algorithm requires only a
small evolutionary step from the previous architecture.
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In Eq. (86) we see the state where the working navigation map WNM′ that was
produced from the sensory inputs does not result in any actionable result in theNavigation
Module, and so, there is the signal to feed back these results to the Input Sensory Vectors
Association Modules, where they can be temporally stored. At the same time, in (87)
the working navigation map that was produced WNM′ is matched against the various
navigation maps stored in the Causal Memory Module and the best matching navigation
map becomes the working navigation map WNM′.

In (90) the navigation map which the new working navigation map WNM′ linked
to in the past, becomes the working navigation map WNM′. And in (91) the difference
between these two navigation maps, i.e., what happened essentially in the past, is stored
as the working navigation map WNM′. Then in the next cognitive cycle the original
working navigation map that was fed back and stored in the Input Sensory Vectors
Association Modules (in Eq. 86) is retrieved and added to (rather than overwriting) the
Navigation Module (92). Thus, at this point, the working navigation mapWNM′

t in the
Navigation Module contains the action that occurred in the past of a similar working
navigation map in a possible analogical situation. The demonstration example in the
section below will illustrate this more clearly.

(actiont  ≠“ move*”  and  WPRt  ≠ [“discard*”]  and   WPRt ≠ [“feedback*”])
or  WPRt = [“analogical*”],

Navigation_Module.feedback_intermediate(WNM’t)
(86)

WNM’ t = Causal_Memory_Module.match_best_multisensory_navmap(WNM’t)

(87)

⇒ short_term_memory ∈ Rmxnxo (88)

⇒ short_term_memory = WNM′
t (89)

WNM’t = Navigation_Module.next_map1 (WNM’ t) (90)

⇒ WNM′
t = WNM′

t− short_term_memory (91)

(actiont-1  ≠ “move*” and WPRt-1  ≠ [“discard*”]) or WPRt-1 = [“analogical*”],
WNM’t = Navigation_Module.retrieve_and_add_intermediates (92)

The procedure feedback_intermediate in (86) takes the navigation map
WNM’t and breaks it up into local navigation maps LNMs representing its
sensory components and stores the LNMs in their respective sensory modules
in the Input Sensory Vectors Association Modules. In the procedure in (92)
retrieve_and_add_intermediates these LNMs holding the intermediate
results from (86) are transmitted to the Navigation Module where they are added to
(rather than replacing) the working navigation map creating the new working navigation
map WNM’ t.

The procedure match_best_multisensory_navmap in (87) is the same as
the one in (61) and is described in more detail in [2, 3].
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The procedure next_map1 in (90) looks at the link addresses (37) of the working
navigation map WNM’t and then retrieves the last (i.e., most recent) navigation map
which this WNM’t linked to, which now becomes the new WNM’t. The procedure
next_map1 is the one simulated in the demonstration example below. (Other similar
procedures are available. For example, next_map2 will examine every one of the link
addresses (37) of the working navigation map WNM’t and then execute Eqs. (91) and
(92) for all these link addresses and then attempt to choose the best analogical result.)

3.2 Analogical Feedback Demonstration Example

A simple demonstration of above equations via a Python computer simulation (with
sensory inputs simulated as well) is shown below. This example shows the advantageous
nature of the inductive analogic abilities created by the inclusion of Eqs. (86) to (92).

Figure 2 shows a working navigation mapWNM’t in the Navigation Module of the
CCA3 (using 6x6x0 maps). Visual lines in the environment were sensed by an agent
using the CCA3 and are propagated to the WNM’t as shown in Fig. 2. What action
should the Navigation Module take now? How to make sense of this environment?

No particular primitives are triggered, so an instinctive primitive is used as the
working primitive WPR which contains “analogical”. Thus, instead of producing an
output action, the Navigation Module will feed this working navigation map back to the
Input Sensory Vectors Association Modules where it can be temporarily stored, and the
analogical algorithm occurs (86–92). Figure 3 shows the best match from the Causal
Memory Module of WNM’t which then becomes the new working navigation map
(87). Then the navigation map which occurred after the navigation map in Fig. 3 (i.e.,
in the past when the map in Fig. 3 was stored in the Causal Memory Module) which is
represented as a link in the map in Fig. 3 (not shown as it is in a non-spatial dimension of
the navigation map), is activated and becomes the newWNM’t, via (90) and as shown in
Fig. 4. The difference between the navigation maps in Fig. 4 and Fig. 3 represents what
happened in the past (91). Then in the next cognitive cycle, as described in (92), what
happened in the past is added to the original Working navigation map (Fig. 2) resulting
in a new WNM’t, shown in Fig. 5.

Thus, if a straightforward resolution of a navigation map is not immediately possible
(i.e., an instinctive or learned primitive is applied to a navigation map resulting from
various sensory inputs, and there is not an actionable output), the architecture will auto-
matically produce an analogical result. Note that other instinctive or learned primitives
can then further process, as well as reject or output, the analogical result that is produced.

Fig. 2. (top left) Working Navigation Map WNM′ – what action should occur?
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Fig. 3. (top right) Best match from Causal Memory Module of previousWNM′.

Fig. 4. (bottom left) This is the Working Navigation Map WNM′ that occurred after the best
match WNM′.

Fig. 5. (bottom right) Retrieve the startingWNM′ and apply the difference to it

4 Discussion

Above we reviewed how in developing a cognitive architecture loosely modeled on the
mammalian brain, by enhancing pre-existing feedback pathways we can obtain causal
abilities [2–4], and then with another small enhancement we show the emergence of
inductive analogical abilities. There is a long history of analogical problem solving in
the field of artificial intelligence [5]. The purpose of this work is not to show a better
means of analogical abilities (although in conjunctionwith the overall causal architecture
theymay one day in fact prove to be quite advantageous) but to showhow in amammalian
brain inspired cognitive architecture, causal and inductive analogical abilities effectively
can emerge from the architecture.

Most earlier approaches to analogic problem solving were symbolic, e.g., Gentner’s
Structure-Mapping Engine (SME) [5], Hofstadter and Mitchell’s Copycat program [6],
and required human structuring and knowledge. In the last decade more connectionist
approaches to analogy-making have been proposed. Wu and colleagues describe the
Scattering Compositional Learner that puts neural networks in a sequence to elucidate
the compositional structure of a problem and allows analogical reasoning [7].

While the deep learning approach to analogical reasoning overcomes the need for
much of the human prior knowledge that symbolic systems required, a huge training
set is still nonetheless required, something humans do not require, and issues such as
performance via biases rather than understanding, remain [8]. Mitchell notes that while
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in the last decade there have been tremendous improvements in the ability of AI systems
to recognize images and generate natural language, the ability of artificial intelligence
systems to handle analogies, concepts, and abstractions, still remains an open problem.

The CCA3 demonstration example above, represents a very basic example of the use
of analogical problem solving in the architecture. The example was a simplified analogy
taken from Chollet’s Abstraction and Reasoning Corpus [9]. To solve more complex
problems in Chollet’s corpus, additional primitives could be added to the CCA3 and
used in conjunction with the architecture’s intrinsic analogical problem solving. For
example, if the next navigation map as shown in Fig. 4 was a rotation of 90 degrees
plus the addition of the contiguous ‘LINE’ squares, then a set of intrinsic primitives for
detecting and effecting basic geometric transformations is required.

As noted above, when enhanced feedback processing of intermediate results occurs
in the Causal Cognitive Architecture, there is the possibility for analogies as a core
mechanism in cognition. Given that many aspects of the architecture are brain inspired,
that suggests that indeed analogies may be central to human cognition. Chen and col-
leagues have shown that one year old infants are capable of analogical problem solving
[10]. Hofstadter presents evidence arguing for the role of constant analogy making in
the human mind [1]. Similarly, analogical mechanisms may prove to be an important
ability in allowing more capable future artificial general intelligence systems.
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Abstract. Graph structures have shown to represent a viable approach to develop-
ingAGI. This paper describes how a knowledge graph could be represented in neu-
rons and introduces the Universal Knowledge Store (UKS), an open-source imple-
mentation, which could form one component of AGI. Unlike backpropagation-
related systems which have only the most tenuous biological relationship, graph
structures can be built from basic biological neuron models.
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1 Introduction

The Universal Knowledge Store (UKS) [1] is an open-source graph data structure/API
which is designed to support development and experimentation into Artificial General
Intelligence (AGI). Its structure is guided by an exploration of how knowledge might be
stored in biological neurons and how this neuronal approach could steer designs for a
similar structure in computers.

Specifically, the neurons described here use the biologically plausible “Integrate and
fire” (IF) model [2–4], possibly with leakage (LIF) [4–7]. These neurons are intercon-
nected with synapses, which may be fixed weight or learn via Hebbian Learning and its
biologically observed equivalents [8–10].

The IF model accumulates charge from synapses incoming from firing neurons until
a threshold is reached, then it fires, and the accumulated charge is reset to 0. For conve-
nience, the threshold is defined at a value of 1. If an incoming synapse has a weight of
1, when its source neuron fires, the target neuron will immediately meet the threshold
and fire as soon as possible thereafter. A synapse weight of 0.5 would require 2 firings
to cause the target neuron to accumulate enough charge to fire. The LIF neuron model
adds exponential decay at a given leakage rate which is defined as the proportion of the
accumulated charge which will leak off in a given time-slice [11, 12]. With a leak rate
of .5 (very fast) a charge of .5 will decay to approximately zero in 10 time-slices. A
leak rate of 1 prevents the neuron from accumulating any charge from one time-slice to
the next approximating a perceptron where the charge value is the instantaneous sum of
weights of all synapses from firing neurons.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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The paper begins with biologically plausible neuron models and how these can be
simulated by implementing the nodes and edges of a graph. It then shows how the UKS
implements similar concepts in a higher-level language with flexibility and improved
performance while storing any kind of data from multiple sense inputs.

The objectives of the project are as follows:

1.1 Flexibility

The structure should be able to store and relate any kind of information without a pre-
defined data design. An infant learns about his/her environment and objects within it in
a multisensory way before learning about language. This means that any data structure
must be able to merge or link information from multiple senses. The later learning of
language (for example) requires that new node types (e.g., words) and edge types (e.g.,
rhymes-with) must be able to be created on-the-fly so the structure of the knowledge
graph cannot be fully predefined.

1.2 Biological Plausibility

It is NOT necessary that an AGI mimic the biological brain. However, understanding a
possible biological implementation of the data structure shows the types of structures
and limitations a biologically plausible AGI needs. These limits include things like the
minimumandmaximumnumber of objects anAGImight need to store, theminimumand
maximum numbers of links an object might possess. The Brain Simulator’s interactive
neuron display is excellent for building small neural circuits to experiment with the type
of capabilities whichmight be present in small clusters of neurons [6]. On the other hand,
design and simulation at the neuron level is cumbersome and while the basic structure
of the UKS could be implemented in neurons, a higher-level language is used.

1.3 Performance

Again, it is NOT necessary that an AGI match human brain performance. Depending on
the amount of computer power available, computer performance can lag below human
performance in many areas while vastly exceeding human performance in others and
still create a useful AGI. The very slow speed of neurons (250 Hz max) means that a
biological system must do as much as possible in parallel. With computers built from
components as much as a billion times faster, the requirement for parallelism is relaxed.

2 A Brief Introduction to Knowledge in Neurons

2.1 The Information of Knowledge

Consider that a system is only given “Blue is a color,” and “Red is a color.” Now, it
has the information to answer the questions: “What is blue?” (a color), “What is red?”
(a color), and “What are some colors?” (blue and red). The graph structure of Fig. 1A
shows a simple representation of this knowledge.
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Representing the information to answer these simple questions in neurons is not so
simple and what follows is the description of a network of neurons that does just that.
“Blue,” “red,” and “color” have a meaning to a person but are just words or ideas with
relationships to one another. Within the brain, these are just spiking neurons with some
sort of synaptic connections. While many models use the spiking rate of a neuron to
represent information content, the following description works with individual spikes
[7] and is therefore significantly faster. In mathematics, this is a “graph” which is a
collection of “nodes” connected by “edges.” One could say that Color is a parent node
of Red and Blue and that Red and Blue are Child nodes of Color, and this nomenclature
is carried into further descriptions.

Fig. 1. A) Illustrates how certain types of knowledge can be represented in a “graph” of “nodes”
connected by “edges.” B) If the nodes, “Blue,” “Red,” and “Color” were just single neurons, firing
either Blue or Red will cause Color to fire (because the white synapse weights are 1) but there is
no convenient way to connect Color so it fires Blue and Red. C) By adding more neurons to every
node, each can have parents and children. The center neurons will only fire if two or more input
neurons fire in temporal proximity because the incoming synapse weights are .9 and leakage will
quickly drain accumulated charge. Now, if Blue AND Parent fire, Color will fire. If Red AND
Parent fire, Color will fire. If Color AND Child fire, both Blue and Red will fire. (Color figure
online)

Implementing a Graph in Neurons. To implement the simple three-node color graph
in neurons, assign individual neurons to represent each of the three nodes as shown in
Fig. 1B. To answer the first two questions, a high-weight synapse must connect Blue to
Color, and another must connect Red to Color. Now if the Blue neuron fires (because
perhaps something blue was seen or the word “blue” was heard), the Color neuron will
subsequently fire and the system will know that Blue is a Color. Likewise for Red. In
most cases, individual spikes might be bursts of multiple spikes.

With just a synapse from Blue to Color, there is no way to fire Color and get Blue
and Red to fire because synapses are one-directional [9]. Issues arise if the system were
to add synapses from Color to both Blue and Red. If Color fires, it causes both Blue
and Red to fire which, in turn, causes Color to fire again, causing neurons to fire…so all
neurons fire indefinitely for any input. Neurons must be added so that Color will only
fire if the system wants to know the Parent of Blue or Red and another which will cause
Blue and Red to fire only if the brain searches for the all the Child nodes of Color. More



116 C. J. Simon

generally, with more neurons added to each node and a lower synapse weight so two
firing inputs are necessary to fire, the solution to this issue is shown in Fig. 1C.

This system now has a node consisting of several neurons to represent the abstract
concept of blue. One of the node’s neurons fires when the system sees blue or hears the
word, but it must be separate from the neuronwhich fires to say the word blue, otherwise,
every time blue was seen (or the word was heard), the system would also say it. So, each
node also needs more neurons which determine if it is receiving input or creating output
for that node. If every node can have parents and children, and an input and output, each
node requires four neurons.

Another set of neurons is needed to transfer inputs to outputs so that if the system
does see blue, it can say, “Blue” if desired. This is the “This” relationship because it
answers the question, “What is this?” Likewise, a relationship is needed that transfers the
output to the input. This is the “Recursion” neuron (labeled “Recur” in Fig. 2) because
it allows one to ask, “What is the parent of this node?” followed by “What is the parent
of the parent?” The system asks the first question, then fires the Recur neuron to transfer
the output of the first question to be the input of the second, and then asks the same
question again. More generally, this neuron is needed for any searches where the search
target is not directly connected to the root of the search.

Retrieving Data. Figure 2 shows a simple network of three nodes and two edge types
(plus “This” and “Recur”) with the edges represented by the diagonal synapses. To fire
the children of Node 1, fire neuron Node 1 followed by the Child neuron. A similar
process could get the parents of any node.

Additional nodes require additional rows, and additional edge types require addi-
tional columns in the neuron array. Because an individual neuron may have as many
as 10,000 synapses connecting it to other neurons, the number of nodes and edge types
is quite large but not unlimited. For larger data structures, multiple arrays of neurons
would be required.

Storing Data. The diagonal synapses in the lower portion of Fig. 2 follow a Hebbian
rule [10] such that if the target neuron of the synapse fires directly after the source, the
synapse weight will be strengthened. Since Hebbian synapse weights change gradually,
multiple spikes on both the input and output are needed so bits of short-term memory
are added to the input and output (labeled “I1”-3 and “O1”-3) of each node. These short-
term memory bits work by storing a partial charge in the neuron. When the “ReadIn”
neuron fires, it fires the memory bit neuron only if a partial charge is present (indicating
a 1 was stored) and then restores the partial charge. If there was no partial charge, no
neuron fires, indicating a 0.

The memory write process is to fire the input for the target node, fire This to transfer
it to the output, fire the source node, then fire the relationship type repeatedly until the
synapse has strengthened sufficiently. When the Learn neuron is firing, it controls all the
timing needed for learning.

Neuron Summary. Figure 2 shows a basic structure with three nodes represented by
eight neurons each. Each node has 4 relationship types: Parent, Child, This, and Recur
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along with bits of short-termmemory on the input and output. All the actual information
is stored in the weights of Hebbian synapses. In the explanation, only weights of 1 or 0
are used but partial weights can be significant in 1) allowing learning over a number of
presentations rather than immediately and 2) allowing for reading over multiple firings
so that the “most-learned” information will be retrieved first.

Because any node might potentially relate to any other, there must initially be a large
number of zero-weight synapses even though only a few are eventually used to store
information (are adjusted to a non-zero weight).

Fig. 2. Represents a three-node graph as described if Node1 is Color, Node2 is Blue, and Node3
is Red. The actual data of the structure is the diagonal Hebbian synapses between the nodes. In
this case, Node1 has the children Nodes 2 and 3 and, conversely, Nodes 2 and 3 have the parent
Node1. (Color figure online)

The control signals originate somewhere outside the structure (perhaps the hip-
pocampus). Note that, as described, the network doesn’t automatically add a reverse
relationship. When the system adds Color is a parent of Blue, the connection that lets
Color’s children include Blue must be added in a separate operation.

2.2 Biological Plausibility

Is this biologically plausible? Yes and no. Because the brain can answer simple ques-
tions about colors and add new relationships quickly, some sort of graph structure with
relationships must exist. Because one can remember for the long term, these relation-
ships must be stored in synapse weights. But neuroscientists don’t find orderly physical
structures like these in the brain so one must assume that the neurons which perform
these functions could be interspersed with neurons doing other things as well.

That the brain implements these structures exactly as described is unlikely for several
reasons. Here are some important ones:

• Redundancy—as described, the failure of any single neuron or synapse can cause
a loss of memory or a node’s function. Instead, nodes in the brain likely consist of
perhaps a hundred neurons with redundant connections.
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• Physical layout—the structure described is very orderly and precise and no equivalent
has been discovered in the brain.

• Multiple graphs—this describes a single graph, but it is likely that various graphs
in the brain contain different kinds of information such as visual and audible. Some
nodes might link to nodes in other graphs.

Some implications of a biologically plausible model are:

• No Data—the nodes and edges of the neuron graph cannot contain any useful infor-
mation because they are simply individual bits. This has significant implications as
to data structure of the brain and how a computerized knowledge graph could be
dramatically more efficient.

• No Data in Synapse Weights—the weight of a synapse is needed to keep track of a
specific bit of information and howclose it is to being learned. It cannot simultaneously
represent an information value such as a brightness level.

• Cortical Columns—there is a possibility that cortical columns represent graph nodes
based solely on the observation that they represent a repeating pattern in the neocortex
and contain a reasonable number of neurons.

2.3 Important Conclusions from the Biological Perspective

A minimum node requires eight neurons. Adding a few likely edge types brings this to
11. With 16 billion neurons in the human neocortex, this limits the number of nodes
to 1.45 billion. Considering redundancy, a non-optimal biological implementation, and
the fact that the neocortex is not fully dedicated to this type of storage, a more realistic
maximum on the number of nodes in a neocortex graph would be 10–200 million. This
is an important conclusion because building, maintaining, and searching a graph of this
size is conceivable on a powerful desktop computer.

3 The Universal Knowledge Store (UKS)

The system described above with several extensions was implemented with a Brain
Simulator II module (“ModuleGraph”) which can be downloaded. It can create and
arrange asmanynodes, neurons, and synapses as desired needed to represent information.
Within the Brain Simulator’s user interface, one can watch individual neurons fire as
information is stored in, or retrieved from, the structure. This is fine for demonstrating a
few dozen nodes but is unwieldy for larger graphs. The next development phase replaces
the neuron/synapse structure with a program for larger structures.

The UKS implements a knowledge graph of unlimited potential and complexity
representing information as a collection of nodes connected by edges as above and
contains only two significant object types, a “Thing” and a “Link” which are concrete
implementations of a generic node and edge.

The Thing represents anything (a word, a physical object, a color, an action, a rela-
tionship type, etc.), and a Link connects one Thing to another Thing. While a Thing is
somewhat analogous to a neuron and a Link is somewhat analogous to a synapse, this is
a very loose analogy, as Things would require many neurons in a brain.
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3.1 The Link

A Link is “owned” by a Thing and targets another Thing in the same way one might
say that a Synapse is owned by one neuron and connects to another. The other end of
the Link is the Target Thing. As a software structure, a Link is just a reference (C#) or
a pointer (C++) to a Thing with a floating-point weight value used during learning.

3.2 The Thing

Each Thing has lists of Links to other Things. In theory, a single list would suffice but for
efficiency, the Thing has specific Link lists for “Parents,” “Children,” “References,” and
“ReferencedBy” Links. Parents and Children Links are simplified and do not contain a
weight (Fig. 3).

Fig. 3. Each Thing has lists of Links to other Things. Parent/child relationships are hard-coded
while References could have any relationship type. The Label and Value are a programming
shortcut.

The Parent-child relationships can form a Tree-like structure of Things by using
Lists where each Thing can have any number of parents and children. The parent-child
relationship is useful to restrict search domains as searches can be limited to only the
Children (or recursively Dependents) of a given Thing. In this way, the hierarchy of
parent-child links can be thought of as representing brain areas. For example, visual
searches can be limited to visual Things and auditory searches are limited to auditory
Things. Parent-child may also be considered an “is-a” relationship as seen previously.

A portion of an example knowledge store is shown in Fig. 4. From the parent-child
links, one could say that Circle is a Shape and Shape is a Visual Thing. Red and Blue
are Color children and Color is a Visual Thing.
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Fig. 4. From this representation of partial UKS content, one can see that at Location1, there is an
object which is a Blue Square, at Location2, there is another, at Location3 there is a Red Circle,
and at Location4, there is a Blue Circle. This is similar to the model used by the Perception and
Maze demo applications described later. (Color figure online)

TheUKS is just a list of Things; Things that contain links to other Things. The parent-
child relationships of theUKSdonot necessarily represent a formal tree structure because
Things may have multiple parent Things, there is no exclusion of circular references,
and not all the Things in the UKS must be interconnected.

3.3 Thing References

In addition to Parents and Children, each Thing has a list of Links named “Refer-
ences” so a Thing can reference any number of property Things. There is a mirror list,
“ReferencedBy” for efficiency in searching.

3.4 Labels and Values

Each Thing has an optional “Label” and “Value,” so when looking at debug information
about the content of the knowledge store, it can make sense. As an example, a single
line of code can find any Thing based on its label and return its children.

To efficiently get a list of all the physical objects in the UKS, any specific physical
object Thing “is-a” physical object so it has the Physical Object Thing as a parent.

A deviation from the idea that nodes contain no information is the Value property
which can contain any object. In a computer, to know how to spell a word, one can
store a text string with the spelling. In the brain, since neurons obviously don’t support
text strings, there must be a sequence with a list of links to other nodes which represent
individual letters. These Letter nodes must have links to other nodes which define the
strokes needed to write them, the utterance needed to speak when spelling a word out
loud, and a definition of patterns of visual input to recognize and read them. Without the
Value, the complexity needed to store something as simple as a word in a biologically
plausible structure can be daunting.
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The key for these two properties is that as UKS applications are developed which
rely on them, they are cutting corners on biological plausibility. This may mean that the
algorithm will need re-thinking down the road or that conversely, the algorithm has an
efficiency edge over its biological counterpart.

One of the underlying tenets of this development is that to create General Intelli-
gence, an AGI needs to generalize information from widely disparate sources and types.
To comprehend something as simple as “Things fall down,” a system needs to under-
stand about physical things, have experienced things falling (an action), know about
sequences of actions, have heard and learned the associated words…and on and on. The
implementation of AGI on the UKS can represent all this information in a useful way.

4 Summary and Current Development

The UKS is a powerful general-purpose graph structure with a biologically plausible
basis. Two demonstration applications show its power and flexibility. Perception and
Traversing a Maze.

4.1 Application 1, Perception: Learning by Correlation

This takes as input visual shapes and text tags and infers relationships between them.
Although the tagged data is ambiguous because when the system is told “This is a red
square near a blue triangle,”whichword is associatedwithwhich property or relationship
is initially ambiguous. Over a very small number of samples, however, the system can
infer that red and blue must be related to the hue, square and triangle must relate to the
number of corners, and near must be related to distance. This learning process is similar
to what onemight see in a toddler learning language. All the related information is stored
in the UKS.

4.2 Application 2: Maze/Learning by Trial and Error

There are plenty of ways for a computer program to solve a maze. The approach in this
instance utilizes the UKS and builds a structure within the UKS that can be generalized
to a wide variety of intelligent behaviors.

As the system explores the maze, it builds an internal mental model and records
landmarks and decision points. At each decision point, it stores an Event which is a
situation-action-outcome triple. After exploring the maze, it can search the list of Events
at any recognized landmark to determine the decision needed to achieve any desired
goal (Fig. 5).

Both sample applications are included in the Brain Simulator II download. [1].
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Fig. 5. (Left) The tree view display of the UKS content shows parent-child and reference rela-
tionships. In this case, the Visual Sense and Events are expanded. Event “E0” has a reference to
the Landmark “Lm0”, and children each of which represents an action taken and the outcome.
For example, a Left Turn led to color “c29” (a possible goal) while a right-turn led to another
event “E1”. “LTurn” is a reference to a node which could represent the action of turning left. These
automatically assigned node labels are in keeping with the idea that individual nodes don’t contain
information. (Right) The maze application illustrates how the UKS can be used to keep track of
landmarks. The Event/Action/Outcome triples stored in the UKS form the basis of reinforcement
learning. (Color figure online)
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Abstract. In the quest for an Artificial General Intelligence (AGI) this
paper presents a proposal for a symbol-based narrow AGI that uses a
problem-driven mechanism within a certain domain. Using a small set
of seeded ontology roots, simplified sentences can be constructed with
surprising characteristics. Problem solving graphs with a limited depth
are combined to form larger graphs.
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1 Introduction

Problems are universal. Each moment of the day we encounter problems,
although we are not aware of this all the time. Washing the car can be seen
as a problem. The same goes for driving to work, or picking up a fork. We can
look at all these activities as presenting problems. But also a dialogue in fact is
a combination of mini problem-solving dialogues in order to solve a particular
problem. A central point in this paper is the thought that ‘problem solving dia-
logues’ (PSD) are central in conversations, navigation, problem solving or in any
knowledge based interaction. Even a unit of information itself can be seen as a
PSD. When a problem is getting more complex, then more PSD’s are needed.

2 Definitions

First we need to agree on some definitions:

2.1 The Topic-Region

A topic-region is a small part of a larger graph. We can apply a modified version
of sampling theory: From a given point there are enough topic regions so that a
Turing Test is satisfied. Several topic-regions together form a topic. An example
of a topic = ‘talking about lunch’. Example of a topic-region = ‘the jam on my
toast’. A topic-region should be small enough so that the AGI will have a limited
set of solutions.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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We want to turn complexity into quantity: a complex convoluted graph can
be turned into a large set of ‘manageable’ smaller graphs.

The database of this AGI will not contain a complete world. Instead, we
will define certain domains where the AGI will be knowledgeable. Ben Goertzel
calls this a narrow AGI [1]. For a social-companion application for instance, this
should be enough to pass a Turing Test.

2.2 Compresssion and Expansion

Natural language sentences are compressed into so-called ‘Sents’. A Sent has
three elements and a qaci precursor and a value, so the format is: q/a/c/i el1
el2 el3 val. This means that for instance ‘to love’, ‘to like’ and ‘to hate’ are all
compressed into ‘pref’ combined with a value. Only a limited number of verbs
(el2) are allowed after the compression step.

Input natural language sentence Sent

John likes pancakes A human023 pref pancakes 80

When the core part of the AGI has done it’s work, the information is
expanded again. This expansion will give a certain randomness to the responses
of the AGI, which gives a human-like character.

Compression introduces an error when the original information needs to be
retrieved. In other words, some original information is lost. Probably our human
brain does the same.

2.3 COFO

In this paper we make use of the COFO as defined in Ben Goertzel’s paper: The
General Theory of General intelligence; A Pragmatic Patternist Perspective [3].
This paper has as one of it’s central theorems the COFO. Goertzel: [3]: ‘Combina-
tory Function Optimization (COFO) systems - which seek to maximize functions
via guiding function-evaluation using sampling and inference guided selection of
combinations within a combination system are introduced as a species of DDS
particularly useful within AGI architectures.’

2.4 Drivers

A driver is a motivational signal. It steers the AGI and its decisions. For high-
level drivers we make use of the ideas in the paper by Shalom H. Schwartz and
Anat Bardi [2]. In their paper they use the term ‘values’ instead of drivers. But
we also need low-level drivers for our AGI:
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– optimize cleanliness
– optimize body temperature
– optimize feeling hungry

All these drivers together will trigger the activation of problems. And, as men-
tioned later in this document, problems are solved by solutions. The high-level
drivers combined with the low level drivers can be implemented by a small net-
work of AGI’s, or by a single AGI called several times sequentially.

2.5 Problems and Solutions

A delta is defined as a difference between the normal and the incoming signal. A
delta is one of the contributors to a problem. A solution is then coupled to that
delta and to the other contributors. The normal is a stacking of incoming sen-
tences that have a similar quark set, over time. Other contributors to a problem
are discussed in a separate paragraph about problem solving.

2.6 Normalization

All incoming information is accumulated and thus normalized and stored in the
database. Then, a new incoming signal is compared with the stored normal.
A delta is calculated and this delta can then trigger new activities (which are
Sents in themselves). What is normal for one person does not have to be normal
for the other. For instance, ‘The sun goes under at five o’clock’ is time zone
related. ‘Black is the color of mourning’ is culture related. ‘I go to sleep at one
o’clock at night’ is personal information. A normal is calculated depending on the
generic/personal aspect of the information. Next to this, the fiatter mechanism
(see elsewhere in document) will filter out privacy aspects.

2.7 Problem Solving Graph (PSD)

A problem solving graph is a directed acyclic graph (DAG). There are many PSD
stored in the database of the AGI. A PSD has has a limited depth, less that five
levels. It is important to realize that the bidirectional aspect of a dialogue, the
input and the reaction, is stored in each PSD.

2.8 Data Record Format

Two coupled Sents are combined into a data record: inputsentence/output-
sentence/meta-data/PSD-graph, or also: problem/solution/meta-data/PSD-
graph.

Any information needed in the core AGI can be stored in this format.
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2.9 Learning, Adaptation and Optimization

The AGI can learn by adding drivers, adding sentences, elements, adding quarks,
adding entries to the log and entries to the database. We also use a funnel model
for learning; the output of the AGI can be fed to a funnel. This funnel stands
for the world, or the internet. Slowly data from the world will be input again
to the AGI. This is how a network of AGI’s and humans together can teach the
AGI.

Learning can also be that new drivers, Sents or problems are added to the
database. Because all these concepts have the same database format, this can
be implemented easily.

Adaptation can be implemented by applying solutions to the database records
themselves. In other words, ‘to replace’ as a solution can be taken literally on a
database record.

2.10 Elements and Quarks

Every element is linked to a number of quarks. These quarks are simple concepts
like : container, group, transport, etc. (see table). The quarks are seeds in the
sense that they are pre-defined. Over time, new quarks can be added by the
AGI itself. Every element and sentence can thus be linked to other elements and
sentences by seeking commonality between these groups of quarks. This is one
of the aspects of understanding. The interesting thing with the use of quarks
is that any natural language sentence can be mapped to a ‘sent’. Remember, a
Sent consists of elements and each element can be linked to a number of quarks.

The AGI can understand using quarks whether for instance ‘to read’ and
‘book’ are related to each other.

It is obvious that the set in the table is a choice. And this choice can also be
done differently. We think that this is probably the same in human brains, that
the quarks are different in different human brains.

A problem arises with words that cannot be associated easily with quarks, for
instance ‘respect’. We can try to link it to ‘pref’ but this is not very convincing.
However, to the rescue comes the topic-region. Because if we make this a TR,
we can then say that ‘respect’ is a specific exception for this TR (Table 1).
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Table 1. Quarks and examples.

Quark Example of strong association Weak association

Container cup, book, database house

Shield wall, clothes, to protect defense

Channel opening, tunnel solution

Support table, to support resistance

Radiation sun, heating influence

Force pull, weight

Energy energy

Time past, present, future

Loc place

Group crowd, party

Conflict fight, opposition

Own wealth, property, money, to buy

Val money

Fix to repair

Tool fork, car

Food sandwich, soup

Pref to like, to love, to hate to attract

Transport to move, car, rocket

Drive to cause, to steer influence

Animate human, animal

Data book, database language

Compress to join

Expand choice, decision, to split

Waitfor future, wait

Event publication

Increase grow, increase, inverse: decrease

Dominate to win, inverse: to loose

Transaction gift, payment

Reward inverse: punish

Nature mountain, river, tree

Organization can also be done with group?

Sequence causal cycle

Problem fault, stuck

Pattern machine

Solve to clean

Stat big, empty, happy, warm

Contract deal, trust, confidence, to buy, to help

Normal balance, steady, average

Activity -any verb, except ‘to be’
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2.11 Matching

Matching of elements can be done in several ways:

– By comparing the set of multiple linked quarks using a distance (objective)
function.

– By comparing the elements directly using a distance function.
– By swapping elements with single quarks and thus making a template with

fuzzy matching

3 Natural Language Transformed to Sents

‘I work in Montreal’ can be reworked to: ‘I work in an office. The office is located
in Montreal’. So a machine-learning software module (not in scope of this doc-
ument) reworks the short-cut sentence back to original -explicit- sentences, and
subsequently the sentences are mapped by the AGI to Sents. We envisage a lay-
ered model where the outer layers are implemented by sub-symbolic software and
the inner core is implemented by the symbolic AGI as proposed in this paper.

4 Problem Solving

In this AGI we divide up complex problems into smaller, simpler problems.
Then, for each problem we find a simple solution. These solution are stated in
the Table 2 below.

Table 2. Problems and examples.

Problem Example

Stuck The car was stuck in the garage

Bad He has placed a bad shot

Slow The car was driving too slow

Sad John was sad

Dirty The car was dirty

Below threshold Temperature too low

Over threshold Temperature too high

Lost Jill has lost the key

Having defined the problems, we can now state the solutions. These are also
a simplification of the real world. However, we think that a combination of these
simple solutions can approach a complex real-world solution (Table 3).
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Table 3. Solutions and examples.

Solution Example

To redo Begin all over again, to reset

To replace To replace a bicycle

To remove To remove dirt

To retrain To retrain a person to sing better

To repair To repair a bicycle

To increase To increase the car’s speed

To decrease To decrease the car’s speed

To find To find the key

With these problems and solutions, we can now translate complex problems
into a set of simpler problems. The problem is something like: ‘the lunch was
bad. How to solve this?’. The solution is: ‘by retraining the cook, replacing the
cook, replacing the sandwich’.

5 Combinatorial Processes

For this we refer to the work of S. Kauffman [5], W. Fontana [6] and B.
Goertzel [4]. We have already discussed that quarks can be combined to define an
element. Building on that, three elements can be combined to form a sentence.
And on a higher level, we can see that combining sentences lead to a dialogue.
But how can we generate dialogues and get feedback on their success?

One way to obtain this feedback is to let the world (the internet) decide
which dialogue is best. A way to do this is to let chatbots on the internet try
out different ‘Sent’ dialogue structures (Table 4).

Table 4. Combinatorial examples of elements.

Dialogue type Input sentence Output sentence

Question status, reply stat and pref q el1 stat el3 a el1 stat el3

a el1 pref el3

Assert ownership, reply status a el1 own el3 a el1 stat el3

Or, following Kauffman [5], we can see a dialogue as a string. So then the
question-replies can be seen as substrings. Taking this further, we can search for
a steady-state of a dialogue after an N number of turns. We can create a simple
computer program that can give basic replies (how? when? did you ...? etc.) to
keep the dialogue going.
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6 The Core Process of the AGI

The core process consists of the following mechanisms: input, normalize, delta,
problem solving, route, combi, fiatter.

Postulate 1. This AGI can be seen as a COFO, as introduced by Goertzel [3]:
‘which seek to maximize functions via guiding function-evaluation using sampling
and inference guided selection of combinations within a combination system - are
introduced as a species of DDS particularly useful within AGI architectures’. This
corresponds with what this AGI does.

Postulate 2. All mechanisms inside the AGI, including the data itself, are ‘prob-
lem solving dialogues’

6.1 Input from the Internet

Suppose we make a social companion for an elderly lady in a care home. We
first choose a topic, for instance ‘hobbies’. We then choose a topic region, for
instance ‘singing in the communal room’. Then, a vocabulary for this topic region
(100–200) words is pulled from the internet and the frequency of these words
is counted. After filtering, this leaves a small set of ontology words for a topic
region. Next, we input each word to the API of an internet dictionary. We then
match our quarks to the results of the internet definition of a word, and obtain
the following (Table 5):

Table 5. Example of automatic quark assignment.

Word Quarks

Jill Animate

Sings Activity

In-communal-room Loc, container

The above describes the mechanism in which quarks are automatically
assigned to words. When new words are introduced in an active dialogue they
are added to the database.

6.2 Combinatory Sentence Making

We have already defined our Sent format: q el1 el2 el3 val.
With this, and because there are only a limited number of allowed el2’s, the

AGI can compose combinatory questions, like for instance, ‘q jill pref lunch’;
Does Jill like the lunch?
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6.3 Making It Work

The AGI has a database and a log, and these both use the record format as
defined. The core program consists of the following mechanisms:

– get input
– attach quarks to new elements
– store new quark-element combinations in database
– get domain ontology for this topic-region
– apply router
– normalize
– find delta
– find best fitting problem solving dialogue (PSD)
– execute problem solver on PSD
– retrieve log-related questions
– store incoming information in log
– use output from combinatorial unit
– use output from fiatter
– store output in log

All these mechanisms are associated with problem solving dialogues, or PSD’s.
Some PSD’s are a basic q-a mechanism. In that particular case the driver

contribution is implicit in the database records. The result from the core pro-
gram is a hybrid answer coming from either the log, the problem solver, or a
combinatorial answer, all controlled by the fiatter. The fiatter filters out impossi-
ble/unlikely answers by employing a list of unwanted words and unwanted word
combinations.

7 Future Work

If we take the combinatorial approach further, we can combine several narrow
AGI’s to form a more complex AGI (a meta combiner). We also want to inves-
tigate a ‘Fast Training’ algorithm, where we let a simplified AGI interact with
a more advanced AGI. The first can then train the second. Lastly, we want to
further investigate argumentation mechanisms for this AGI.

8 Summary

The Delta Normal AGI has the following aspects:

– It follows the COFO definition in Ben Goertzels paper [3]
– The AGI works with compression and normalization
– Several units can form a network together
– The AGI is a basic problem solver
– Combinatorial processes can be applied to all components of the AGI
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– In this paper we provide a framework that can stand on its own, but that
can also be used by other AGI systems. A link to software examples can be
found on our website.

Please note that the different mechanisms of this AGI are symbolic by nature. A
number of these can also be implemented by sub-symbolic mechanisms such as
machine learning. But the fact that quarks underly and define elements should
remain in order for the AGI to interpret and relate all aspects of its system.
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Abstract. Techniques honed for the induction of grammar from text
corpora can be extended to visual, auditory and other sensory domains,
providing a structure for such senses that can be understood in terms of
symbols and grammars. This simultaneously solves the classical “symbol
grounding problem” while also providing a pragmatic approach to devel-
oping practical software systems that can articulate the world around us
in a symbolic, communicable fashion.

1 Introduction

The symbolic approach to cognition is founded on the idea that observed nature
can be categorized into distinct entities which are involved in relationships with
one another. In this approach, the primary challenges are to recognize entities,
and to discover what relationships there are between them.

The recognition problem is to be applied to sensory input. That is, we cannot
know nature directly, as it is, but only by means of observation and sensing.
Conventionally, this can be taken to be the classical five senses: hearing, touch,
smell, vision, taste; or, more generally, scientific instruments and engineered
detectors. Such sensors generate collections of data; this may be time-ordered,
or simply a jumbled bag of data-points.

Out of this jumble of data, the goal of entity detection is to recognize group-
ings of data that always occur together. The adverb “always” here is key: entities
are those things that are not events: they have existence over extended periods
of time (Heidegger’s “Dasein”). The goal of relationship detection is to deter-
mine both the structure of entities (part-whole relationships) as well as events
(statistical co-occurrences and causation). If one is somehow able to detect and
discern entities, and observe frequent relationships between them, then the path
to symbolic processing becomes accessible. Each entity can be assigned a sym-
bol (thus resolving the famous “symbol grounding problem”), and conventional
ideas about information theory can be applied to perform reasoning, inference
and deduction.

The goal of this paper is to develop a general theory for the conversion of
sensory data into symbolic relationships. It is founded both on a collection of
mathematical formalisms and also on a collection of experimental results. The
experimental results are presented in a companion text; this text focuses on
presenting the mathematical foundations in as simple and direct a fashion as
possible.
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In the first section, the general relationship between graphs and gram-
mars is sketched out, attempting to illustrate just how broad, general and all-
encompassing this is. Next, it is shown how this symbolic structure can be
extended to visual and auditory perception. After this comes a mathematical
deep-dive, reviewing how statistical principles can be used to discern relation-
ships between entities. Working backwards, a practical algorithm is presented
for extracting entities themselves. To conclude, a collection of hypothesis and
wild speculations are presented.

2 From Graphs to Grammar

Assuming that sensory data can be categorized into entities and relationships,
the natural representation is that of graphs: each entity is represented by a
vertex, each relationship is represented by an edge. Vertexes are labeled with
symbols, edges with symbol pairs. An example is illustrated below.

Sun Telescope

Moon
Sun

Moon Telescope

Sun
Connector

Moon
Connector

Lens

Sun
Connector

Moon
Connector

Eyes

Sun
Connector

Moon
Connector

On the left is a conventional sparse graph of relationships between entities. On
the right is the same graph, with some of the edges cut into half-edges, with the
half-edge connectors labeled with what they can connect to. The connectors are
drawn with distinct shapes, intended to convey what they are allowed to connect
to. Such vertices, together with a collection of connectors, can be imagined to
be jigsaw puzzle pieces, waiting to be connected.

The simplicity of the above diagram is deceptive. There is a deep and broad
mathematical foundation: jigsaw pieces are the elements of a “monoidal cate-
gory” [7]. The connectors themselves are type-theoretic types. The jigsaw pieces
are the syntactical elements of a grammar. These last three statements arise
from a relatively well-known generalization of Curry-Howard correspondence:
for every category, there is a type theory, a grammar and a logic; from each, the
others can be determined [2].

The jigsaw paradigm in linguistics has been repeatedly rediscovered [4,11,
13,23]. The diagram below is taken from the first paper on Link Grammar [17].
Syntactically valid sentences are formed whenever all of the jigsaw connectors
fully mated. This fashion of specifying a grammar may feel unconventional; such
grammars can be automatically (i.e. algorithmically) transformed into equiv-
alent HPSG, DG, LFG, etc. style grammars. Link Grammar is equivalent to
Combinatory Categorial Grammar (CCG) [21].
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Compositionality and Sheaves. The naive replacement of entities by vertexes
and relationships by edges seems to have a problem with well-foundedness. If
an entity is made of parts, does this mean that a vertex is made of parts?
What are those parts made of? Is there an infinite regress? How might one
indicate the fact that some entity has a composite structure? These questions
are resolved by observing that a partially-assembled jigsaw puzzle resembles a
singular jigsaw piece: it externalizes as-yet unconnected connectors, while also
showing the connectivity of the assembled portions. Jigsaws resolve the part-
whole conundrum: the “whole” is a partially assembled jigsaw; the parts are
the individual pieces. The way that an entity can interact with other entities is
determined entirely through the as-yet unconnected connectors.

Sheaf theory [8] provides the formal setting for working with such part-whole
relationships. The sheaf axioms describe how jigsaw pieces connect [20]. The
appeal of sheaf theory is it’s broad foundational and descriptive power: the sheaf
axioms describe topology and logic (via the extended Curry-Howard correspon-
dence mentioned above). Natural language can be taken in this broader setting.

Pervasiveness. After becoming familiar with the jigsaw paradigm, it becomes
evident that it is absolutely pervasive. A common depiction of DNA uses jigsaw
connectors for the amino acids ATGC. The antibody (immunoglobulin) is con-
ventionally depicted in terms of jigsaws. Chemical reactions can be depicted as
the assembly of jigsaw pieces.

Composition (beta reduction) in term algebra can be seen as the act of con-
necting jigsaws. Consider a term (or “function symbol”) f (x) with typed variable
x. Constants are type instances; for example, the integer 42. Beta reduction is
the act of “plugging in”: f (x) : 42 �→ f (42). Re-interpreted as jigsaw connec-
tors, the term f (x) is a female-coded jigsaw, and 42 is a male-coded jigsaw. To
connect, the types must match (the variable x must be typed as integer). This
kind of plugging-in or composition (with explicit or implicit type constraints) is
rampant throughout mathematics. Examples can be found in proof theory, [19]
lambda calculus, [3] term algebras [1] and model theory [5].

Vision and Sound. Shapes have a structural grammar, too. The connectors
can specify location, color, shape, texture. The structural decomposition is that it
is not about pixels! The structural decomposition is scale-invariant (more or less,
unless some connector fixes the scale) and rotationally invariant (unless some
connector fixes direction). The structural grammar captures the morphology of
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the shape, it’s general properties It can omit details when they are impertinent,
and capture them when they are important.

North-South ConnectorYellow

Red

Green

Background Connector

Background

Shape Connector

Round Shape

North-South Connector

Audio data can also be given a jigsaw structure. On the left is a spectro-
gram of a whale song; time along the horizontal axis, frequency on the vertical,
intensity depicted as a color.

Lopass chirp filter
100 Hz center

Finite impulse filter
2 second fullwidth

Time

A midsection of the song is shown as jigsaws: the number of repetitions (six),
the frequency distribution (its a chirp, which can be discovered with a chirp
filter.) Individual repetitions can be spotted with a finite impulse response filter.
Sensory information can be described in grammatical terms.

3 Symbolic Learning

In order for a graphical, sheaf-theoretic, grammatical theory of structure to serve
as a foundation stone for AGI, there most be a practical algorithm for extracting
structure from sensory data. This can be achieved in three steps. The first step
is chunking (tokenization), the division of sensory data into candidate entities
and interactions. The second step takes a collection of candidate graphs, splits
them into jigsaw pieces, and then classifies jigsaw pieces into common categories,
based on their commonalities. The third step is a recursive step, to repeat the
process again, but this time taking the discovered structure as the sensory input.
It is meant to be a hierarchical crawl up the semantic ladder.

Tokenization, induction of grammar, entity detection and predicate-argument
structure have been experimentally explored in linguistics for decades; a review
cannot be given here. What has been missing until now is a unified framework in
which sensory (visual and audio) data can be processed on the same footing as
linguistic structure. The OpenCog system, specifically the AtomSpace and the
Learn project,1 provide an implementation of that unified framework. Research
has focused on the second step of the above algorithm; extensive research diaries

1 See the “AtomSpace” and “Learn project” in github.
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log the results.2 A summary of these results is presented as a companion paper
to this one. Explorations of the first and third steps have hardly begun. It is
easiest to describe the second step first.

Grammatical Induction. In linguistics, one is presented with a tokenized
sequence of words; the conversion of raw sound into phonemes and then words
is presumed to have already occurred. The task is to extract a more-or-less con-
ventional lexical grammar, given a corpus of text. This may be done as follows.
First, perform a Maximum Spanning Tree (MST) parse; next, split the MST
parse into jigsaw pieces; finally, classify those pieces into lexical vectors. The
process is inherently statistical.

Maximum Planar Graph Parsing. MST parsing is described by Yuret [22].
Starting with a corpus, maintain a count N (u,w) of nearby word-pairs (u,w).
The frequentist probability p (u,w) = N (u,w) /N (∗, ∗) is the count of a given
word-pair divided by the total count of all word-pairs. The star indicates a
marginal sum, so that p (u, ∗) =

∑
w p (u,w) = N (u, ∗) /N (∗, ∗). The Lexical

Attraction between word-pairs is

MI (u,w) = log2
p (u,w)

p (u, ∗) p (∗, w)

This lexical attraction is just the mutual information; it has a somewhat unusual
form, as word-pairs are necessarily not symmetric: (u,w) �= (w, u). The MI may
be negative! The range of values depends on the size of the corpus; for a “typical”
corpus, it ranges from −10 to +30.

The MST parse of a sentence is obtained by considering all possible trees,
and selecting the one with the largest possible total MI. The example below
is, taken from Yuret’s thesis. The numbers in the links are the MI between the
indicated words.

Maximal planar graphs (MPG) (graphs with loops, but no intersecting links)
appear to offer experimentally-observable advantages over trees, they constrain
the grammar more tightly and offer advantages similar to those of catena-based
linguistic theory [14]. MST parses are linguistically plausible: they correspond,
more or less, to what trained linguists would write down for a parse. The accuracy
is reasonably high. Perfect accuracy is not needed, as later stages make up for
this. Yuret indicates that the best results are obtained when one accumulates
at least a million sentences. This is not outrageous: work in child psychology
indicates that human babies hear several million sentences by the age of two
years.
2 See the diaries in the aforementioned project.



Purely Symbolic Induction of Structure 139

Lexical Entries. Given an MST or MPG parse, the lexis is constructed by
chopping up the parse into jigsaw pieces, and then accumulating the counts on
the jigsaw pieces. This is shown below.

Several kinds of notation are in common use such lexical entries. In tensorial
notation, ball :

∣
∣
∣
←−
the

〉
⊗

∣
∣
∣
←−−−
throw

〉
. In Link Grammar, ball : the−& throw−; the

minus signs indicate connections to the left. The ampersand is the conjunction
operator from a fragment of linear logic; it demands that both connectors be
present. Linear logic is the logic of tensor algebras (by the aforementioned Curry-
Howard correspondence.) Unlike tensor algebras, natural language has a distinct
left-right asymmetry, and so the corresponding logic (of the monoidal category
of natural language) is just a fragment of linear logic. Note that all of quantum
mechanics lies inside of the tensor algebra; this explains why assorted quantum
concepts seem to recur in natural language discussions.

Connector sequences such as
∣
∣
∣
←−
the

〉
⊗

∣
∣
∣
←−−−
throw

〉
are disjoined in the lexis; each

such sequence is called a disjunct. Given a word w, a lexical entry consists of
all word-disjunct pairs (w, d) together with their observed count N (w, d). The
normalized frequency is p (w, d) = N (w, d) /N (∗, ∗) where N (∗, ∗) is the sum
over all word-disjunct pairs. A lexical entry is thus a sparse skip-gram-like vector:

−→w = p (w, d1) ê1 + · · · + p (w, dn) ên

The logical disjunction “or” can be used in place of the plus sign; this would be
the “choice” operator in linear logic (as in “menu choice”: pick one or another).
The basis vectors êk are short-hand for the skip-gram disjuncts

∣
∣
∣
←−
the

〉
⊗

∣
∣
∣
←−−−
throw

〉
.

Similarity. The lexis generated above contains individual words with connec-
tors to other, specific words. Taken as a matrix, the lexis is sparse but still quite
large. To obtain a conventional grammar in terms of nouns, verbs and adjectives,
dimensional reduction must be performed. This can be achieved by clustering
with respect to a similarity metric. A conventional similarity metric is the cosine
distance

cos θ = −→w · −→v =
∑

d

p (w, d) p (v, d)

As a metric, it fails, because the space spanned by these vectors is not
Euclidean space! It is a probability space, with unit-length probability vectors:
1 =

∑
w,d p (w, d). The correct similarity is the mutual information:

MI (w, v) = log2
−→w · −→v

(−→w · −→∗ ) (−→∗ · −→v ) where −→w · −→∗ =
∑

d

p (w, d) p (∗, d)
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Experimentally, the distribution of the MI for word pairs is Gaussian.3 This
is remarkable: it implies that the word vectors are uniformly distributed on
the surface of a (high-dimensional) sphere: a Gaussian Orthogonal Ensemble (a
spin glass) [18]. In this sense, one can see that natural language is maximally
disambiguating.

In this way, after transforming to a sphere, a plain cosine distance be used.
The sphere vectors are given by

⇒
w =

∑
v MI(w, v)v̂. The center of the sphere

must be subtracted, and the vectors normalized to unit length before taking a
dot product.

Classification. In practice, clustering is not straightforward. One wishes to
first cluster the most frequent words first, whereas the highest MI pairs are very
rare. This suggests defining a ranked-MI, adjusted by the average log frequency:

MIrank (w, v) = MI (w, v) +
log2 p (w, ∗) + log2 p (v, ∗)

2
= log2

−→w · −→v√(−→w · −→∗ ) (−→∗ · −→v )

Experimentally, this just shifts the Gaussian to the right.

Word-Sense Disambiguation. Words can have multiple meanings. Two
words may be deemed to be similar, but not all of the disjuncts can be dumped
into a common class; some of the disjuncts may belong to other word-senses.
For example, a portion of the word-vector for “saw” can be clustered with other
cutting tools, while the remainder can be clustered with viewing verbs. This
presents a practical difficulty: off-the-shelf clustering algorithms cannot perform
word-sense disambiguation.

Connectors must also be merged. The rewriting of connector sequences is
subtle, as it affects word-vectors outside of those being merged (the merged
connectors might appear anywhere). To maintain coherency, “detailed balance”
must be preserved: the grand total counts must remain the same both before
and after merge.

Factorization. The clustering described above can be understood to be a form
of matrix factorization. The word-disjunct matrix p (w, d) is factorized into three
matrices LCR as

p (w, d) =
∑

g,g′
pL (w, g) pC (g, g′) pR (g′, d)

where g is a “word class” (e.g. common noun, transitive verb) and g′ is a “gram-
matical relation” (e.g. subject, object, modifier). The matrices L and R are very
sparse, which C is compact, dense and highly connected. A sense of the scale

3 See the Language Learning Diary Part Three, op. cit.
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of factorization can be obtained from the hand-curated English-language dictio-
nary. It consists of about 100K words, 2K word classes, several hundred gram-
matical relations (LG “macros”) and 30 million disjuncts. In other words, the
central component is quite small. Factorization provides an aid to interpretabil-
ity. Instead of a morass of matrix elements, word-classes are recognizable as such,
as is the predicate-argument structure. This is the power of a symbolic, lexical
approach.

4 Chunking/Tokenization

The relatively straightforward tokenization of written English hides the diffi-
culty of chunking in general. How can one obtain a comparable chunking of raw
audio or visual data? The goal is to obtain, by automatic means, a sequence of
transducers, from sounds to phonemes and syllables and words.

High MI?

Haar wavelet
order (2,5)

Filter Sequence B

Chirp
filter

Filter Sequence A

Lo pass filter
  300 Hz

Audio in

Threshold
detector

Threshold
detector

Finite Impulse
Response Filter
1 mSec

A pair of transducers in block-diagram form is shown. The generation of such
sequences can be managed through genetic program (GP) learning techniques.
An example of a GP system is provided by MOSES [9,10]. Given a collection of
“okay” filter sequences, GP can explore both the parameter space to provide a
better tuning, and, by means of mutation and cross-over, generate other filter
sequences. The goal is to find high-quality “feature recognizers”, indicating the
presence of a salient feature in the sensory environment.

Learning in GP systems is guided by maximizing a utility (scoring) function.
But what should that function be, in an unsupervised setting? Just as one discov-
ered structure in language through entropy maximization, one can use the same
ideas here. For all features (filter sets) currently under consideration, one looks
for high-MI correlations. Features that are poorly detected have poor correlation
and low information content; crisp recognizers should be sharply correlated.

The Symbol Grounding Problem and the Frame Problem. An old prob-
lem in philosophy (dating back to Socrates) is the symbol grounding problem.4

When one says the word “chair”, what does that mean? Both extensional lists of
things one can sit and intensional lists of properties fail; they are never complete.
Affordances provide the answer: to be a chair, an object must be sit-on-able. The
DSP filter sequence is precisely an affordance-detector.

A simpler example. If someone says “I hear whistling in the distance”, what
does the word “whistling” actually mean? How to describe it? What is the
4 See the Stanford Encyclopedia of Philosophy, “Frame Problem” and “Embodied
Cognition”.
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grounding for the symbol “whistling”? Filter sequences explicitly manifest the
grounding. “Whistling” is a certain kind of hi-pass filter attached to a chirp filter
with a certain finite impulse response time. That is what “whistling” is. What
else could it possibly have been?

The Frame Problem posits that the number of objects and events overwhelms
the current focus. Entropy-maximizing training of filter sequences solves this.
Mutual information tells you what things “go together”. The grammatical struc-
ture reveals how those things go together. The vast ocean of sensory stimulus
is reduced to a trickle of symbolic relationships, arriving either in a regular,
expected pattern (and thus ignorable), or arriving in unexpected, surprising
ways, demanding attention.

5 Abstraction and Recursion

The above presented techniques for moving from sensory input to the lower
reaches of semantics. Can one go farther, and arrive at common-sense reasoning,
one of the Holy Grails of AGI? The author wishes to argue that the techniques
described above are sufficient to reach up into the highest levels of abstraction
and general intelligence. It is a ladder to be climbed, repeating the same opera-
tions on each new layer of abstraction.

The next few rungs of the ladder can be found in linguistics. The MST parsing
algorithm given above was presented at the word-pair level. When applied at the
semantic level, it becomes the Mihalcea algorithm [12].

In lexical semantics, there is an idea of “lexical implication rules” [15]. These
are rules that control how words used in one context can be used in a different
context. The discovery of these rules be automated: each rule has the form of
a jigsaw, and the algorithm for inferring jigsaws has already been presented.
Jigsaw assembly is parsing: given a set of constraints (for example, a sequence
of words) parsing is the act of finding jigsaw pieces that fit the word-sequence.
Parsing technologies, and their more general cousins, the theorem-provers, are
well-understood.

Lexical implication rules generalize to the “lexical functions” (LF) of
Meaning-Text Theory (MTT) [6]. The MTT is a well-developed theory of the
“semantic” layer of linguistics, sitting atop surface syntax. An algorithm for
learning LF’s is described by Poon & Domingos [16]. The relationship to the
current work is obscured by their use of jigsaws written as lambdas; rephras-
ing as jigsaws makes it clear that it is just a hunt for equivalent jigsaw sub-
assemblies (synonymous phrases). Anaphora resolution, reference resolution and
entity detection are well-explored topics in computational linguistics. The jig-
saw metaphor demonstrates precisely how one can climb the rungs of the ladder:
from pair-wise correlations up to grammars. In the presence of a grammar, we
once again know what is ordinary, and can then renew the search for surprising
pair-wise correlations, this time at the next layer of abstraction.
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5.1 Common Sense

Can this be used to learn common sense? I believe so. How might this work?
Let me illustrate by explaining an old joke: “Doctor Doctor, it hurts when I do
this! Well, don’t do that!”. The explanation is shown below, in the form of a
rule, using the notation from proof theory. The thick horizontal bar separates
the premises from the conclusions. It is labeled as “Joke” to indicate what kind
of rule it is.

Raise elbow

Turn wrist

Motor Sequence H
Anaphora connector

Joke

The “sequent” is the anaphora connector, which connects the word “this”
the a specific motor sequence. Which motor sequence? Well, presumably one
that was learned, by automatic process (perhaps GP), to move a limb. All of the
components of this diagram are jigsaw pieces. All of the pieces can be discovered
probabilistically. All of the connectors can be connected probabilistically. The
learning algorithm shows how to discern structure from what is superficially
seems like a chaotic stream of sensory input. Common sense can be learned.
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Abstract. This is a paper about the general theory of measuring or esti-
mating social intelligence via benchmarks. Hernández-Orallo and Dowe
described a problem with certain proposed intelligence measures. The
problem suggests that those intelligence measures might not accurately
capture social intelligence. We argue that Hernández-Orallo and Dowe’s
problem is even more general than how they stated it, applying to many
subdomains of AGI, not just the one subdomain in which they stated it.
We then propose a solution. In our solution, instead of using test-cases
within the given AGI subdomain to estimate an AI’s intelligence, one
would use test-cases in an extended subdomain where test-cases have the
ability to simulate the AI being tested. Surprisingly, AIs only designed
for the original subdomain can be tested with test-cases in the extended
subdomain anyway. By extending the subdomain in this way, we might
avoid Hernández-Orallo and Dowe’s problem.

Keywords: Social intelligence · Intelligence measurement · Universal
intelligence

1 Introduction

The problem of designing AGI goes hand-in-hand with the problem of measur-
ing the intelligence of artificial agents. After all, without the ability to measure
intelligence, it would be hard to even know whether progress is being made
toward AGI. For the diverse and wide-ranging types of intelligent agents con-
sidered by AGI researchers as a whole, the intelligence-measurement problem
is quite difficult (it is not clear to what extent objective intelligence measure-
ment is even possible in such a general context). Concrete progress can be made
by restricting attention to narrow, well-defined subdomains of AGI. Within a
narrow subdomain of AGI, one can measure (or at least estimate) intelligence
by using benchmarks: how well does the agent perform on such-and-such test-
cases? For example, how well does a given AI perform at Atari games? Such
subdomains of AGI can be considered as (in Goertzel’s words) “idealized case[s]
of AGI, similar to assumptions like the frictionless plane in physics” [4].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Goertzel et al. (Eds.): AGI 2022, LNAI 13539, pp. 147–157, 2023.
https://doi.org/10.1007/978-3-031-19907-3_14
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Hernández-Orallo and Dowe pointed out [6] a problem in certain theoreti-
cal intelligence-measurement benchmarks. We will argue that the problem they
point out is actually much more general: they posed it in the context of one
particular subdomain of AGI but it is not limited to that subdomain. A bench-
mark generally consists of a battery of simple test-cases, or a simple procedural
method for randomly generating test-cases. But this seems to prevent the test-
cases from having genuine social aspects, for the following reason. To include
genuine social aspects in a test-case would (apparently) require that genuine
intelligence be somehow built into that test-case. For example, in an Atari game,
enemy (or ally) Non-Player Characters (NPCs) are simplistic automatons. Sim-
plistic automatons are not genuinely social. To add genuine social aspects to an
Atari game, one would need to replace those automatons with genuinely intelli-
gent agents. But the complexity of such agents would far exceed the complexity
of the Atari game! Or, if test-cases are generated procedurally, perhaps the pro-
cedure could randomly generate test-cases with genuine social aspects, but the
odds of this would be extremely small. One could replace an Atari NPC’s script
with a randomly-generated script, but the odds are negligible that the NPC
would thus become genuinely intelligent. So then, how can our benchmarks cap-
ture social intelligence?

We will propose a general solution where AIs in one subdomain are bench-
marked against test-cases in an extended subdomain. In the extended subdo-
main, test-cases have the ability to secretly simulate the agent being measured.
For example, to measure AIs in the subdomain of Atari games, we would run
those AIs against extended Atari games. An extended Atari game is just like an
Atari game, except that the game’s mechanics are allowed to use an oracle to
query what the AI playing the game would do in arbitrary situations. We will
argue that in the extended subdomain, genuine social aspects can be built into
simple test-cases. Furthermore, this solution is surprisingly quite practical. In
the Atari subdomain, for example, if we have an AI’s source-code, we can use
that source-code to realize the oracle needed to run the AI in an extended Atari
game. By contrast, it would be virtually impossible for a human to play extended
Atari games in general, because it would be virtually impossible to realize an
oracle that could predict the human’s actions in arbitrary situations1.

2 Background: The Hernández-Orallo and Dowe Problem

‘How can we create environments so that they have intelligent agents
inside? It is enlightening (but perhaps of little practical use) to think that
some extremely complex infinite environments we consider as possible in
the test could contain “life”. In some of them, we could even find “intelli-
gent beings” ... When we say that it is perhaps of little practical use, it is
because the complexity of these environments is extremely high and the

1 Even a perfect genetic clone of the human player would not be enough, since a human
player’s actions are not determined by genetics alone but depend on a whole lifetime
of previous learning and interaction with the world.
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probability of one of them appearing by chance is almost zero. Therefore,
we cannot bind the evaluation of social intelligence to this remote chance.
However, this a priori remote probability is in fact a much higher a pos-
teriori probability if we think in terms of evolution. ... Consequently, we
require inserting these other agents into the environments’—Hernández-
Orallo and Dowe [6]

Hernández-Orallo and Dowe did not state their problem in its full generality.
They stated it [6] in the universal intelligence context of [10], essentially a very
formal, theoretical version of the reinforcement learning (RL) context. We will
avoid spelling everything out in full detail as the details are verbose and unim-
portant. Roughly speaking, in the universal intelligence context, agents interact
with environments. They take turns. On the agent’s turn, the agent takes an
action. On the environment’s turn, the environment gives the agent an observa-
tion and a reward. Certain technical constraints are placed on the rewards which
the environment can output, in order to ensure certain convergence properties.
The agent is considered to perform better or worse in a given environment if the
rewards it receives are bigger or smaller, respectively.

Legg and Hutter proposed [10] defining the numerical intelligence level of
such an agent to be the average total reward the agent receives across the space
of all computable environments, weighting environments with some distribution.
A uniform distribution would be no good because No-Free Lunch theorems imply
all agents would end up with the same exact intelligence measure, see [8]. Legg
and Hutter instead proposed giving each environment µ a weight of 2−K(µ) where
K(µ) is the Kolmogorov complexity of µ (the length of the shortest computer
program for µ). Note that K(µ) depends implicitly on the choice of a background
Universal Turing Machine (UTM). Intuitively one can think of a UTM as a
programming language, so the choice amounts to choosing: which programming
language should environments be programmed in? This choice is non-trivial,
see [12]2.

Other methods have also been proposed for measuring intelligence in the uni-
versal intelligence context. The Legg-Hutter intelligence definition is impractical
because, mathematically, the average performance of the agent across the whole
space of computable environments, is an infinite sum, each term of which involves
the Kolmogorov complexity function (itself already non-computable). More prac-
tical methods involve running the agent for bounded numbers of turns against
randomly-generated environments. Universal intelligence measures of this type
are proposed by Legg and Veness [11] and by Hernández-Orallo and Dowe
themselves [6]. Hernández-Orallo and Dowe further refine the idea, proposing
to dynamically adjust the complexity of the randomly-generated environments
based on the agent’s performance, an idea motivated by human psychometrics.

All these methods of measuring universal intelligence are highly susceptible
to Hernández-Orallo and Dowe’s problem. Environments containing genuinely-
intelligent built-in NPCs must be highly complicated. So in the Legg-Hutter infi-
nite sum, any such environment would contribute very little, because its weight
2 Some progress on UTM-choice was presented at last year’s AGI conference [3].
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2−K(µ) would be extremely small. In intelligence measures based on running
the agent in randomly-generated environments, the odds are quite small that a
randomly-generated environment would contain a genuinely intelligent NPC. So
all these intelligence measures would seem to poorly capture social intelligence.

Hernández-Orallo et al. [7] proposed using multi-agent environments to solve
the problem. In their proposal, in order to quantitatively estimate the intelligence
of an agent, one would randomly generate multi-agent environments, and also
randomly select agents for each multi-agent role (except for the role to be filled
by the agent being measured). Despite this solution’s inherent beauty, it is not
very practical. Either the randomly-generated agents are generated completely
at random (e.g., they have random source-codes), in which case the odds of such
an agent being genuinely intelligent are extremely small; or, they are generated in
some way such that with non-negligible probability they are genuinely intelligent.
But the latter seems almost as difficult as creating AGI in the first place, so
an intelligence measure dependent on it might not be very helpful as a step
toward AGI. We will propose a different solution to Hernández-Orallo and Dowe’s
problem, which does not involve randomly generating agents.

2.1 The Generalized Hernández-Orallo and Dowe Problem

Nothing about the Hernández-Orallo and Dowe Problem inherently depends on
the particular background of universal intelligence in which they stated it. The
problem applies any time we would use simple test-cases (or a simple procedure
for generating test-cases) to benchmark AIs in any subdomain of AGI. We would
state the general problem as follows:

Problem 1 (The Generalized Hernández-Orallo and Dowe Problem). Assume
we are working in some subdomain of AGI where we want to benchmark AIs
against test-cases. Any test-case with genuine intelligence built into it must
necessarily be highly complex. Thus, no such test-case can occur in any fixed
library of simple test-cases, and no such test-case can be generated with non-
negligible probability by any simple procedure for generating test-cases. Thus, no
such library or procedure can be used to reliably benchmark social intelligence
(since social intelligence requires interaction with other genuine intelligences).

Note that when we say “no such test-case can be generated with non-negligible
probability...” we assume a certain sparseness condition. For any n, if S1 is the
set of all length-n computer programs, and S2 is the set of all length-n computer
programs of AGIs, then presumably |S2|/|S1| ≈ 0. Given an algorithm for an
AGI, one could contrive a programming language falsifying this (e.g., contrive the
language so that said algorithm can be written in just 1 character). We believe
this sparseness assumption is plausible for natural programming languages whose
semantics do not depend on any already-known AGI.

Example 2 (Image classification). Consider a subdomain of AGI where image
classifiers can be trained on labeled images and asked to predict labels of unlabeled
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images. Fix some genuinely intelligent classifier A0 and some finite set T of
images with labels from {0, 1}. Assume A0 has been trained on T . Suppose A
is a classifier whose intelligence we are trying to measure. As one test-case, we
could systematically investigate how well A learns to classify images as either
“images A0 classifies as 0” or “images A0 classifies as 1”.

The test-case in Example 2 is presumably complicated, because it depends
on the genuinely intelligent classifier A0. Thus, the test-case would never be
included in any simple test-case library, and there is low probability it would
be generated by any simple test-case-generating procedure. Thus, any estimate
of a classifier’s intelligence based on a simple test-case library, or on test-cases
generated by a simple procedure, would fail to reliably capture the classifier’s
performance on the test-case in question. One could argue that the test-case in
question is a social intelligence test-case, because it tests how well the classifier
learns to anticipate its colleague A0.

3 Extending Subdomains to Solve the Hernández-Orallo
and Dowe Problem

We propose to solve Problem 1 by extending the subdomain in question so
as to admit simple new test-cases capable of incorporating social aspects, in
such a way that a given AI (only designed for the original subdomain) can still
attempt test-cases in the extended subdomain. The intuitive idea is that, in the
extended domain, when an AI is being tested on a test-case, the test-case is
allowed to query an oracle which tells the test-case what the AI would output
in response to arbitrary inputs. This allows for self-play to be incorporated into
the test-cases (below, we address the anticipated objection that self-play is not
genuinely social). Certainly we are not claiming that self-play is a new innovation.
It has been widely used to train agents for specific individual environments,
from Backgammon all the way to StarCraft II, and in a sense it is also used in
adversarial techniques such as GAN (see [5]). What is new in our proposal is that
we suggest self-play can be applied to general social intelligence measurement,
where, instead of having a specific environment in mind, we are interested in an
agent’s general performance over the whole space of all environments.

Definition 3. A subdomain of AGI is a tuple D = (A , UA ,T , UT , L) where:

1. A is a set of computer programs (called AIs) in programming language UA ;
2. T is a set of computer programs (called test-cases) in programming language

UT which extends UA (possibly including some oracles);
3. For all UA -programs a1, a2, if a1 and a2 both compute the same function,

then a1 ∈ A iff a2 ∈ A .
4. For all UT -programs t1, t2, if t1 and t2 both compute the same function, then

t1 ∈ T iff t2 ∈ T .
5. L is a computable function which takes a ∈ A , t ∈ T , n ∈ N, and outputs

a rational number L(a, t, n) ∈ Q which we call a measure of a’s performance
on t at step n.
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We say D is code-independent if the following requirement holds: for all a1, a2 ∈
A , for all t1, t2 ∈ T , if a1 and a2 compute the same function, and t1 and t2
compute the same function, then for all n ∈ N, L(a1, t1, n) = L(a2, t2, n).

Example 4. Take A to be the set of programs defining RL agents (in some
formalization of RL) and T to be the set of programs defining RL environments,
both in some common language UA = UT . Let L(a, t, n) be the nth reward a gets
in an interaction with t. The resulting code-independent subdomain D could be
called the RL subdomain of AGI.

Definition 5. Suppose D = (A , UA ,T , UT , L) is a subdomain of AGI. The
extension of D is the subdomain D ′ = (A , UA ,T ′, UT ′ , L′) where:

1. UT ′ is the extension of UT by a new oracle a.
2. T ′ is the set of all UT ′ programs t with the following property: for each

a ∈ A , if ta is the UT program obtained from t by replacing all instances of
a by a, then ta ∈ T .

3. L′ is the computable function which, on input a ∈ A , t ∈ T ′, and n ∈ N,
outputs L′(a, t, n) = L(a, ta, n), where ta is as above.

If D is the RL subdomain of AGI (Example 4), then D ′ is a variation of RL
in which environments can simulate agents in order to base their rewards and
observations not only on what actions the agent has actually taken, but also on
what actions the agent would hypothetically take in counterfactual scenarios3.

Lemma 6. If D is a subdomain of AGI, then D ′ really is a subdomain of AGI.

Proof. The only nontrivial part of the claim is that L′ is a computable function
which, given a ∈ A , t ∈ T ′, n ∈ N, outputs L′(a, t, n) ∈ Q. Clearly the operation
of replacing instances of oracle a by a, is computable. So the computability of
L′ follows from the computability of L. By definition, t ∈ T ′ means ta ∈ T , so
L′(a, t, n) = L(a, ta, n) exists and is in Q since L satisfies Definition 3. ��

Even though Lemma 6 is trivial, it has profound implications. It says that
even though an AI is designed for the original, un-extended subdomain of AGI,
that AI can nevertheless be tested using test-cases in the extended subdomain.

While clearly not a perfect solution, the following theorem at least partly
solves Problem 1.

Theorem 7 (Deparametrization Theorem). Let D = (A , UA ,T , UT , L) be a
code-independent subdomain of AGI. Suppose F is a UT program which takes as
input an AI a ∈ A and outputs a test-case F (a) ∈ T . In the extended subdomain
D ′ = (A , UA ,T ′, UT ′ , L′), there is a test-case F ∗, of approximately the same
complexity as F , such that for all a ∈ A and n ∈ N, L′(a, F ∗, n) = L(a, F (a), n).
3 Alexander et al. explore this RL variation in [1], suggesting a variation of the Legg-

Hutter intelligence measure that might measure an agent’s self-reflection intelligence
via its performance in extended RL environments (if these environments could be
further pared down to just those of a social nature, the same idea could lead to a
formal measure of RL agent social intelligence, but we do not currently know how
to so pare them down).
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Proof. Let F ∗ be the UT ′ program:

1. Take input X.
2. Output the result of running F (a) on X.

Clearly F ∗ has approximately the same complexity as F . For each a ∈ A , F ∗
a is

the T -program:

1. Take input X.
2. Output the result of running F (a) on X.

Clearly F ∗
a and F (a) compute the same function. Thus by condition 4 of Def-

inition 3, F ∗
a ∈ T . By arbitrariness of a, this shows F ∗ ∈ T ′. For any a ∈ A

and n ∈ N, L′(a, F ∗, n) = L(a, F ∗
a , n) by Definition 5, which equals L(a, F (a), n)

since F ∗
a and F (a) compute the same function and D is code-independent. ��

Theorem 7 says that any AI-parametrized procedure for generating test-cases
in the original subdomain can be replaced by a single test-case, in the extended
subdomain, roughly as complex as the original procedure. In the single test-
case, the AI-parameter is replaced by a simulated copy of the very AI we are
trying to test. For example, suppose we want to test an Atari-playing AI’s social
intelligence. We could take F (a) to be an Atari game in which the player plays
“Super Breakout” with a as partner. Then F ∗ is a single extended Atari game in
which the player plays “Super Breakout” with a clone of herself as her partner.
Thus, the infinite test-case family, “Play Super Breakout with partner a” (each
one of whose complexity is approximately the complexity of Super Breakout plus
the complexity of a), is replaced by the single test-case, “Play Super Breakout
with a clone of yourself as partner”, roughly as complex as Super Breakout.

We would argue that test-cases produced by Theorem 7 are appropriate for
benchmarking intelligence in a super-general context4. If we design an NPC
opponent using a huge neural network, the resulting test-case has an inherent
bias toward neural networks. That would be inappropriate for measuring alien
intelligences based on some other technology. It would be rather arbitrary to
judge a Martian life form by how well it can raise a human baby, or to judge a
human by how well he can raise a Martian baby. But it would be quite appro-
priate to judge each by how well it can raise a baby version of itself.

The reader might object that there is nothing social about interacting with
one’s own clone. But in general, AIs act based not only on immediate stimulus,
but on the whole history of prior stimuli. In short: AIs train. This is abstracted
away in Definition 3. One should not think of the AIs in Definition 3 as taking
immediate observations as sole inputs, but rather as taking entire histories as
inputs. In Theorem 7, F (a) might output a test-case where one plays chess
against an instance of a that has been trained on, say, 50 years of random stimuli
(generated dynamically, to keep F simple). Then F ∗ is a test-case where one

4 Provided the test-cases F (a) are nontrivial; Tic-Tac-Toe would be a poor social
intelligence benchmark regardless of the opponent’s intelligence.
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plays chess against a clone of oneself trained with 50 years of random stimuli5.
This could be quite different than playing against oneself directly. When Silver
et al. declare that

“The agent consists solely of the decision-making entity; anything outside
of that entity (including its body, if it has one) is considered part of the
environment,” [13]

that body would certainly include the brain and the hippocampus. So if I am
being driven by an agent in Silver et al.’s sense, then a clone of that agent
needn’t share my memories. And to the extent that my personality depends on
my memories (including what I was taught in school, etc.), said clone needn’t
share my personality. Indeed, if personality is a function of training, the following
Paper-Rock-Scissors example illustrates how one could apply different training
to a self-play opponent, encouraging the opponent to differ in personality from
the agent.

Example 8 (Paper-Rock-Scissors Python Example, see Listing 1.1). Consider
a concrete formalization of RL in which environments are instances of Python
environment-classes and agents are instances of agent-classes. An environment-
class is required to implement a “start” method (outputting an initial observa-
tion) and a “step” method (which takes the agent’s latest action and outputs
an observation and a reward). An agent-class is required to implement an “act”
method (which takes an observation and outputs an action) and a “train” method
(which takes a prior observation, an action, a reward, and a next observation,
the intent being that the agent should update its neural net, Q-table, etc., based
on the fact that it took the given action in response to the given prior obser-
vation and this resulted in the given reward and the given next observation).
This is a subdomain of AGI. The extended subdomain is identical except that an
extended environment-class’s methods have access to an oracle AgentClass (the
a in Definition 5) for the agent-class used to instantiate the agent. Its methods
can thus instantiate independent agent-clones for use in its reward-observation
calculations. Listing 1.1 defines an extended environment-class where the agent
plays Paper-Rock-Scissors against a clone of itself, but every move, the clone
gets trained twice instead of once.

Example 8 gives a single test-case in an extended subdomain. It corresponds
to an infinite family of unextended test-cases, indexed by AgentClass. It tests
the player’s performance in the task6: “Play Paper-Rock-Scissors against a clone
of yourself that trains twice as much as you.” The extended environment has

5 If the player is human-like, 50 years of such training might even make the clone so
different that the player doesn’t realize the opponent is a clone.

6 The example is not trivialized by the random strategy. A good RL agent should
balance exploitation of known good strategies (like random play) against exploration.
Otherwise the agent would be suboptimal against certain flawed opponents. Indeed,
this line of thought leads to Hibbard’s hierarchical intelligence measures [9] [2].
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Listing 1.1. An extended environment in which the agent plays Paper-Rock-Scissors
against a clone of itself, but the clone trains twice as much.

class PaperRockScissors_DoubleTrainingEnemy :
def s t a r t ( s e l f ) :

# In s t a n t i a t e a c lone o f the agent . This c lone w i l l p l ay
# the r o l e o f the agent ’ s enemy .
s e l f . sim = AgentClass ( )
# Sta r t i n t e r a c t i o n wi th both p l aye r & enemy see ing paper
s e l f . prev_player_action = PAPER
return { ’ obs ’ : PAPER}

def s tep ( s e l f , p layer_act ion ) :
# Figure out which ac t i on the agent ’ s enemy take s
enemy_action = s e l f . sim . act ( obs=s e l f . prev_player_action )

player_reward = compute_reward ( player_act ion , enemy_action )

# Train the enemy based on how the enemy see s t h i n g s
# ( the enemy g e t s the oppo s i t e reward as the p layer , e t c . )
s e l f . sim . t r a i n ( prev_obs=s e l f . prev_player_action ,

act=enemy_action , reward=−player_reward ,
next_obs=player_act ion )

# Train again , so the enemy t r a i n s tw ice as much
s e l f . sim . t r a i n ( prev_obs=s e l f . prev_player_action ,

act=enemy_action , reward=−player_reward ,
next_obs=player_act ion )

s e l f . prev_player_action = player_act ion
return { ’ reward ’ : player_reward , ’ obs ’ : enemy_action}

low complexity (≈10 or 20 lines of code), far simpler than a non-extended ver-
sion with a fixed genuinely intelligent enemy built-in. Because the opponent is
trained differently than the player, we would expect the opponent to develop
a different personality than the player (except in some degenerate cases)—this
gives the test-case a social aspect. The reader can easily imagine more ambi-
tious examples where entire communities (or even civilizations) of entities inter-
act with themselves and the player, each entity instantiated as AgentClass(),
but different entities trained differently and therefore having distinct person-
alities. With some creativity, such ambitious extended environments could be
programmed with relatively low complexity: the most complicated part (how
the entities behave) is delegated away.
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4 Conclusion

Hernández-Orallo and Dowe described [6] a problem which may prevent certain
intelligence measures from measuring social intelligence. They stated the prob-
lem in the universal intelligence context [10]. We pointed out that the problem is
more general. It arises any time we try to use simple test-cases (or a simple pro-
cedure for generating test-cases) to estimate intelligence in any AGI subdomain.
The problem is that building genuine intelligence into a test-case (apparently nec-
essary for the test-case to measure social intelligence) would make that test-case
complicated, not simple. We propose a high-level solution. Instead of design-
ing test-cases in the subdomain in question, design test-cases in an extended
subdomain where test-cases can simulate the AI being tested. Such extended
test-cases can incorporate social interaction by delegating competitors’ or col-
laborators’ intelligence to a clone (or clones) of the AI being tested. For example,
instead of testing, “How well can the AI negotiate with such-and-such human?”
(a question involving a complex arbitrary parameter), instead, test: “How well
can the AI negotiate with its clone?” (a simple non-parametrized question).

Acknowledgments. We acknowledge José Hernández-Orallo and the reviewers for
valuable feedback.
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Abstract. In this paper, an index for measuring the versatility and efficiency
of artificial general intelligence (AGI) systems is proposed. The Versatility-
Efficiency Index (VEI), is the updated version of our previous efforts (i.e., Versatil-
ity Index (VI)) towards a comprehensive definition of an intelligence quotient (IQ)
for intelligent agents. VEI is based on both Legg-Hutter and Pennachin-Goertzel
definitions of intelligence and plays as an alternative way for measuring the intel-
ligence level of intelligent agents. VEI, in contrast to VI, also encompasses the
qualitative characteristics of intelligent agents like their wellness of performance
and the complexity of the operating environments. VEI is applicable to both of
the natural general intelligence (NGI) agents and AGI agents. For determining
two parameters of VEI, AGI Pyramid – a novel classification of environments by
classification of the problems of the universal problem space (UPS)- is proposed.
The role of the Artificial General Intelligence Society (AGIS) in the mentioned
classification and determination as well as the importance of the VEI in slowing
down or preventing from singularity and its role as the possible bridge between
intelligence and physics are also discussed.

Keywords: Artificial general intelligence · Intelligence quotient · Legg-Hutter
definition · Pennachin-Goertzel definition · Versatility-Efficiency Index · AGI
pyramid · Complexity · Environments · Energy · Singularity

1 Introduction

Intelligence quotient (IQ) tests are standard tests for measuring the intelligence level of a
human being. IQ tests measure the performance of a human in solving various problems
and output a number as the intelligence quotient (IQ). Although the validity of these
tests is affected by some influencing factors like culture, they are still the main tool for
measuring the IQ of a natural general intelligence (NGI) system like a human. There are
a number of definitions for intelligence proposed by the artificial general intelligence
(AGI) scientists [1], but there is still a lack of a numerical method for measuring the
intelligence level or IQ of an AGI agent. However, like NGIs, the intuitive concept of
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IQ can be extended to AGI agents. In the following sections, the Versatility-Efficiency
Index (VEI) as the primary steps towards a comprehensive definition for measuring the
intelligence level of AGI agents is proposed and the way to calculate its parameters is
developed.

2 Versatility and the Legg-Hutter Definition

Versatility is one of the main necessary conditions for an intelligent agent to be called an
AGI agent. Our previous works towards this end [2], resulted in proposing the Versatility
Index (VI) for AGI agents which measures the versatility of AGI agents based on the
Legg-Hutter definition. Legg and Hutter state that AGI agents have to “perform well
in a wide range of environments” [3]. The author turned this statement to a formula as
follows;

VI =
N∑

i=1

αi (1)

where N is the number of different operating environments of the system, and αi is the
performance of the system in environment i. Since N and αi are positive dimensionless
real numbers, the VI is also a positive dimensionless real number. Since AI systems are
problem-specific, their VI value will obviously be low compared to AGI agents. So, the
VI can be considered as a distinction between AI and AGI agents. The VI also provides a
quantitative ground for comparison between different AGI agents. Different AGI agents
can be compared by their VIs. The more versatile systems will have higher VI values
and vice versa.

3 Efficiency and the Pennachin-Goertzel Definition

Efficiency is another main necessary condition for an AGI agent. AGI agents have to
perform their tasks efficiently. For example, you do not want your AGI agent to consume
megawatts of power to solve a simple voice recognition task, or spend a couple ofmonths
for it. However, it is intuitively true that complex problems requiremore amount of power
and time. Efficiency encompasses qualitative descriptions of the AGI agent. However,
in contrast to versatility, efficiency is not restricted to AGI agents and can be used to
describe the qualitative aspects of other systems, like control systems.

Pennachin and Goertzel defined intelligence as “achieving complex goals in com-
plex environments” [1]. Therefore, considering both of the Legg-Hutter and Pennachin-
Goertzel definitions implies that AGI agents have to perform well in a wide range of
easy to complex environments. This combined definition has two sides: 1) the intelli-
gent agent side, and 2) the environment side. The first side questions the wellness (i.e.,
quality) of the performance of an intelligent agent, while the second side questions the
number and the complexity of the various environments. The terms performance and
number of environments provide a quantitative description of the intelligent agent (i.e.,
versatility), while the terms wellness and complexity deal with qualitative descriptions
of the intelligent agent (i.e., efficiency).
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Although VI is an informative tool for calculating the versatility of an intelligent
agent based on the performance of the system and the number of environments that the
system can operate in, it gives no information about the efficiency, or in other words,
the qualitative aspects of the intelligent agent, which are wellness of the performance of
an intelligent agent as well as the complexity of the environments. Therefore, there is a
need for a computational expression of those two qualitative aspects, i.e., wellness (in
the AGI agent’s side) and complexity (in the environment’s side), which demonstrate
the efficiency of an intelligent agent. In the following subsections, first, the computa-
tional method of defining the complexity of environments, and then, the wellness of
performance of the AGI agents will be discussed.

3.1 Complexity of Environments

From the environment side, the efficiency of an intelligent agent depends on the com-
plexity of the environment where that agent is operating in. In other words, complexity of
an environment is a key qualitative factor that influences the efficiency of the intelligent
agent which is operating in that environment.

In order to define the complexity of environments, one has to classify the various
environments, and then define the complexity of each subclass. Any environment can
consist of any number and combination of problems1 (or tasks or goals) of different
complexities (See Fig. 1).

Fig. 1. Three different environments with various problems of different complexities: Environ-
ment 1 consists of a single self-driving car problem, environment 2 consists of three problems,
and environment 3 consists of an infinite number of problems.

Since there are infinite combination of problems, classification of environments is
impossible. But the point is that the complexity of an environment can be determined
based on the complexities of the various problems that exist in that environment. To this
end, based on a certain criterion, the universal problem space (UPS) must be classified
into subspaces, and then, the complexity of each subspace is defined based on either
of the two other criteria which will be discussed in the following subsections. Finally,

1 Although the terms problem, task and goal have slight differences in meaning, in this paper
they are considered the same.



Versatility-Efficiency Index (VEI) 161

the complexity of an environment is calculated based on summation of the complexi-
ties of subspaces which exist in that environment. Therefore, instead of classifying the
environments, we classify the problems.

Classification of Problems
The universal problem space (UPS), is a dynamic infinite space of solved problems (SPS)
and unsolved problems (NPS) to the human as a natural general intelligence (NGI) agent.
(See Fig. 2.)

Fig. 2. Universal problem space (UPS), which consists of solved problem space (SPS), and
unsolved problem space (NPS). The stars represent problems.

Since IQ tests are performed on solved problems, we classify the problems in the
SPS. Every scientific field has its own set of problems and classifies them into certain
subspaces based on their desired criteria. Since in artificial general intelligence (AGI)
we are interested in the intelligence, we can classify the problems of the SPS (i.e., the
solved problems of the UPS) into certain subspaces based on the various aspects of
intelligence which are used by the humans to solve those problems.

The aspects of intelligence are as follows;

1. Reasoning, problem solving (R)
2. Knowledge representation (K)
3. Planning (P)
4. Learning (L)
5. Natural language processing (N)
6. Perception (C)
7. Motion and manipulation (M)
8. Social intelligence (S)

Solving every single problem in the SPS requires applying a certain combination of
aspects of intelligence (whether simultaneously or consecutively). The problems which
require the same number of aspects of intelligence can be grouped into the same sub-
spaces Sn. For example, the problems which require aspects Reasoning (R), Learning
(L), Planning (P), Perception (C), andMotion (M) (e.g., the robot path planning problem,
and playing chess) belong to the Sn = RPLCM subspace which is a 5-aspect subspace.
Thus, the SPS can be classified into a number of subspaces based on the number of
required aspects of intelligence which are needed to solve the problems that exist in
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each subspace. So, each subspace contains a unique combination of the 8 mentioned
aspects where;

N⋃

n=1

Sn = SPS

and

Sr ∩ St = ∅, r �= t

The total number of subspaces N is calculated as follows;

N =
8∑

k=1

8!
k!(8 − k)! = 8!

1!7! + 8!
2!6! + · · · + 8!

8!0! = 8 + 28 + 56 + 70 + 56 + 28 + 8 + 1 = 255

This means that based on this classification, the SPS is partitioned into 255 different
unique subspaces.

Please note that in addition to SPS, the UPS contains one infinite space of unsolved
problems (NPS) which contains the problems like death and aging which are still
unsolved to the human (SeeFig. 2). Since the problems in theNPSare unsolved,wedonot
know what aspects of intelligence are required to solve them, so the above classification
seems meaningless and does not apply to the problems of NPS.

The SPS has one 8-aspect subspace (i.e., RKPLNCMS), 8 number of 7-aspect
subspaces (e.g., RKPLNCM, KPLNCMS), 28 number of 6-aspect subspaces (e.g.,
KPLNCM, RPLNCS), 56 number of 5-aspect subspaces, 70 number of 4-aspect sub-
spaces, 56 number of 3-aspect subspaces, 28 number of 2-aspect subspaces and 8 number
of 1-aspect subspaces. Although with respect to the number of required aspects the SPS
may look like a diamond-shaped space, due to the number of currently known benchmark
problems in each subspace we will preferably refer to the SPS as AGI Pyramid which
will be discussed in the following paragraphs. Figure 3 illustrates the AGI Pyramid.

Each subspace Sn represents the exact number of aspects that are needed to solve
a problem which belongs to that subspace, no matter whether the aspects are needed
simultaneously or consecutively. In other words, each single problems will belong to the
subspace which has the exact number of required aspects for solving that problem. For
example, although a vision task has a perception aspect (C) in common with subspaces
like Sq = RPLC, Sw = KPLNCMS, Sh = C, and Sg = RCS, it will belong to Sh = C
subspace, because other aspects are not needed in performing this task.

Please note that the previous paragraphs discussed the subspaces from the environ-
ment side. From the intelligent agent’s side, solving a problem that belongs to a q-aspect
subspace requires an intelligent agent which is able to unify those q aspects into one
intelligent approach. For example, an intelligent agent which is able to perform well in
Sg = RCS, is an intelligent agent that has unified Reasoning (R), Perception (C), and
Social Intelligence (S) into one intelligent agent which enables it in solving the problems
that belong to Sg = RCS.

Additionally, it is obvious that based on the number of unified aspects, higher level
intelligent agents are able to performwell in lower-level subspaceswith common aspects,
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Fig. 3. AGI Pyramid: Classification of the SPS into subspaces based on the eight required aspects
of intelligence in order to solve the problems that are grouped into a subspace; Reasoning, prob-
lem solving (R), Knowledge representation (K), Planning (P), Learning (L), Natural language
processing (N), Perception (C), Motion and manipulation (M), Social intelligence (S). Each level
represents subspaces with the same number of required aspects and the thickness of each level
represents the number of currently known benchmark problems. Please note that although the SPS
and its subspaces are depicted like bounded shapes, they are infinite spaces with infinite number
of members.

but the opposite order is not true. For instance, if intelligent agent A is able to perform
well in Sg = RCS, it will perform well in Sh = C subspace too. But if intelligent
agent B is only able to perform well in Sh = C it cannot perform any tasks from
Sg = RCS, since solving the problems in Sg = RCS requires application of Reasoning
and Social Intelligence too. It should be noted that “performing well” does not imply
that an intelligent agent is able to solve all of the problems that exist in a subspace.

AGI Pyramid connects the agent’s side and the environment’s side and links the
internal characteristics of the agent (i.e., intelligence aspects) with the external world
(i.e., environment). The author believes that reaching the top of the AGI Pyramid (i.e.,
an intelligent agent that is able to perform well in all 255 subspaces), is the path from AI
to AGI which requires a bottom-up approach by gradual leveling up the AGI Pyramid.
This bottom-up development takes time, until a simultaneous unification approach to
all of those 8 aspects is found. That is, one has to find the common core mathematical
representation behind all of the 8 aspects and unify them.

However, unification of all of the 8 aspects is the most difficult goal of AGI, and it
“is not workable to simply create a modular system with modules embodying different
AI paradigms: the different approaches are too different in too many ways. Instead, one
must create a unified knowledge representation and dynamics framework, and figure
out how to manifest the core ideas of the various AI paradigms within the universal
framework.” [1].



164 M. Alidoust

For simplicity and appreciation purposes, the author suggests that the subspaces be
named after theAGI scientists. For example, the author suggests that the unique 7-aspects
subspace SGoertzel = KPLNCMS be referred to as the Goertzel subspace, the unique 7-
aspects subspace SWang = RKPLNCM be referred to as the Wang subspace, the unique
7-aspects subspace SHutter = RKPLNMS be referred to as the Hutter subspace, etc. The
one 8-aspect subspace SAGI = RKPLNCMS would be referred to as the AGI subspace,
and obviously if an intelligent agent is able to perform well in the AGI subspace, it
is a real AGI agent. However, please note that the above naming is just an example
and a suggestion, though, there are a large number of other precious AGI scientists
and researchers, so the author suggests that the Artificial General Intelligence Society
(AGIS) is the most suitable authority for handling this naming procedure.

Defining the Complexities of Subspaces
In the previous subsection the total number of different subspacesN was determined. For
defining the complexity wi of each subspace i, there are at least two criteria as follows;

1 The relative complexities between 255 subspaces are determined and assigned by the
AGI community based on the importance of the corresponding problem subspaces
to the community, with higher scores for more complex subspaces,

2 The complexities are determined based on the average time and power consumption
for current AI methods (or humans) to solve standard benchmark problems that exist
in those subspaces on a certain standard computer platform.

The defined complexities would then be published as a standard table of complexities
by the AGIS and used by robotic companies, AGI research centers, etc.

3.2 Wellness of Performance

From the intelligent agent’s side, the efficiency of an intelligent agent, is related to the
wellness of the intelligent agent in solving the problems (or performing the tasks or
achieving the goals) that exist in a subspace.

Thorisson et al. state that “performing a task in real world requires time, energy, and
possibly other resources such as money, materials, or manpower” [4]. Since in AGI we
are interested in generality, only the factors time and energy that are general in every
task are adopted from the above statement to define wellness or quality of performance.
Thus, wellness is related to:

1. Accuracy: the performance wellness of an intelligent agent in a subspace is pro-
portional to the accuracy of the system in performing the tasks that exist in that
subspace. We have αi ∝ aj where αi represents the average performance wellness
of the system in subspace i, and aj is the accuracy of the system in performing task
j of the subspace i.

2. Time: the performance wellness of an intelligent agent in a subspace i is proportional
to the reciprocal of the time needed to perform the tasks that exist in that subspace.
So, αi ∝ 1

tj
, where tj is the time needed for performing task j of the subspace i.
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3. Power consumption: the performance wellness of an intelligent agent in a subspace
i is proportional to the reciprocal of the power needed to perform the tasks that exist
in that subspace. Thus, αi ∝ 1

pj
, where pj is the power needed for performing task j

of the subspace i.

So, we have αi ∝ aj
pjtj

, therefore for a subspace that contains more than one task, we
have;

αi = 1

Mi

Mi∑

j=1

aj
pjtj

(2)

where αi represents the average performance wellness of the system in subspace i, and
Mi is the number of problems that exist in subspace i. Since the dimension of pj is
watts and the dimension of tj is seconds, and other parameters are dimensionless, the
dimension of αi is [αi] = joule−1.

4 Versatility-Efficiency Index

The complexity of a subspace is defined as a constant parameterwi , which in combination
of wellness of performance (Eq. (1) and (2)), constitute the Versatility-Efficiency Index
(VEI) as follows;

VEI =
N∑

i=1

wiαi or VEI =
N∑

i=1

Mi∑

j=1

wi
aj

Mipjtj
(3)

where N = 255 (since the AGI agent must be tested in all 255 subspaces of the SPS),
wi is the complexity of each subspace i (which are defined based on the two criteria), αi

is the average performance wellness of the system in performing all of the benchmark
tasks that exist in subspace i,Mi is the number of benchmark tasks that exist in subspace
i, aj is the accuracy of the system in performing task j of the subspace i, pj is the power
needed for performing task j of the subspace i, and tj is the time needed for performing
task j of the subspace i.

VEI is a scoring system and encompasses both of the quantitative and qualitative
descriptions of AGI agents. In order to measure the VEI of an AGI agent, the agent must
be tested in SPS but only over benchmark tasks of each of the 255 subspaces. To this end,
the agent’s average performance (i.e., accuracy, time and power) must be measured over
benchmark tasks of each of the 255 subspaces and then multiplied by the corresponding
complexity of each subspace which is obtained from the standard table of complexities.
Summation of these values will give the VEI of the agent. This process examines the
versatility and efficiency of an AGI agent over standard problems of SPS and is like
taking an IQ test by an AGI agent.

For the dimension consistency in Eq. (3), the dimension of complexity wi must be
joule, i.e., [wi] = joule. This sounds intuitively true, since solving complex problems
require more amount of energy than simple ones.
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5 Conclusion

In this paper, based on the Legg-Hutter and Pennachin-Goertzel definitions of intelli-
gence, the Versatility-Efficiency Index (VEI) was proposed as a primary step towards
definition of IQ for intelligent agents. Like the IQ tests for human being, VEI calculates
the versatility and efficiency of intelligent agents based on measurement of their quanti-
tative and qualitative performance in different environments. VEI is not limited to AGI
agents, but also can be applied to NGI systems. The average VEI of humans can be the
measured and then considered as the basis of comparison between AGIs.

In addition, if we have the VEI of human, the VEI of current AGI agents can tell us
how far we are now from reaching to an AGI agent with (at least) a human-level artificial
intelligence (HLAI).

Although the accuracy of humans aj is not %100 in performing all of their tasks, and
compared to a computer theymay spendmuchmore time for performing their tasks, they
are still themost intelligent being in theworld. Using a 20-Wbrain ([5], and [6]), humans
perform well in all of the 255 subspaces. Regarding the VEI formula from Eq. (3)

VEI =
N∑

i=1

wiαi or VEI =
N∑

i=1

Mi∑

j=1

wi
aj

Mipjtj

we have Nhuman = 255. Also, despite their mediocre to high accuracy and time, the
average performance of humans αi in all 255 subspaces is still high. In addition, humans
can perform in complex environments too. Considering Eq. (3), these leads to a high
value of VEI for humans.

On the other hand, despite having high accuracies andmuch lower computation time,
current intelligent agents will have much lower VEI values because they cannot perform
well in all of the 255 subspaces (for example in environments which require natural
language processing aspect or in environments which require emotions as a key factor
of social intelligence).

VEI also relates to singularity and that is the point when AGI agents are able to
exponentially reproduce and buildmore powerful and intelligent descendants than them-
selves. This might threaten the human existence, i.e., a global catastrophe. Obviously,
AGI agents with higher VEI (i.e., robots with IQ very much higher than human), will
reach singularity more rapidly than lower-VEI agents. Therefore, future companies that
will mass-produce future AGI agents might have to follow a VEI Limit determined by
the AGIS for their products as a possible way to prevent or at least slowing down the
singularity. This VEI limit could buy time for humans to decide how to prevent the
catastrophe.

The exact value of this VEI limit is unknown yet, but due to the ultra-highspeed wire-
less communication and data sharing capability of the futureAGI agents that – in contrast
to humans – enables them to have access to %100 of the knowledge and experience of
their fellow agents which consequently empowers them with swarm intelligence, even
lower values of VEI than humans are recommended for (at least) the first generations of
the mass-produced AGI agents.

Another point that can be derived from the comparison between the 20-W human
brain and current intelligent agents is that, with regard to the power consumption pj in
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the dominator of VEI in Eq. (3), for building a real AGI agent we would not necessarily
need super power consuming computers, but rather we would need more versatile and
efficient algorithms.
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Abstract. Ben Goertzel argues that humans operate within paraconsistent ethics.
There are two arguments: 1. Moral para-consistency viewed primarily as result-
ing from deeply rooted tensions between individuation and self-transcendence (or
autopoiesis versus evolutionary fitness). 2. Paraconsistency due to human cogni-
tive limitations (we would need massively stronger cognitive functions to handle
our lives consistently). This is directly relevant for AI since advanced humanoid
AIs and AGIs should follow paraconsistent norms for easier human-AI interac-
tions. This is also indirectly relevant, in a broader ontological framework, where
Goertzel analyzes paraconsistent foundations for quantum probability, program-
ming, and concept formation. Paraconsistence in these domains does not seem
to result from weakness of human cognitive functions, manifestly in quantum
physics. Those paraconsistencies seem relationally veridical. Yet, in his explana-
tions of ontological paraconsistency, Goertzel 2021a followsWeber in focusing on
sorties kind of problems; this creates an impression that the issues of fuzziness are
the gist of Goertzel’s paraconsistent approach to AI. Yet, this is more of a heuristic
start for Goertzel. Paraconsistency is not always at the boundaries, but at the core
of nimble complex systems. We argue that, at least in ethics, paraconsistency is
primarily based on alternative objectives or sources of value (following Goertzel’s
argument 1; alsoRoss, Haidt, Dancy, Sen); ethical problems based upon vagueness
in boundary conditions, though important and interesting, are less central to the
metaethical dimension of paraconsistency, and therefore to the logical make-up
of future AIs.

Keywords: Paraconsistent ethics · Paraconsistent AGI · Non-homogenous
moral space · Ben Goertzel · Amartya Sen

1 Paraconsistency 2021

In the first half of 2021 Ben Goertzel [1, 2] put forth two major papers, and a few com-
mentaries, on paraconsistent foundations for quantum physics, probabilistic reason-
ing, and concept formation. Goertzel also discusses paraconsistent interzones that allow
co-functioning of paradigmatically different units within complex cognitive systems,
including human brains [3].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Goertzel et al. (Eds.): AGI 2022, LNAI 13539, pp. 168–177, 2023.
https://doi.org/10.1007/978-3-031-19907-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19907-3_16&domain=pdf
http://orcid.org/0000-0002-7210-615X
https://doi.org/10.1007/978-3-031-19907-3_16


Moral Space for Paraconsistent AGI 169

In the second half of 2021, Goertzel [4, 5] gave a couple of lectures, in which he
discussed paraconsistent ethics. I do not think those came out in writing yet. This paper
is an attempt to help advance the latter topic and help ground it in a broader meta-
ethical current, which I call non-homogenous moral space [6]. Goertzel’s ethics is based
on his work in other applications of paraconsistency. Yet, as he emphasized in [5], his
paraconsistent ethics, follows on his philosophicalwork focused on patternist philosophy
[7]. Patternist philosophy finds its philosophical climax in stochastic approaches to AI,
especially the topic of machine and human creativity at the edge of chaos. Due to its
background in stochastic ontologies, Goertzel’s paraconsistent value theory goes beyond
the recent standards of paraconsistent ethics [8] and relies on the structure of quantum
ethics, which he views as closely approximated through probability theory.

2 Paraconsistent Ethics; the Gist

Let us start with a fast look at paraconsistent ethics before Ben Goertzel, followed by a
glance at the two general currents in paraconsistent logic applied to ethics. Then we can
get the taste of Goertzel’s [1–5] recent ideas on it, made public in 2021.

Literature on paraconsistent ethics percolated for two decades [8–10]; it is viewed
mostly as the way to cope with moral dilemmas. Earlier on, the ways to cope with such
dilemmas, quite similar to paraconsistency, have been proposed at least since Plato,
including prominently Aristotle, Maimonides, Thomistic casuistry, Marxist and Gon-
seth’s dialectics, among other attempts. The focus of this article is, in part, to bring onto
the picture of paraconsistent ethics the non-standard metaethical systems that go beyond
Weber’s [8] fuzzy logic approach (reliant on the sorties paradox). Based on Goertzel’s
focus on the dialectics of autopoiesis versus self-transcendence [5], we extend its scope
to the other areas of non-homogenous moral space [6].

2.1 The Two Takes on Paraconsistent Logic and Ethics

Within paraconsistent logic, there seem to be two voices: First, the old school radical
paraconsistent logic, based largely in quantum physics. Second, the paraconsistent logic
that tinkers at the edges, giving particular attention to vagueness. This rift, applied to
paraconsistent ethics, is visible in Polish logic:

Przelecki [11] wrote: “ethical predicates differ greatly in the degree of their inde-
terminacy. This degree seems particularly high in the case of the predicate “is
a moral obligation”, lower in the case of predicates “is morally good (relatively
bad)”, and the lowest in the case of comparative predicates “is morally better (or
worse) than”. Here, we are undoubtedly dealing with the phenomenon of semantic
indeterminacy.”

Przełęcki “limits the scope of paraconsistency to the issue of natural language ambi-
guity”, which other authors endorse [12]. This comes for the price of diverging from the
original scope of paraconsistent logic, in the works of Łuksiewicz [13] and Jaśkowski
[14], as well as da Costa [15, 16], a pioneer of contemporary paraconsistent logic. The
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latter approach, largely based on the logic of quantum physics, deals with fuzzy logic,
but is not merely – or, primarily – the question of vagueness.

BenGoertzel, in his recent proposals of paraconsistent ethics –– follows the strengths
of both approaches, the one focused on paraconsistency of complementary options and
the other on vaguenss and fuzzy logic. Those senses are not exclusive but pertain to
situations of different sorts.

2.2 Goertzel’s Two Arguments for Paraconsistent Logic of Morals

Ben Goertzel [1–5] presents two arguments why human ethics is paraconsistent:

1. Moral paraconsistency from human cognitive limitations. If we were wiser, we
would navigate between the horns of all those moral dilemmas, Yet, we would
need cognitive functions stronger a few orders of magnitude, in order to handle
our moral lives consistently [7] In this argument, Goertzel claims that moral errors
come from limited human nature, especially intelligence (thus, from our stupidity).
He refers primarily to human deficiencies that would require more than reasonable
improvements in our intellectual capacities to fix. Thus, they come de facto from
human nature, not from its essence but from essential practical applications leading
to human errors of judgment.

2. Goertzel views moral paraconsistency as based on a deeply rooted tension
between individuation and self-transcendence. Morally aware people, through
personality development, want to become the best ‘self’ they can be, but they also
have a moral urge to transcend one’s own particularities and interests, for some kind
of objectivity, such as their evolutionary fitness, objective attainments, as well as
the general good. More philosophically, this can also be viewed as tension between
autopoiesis and evolution based on the work of Varela and Maturana [17].

Axiological inconsistency may come from the other tensions among the values, such
as those described by Ross [18], Greene and Haidt [19], or Dancy [20]. Viewed in the
context broader than just Varela’s theory. Goertzel’s second argument seems to catch a
more essential inconsistency than the first, originating not quite at the implementation
level but rather at the structural paraconsistencies in axiology that lie at the center of
human motivation, or even brain structure [19]. Those axiological paraconsistencies are
the background of the rest of this paper.

3 Axio-Ontology 1 and 2 for Paraconsistent Ethics

As shown above, Goertzel presents two arguments in support of paraconsistent ethics. In
this section we argue that those two arguments result in paraconsistent-value-ontologies
of different tilts, which we call Paraconsistent Ontology 1 and Paraconsistent Ontology
2.
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3.1 Paraconsistent Metaethical Ontology 1 (Human Limitations)

Paraconsistency in human behavior and ethics that comes fromGoertzel’s argument 1 is
the ethics of implementation. It functions in the conceptual universe, where there exists a
(consistent and in principle implementable) hierarchy of the good, and bad, things. Yet,
we are intellectually too weak to sort out the logistics of making it happen. Everybody
who reflected on the philosophical consequences of theTraveling Salespersonmay easily
grasp this point [21].

3.2 Paraconsistent Metaethical Ontology 2 (Axiologically Grounded
Inconsistency)

Paraconsistency in human ethics seems to acquire its ontological gravity largely from
Goertzel’s argument 2 – from a gap in the center of motivations and/or values within
the core of human ethics. Goertzel argues that it results from (morally justified) leaning
towards self-perfection and (morally justified) leaning towards self-transcendence, but
it can be extended to the other psychological or meta-ethical sources [18–20]. Let us
call Paraconsistent Ontology 2 paraconsistent through and through.

There are a few versions of Ontology 2: existential, based on competing foundational
values and those dependent on propinquity (closeness in moral space).

Ontology 2 Consisting in the Existential Frame (O2E): The gist of the paraconsis-
tent ethics through and through comes from its existential underpinnings [22]. It does
not result merely from our cognitive limitations. Instead, it is the existential dilemma of
a being like us. Following Goertzel [3] the existential conflict between self-growth and
self-transcendence belongs to human ontology, not beingmerely an epistemic weakness.

Such moral/existential ontological dilemmas may be constructed with complemen-
tarity of different values. Vallverdu and Talanov [23] argue that human lives are shaped
by awareness of one’s mortality; thus, artificial AI companions need to be mortal and
aware of it, if they are to truly connect with human beings. This is a version of the
traditional existentialist dilemma applied to AI.

3.3 Mixed Ontology 1/2

It is based on the mix of both arguments, with overarching Ontology 1. The rationale
goes like this: Maybe we are not even sure what the moral goals should be, but we
would find it out if we were intellectually, or emotionally, stronger. So, the problem is
not merely of implementation. The axiological (not just logistic) problem is resolvable
for much smarter moral agents (or those interested in ethics).

In the moral universe 1/2, someone may wish AGIs to guides us through the logistics
of our lives; or even through the jungle of possible axiologies and resulting goals, as
well as ways and means of gaining them, which is broader than the choice from among
the paths allowed in the travelling salesman sort of cases [21]1.

1 The idea that there is a way to find the solution, is no nonsense in the ontology of Paraconsistent
Ethics 2 (and its 1/2 version).
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3.4 Propinquities

As mentioned above, paraconsistencies also results from plurality of ethical values. The
most enticing is the so-called Common Sense Morality that relies on morally relevant
ties.

Situational O1P results from the complex structure of moral situations [20], which
may be viewed as an intricate case of Ross’s ethics of prima facie moral reasons [18].
For Ross the weight of various prima facie moral duties depends largely on situational
context. Yet, for Dancy such context, defines the gist and center of moral value.

Typical O1P relies on moral proponquities [24, 25], often viewed as friendship, espe-
cially by C. Gilligan [26] and her followers, or kinship e.g. by Pargetter [27]. Those
special duties create agent-relative structure of moral obligations with their sophisticated
logical structure investigated by Sen [28, 29].

The ethics based upon morally relevant ties becomes complex, which is intuitively
the correct picture of the moral realm – this runs counter to the advocates of Procrustean
bed with their enthusiasm towards Ockham’s razor in moral theory. Ethical theories
with propinquity are often complex. Goertzel’s paraconsistent ethics [1–5, 7], not only
at the fuzzy edges but also in the core of ethics, makes use of the digital revolution
(now primarily as big data computing). Soon, as the AI to AGI revolution progresses,
we should have measurable, yet stochastic, mechanisms to replace such Procrustean
tendencies.

4 Positional Moral Paraconsistency

Ethical theories, especially those apt for paraconsistency, have structural aspects worth
attention. We may view moral space as a logical space created by the sum of properties
(of actions, inactions, intentions, outcomes, states of affairs etc.,) identified as carriers
of moral value in a relevant context2. A given space of moral values is non-homogenous
if moral value changes as a function of its positional characteristics, such as relevant
closeness to the moral agent – for instance relations of friendship, kinship, or other
special obligations; or just proximity in space-time location.

Many theories that accept non-homogenous distribution of moral value accept inher-
ent agent-relative moral reasons [6, 18–20, 24–29]. Instrumental agent-relative moral
reasons are often explainable in a more general framework of ethics guided by moral
impartiality. The structure of non-homogenous moral space can be presented in rela-
tionist terms. The tools of paraconsistent logic, Goertzel’s model [1–5], should make it
easier to formalize and work out details. Below, we present alternative paraconsistent
sets of values that may result in paraconsistent ethics through and through, as defined
in the previous section.

2 This section presents the gist of the arguments from [6].
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4.1 Moral Pluralisms, Psychological (Greene/Haidt) and Philosophical (Ross)

Ross and Haidt [18], in their respective theories, present multiple sources of value that
can be viewed as inherently inconsistent. They do so by creating a non-ordered, or at
least not completely ordered, value set.

Jack Haidt in his well-known concept of five moral foundations (developed with
Joshua Greene), based on research in experimental psychology, singled out: Care and
Fairness as individualizing values (common to almost all sane human beings) and Loy-
alty, Authority and Sanctity, which are group-binding values (more common among
communitarians and conservatives than the liberals). Later, Liberty has been observed
and added as the sixth independent moral variable.

Centers responsible for instantiating those values are located in various parts of
human brain, of different evolutionary age and with no specific, evolutionarily deep
coordinating mechanism. This fact about brain design may explain common conflicts of
morally relevant values in many non-trivial cases.

Within moral theory, already in 1930, W.D. Ross [18] proposed seven categories of
prima facie moral reasons (or duties), which are not pre-ordered. Thus, they may come
into mutual conflicts – individually or in coalitions (such ad hoc coalitions are charac-
terized by the common denominator of ending up with the same moral recommendation
in a given case). We’ve put them in an order somewhat similar to Haidt’s psychological
categories: Beneficence, Non-maleficence, Justice, Fidelity, Reparation, Gratitude,
Self-improvement. Ross encourages weighing those values, in a given situational con-
text, on somewhat intuitive grounds. This procedure can no doubt be grasped within
paraconsistent logic, but further theories seem even more sophisticated structurally.

4.2 Dancy’s Moral Particularism

We now move to the cases that go beyond the problem of unordered (or incompletely
ordered) sets of moral values, whose applications may conflict. Going quite a bit further
in the direction sketched out by Ross, Jonathan Dancy [20] presented an idea of moral
particularism, which is probably the most plausible defense of radical contextualist
ethics. Dancy poses that there are specific morally relevant features of situations, not
just actions or outcomes. He agrees that going through a list, such as Ross’, in searching
for morally relevant features of a given situation, is a rather efficient procedure, but only
as a heuristic measure.

Moral situations are dominant in creating value, since they are unique in their broad,
yet relevant, contexts. Only a detailed, nearly aesthetic inspection of each situation may
reveal the true set of values relevant in a given instance. Moreover, those values are
position-relative – mothers in law of the groom and the bride will view the wedding
differently due to their particular attachments and proximity to one’s own offspring.
Dancy shows that abstracting from those special features of a situation would be morally
wrong. Thus, detached judgments, like those by the courts of law – while useful for
maintaining public order – should not be seen as moral judgments due to the morally
inappropriate measure of impartiality. This approach puts upside downKant’s andMill’s
endorsement of impartiality [30, 31] as the main criterion of ethics (perceived by Kant as
a moral law, structurally similar to legal laws). Dancy’s version of radical contextualism
is quite far-going, but with big-data analysis may be handled by AI.



174 P. P. Boltuc

4.3 Sen’s Socio-Economic Calculus of Agent-Relative Reasons

Amartya Sen (a Nobel laureate in economics) wrote a set of ground-breaking articles
on the ethics and structure of special moral obligations [28, 29]. Sen demonstrates that,
what philosophers refer to as agent-relative values, constitutes several categories with
different formal characteristics. Sen distinguished three types of agent-relativity,defined
as negations of the following neutrality claims:

Doer neutrality (DN): Person imay do this act if and only if person imay permit person
j to do this act. Ai(i) <=> Ai(j).
Viewer neutrality (VN): Person i may do this act if and only if person j may permit
person i to do this act. Ai(i) <=> Aj(i).
Self-evaluation neutrality (SN): Person i may do this act if and only if person j may
do this act. Ai(i) <=> Aj(j).

Amartya Sen presented a proof that those three kinds of agent-neutrality are bilater-
ally dependent on each other, which means that any one form of agent-relativity entails
one other form [28].

In his response to standard criticisms of agent relativity in ethics [32] Amartya Sen
argues that personal identity, for instance, one’s role as a parent, a friend or a compatriot,
results in objective, position-relative moral reasons. Those reasons come with morally
relevant social roles. Sen emphasizes that often people are not free to choose moral
norms incompatible with their social role, so that some special moral obligations are
obligatory.

4.4 Non-homogenous Moral Space: Sidgwick and Pargetter

Sen’s logic of three kinds of agent-relativity reveals interesting features of, non-
homogenous moral space [6]. In the Modern context, non-homogenous moral space
originates fromBentham’s utilitarian criterion of propinquity [24], whichmeansmorally
relevant closeness, viewed as one of themainmoral criteria of assessing utilitarian value.
The criterion was dropped byMill (impressed by Kant’s requirement of universal impar-
tiality for ethics) [30, 31]. A kind of propinquity resurfaced in Sidgwick’s advocacy
of the common sense morality [25], which is non-homogenous in the scope of moral
obligations.

A similar idea was defended by Robert Pargetter in his moral kinship argument [27].
Pargetter’s notion of kinship incorporates friendship, family ties, networks of friends,
patriotism and membership in morally relevant communities. He emphasizes the strong
moral feeling that we have moral obligations toward certain persons, which are stronger
than those held towards the others [27, p. 346]. Thus, “fundamental judgments of good-
ness and badness will be relativized to a person at a time” (27 p. 354). Pargetter’s app-
roach, similarly to Sen’s theory, resembles relativity theory, but never moral relativism.
It is a relationist ethics.

Those kinds of arguments have been criticized, most persuasively by Parfit [33]
as indirectly self-defeating. Parfit argues that Common Sense Morality leads to the
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frustration of more goals (accepted by utilitarians, including Sidgwick3), which would
be better satisfied in a long run, by an adoption of an impartial system of ethics. Yet, this
depends on the valuations by relevant agents. Ethical theories with propinquity factor
are criticized as subjectivist [32] or indirectly inconsistent [33]. However, objections of
this sort are handled by semantic and/or deontic bonus added to the utilities, relative to
their structure; in particular to kinship or closeness in moral space: Sen [29] vs. Regan
[32]; Boltuc [34] vs. Parfit [33].

Let me put forth a counterexample. If a gift of the same toy by the parents, gives their
child 10 times more pleasure than getting the very same thing from a charity worker,
we would have a good start at utilitarianism based on the meaning (semantics) of given
goods, or actions, that is essentially non-homogenous. With the benefit of closeness
strong enough in assessment of utilities, Parfit’s argument [33] reveals itself ill-conceived
in those kinds of cases. As in many instances in utilitarianism and economics, the answer
is in the actual numbers [34]. This is also the case in a W.D. Ross-style mix of deontic,
utilitarian and maybe other values [18]. The calculus may best be set up in the context of
Sen’s broad consequetialism, which he calls consequence based moral evaluation [29].
I tend to visualize it as deontic bricks in a consequentialist wall4.

5 Conclusion: The Existential Twist to Paraconsistent Ethics

Looking back at the arguments in Sect. 4, I find the conflict of values in theworks ofHaidt
and Ross [18, 19] important and relevant for paraconsistent analysis; yet, somewhat
low-dimensional. The role of propinquity in ethics has been unnecessarily neglected,
through the attempts to turn ethics into the moral law – to which Sidgwick (rather than
Bentham), Pargetter, Gilligan and the communitarians (for instance Walzer [35]) have
many important ideas to add. This is even more so if we talk of virtuoso theories of
Dancy and masterful work by Sen. It looks like non-homogenous moral theories are
ripe for parconsistent re-presentation and advanced AI recommender systems look like
a good machine to help us make it happen.

Nevertheless, the above theories do not seem to carry the existential (even existential-
ist) gravity shared by Goertzel’s main ethical dilemma, the conflict, or tension, between
autopoiesis and self-transcendence. Under this description, its existential meaning,
pertaining to the value and fragility of individual life, comes to the forefront.

Max Talanov and Jordi Vallverdu [23] gave a surprising paper at BICA (Lyon 2015)
arguing that AIs ought to be made mortal, and know of their mortality, in order to be the
real human companions, for them to be able to share human existential experience. This
approach fits nicely with Goertzel’s dilemma [4].

Our last existential argument is not quite a moral dilemma. It expresses Luciano
Floridi’s idiosyncratic view on human existential situation, juxtaposed with the opti-
mism on the human condition predominant in Western cultures [36]. Looking for the

3 This points comes primarily from my visits at Parfit’s seminar on Sidgwick, and our long
conversation at Oxford.

4 Sen’s approach with consequence-based moral evaluation as the structure, is clearer than Ross’
utilitarian values stuck in a deontic framework; balancing deontic prima facie duties tends to
be emotive and intuitionistic. It is effective to put the emotions in the object’s value not in
weighing scale.
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source of human dignity, Floridi seems right, paradoxically, recalling Picco della Miran-
dola and his justification of human uniqueness, as dignified copying with our pitiful
existential condition (a long time after della Mirandola, it was called Sein zum Tode
[37]). Paraconsistent foundations of our very existence, the paradox of humans fighting
for life in our pitiful position, provide important background of all the three approaches.
Its understanding seems to be the gist and the value of the humanities, which we shall
need to sharewithAGI. Sharing the humanities withAGI is part and parcel of inculcating
human values in it, instead of merely sophisticated engineering perspective [38]. The
truly advanced AI-based artificial companions [39], capable of interacting with human
beings would have to meet us also at our existential level. For this, Goertzel’s postulate
that they need to act in the framework of paraconsistent logic of action and values, is an
idea worth taking seriously and testing in AIs on their, long enough, way towards AGI.
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Abstract. After introductory remarks, we share our two-part theoret-
ical position, viz. that: (P1) The best overarching approach to suitably
defining GI, and obtaining AGI, is via formal logic, including specifically
via logic-based learning that is academic in nature; and (P2) AI/AGI is
best pursued by seeking artificial agents that pass determinate cognitive
tests. We note that in striking harmony with this position is work on AGI
by Goertzel et al. that has inspired us; this is work in which PreSchool
for would-be AGIs provides an attractive route toward AGI itself. While
Goertzel et al. envisage a virtual academic environment, we have in mind
physical classrooms, for physical robots. We describe the robot PERI.2,
which we have started to send to school.

1 Introduction

However one might prefer to define AGI, it seems likely to be a matter of con-
sensus that we have GI,1 and that you do too.2 Why are we so fortunate? Many
reasons, often competing ones among them, will be offered. One prominent rea-
son, it seems to us, is this: Because we all went to school, year after year, for
many years, and learned a lot in the process; and we went there physically. From
a high-altitude perspective, the present paper revolves around this reason.

The plan for the paper is in general as follows: We begin in Sect. 2 by con-
fessing our two-part theoretical position, namely that
1 We note here one vocal objection to that consensus: Yann LeCun has claimed that

humans do not have general intelligence [24]. He discusses a hypothetical scenario
wherein a human’s visual field is permuted as an example of our lack of general
intelligence, arguing (it seems) that the ability to learn this permutation is required
of anything which could be considered “general” intelligent. While an attempted
refutation of LeCun’s position is out of scope for this paper, we do volunteer here
that this “permutation skill” is clearly not particularly intelligent by any reasonable
definition of the word (let alone by any reputable test of intelligence/cognitive ability
we are aware of), and hence any definition of general intelligence which requires it
as a prerequisite is not one we find at all plausible.

2 If some of our readers are artificial, and not human persons, then they have AGI.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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P1 The best overarching approach to suitably defining GI, and obtaining
AGI, is via formal logic, including specifically via logic-based learning
that is academic in nature.

P2 AI/AGI is best pursued by seeking artificial agents that pass determi-
nate cognitive tests.

We then note that in harmony with this position is inspiring work on AGI by
Goertzel et al. [17,18], in which PreSchool (and, in general, grade levels pro-
gressing beyond this into at least K–12) for would-be AGIs presents an attrac-
tive engineering route toward AGI itself. While Goertzel et al. envisage a vir-
tual academic environment, we have in mind physical classrooms, for physical
robots. After explaining our focus on “logical/mathematical” cognition within
the underpinnings of Goertzel’s approach, we describe the robot PERI.2, which
we have started to send to school in the hopes of it developing AGI. We give
an example of an academic challenge for PERI.2 in the logical/mathematical
category at the Kindergarten level. PERI.2 succeeds upon this challenge, but,
as we admit, much additional work will be needed.

2 Our Two Theoretical Pillars

We fully recognize that there isn’t exactly consensus regarding how best to reach
AGI. In some cases, for example, non-declarative learning is believed to provide
the most, perhaps even the only, route to AGI; an exemplar, by our lights,
would be [23], an (impressive) approach described in a manner wholly bereft of
formal reasoning over declarative knowledge or belief for the intelligent agents
in question.3 However, for better or worse, as the next section confesses, we (or
at least the first author) feel differently.

2.1 Pillar 1: Logic-Based AI and Cognitive Science

The first author has long maintained that logic-based AI is superior to method-
ological competitors (see e.g. [7]). Re. computational cognitive science, the
unmatched effectiveness of logic-based effort, at least for cognition, has like-
wise been asserted (see e.g. [6,8,11]). Overall, we posit an infinite collection L
of logics (we call them cognitive calculi) reasoning in which can constitute any
level of GI whatsoever. (Standard logics still used in AI include first-order logic
L1, second-order logic L2, etc.) In particular, it seems indubitable that at least
for every aspect of human-level cognition that is reasoning-centric, there exists
some cognitive calculus L ∈ L that can be tokened, specified, and implemented
for concrete use in AGI; for this in action, see e.g. the novel logics specified and
implemented in [11]. For notational convenience in the remainder of the present
paper, we assume a particular cognitive calculus L � for the AGI science and
engineering devoted to PERI.2 we describe and report herein—but for econ-
omy forego providing formal specification of L �. For details regarding cognitive
calculi, see the Appendix in [9].
3 On the other hand, among prominent AGI researchers, we are incidentally not alone

in our emphasis on logic-based r&d; see e.g. [30], to which we return below.



180 S. Bringsjord et al.

Real Learning is Academic Learning. Under the umbrella of logic-based
AI & CogSci, we specifically hold that academic learning of and by formal logic
and mathematics is key to AGI [3]—and it’s this part of our orientation that
aligns with the work of Goertzel et al. (see below).

Logicist Cognitive Robotics. As to robotics, the logicist approach to it advo-
cated and pursued by the first author can be quickly summed up by tightening
the concept of cognitive robotics as defined in [25], wherein it is said that such
robotics produces robots whose actions are a function of what they believe. In
line with this, but expanded in keeping with L �, we seek to engineer robots all
of whose substantive decisions and actions are the result of automated reasoning
over formulae in some set Φ of formulae in L � known or at least believed by
these robots, where such knowledge and belief can vary in strength depending
upon the underlying likelihood of the formulae in Φ.

2.2 Pillar 2: Psychometric AI

Our second theoretical pillar is that AI, and AGI, should be fields devoted exclu-
sively to creating and implementing artificial agents able to excel on established
tests of cognitive ability and skill, including those used in the Academy for
humans; see e.g. [4,5]. Most recently, this aspect of AI has been used in [1] to
have success in solving Bennett mechanical test problems by artificial agents.

3 The Goertzelian (et al.) Academic Road to AGI

In general, we seek to follow the road to AGI paved by a progression through
academic grade levels at least akin to the progression that brought the reader
to a position in which she can understand the present paper; the progression of
which we speak has been seminally described in [17,18].

4 PERI.2 in Kindergarten

We give a snapshot of an example of PERI.2 in Kindergarten, being tested in
the area “Logical-Mathematical.” (See Figs. 1 & 2.) This area is listed in [17]
as a specific kind of intelligence according to Gardner’s [13] theory of “multiple
intelligences,” and is obviously—given Pillars 1 & 2—pivotal for us.4

4.1 Automated Reasoning of a Meta-forms Problem/Solution Pair

PERI.2 employs the automated deductive reasoner ShadowProver [20] to ver-
ify proposed solutions to a given Meta-Forms problem; see Fig. 1.5 Specifically,
4 [17,18] also point out that this area finds its way into early eduction.
5 ShadowProver has long been used to engineer logic-based intelligent artificial agents

in our lab. A robust example can be found e.g. in [19]. While ShadowProver’s rea-
soning is deductive, it is the basis for types of reasoning we believe are key to AGI
r&d, e.g. nonmonotonic/defeasible reasoning. See [10] for an example of an inductive
logic and an inductive automated reasoner (ShadowAdjudicator).
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Fig. 1. The Meta-Forms game, From FoxMind. This game provides a series of “clues”
to the would-be puzzle solver, each of which is a visual version of a “logical statement.”
The goal is to physically construct a complete configuration of the 3×3 board from these
clues. Formally, if Π is a complete configuration of the board, and Γ the collection of
formulae that logicize all clues, then necessarily Π ∪ Γ is provably consistent in L �.

Fig. 2. PERI.2 sees the board (left), and holds a meta-forms piece in one hand (right).
Machine vision for PERI.2 courtesy of Cognex; hands are from Barrett.

with a formalization of the clues given to the problem in this figure—as set Γ
of formulae in L �—and the proposed configuration of the board shown in this
figure—as set Π in L �—ShadowProver was tasked to find a proof of a contradic-
tion (i.e. ζ∧¬ζ) from Γ∪Π. It failed to find a proof in 3.16 s, which entails (given
some formal context we leave unstated) that the configuration of the board is
consistent with the clues, and hence a solution.

5 PERI.2, Concretely: A Glimpse

PERI.2 has a pair of dexterous, tactile-sensing Barrett hands attached to pow-
erful Yaskawa arms, which together provide somatic information to his “mind.”
For vision, PERI.2 has three Cognex cameras that compose a system for sight
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capable of several fundamental operations, ranging from simple object recogni-
tion given a training example, to color and blob identification, to edge detection
and measurement, and beyond. Given our approach to AGI, all such informa-
tion ultimately is expressed in formulae of L �. In the case of its tackling a
Meta-Forms problem, PERI.2 must ultimately transduce the clues it receives
for the problem into the formulae (represented internally as s-expressions) com-
posing Γ (see Fig. 1). For example, a clue might appear as (and (space 0 0)
(blue 0 1) (triangle 0 1)), suggesting that the blue triangle will have a
space beneath it. Presently PERI.2 is rigidly engineered to solve Meta-Forms,
but even with our target for AGI restricted to the math/logic category, the fact
is that Kindergarten presents challenges (e.g. 2 + 2 =?) that are arithmetic in
nature. Accordingly, our cognitive calculus L � subsumes Peano Arithmetic, but
this dimension must be left aside here.

6 Related Work

As is well-known, AGI can generally be classified as the field that explores the
creation of computational agents possessing some level of general intelligence:
the ability to exhibit complex problem-solving capabilities in an arbitrary envi-
ronment, akin to the ability of humans (but not necessarily at the same level
as humans) [14,15,33]. As AGI focuses on a broad overarching goal, inevitably
there are many camps in AGI, each based upon its own approach to the problem
[12,14]. Obviously, camps that are not overtly logicist bear little connection to
our approach to AGI. Nonetheless, a simple triadic breakdown of approaches in
AGI helps to contextualize the work discussed herein; this is particularly so for
the first element of the trio in question, which is:

– The Symbolic6 Approach. Here logic is in fact the basis for mem-
ory and reasoning. Knowledge in these systems consists of statements
from which new knowledge can be derived by logical reasoning. New
statements may also be added by way of fully logic-based perception
(e.g. see [32]). Different approaches use different ontologies and dif-
ferent logics with different properties to optimize for the type of rea-
soning to be executed [21]. Invariably, at least so far, relative to the
calculi L upon which our AGI r&d is based, logics in this approach to
AGI by others are inexpressive, and reasoning is correspondingly sim-
ple. In particular, often representation and reasoning in this AGI app-
roach can be reduced to information and processing in (perhaps with
tailor-made inference schemata as needed) at the level of only L1,
augmented perhaps with a few intensional operators. Some notable
members of the symbolic camp are Wang’s NARS [31] system and
Shapiro et al.’s SNePS and GLAIR architectures [27]; all three encode
symbolic representations of knowledge into a graph representation.

6 Since all symbolic information and processing in AI/AGI can carried out in a formal
logic, feel free to replace ‘Symbolic’ here with ‘Logicist’ or ‘Logic-based.’
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– The Emergent Approach. This approach focuses on creating agents
whose memory and learning take the form of connectionist sys-
tems. The emergent approach assumes, naturally enough, an emer-
gent hypothesis: that symbolic reasoning and learning can emerge from
basic connections and interactions between nodes, as they perhaps do
(at least in part) in the human brain. Contra the logicist approach,
“knowledge” in emergent systems is encoded within the weights and
connections between nodes of a network, which may evolve over time
for “learning.”

– Hybrid Approaches. Hybrid AGI systems aim to combine emergent
and symbolic approaches. According to [12], hybrid approaches suf-
fer from the same shortcomings as emergent approaches: they have
“difficulty in realizing higher-order cognitive functions” such as rea-
soning over arbitrarily complex/iterated declarative content, which is
the hallmark of our L.

AGI stands in stark contrast to today’s mainstream “narrow” AI systems,
usually machine-learning models trained on massive datasets to excel in one par-
ticular task. For our logicist approach to AGI it is important to contextualize
“human-level.” Human-level AI can be thought of as a goal of AGI, but from the
standpoint of our approach to AGI it is only a point on a spectrum of general
intelligence that AGI agents fall on. AGI researchers of either a thoroughgo-
ingly or even substantive logicist bent can presumably locate their ambitions for
future AGI systems in the standard hierarchies (Arithmetic, based on L1; and
Analytical, based on L2). In our approach to AGI, because we have a scheme
for measuring intelligence (viz. Λ; see [2]), we can quantify very well where the
level of given agents fall. One particular point worth noting here is that while
we are inspired and guided by Goertzel, his conception of intelligence [16, p. 5]
stands in contrast to ours, since he writes that “Intelligence in general must
be considered as an open-ended phenomenon without any single scalar or vec-
torial quantification.” This runs completely counter to the spirit and specifics
of our approach to AGI. Consider e.g. the fact that we commonly compare the
intelligence of human and nonhuman animal agents at least roughly in line with
how academic learning and the test-measured success of such learning works.
Consider for instance the common view that humans are more intelligent than
dogs. It seems more than reasonable that the intuitive concept of intelligence
underlying such a view is some sort of a single scalar. If a human is asked why
he believes that humans are more intelligent than dogs, takes the question seri-
ously, and tries to justify it, it appears to us likely that the rationale provided
will in some way appeal to cognition measured in traditionally academic ways.
Canines are smart, but as we all know, they don’t start to learn to read, nor do
they learn basic arithmetic, these being things routinely taught in PreSchool.

6.1 Remarks on NARS w.r.t Our Theoretical Pillars

NARS [31] is profitable to consider in relation to our two-pillar approach to AGI.
NARS is fundamentally logicist in nature and has working implementation that
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can solve some preschool-level problems. With regard to our first pillar, Wang
has argued for the need for “cognitive logic” rather than “mathematical logic”
when capturing human reasoning, and claims that the non-axiomatic logic used
in NARS embodies this reasoning [29]. We agree for the most part that cognitive
logics are necessary, but hold e.g. that “real learning” in a cognitive logic still
needs tools from logics used in mathematics (e.g. L1, L2, and L3) to give any
serious treatment of what humans do when they go to K–12 school (since a
large part of that schooling is in none other than mathematics, and reverse
mathematics [28] has disclosed that mathematics ultimately consists of proofs
and other structures built from formulae in first-to-third order logic). In taking a
cognitive approach, NARS has demonstrated a level of competence in the areas of
simple “spatial-visual” and “logical-mathematical” tasks [and has worked toward
some basic “linguistic” tasks (see e.g. [22])]. Due to the cognitive nature of NARS
and its ability to represent knowledge, belief, and self [34], it would in theory be
able to realize our working definition of logicist cognitive robotics from [25]. As
to our second pillar, Psychometric AI [5], NARS is not necessarily at odds with
it, but is focused on achieving intelligence in line with Wang’s working definition
of intelligence as “the capacity of an information-processing system to adapt
to its environment while operating with insufficient knowledge and resources”
[33]. PAI provides by definition a means of meaningfully evaluating incremental
progress toward AGI (viz. tests); Wang’s definition doesn’t supply such means.

7 Are Harder Problems Computationally Feasible?

For alert readers who may be wondering, Fig. 3 shows that harder Meta-Forms
problems are within PERI.2’s intellectual reach, in real time.

Fig. 3. A difficult meta-forms problem. No positive clues are given (left), yet a proof
of the correctness of PERI.2’s proposal found by ShadowProver (right).

8 Future Work: What About Compromised Perception?

Generally intelligent agents are capable of perceiving that they are mis-
perceiving, as e.g. when they perceive rather dense smoke, and perceive that
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their sensors are therefore compromised; such a situation is shown in Fig. 4, for
PERI.2’s attempt to perceive Meta-Forms clues. Currently success in this case
eludes us (and thus PERI.2), but a new cognitive calculus that formalizes such
meta-reasoning is under development, one that reflects the computational sci-
ence of attention and perception erected by Bello & Bridewell et al. (e.g. see
[26]).

Fig. 4. Perception of compromised perception. Here the set Γ of clues for the meta-
form problem are hard to reliably perceive due to ambient smoke.
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Abstract. Reinforcement Learning formalises an embodied agent’s
interaction with the environment through observations, rewards and
actions. But where do the actions come from? Actions are often consid-
ered to represent something external, such as the movement of a limb, a
chess piece, or more generally, the output of an actuator. In this work we
explore and formalize a contrasting view, namely that actions are best
thought of as the output of a sequence of internal choices with respect to
an action model. This view is particularly well-suited for leveraging the
recent advances in large sequence models as prior knowledge for multi-
task reinforcement learning problems. Our main contribution in this work
is to show how to augment the standard MDP formalism with a sequen-
tial notion of internal action using information-theoretic techniques, and
that this leads to self-consistent definitions of both internal and external
action value functions.

1 Introduction

It is hard to speak of embodied agents these days without mentioning or appeal-
ing to some notion of Reinforcement Learning. This particular mathematical
formalism has been so successful of late that the validity of its various mod-
elling assumptions rarely gets called into question. Yet recently we have seen a
step-change in the capabilities of generative modelling, with the most striking
example being in multi-modal language applications; the acquisition of gigantic
multi-task datasets via internet scraping and scalable approaches to training has
led to a renewed excitement for building next generation question-answering sys-
tems, chat bots, productivity tools, sentiment analysis, and in some circles, has
even produced a newfound sense of optimism that the original goals of Artificial
Intelligence may well be obtainable within our lifetimes.

Yet what does this mean for Reinforcement Learning? While its success in
restricted domains is no longer in doubt, questions remain about its long-term
viability as a foundational paradigm for Artificial Intelligence. For example, effec-
tive exploration, even in restricted settings such as finite MDPs, is problematic
in large unstructured state spaces, with various lower bounds demonstrating
polynomial dependence on the size of the state space, e.g. [12]. While there are
some noteworthy recent examples of hard exploration problems being overcome
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Fig. 1. Agent-environment loop with internal actions.

by clever heuristics [5], the situation in general looks challenging, if not dire.
On the other hand, recent advances in sequence modelling combined with the
acquisition of gigantic datasets via internet scraping has led to a seeming step-
change [2] in the ability of various types of probabilistic models to generate
plausible continuations. Is there a way to leverage this, while keeping the basic
reinforcement learning formalism and derived notions such as value functions,
policies, return, etc. intact?

Our proposal argues for rethinking the fundamental notion of action in rein-
forcement learning. Actions are often considered to represent something exter-
nal, such as the movement of a limb, a chess piece, or more generally, the output
of an actuator. In this work however, we develop a generic notion of internal
action, which is implied by a choice of action model ρ. The key technical insight
we leverage is the well-known duality between optimal lossless coding strategies
and probabilities from information theory. At a high level, instead of an agent
directly picking an action from the action space A, instead it will pick a sequence
of internal actions from an internal action set B which will decode to an external
action from A. Figure 1 depicts this interaction graphically.

So what do we gain by introducing this particular layer of indirection in the
agent’s choice of action? Breaking up an action into a series of internal actions
seems like a reasonable approach to dealing with large action spaces, and indeed
has been used in other planning settings, but it immediately throws up a num-
ber of questions. How do we decompose an arbitrary action space? Is there a
universal, or in some sense optimal decomposition? When should the agent stop
generating internal actions and communicate an external action to the environ-
ment? Does this even make sense in a reinforcement learning setting? How do we
leverage prior knowledge in the form of a default policy? Are there ramifications
for multi-task RL? Can we efficiently compute or sample good actions? This
paper will argue that our particular information-theoretic decomposition using
an arithmetic decoder coupled with a coding distribution implied by a choice of
action model naturally addresses all these questions, and opens up the possibly
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of leveraging recent advances in meta-learning and large-scale language/sequence
models to deal with large problems using existing RL techniques.

2 Preliminaries

We now briefly review the necessary background material required to describe
our internal action agent-environment interaction loop.

Sequential Prediction. A finite alphabet X is a set of symbols. A string of symbols
x1x2 . . . xn ∈ X n of length n is denoted by x1:n. The prefix x1:j of x1:n, j ≤ n, is
denoted by x≤j or x<j+1. The empty string is denoted by ε. The set of strings
whose symbols come from the alphabet X with length at most n is defined by
X ≤n := {ε}∪⋃n

i=1 X i. The set of strings of symbols from alphabet X with finite
length is denoted by X ∗ := {ε} ∪ ⋃∞

i=1 X i. The concatenation of two strings x
and y is denoted by xy. The length of a string x will be denoted by |x|. We will
use y ∈ x to denote that the symbol y is in the string x.

A (coding) distribution ρ is a sequence of probability mass functions ρn :
X n → [0, 1], which for all n ∈ N satisfy the constraint that ρn(x1:n) =∑

y∈X ρn+1(x1:ny) for all x1:n ∈ X n, with the base case ρ0(ε) := 1. From here
onwards, whenever the meaning is clear from the argument to ρ, the subscript
on ρ will be dropped. Under this definition, the conditional probability of a
symbol xn given previous data x<n is defined as ρ(xn|x<n) := ρ(x1:n)/ρ(x<n)
provided ρ(x<n) > 0, with the familiar chain rules ρ(x1:n) =

∏n
i=1 ρ(xi|x<i) and

ρ(xj:k |x<j) =
∏k

i=j ρ(xi|x<i) now following. We will use Δ(X ) to denote the
space of probability distributions over X .

Arithmetic Encoding/Decoding. A fundamental technique known as arithmetic
encoding [11,16] makes explicit the connection between coding distributions and
source codes. Binary arithmetic encoding is a general purpose parameterized
technique that takes in a distribution ρ (known as a coding distribution) and
some data x1:n ∈ X n, and produces a uniquely decodable binary codeword
Cρ(x1:n) ∈ {0, 1}∗, whose length is essentially �− log2 ρ(x1:n)�, which is opti-
mal in terms of expected length if the data is sampled from ρ. In essence,
shorter binary codewords are assigned to data which has a higher chance of
occurring under ρ, and longer binary codewords are assigned to the less proba-
ble data items. Arithmetic decoding is the reverse of this procedure; it takes
a coding distribution ρ, a binary code word y1:k = Cρ(x1:n), and returns
the original data Dρ(y1:k) = x1:n. We will also use the shorthand notation
Dρ(y1:k | s) := Dρ(·|s)(y1:k) to denote decoding with respect to a coding dis-
tribution conditioned on the string s. We refer the reader to the standard text
of [4] for further information.

Markov Decision Processes. A Markov Decision Process (MDP) is a type of
probabilistic model widely used within reinforcement learning [13,14] and con-
trol [1]. In this work, we limit our attention to finite horizon, time-homogeneous
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MDPs whose action and state spaces are finite. Formally, an MDP is a quadruplet
(S,A,R, μ), where S is a finite, non-empty set of states, A is a finite, non-empty
set of actions, R ⊂ R is the reward space, and μ is the transition probability
kernel that assigns to each state-action pair (s, a) ∈ S ×A a probability measure
μ(· | s, a) over S × R. S and A are known as the state space and action space
respectively. The transition probability kernel gives rise to the state transition
kernel P(s′|s, a) := μ({s′}×R | s, a), which gives the probability of transitioning
from state s to state s′ if action a is taken in s.

An agent’s behavior is determined by a policy that defines, for each state
s ∈ S and time t ∈ N, a probability measure over A denoted by πt(· | s). A
stationary policy is a policy which is independent of time, which we will denote
by π(· | s) where appropriate. At each time t, the agent communicates an action
At ∼ πt(· |St−1) to the system in state St−1 ∈ S. The system then responds
with a state-reward pair (St, Rt) ∼ μ(· |St−1, At). Here we will assume that each
reward is bounded between [rmin, rmax] ⊂ R and that the system starts in a state
s0 and executes for an infinite number of steps. Thus the execution of the system
can be described by a sequence of random variables S0, A1, S1, R1, A2, S2, R2, ....

The finite m-horizon return from time t is defined as Zt :=
∑t+m−1

i=t Ri.
The expected m-horizon return from time t, also known as the value function,
is denoted by V π

μ (st) := E[Zt+1 |St = st]. The return space Z is the set of
all possible returns. The action-value function is defined by Qπ

μ(st, at+1) :=
E[Zt+1 |St = st, At+1 = at+1]. An optimal policy, denoted by π∗

μ, is a policy that
maximizes the expected return E [Zt+1 |St] for all t.

3 Information-Theoretic Actuation – Internal Actions

We now describe in detail how to combine the aforementioned building blocks
into the internal reinforcement learning framework described in Fig. 1, and dis-
cuss its ramifications. Compared with the standard agent-environment loop,
there are two additional components with this setup: a choice of action model
ρ, and an associated arithmetic decoder Dρ that uses ρ as a coding distribution.
The internal action space B is defined by the associated decoding alphabet used
by Dρ; for example, using a binary arithmetic decoder would lead to an internal
action space of B = {0, 1}. For pedagogical purposes, we will restrict our atten-
tion to this case in the rest of the paper, but remark that any finite decoding
alphabet can in principle be used with our construction.

We first introduce our notion of internal action. At a high-level, one should
think of a single internal action as a bit-commitment towards a particular choice
of external action, with particular sequences of these corresponding to external
actions. In a sense, internal actions correspond to a period of private deliberation
by the agent, which upon conclusion produces a string describing the desired
actuation in compressed form; in essence, the arithmetic decoder functions as a
universal actuator, whose behavior can be completely configured by a choice of
action model.
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Reshaping of the Action Space. As alluded to before, the effect of the action
model is to reshape the action space, which the following example will make clear.
Figure 2 shows an illustrative example of the behavior of a binary arithmetic
decoder equipped with an action model based on a GLN-based context mixing
language model [15] that has been pre-trained on 9 MB of grandmaster chess
games in PGN (Portable Game Notation) format. On the left hand side of the
table, we have the input to the decoder, and on the righthand side we have the
decoded output; if we consider the first row, the LHS corresponds to the bitstring
10 = Cρ(a6) and the RHS corresponds to Dρ(10), with ρ here denoting our pre-
trained language model (which depends on the state). The LHS of the first 4
rows shows the encoding of a natural sequence of continuing moves (known as
the Morphy Defense), while the last four rows show an illogical continuation of
moves which ignore development, lose castling rights, and even hang the queen.
One can see that much shorter codes are assigned to the more logical sequence of
moves. This shows the effect of the action model as providing a type of inductive
bias, which we will discuss in greater depth later.

In contrast, one could also consider the effect of a completely uninformative
action model, ρuniform(a|s) := 1 / |A|, which assigns uniform probability mass to
each possible external action in every state. Here every single action would have
the same codelength of �log |A|�, which would correspond to a naive binarization
of the external action space.

Fig. 2. Arithmetic decoding example. Some example decoded outputs from a pre-
trained model on chess, with the model’s context set to the Ruy Lopez opening, namely:
e4 e5 Nf3 Nc6 Bb5.

When to Stop Decoding. Figure 2 also highlights a technical issue which we
need to resolve, namely, how and when is a decoded action to be transmitted
to the external environment? For example, if we wanted a chess-playing agent
whose action space was the space of single moves, we need some way to know
when our decoded output should be communicated to the environment as an
external action. Although other solutions are possible, in this work we adopt the
convention that every external action can be described as a string formed by
the concatenation of atomic symbols from a common alphabet. More formally,
we assume that the action space A ⊆ A

≤k, where A denotes the sub-action
alphabet, and k is a positive constant. We assume that the sub-action alphabet
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Algorithm 1. Internal Agent-Environment loop

Require: Internal policy π : S × B
∗ → ΔB

Require: External environment μ : S × A → Δ(S × R)
Require: Action model ρ : S → ΔA

≤k

for t = 1, 2, 3, . . . do
Observe st, rt ∼ μ(·, ·|st−1, at−1)
at, q ← ε
while � /∈ at do

b ∼ π(·|st, q), q ← qb, at ← Dρ(q|st), rt ← 0
end while
at ← τ(at)
Act at

end for

always contains a privileged termination symbol � ∈ A, which has the semantics
that when it is decoded it causes an external action to be communicated to
the environment. Note that in finite action/state MDPs, this modification does
not impose any restrictions nor add further expressive power. Returning to the
example shown in Fig. 2, by identifying the space character with �, we would
know when to transmit an external action. This is implemented formally via a
function τ : A≤k → A which takes actions and returns the action component
up to but not including the first �, for example τ(a6 �) = a6. This importantly
handles the case of multiple � symbols, for example τ(a6 �Ba4 �) = a6.

A terminal symbol is not the only way to know when to stop decoding.
Another approach could be to only allow prefix-free codes. This will however
run into it’s own problems, such as what prefix-free encoding to use, how to
enumerate the elements of A so that the corresponding prefix code can be found
easily (and vice versa). Using an “optimal” prefix code would require the use of
universal Turing machines and is beyond the scope of this paper. Another choice
to stop decoding is to consider the action before the last � symbol, instead of
before the first. In this case the agent may take multiple actions without knowing
the state in between them.

Internal Action Loop. External action selection is determined by executing our
internal policy π until the concatenation of these binary actions uniquely decodes
into an external action. Once the action model and arithmetic decoder have
generated an external action, this external action will be sent to the external
environment. The external environment will then return an external observa-
tion/reward to the action model and arithmetic decoder combination, and the
internal policy receives a reward rt from the external environment. This inter-
action is displayed graphically in Fig. 1 and described by Algorithm 1.
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4 Connecting Internal with External

In this section, we will describe formally how to augment an arbitrary external
environment to an internal environment that the internal action agent is able
to interact with; additionally if the external environment is Markovian then the
internal environment will also be Markovian. Our approach will be to construct
an augmented environment ϑ, called the internal environment, comprised of the
true environment, the action model and the arithmetic decoder. We will also
show how the internal action agent can be uplifted to an external agent, and
then show that both the internal environment with an internal action agent and
the external environment with the uplifted policy are equivalent in the sense
that they achieve identical action-value functions. These results will allow for
easier analysis of the internal action agent setup, as well as the ability to apply
any result or algorithm specific to MDPs to the internal agent setup.

Internal Environment. The internal environment ϑ is a stochastic function over
internal states and internal actions to internal states and rewards. The internal
state space used here will be I := S ×B

≤n, the state from the external environ-
ment and previous internal actions taken by the internal agent, until they are
decoded to an external action. We consider the finite set B

≤n over the infinite
set B

∗, as for any external action a with ρ(a) > 0 there will always be a finite
number of binary actions needed to decode a; n is the maximum of those finite
numbers. We will use � to denote the “terminal” symbol, that is, the symbol
that indicates when the concatenation of internal actions corresponds to a com-
plete external action, and is sent to the external environment. We will use the
symbols s, s′ for elements of S, the first component of the internal state. We
will use q, q′ for elements of B≤n, the second component of the internal state,
the internal agent’s previous internal actions. The symbol b will be used for the
internal agent’s internal action. The symbol a will be used for a decoded exter-
nal action, e.g. Dρ(qb|s) = a. The true external environment will be denoted by
μ, which is a stochastic function from external states and external actions to
external states and rewards. The external state space is S. The external action
space is A ⊆ A

≤k.

Definition 1 (MDP (Internal) Environment ϑ). The internal policy π
interacts with an internal environment ϑ : I × B → Δ(I × R) which is defined
by the action model ρ (encoder/decoder Cρ/Dρ generated by ρ) and the true
external environment μ as follows:

ϑ(s′q′r|sq, b) :=

⎧
⎪⎨

⎪⎩

μ(s′r|s, τ(a)) if q′ = ε ∧ (� ∈ a),
1 if s′ = s ∧ q′ = qb ∧ r = 0 ∧ (� /∈ a),
0 otherwise

where a := Dρ(qb|s), (s′q′, r) ∈ I × R, sq ∈ I and b ∈ B.

The definition of ϑ is split up into three cases: In the first case the decoded
qb contains the symbol �, � ∈ a where a := Dρ(qb|s), and the previous binary
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characters q′ resets to being the empty string ε. In this case the τ of the decoded
action Dρ(qb|s) is sent to the external environment μ, and the next state s′, is
the external state s′. The second case of ϑ is when the internal agent is still
decoding, that is, � /∈ a and the next state s′q′ = sqb is updated by the agent’s
action b, and the internal reward r is 0. In the third case, where neither set of
above conditions is satisfied, the probability of the state s′q′ and reward r is 0.
In this way the environment ϑ is deterministic during the decoding process, and
only stochastic when it sends the decoded action to the external environment.

Given the internal agent’s policy π and the arithmetic decoder Dρ, we can
construct an external policy Π which will interact with the true external envi-
ronment μ. The external policy Π is a stochastic function from external states
s ∈ S to external actions a ∈ A. To construct Π, we consider all possible binary
strings q ∈ B

≤n such that the arithmetic decoder will decode q into a given s.
For this we will need to define a decodable subset of B≤n. We will use D to denote
the set of decodable binary strings. A string q is decodable if � is in the decoding
of the string, and � is not in the decoding of the first |q| − 1 elements of the
string. Formally this means Ds :=

{
q ∈ B

≤n : � ∈ Dρ(q|s) ∧ � /∈ Dρ(q<|q||s)
}
.

We then consider the probability that π will output the internal binary actions
that eventually construct q, which using the chain rule we can write as the prod-
uct of probabilities that π will take the action of each element of q given the
previous elements of q. All together this is written as follows:

Π(a|s) :=
∑

q∈Ds:
a=τ(Dρ(q|s))

|q|∏

i=1

π(qi|sq<i). (1)

It is important to note that there may be more than one binary string q ∈ Ds

such that a = τ(Dρ(q|s)); this comes from how arithmetic decoders work. For
example, consider a case where

Dρ(10 s) = e, Dρ(100 s) = e4, Dρ(101 s) = e4
Dρ(1000 s|s) = e4 c5, Dρ(1001 s|s) = e4�
Dρ(1010 s|s) = e4�, Dρ(1011 s|s) = e4 e5

We have that both 1001 and 1010 are elements of Ds and both τ(Dρ(1001 s|s)) =
e4 and τ(Dρ(1010 s|s)) = e4, therefore Π(e4|s) would be a sum over 1001 and
1010.

Self-consistency of Internal and External Q-values. We can use the external
agent Π to interact with the external environment μ, just as any regular RL
agent would.

Theorem 1 (Internal/External value equivalence). For all states s ∈ S,
previous internal actions q ∈ B

≤n, external actions a ∈ A and internal actions
b ∈ B, if τ(Dρ(qb|s)) = a then

QΠ
μ (s, a) = Qπ

ϑ(sq, b). (2)
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That is, the action-value function for the external policy Π and external envi-
ronment μ is equal to the action-value function for the internal policy π and the
internal environment ϑ.

Because of Eq. 2 we are able to say that if an internal agent π performs
well, in the sense of a high action-value, in the internal environment ϑ, then the
uplifted version of the agent Π, performs well in μ.

5 Discussion

A Universal Action Interface for Multi-task RL. A key complication and lim-
iting factor in the design of any multi-task RL system is how to deal with
the potentially radically different action spaces required for each distinct task.
While it is feasible to make a generic agent work well across multiple similar
domains e.g. Atari games [9], the situation becomes considerably more com-
plicated when the action spaces of the different tasks vary dramatically. The
arithmetic encoding-based approach we advocate provides an elegant solution
to this problem, which builds on techniques from universal source coding. Given
K > 1 coding distributions, it is straightforward to combine them into a uni-
versal ensemble whose compression performance will be close to that of the best
coding distribution in hindsight. If we denote the ith coding distribution by ρi,
one can take a uniform Bayesian mixture of the K coding distributions, whose
marginal distribution over sequences is given by ξ(x1:n) :=

∑K
i=1

1
K ρi(x1:n).

A standard dominance argument [6] shows that the logarithmic loss/coding
length of the mixture ξ compared to any choice of action model j is bounded by
− log ξ(x1:n) ≤ − log

(
1
K ρj(x1:n)

)
= − log ρj(x1:n) + log K, or in other words,

the excess log-loss is bounded by a constant, which is asymptotically negligible
when one considers the time-averaged performance of the ensemble.

This has important ramifications for multi-task reinforcement learning in our
internal action formulation. Recently, various works [7] have attempted to frame
reinforcement learning in terms of probabilistic sequence models over interaction
strings, i.e. defining a sequential probability measure ν over strings that repre-
sent state/reward/action histories in the form s1r1a1 . . . . By taking a uniform
Bayesian mixture over multiple instances of these history-based measures for
different tasks, just as in the coding distribution example, one also obtains a
sequence model that is universal across all of these tasks. More formally, given a
history string h which is an element of (S×R×A)∗∪((S × R × A)∗ × (S × R)),
we can define the uniform Bayesian mixture ξ(h) =

∑K
i=1

1
K νi(h) over K his-

tory based measures νi, with each νi corresponding to a task specific history
model. Note that this formulation in terms of measures on strings still implies
the usual Bayesian learning in terms of sequential updating of the posterior, it
is just hidden in this notation; see Sect. 2 by [8] for a brief overview.

An interesting effect now emerges if we use the conditional action distribution
ξ(·|s1r1a1, . . . , snrn) as the action model in our setup. In particular, this action
model will rapidly learn to automatically generate actions appropriate for the
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underlying task, without requiring any task identity information. How this works
is subtle; Bayesian inference is used implicitly by ξ to determine which task the
agent is most likely in, and due to the rapid convergence of the Bayesian mixture
to the best task specific model, the action model used for decoding after a small
number of external environment interactions will essentially behave the same as
if we knew which task specific action model to use in the first place. In other
words, what this means in practice is that one can use ξ as the action model,
and Cξ will produce codes which are almost as short as any task-specific action
encoding Cρj

. In particular, this implies that short bitstrings can decode to very
different external actions which are plausible under either task-specific model.

The most interesting aspect about this construction is that the internal action
formalism allows us to treat a multi-task reinforcement problem as a single
reinforcement learning task with a common action space.

Specifying the Action Space from Data. In complicated environments, it may
be difficult or complicated to precisely specify the action space explicitly. This
situation readily arises in natural language domains for example. In these cases
it is more natural to simply learn a probabilistic model of the domain. Our
internal agent formalism directly allows for this possibility via the action model.
The action model allows for a strict separation between pre-training on data, for
example pre-training an action model using a collection of grandmaster games
in chess, and the resultant learning behavior of the internal agent.

It is also worth pointing out an interesting connection to meta-learning with
sequence models across many tasks. Perhaps surprisingly, perplexity-based meta-
learning of history-dependent LLMs is closely related to the explicit Bayesian
mixture solution. In particular, one can show that in many standard meta-
learning setups, the optimal perplexity-minimizing solution is exactly a Bayesian
mixture distribution [10]. Provided that a sufficiently powerful history-dependent
model is used (such as the case with LLMs based on Transformers) to model the
interaction histories, a low-perplexity solution can be seen as a learnt approxi-
mation to the explicit Bayesian construction we provided. In this way the action
space for a multi-task agent can be learnt directly from data alone, which goes
some way to explaining the recent empirical success of approaches such as [7].

Pre-training and Universality. A common use case in machine learning is to
consider fine tuning an existing pre-trained model to save on compute. It is
possible to show that pre-training on any data will not affect the asymptotic
performance of any consistent density estimator [3]. In our context, it suggests
that a good general approach to constructing an action model for a new domain
might be to first pre-train on large, task-agnostic data and then to use fine tuning
to incorporate task-specific knowledge if this data is available.
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Abstract. Transfer learning, multi-task learning, and meta-learning
are well-studied topics concerned with the generalization of knowledge
across learning tasks and are closely related to general intelligence.
But, the formal, general systems differences between them are under-
explored in the literature. This lack of systems-level formalism leads to
difficulties in coordinating related, inter-disciplinary engineering efforts.
This manuscript formalizes transfer learning, multi-task learning, and
meta-learning as abstract learning systems, consistent with the formal-
minimalist abstract systems theory of Mesarovic and Takahara. More-
over, it uses the presented formalism to relate the three concepts of learn-
ing in terms of composition, hierarchy, and structural homomorphism.
Findings are readily depicted in terms of input-output systems, highlight-
ing the ease of delineating formal, general systems differences between
transfer, multi-task, and meta-learning.

Keywords: Abstract learning systems · Transfer learning · Multi-task
learning · Meta-learning · Abstract systems theory

1 Introduction

Transfer learning, multi-task learning, and meta-learning are three different con-
cepts of learning that aim to generalize knowledge across learning tasks. As such,
they are common topics in artificial general intelligence [1,7]. They are informally
described as similar in their respective, prominent surveys [6,9,11]. Formally,
however, the general systems character of this similarity is left undiscussed.
Likely, this is because the formalism of their respective learning algorithms
quickly represents their differences. While this gap may seem inconsequential
to algorithm designers, who typically work very closely to solution methods,
to systems engineers, this gap muddles basic questions about composition and
hierarchy.

In this manuscript, a recently proposed abstract systems theory (AST) model
of learning [2,4] is used to formally relate transfer, multi-task, and meta-learning.
Each concept of learning is modeled as an abstract system [5], i.e., as a relation
on component sets, and their structural homomorphism is studied. The pre-
sented results extend previous work that synthesizes AST with statistical learn-
ing theory [2] and transfer learning [3,4] with novel definitions of multi-task and
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meta-learning as abstract systems, and with an investigation of their structural
similarities.

This manuscript is structured as follows. First, preliminaries on abstract
learning systems and transfer learning systems are given in Sects. 2 and 3. Sub-
sequently, multi-task learning and meta-learning are formalized as systems from
their informal descriptions in Sect. 4, and the homomorphism between transfer,
multi-task, and meta-learning is investigated in Sect. 5. The manuscript con-
cludes with a synopsis and remarks on the pitfalls of the existing informal tax-
onomy in light of the presented material.

2 Abstract Learning Systems

Abstract systems S are relations on (non-empty) abstract sets

S ⊂ ×{Vi|i = 1, ..., I},

where × is the Cartesian product, Vi are (component) sets, and S = {Vi|i =
1, ..., I} [5]. Input-output systems are (elementary) systems

S ⊂ ×{X ,Y},

where X ∩ Y = ∅, X ∪ Y = S, and ∅ is the empty set. The set X is termed the
input and the set Y is termed the output. Functional systems are input-output
systems of the form S : X → Y. AST is primarily concerned with input-output
systems, with their composition, and with categories of systems [5].

Recent work presented a stratified model of abstract learning systems as a
cascade connection of learning algorithms A : D → Θ and hypotheses H : Θ ×
X → Y where D are data and Θ are parameters [2]. This follows the treatment of
learning as function approximation [10]. Learning systems are defined as follows.

Definition 1 (Learning Systems). A learning system S is a relation

S ⊂ ×{A,D,Θ,H,X ,Y}

such that

D ⊂ X × Y, A : D → Θ,H : Θ × X → Y
(d, x, y) ∈ P(S) ↔ (∃θ)[(θ, x, y) ∈ H ∧ (d, θ) ∈ A]

where
x ∈ X , y ∈ Y, d ∈ D, θ ∈ Θ.

The algorithm A, data D, parameters Θ, hypotheses H, input X , and output Y
are the component sets of S, P is the power set, and learning is specified in the
relation among them.

This AST model of learning is depicted in Fig. 1 at the elementary (input-output)
and cascade levels of abstraction (as presented in [2]).
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Fig. 1. Learning systems at the elementary (left) and cascade (right) levels of abstrac-
tion [2].

3 Transfer Learning Systems

The concept of learning tasks is widely used in artificial intelligence [8]. Transfer
learning is conventionally defined in terms of domains D = {X , P (X)} and
tasks T = {Y, P (Y |X)}, where P denotes a probability measure. Given a source
domain DS and learning task TS , a target domain DT and learning task TT , Pan
and Yang define transfer learning as a learning paradigm that [6],

“aims to help improve the learning of the target predictive function fT
1 in

DT using the knowledge in DS and DT , where DS 
= DT or TS 
= TT .”

Alternatively, previous work describes transfer learning as [4],

“...a relation on the source and target (learning) systems that combines
knowledge from the source with data from the target and uses the result
to select a hypothesis that estimates the target learning task.”

Transfer learning systems are defined as follows.

Definition 2 (Transfer Learning System). Given source and target learning
systems SS and ST

SS ⊂ ×{AS ,DS , ΘS ,HS ,XS , YS}
ST ⊂ ×{AT ,DT , ΘT ,HT ,XT , YT }

a transfer learning system STr is a relation on the component sets of the source
and target systems STr ⊂ SS × ST such that

KS ⊂ DS × ΘS ,D ⊂ DT × KS

and

ATr : D → ΘTr,HTr : ΘTr × XT → YT

(d, xT , yT ) ∈ P(STr) ↔
(∃θTr)[(θTr, xT , yT ) ∈ HTr ∧ (d, θTr) ∈ ATr]

where
xT ∈ XT , yT ∈ YT , d ∈ D, θTr ∈ ΘTr.

1 fT ∼ P (YT |XT ).



202 T. Cody

Fig. 2. Two learning systems transferring knowledge to each other depicted at the
elementary (left) and cascade (middle, right) levels of abstraction [4].

The nature of source knowledge KS
2, the transfer learning algorithm ATr,

hypotheses HTr, and parameters ΘTr specify transfer learning as a relation on
SS and ST .

This AST model of transfer learning is depicted in Fig. 2. Previous work exten-
sively elaborates on and beyond Definition 2 [4].

4 Multi-task and Meta-learning Systems

4.1 Multi-task Learning

Zhang and Yang define multi-task learning as [11],

“a learning paradigm in machine learning and its aim is to leverage use-
ful information contained in multiple related tasks to help improve the
generalization performance of all the tasks.”

Multi-task learning systems are defined herein as follows.

Definition 3 (Multi-task Learning Systems). Given N learning sys-
tems S1, ..., SN , a multi-task learning system is a learning system S ⊂
×{A,D,Θ,H,X ,Y} where,

D = (D1, ...,DN ),H = (H1, ...,HN ),
Θ = (Θ1, ..., ΘN ),X = (X1, ...,XN ),

Y = (Y1, ...,YN ),

i.e., A : (D1, ...,DN ) → (Θ1, ..., ΘN ).

Multi-task learning systems are simply learning systems that jointly learn mul-
tiple, distinct hypotheses. Multi-task learning systems are depicted in Fig. 3A.
A trivial multi-task learning system can be defined as follows.

2 Here transferred knowledge KS is defined as DS and ΘS , the source data and param-
eters, following convention [6].
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Fig. 3. A multi-task learning system (A) and a meta-learning system (B).

Definition 4 (Trivial Multi-task Learning Systems). Given N learning
systems S1, ..., SN , a trivial multi-task learning system is a multi-task learning
system S ⊂ ×{A,D,H,Θ,X ,Y} defined over S1, ..., SN where A = (A1, ..., AN ).

In other words, the trivial case of multi-task learning is a superficial grouping
of algorithms (A1, ..., AN ) where A simply uses D1, ...,DN as input to each
respective algorithm An for n ∈ N . A non-trivial multi-task learning system
can be defined as follows.

Definition 5 (Non-trivial Multi-task Learning Systems). Given N learn-
ing systems S1, ..., SN , a non-trivial multi-task learning system is a multi-
task learning system S ⊂ ×{A,D,H,Θ,X ,Y} defined over S1, ..., SN where
A 
= (A1, ..., AN ).

4.2 Meta-learning

Vanschoren defines meta-learning as [9]

“the science of systematically observing how different machine learning
approaches perform on a wide range of learning tasks, and then learning
from this experience, or meta-data, to learn new tasks much faster than
otherwise possible.”

Meta-learning systems are defined herein as follows.

Definition 6 (Meta-learning System). Meta-learning systems are learning
systems S ⊂ ×{Am, Θm,Dm,Hm,Xm,Ym} with hypotheses Hm that are algo-
rithms A, inputs Xm that are data D, outputs Ym that are parameters Θ for
hypotheses H : Θ × X → Y, and where S ⊂ ×{A,D,Θ,H,X ,Y} is a learning
system.

Meta-learning systems are learning systems whose hypotheses are learning algo-
rithms. Meta-learning systems are depicted in Fig. 3B.
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5 Homomorphisms Between Learning Systems

Similarity of systems is a fundamental notion. Structural similarity describes
the homomorphism between two systems’ structures. In accord with category
theory, a map from one system to another is termed a morphism. Homomorphism
specifies the morphism to be onto. Homomorphism is formally defined as follows.

Definition 7. Homomorphism.
An input-output system S1 ⊂ ×{X1 ×Y1} is homomorphic to S2 ⊂ ×{X2,Y2} if
there exists a pair of maps,

� : X1 → X2, ϑ : Y1 → Y2

such that for all x1 ∈ X1, x2 ∈ X2, and y1 ∈ Y1, y2 ∈ Y2, �(x1) = x2 and
ϑ(y1) = y2.

Let a two-way transfer learning system be a pair of transfer learning systems
that both transfer knowledge to each other. In the following, it is proven that two
transfer learning systems sharing knowledge with each other are homomorphic
to a non-trivial multi-task learning system, as depicted in Fig. 4.

Theorem 1. Two-way transfer learning systems are homomorphic to a non-
trivial multi-task learning system.

Proof. Consider two learning systems S′
1 and S′

2,

S′
1 ⊂ ×{A′

1,D
′
1, Θ

′
1,H

′
1,X1,Y1},

S′
2 ⊂ ×{A′

2,D
′
2, Θ

′
2,H

′
2,X2,Y2}.

Let transfer learning be used to transfer knowledge K12 ⊂ D′
1 from S′

1 to S′
2 and

knowledge K21 ⊂ D′
2 from S′

2 to S′
1. This creates two transfer learning systems,

termed S1 and S2, respectively,

S1 ⊂ ×{A1,D1, Θ1,H1,X1,Y1},

S2 ⊂ ×{A2,D2, Θ2,H2,X2,Y2}.

where D1 ⊂ D′
1 × D′

2 and D2 ⊂ D′
1 × D′

2, as in Fig. 2. Consider a multi-task
learning system

S ⊂ ×{A,D,Θ,H,X ,Y}

such that A = (A1, A2), D = (D1,D2), Θ = (Θ1, Θ2), H = (H1,H2), X =
(X1,X2), and Y = (Y1,Y2). Clearly, by the identity, A, D, Θ, H, X , and Y are
homomorphic to (A1, A2), (D1,D2), (Θ1, Θ2), (H1,H2), (X1,X2), and (Y1,Y2),
respectively. Thus, there exists a set of onto maps {�A, �D, �Θ, �H , �X , �Y} from
(S1, S2) → S. Thus, the two-way transfer learning system (S1, S2) is homomor-
phic to the multi-task learning system S. Since A = (A1, A2) and since A′

1 
= A1

and A′
2 
= A2 (they have different supports), S is therefore necessarily a non-

trivial multi-task learning system with respect to S′
1 and S′

2. ��
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Fig. 4. A set of learning systems all transferring knowledge to each other implicitly
forms a multi-task learning system.

The above hints that multi-task learning systems are related to parallel con-
nections of learning systems. To see this, first define a parallel connection as
follows.

Definition 8 (Parallel Connections). A parallel connection of systems S1 :
X1 → Y1 and S2 : X2 → Y2 is an operator ‖ : S1 × S2 → S2 such that S2 :
(X1 × X2) → (Y1 × Y2) and

((x1, x2), (y1, y2)) ∈ S2 ↔
((x1, y1)) ∈ S1 ∧ ((x2, y2) ∈ S2).

Theorem 2. Trivial multi-task systems are a parallel connection of learning
systems.

Proof. Consider a set of N learning systems S1, ..., SN . Let S1−2 = S1‖S2. Let
S1−n = S1−(n−1)‖Sn. Thus, S1−N , at the elementary (input-output) level of
abstraction is,

S1−N = (D1 × ... × DN ) × (X1 × ... × XN ) → (Y1 × ... × YN ),

which simplifies to,

S1−N : (D1, ...,DN ) × (X1, ...,XN ) → (Y1, ...,YN ).

Let D = (D1, ...,DN ), X = (X1, ...,XN ), and Y = (Y1, ...,YN ). Let A, Θ, and H
be defined similarly. By definition, the system

S ⊂ ×{A,D,Θ,H,X ,Y}

is a trivial multi-task learning system. ��

When triviality does not hold, multi-task learning is a shallow parallel con-
nector in the sense that it is always a parallel connector in (elementary-level)
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terms of D, X , and Y, but not always a parallel connector in the (cascade-level)
terms of the relation on them given by A, Θ, and H since ∃A 
= (A1, ..., AN ).

In contrast to the parallel connections of multi-task learning, meta-learning
is related to cascade connections and hierarchy. To see this, first define a cascade
connection as follows.

Definition 9 (Cascade Connections). Let ◦ : S × S → S be such that S1 ◦
S2 = S3, where,

S1 ⊂ X1 × (Y1 × (Z1)), S2 ⊂ (X2 × Z2) × Y2

S3 ⊂ (X1 × X2) × (Y1 × Y2), Z1 = Z2 = Z

and,

((x1, x2), (y1, y2)) ∈ S3 ↔
(∃z)((x1, (y1, z)) ∈ S1 ∧ ((x2, z), y2) ∈ S2)

◦ is termed the cascade (connecting) operator.

Theorem 3. Meta-learning systems are a cascade connection of a learning algo-
rithm and a learning system.

Proof. Consider a learning algorithm A2 : D2 → Θ2 and a learning system
S1. Let S3 = A2 ◦ S1. Thus S3 =⊂ ×{A2,D2, Θ2, A1,D1, Θ1,H1,X1,Y1} where
A1 : Θ2 × D1 → Θ1. Let Sm ⊂ S3 such that Sm ⊂ ×{A′,D′, Θ′, A,D,Θ}. Sm is
a meta-learning system where A1, D1, and Θ1 are the hypotheses, inputs, and
outputs of Sm. ��

5.1 Discussion

The preceding provides the basic math needed to support the use of transfer,
multi-task, and meta-learning as basic elements of modeling abstract learning
systems. Because of the generality and homomorphism of these three concepts, a
systems modeler clearly has many representations to choose from when modeling
learning systems. Consider the learning system shown in Fig. 5, which shows a
series of homomorphisms on a learning system from Fig. 5A to 5F.

Figure 5A shows two learning systems with meta-learning systems that trans-
fer knowledge to each other. In Fig. 5B, a parallel connection of A1 and A2 trans-
forms the system in Fig. 5A into a multi-task learning system with a decomposed
meta-learning system. In Fig. 5C, the meta-learning system is recomposed into
Am using a parallel connection. Figure 5D shows the hypotheses of the multi-
task learning system are composed into H by a parallel connection. Figure 5E
shows the meta-learning hierarchy is collapsed into algorithm A′ using a series
connection. And lastly, in Fig. 5F, sets are redefined to recover a general learning
system as in Definition 1. All of these morphisms are homomorphisms—they are
onto and thus structure-preserving.



Homomorphisms Between Transfer, Multi-task, and Meta-learning Systems 207

Fig. 5. A series of homomorphisms from a two-way transfer learning system with meta-
learning in (A) to a generic learning system in (F), as described in detail in Sect. 5.1.

6 Conclusion

Appreciating the compositional and hierarchical relations between the three con-
cepts of learning makes clear a simple point about learning systems. Transfer,
multi-task, and meta-learning are basic compositions of learning systems that
display a recursive self-similarity. A multi-task learning system can use trans-
fer learning from other multi-task learning systems that all have meta-learning
systems that use transfer learning, and so on.

What is a multi-task transfer learning system? What is a transfer multi-task
learning system? What is a meta-transfer multi-task learning system? What is
a meta-transfer multi-task transfer learning system? What is ... etc.? Clearly
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what is a useful taxonomy for organizing machine learning solution methods in
the literature becomes burdensome and tedious when applied to systems mod-
eling. Using the presented material, modelers have simple, general formalism
for describing the compositions of learning systems possible by way of transfer,
multi-task, and meta-learning.
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Abstract. Engineering methods are centered around traditional notions
of decomposition and recomposition that rely on partitioning the inputs
and outputs of components to allow for component-level properties to
hold after their composition. In artificial intelligence (AI), however, sys-
tems are often expected to influence their environments, and, by way
of their environments, to influence themselves. Thus, it is unclear if an
AI system’s inputs will be independent of its outputs, and, therefore, if
AI systems can be treated as traditional components. This paper posits
that engineering general intelligence requires new general systems pre-
cepts, termed the core and periphery, and explores their theoretical uses.
The new precepts are elaborated using abstract systems theory and the
Law of Requisite Variety. By using the presented material, engineers can
better understand the general character of regulating the outcomes of
AI to achieve stakeholder needs and how the general systems nature of
embodiment challenges traditional engineering practice.

Keywords: Artificial intelligence · Systems engineering · Systems
theory · Requisite variety

1 Introduction

Engineering methods are still centered around traditional engineering notions
of decomposing stakeholder needs and outcomes into component-level functions
and recomposing those component-level functions into subsystems and systems
[22]. This traditional approach of engineering by aggregation relies on a partition-
ing of inputs and outputs to allow for component-level properties to hold after
composition [32]. While the artificial intelligence (AI) in AI-enabled systems—
systems with AI components or subsystems—may be well-treated as an indi-
vidually addressable part at conception, the boundaries between an AI part,
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other aspects of its greater system, and the environment it interacts with face
dissolution as the three intertwine.

This paper posits that whereas traditional engineering is driven by a focus on
open systems and correspondingly on precepts of decomposition and recomposi-
tion, engineering general intelligence requires an alternative treatment and new
precepts. This paper substantiates discourse on a new framework for engineering
by challenging the legitimacy of existing precepts. Moreover, this paper proposes
two new general systems precepts, core and periphery, and discusses their use.
While previous work on the topic of embodiment explores related concepts [24],
importantly, it does not explore embodiment as a consequence of general sys-
tems theory or directly identify the challenges to traditional engineering that
embodiment presents. Using the material presented herein, engineers can better
understand the general nature of regulating the outcomes of AI-enabled systems,
and thereby of achieving stakeholder needs.

This paper is structured as follows. Embodied cognition is reviewed as a
related, although differently motivated field of research in cognitive science.
Then, the limitations of existing engineering practice are outlined. Discussion
is lead to a review of the Law of Requisite Variety [3], which is used as a basis
to define core and periphery as closed-system precepts, and to explore their use
in modeling AI. Before concluding, remarks are made on relevance.

2 Related Work

Embodied cognition is a cognitive science that considers the role body and
environment, in addition to mind, play in cognitive processes, and, moreover,
emphasizes a lack of distinction between the three [20]. Embodied cognition can
be characterized as: “a research program with no clear defining features other
than the tenet that computational cognitive science has failed to appreciate the
body’s significance in cognitive processing and to do so requires a dramatic re-
conceptualization of the nature of cognition and how it must be investigated”
[24].

Notions of embodiment are closely related to ecological psychology, which,
eschewing the notion of cognition as computation, posits that cognitive processes,
like perceptual processes, involve the whole organism as it moves through the
environment [19]. This contrasts the traditional view of computational cognitive
scientists that cognitive processes require inference from “impoverished” inputs,
which, on their face, do not contain enough information to solve problems, and
therefore necessitate a kind-of Bayesian conditioning of inputs with background
knowledge [10].

Attempts to bring embodied cognition from philosophy to the real-world
include robotics and the use of dynamical systems. Embodied cognitive robotics
limits, discredits, or otherwise avoids the use of internal representations and the
use of symbolic logic over them—in the extreme, linking perception directly to
action [6,7]. Some critics are quick to point out the subjectivity of determining
what is and what is not a representation [8,16], e.g., as sensors already bias
inputs away from reality [21]. Other critics strongly challenge scalability [18].
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Dynamical cognitive science treats cognition as a dynamical system: a con-
tinuous time relationship among the component sets of a system and the rela-
tions between them [4]. In essence, it favors the view of “mind as a continuous
event” in the stead of “mind as computer” [26]. But real-world examples remain
simple [5,13,25,28], because dynamical systems quickly become complex and
adaptive as they scale in intelligence [31], thereby limiting scientific investiga-
tion. Although taking a formal systems view, dynamical cognitive science has
fallen short of defining formal, general engineering precepts for intelligence.

Most often, embodied cognition is a topic of natural intelligence, and less so
of AI, because AI is largely concerned with computation, and, in present day,
with computational approaches to problem solving tasks [29], as opposed to (cog-
nitive) systems which solve problems or come to be able to solve problems. As
a result, questions regarding where cognition resides or where problem solving
takes place are generally not within the scope of discourse [11]. As such, in com-
puter science, there are disparate research efforts with a broadened scope [23,27],
but they often rely on their disparate specifics. This manuscript works outward
from a general systems perspective, as opposed to from a cognitive psycholo-
gist or computer science perspective, to suggest new precepts for engineering
embodiment.

3 Existing Precepts and Their Limits

Precepts for engineering AI must presume something of the nature of intelli-
gence. There is ongoing research into defining intelligence and the properties it
exhibits in engineered systems [30]. Some advocate that intelligence is measured
by integrating a complexity-weighted performance measure over a set of tasks
[9]. Others advocate that intelligence is manifested as a minimization of com-
plexity in state dynamics [12]. And others yet still measure intelligence in terms
of adversarial sequence prediction [1,15]. Each alternative definition leads the
discussion of engineering intelligence in a different direction. This paper avoids
the constricting effect of pursuing a specific definition of intelligence on the gen-
erality of results by focusing on precepts for the case when intelligence is a
property of the relation between an system and its environment—rather than a
property of the system itself.

The latter case, that of intelligence as a property of a system, suggests a con-
tinuation of existing engineering practice. Given a system and needed outcomes
of that system, systems engineers decompose the system into subsystems and
their components, specify functional requirements on the components, and then
distribute the engineering of each functional component to their respective disci-
plines. Subsequently, component-level solutions are recomposed into subsystems
and, in turn, into the system as a whole, performing test and evaluation along
the way, as shown in Fig. 1. Once properly composed, the system is deployed
into operation, putting engineers in a holding pattern until another iteration of
the so-called engineering “V” is desired [14,17]. This traditional practice of engi-
neering by following the mantra, “If the parts work, and the interfaces between



212 T. Cody et al.

Fig. 1. (A) depicts the traditional engineering process of decomposing systems into
individually addressable components and recomposing them into systems. But, can AI-
enabled systems with inter- and intra-level coupling as depicted by spiraling, multi-level
dependencies in (B) be treated with the same precepts of decomposition and recompo-
sition? The basic concept of engineering operations offered by traditional approaches
follows the iterative decomposition and recomposition shown in (C). In contrast, the
posited, highly coupling effect of intelligence imposes a continuous concept of opera-
tions shown in (D).

the parts work, then the whole will work”, is rooted in precepts of decomposition
and recomposition and is in direct conflict with the environmental coupling that
this paper posits as the definitive feature of engineering general intelligence.

Deep neural networks (DNNs) are exemplary of this phenomena. DNNs can
be specified as a composition of functions that pass information from layer to
layer in a way that meets certain mathematical requirements. Specifications
of DNNs using functional requirements are nearly the same for the enormous
number of systems where DNNs are applied. However, apparently, the outcomes
needed from DNNs vary greatly between systems. Thus, there is an apparent gap
between achieving the needed outcomes a stakeholder has for a DNN and the
functional requirements of a DNN. Whereas embodied cognition views this gap as
the result of a flawed philosophical view of the mind as computation from which
an inappropriate characterization of the relation between stimuli and cognition
is derived, this paper views this gap as the result of a flawed mathematical—
and therefore formal—foundation of traditional engineering which undergirds
the dogma of engineering by composition.

If engineers cannot rely on functional decomposition and recomposition as
precepts, what can they rely on? First, AI engineers must admit that they cannot
readily specify the needs and outcomes of stakeholders into low-level functions
and requirements. That is, simply ensuring input-output relationships will not
reliably generate desired outcomes as it has in the past. With a renewed focus
on the primacy of outcomes to input-output relations, engineers must then turn
to new precepts that do not rely on persistent boundaries across the various
subsystems and levels of abstraction in systems.
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4 Outcomes and Requisite Variety

In general systems theory, systems are (often) defined as a relation on sets. Gen-
eral systems theory is thus (often) concerned with general conditions of relations
on sets. These can be categorical, topological, algebraic, etc., however, set the-
ory alone can be illuminating of the character of any of those more specific
concerns. In the mid-twentieth century, Ashby used a particular notion of vari-
ety to study homeostasis—the ability to maintain certain variables within tight
bounds despite changing contexts—in biological systems [2,3], and he made a
remarkably general discovery regarding the nature of outcomes termed the Law
of Requisite Variety.

Consider two systems S and SE where S : X → Y and SE : XE → YE .
Without loss of generality term S the system and SE the environment. Suppose
S is acting as a regulator of SE . Let XE\S = XE\Y where \ denotes set difference.
In other words, inputs to the environment XE = XE\S ∪ Y. Consider a set of
outcomes Z with support over XE\S × Y, i.e., XE\S × Y → Z. This notion of
outcomes is identical to payoff matrices used in game theory. Let VA be termed
variety and be the Shannon entropy of a finite set A, i.e.,

VA = −
|A|∑

i

pi log2 pi, (1)

where |A| denotes the cardinality of A and pi the probability of the ith element
of A. Variety describes the number of unique elements in a system.

The Law of Requisite Variety states that for one system to be a stable reg-
ulator of another, the variety of the regulator’s output must be greater than or
equal to the variety of the regulated system’s input. Formally put, consider that
(from [3])

minVZ = max{VXE\S
− VY , 0}. (2)

The Law of Requisite Variety can be defined as follows.

Definition 1 (Law of Requisite Variety). The Law of Requisite Variety
states that given VXE\S

, the minimum variety of outcomes minVZ only decreases
if VY increases.

Only if VY ≥ VXE\S
, is it information theoretically possible to determine out-

comes Z, i.e., minVZ = 0.
In summary, Eq. 2 suggests that when the environment’s input variety is not

well-matched by the regulating system’s output variety, the variety of the set
of possible outcomes is necessarily large, and therefore the system will struggle
to achieve precise outcomes. In the words of Ashby, system S’s “capacity as a
regulator cannot exceed its capacity as a channel for variety” [3].

5 Core and Periphery

Ashby considered system survival as dependent on bounding varieties [2]. Let
bounded varieties be system varieties that are invariant and let unbounded
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varieties be system varieties that are not invariant. Informally speaking, one
could identify those structures that are core to the functioning of a system with
bounded varieties, and one could identify those that are peripheral to such a core
with unbounded varieties. In the following, using the Law of Requisite Variety,
this paper presents the formalism necessary to establish core and periphery as
precepts.

5.1 Definition

Let S be a system S ⊂ ×{X ,Y} and let S denote the component sets of S, i.e.,
{X ,Y}. Let X t denote the input structure at time t, and so forth. Bounded and
unbounded varieties are distinguished by measuring the variety of a system’s
residual change over time. Let R denote this residual change, i.e.,

Rt,t′

S
= {X t′ \ X t,Yt′ \ Yt} (3)

Rt,t′

S
gives the residual change in system structure between time t and t′. The

core and periphery are defined as follows.

Definition 2 (Core and Periphery). Consider a system S at time t and at
a later time t′. The core of S from t to t′ is

C = S \ Rt,t′

S
(4)

The periphery of S from t to t′ is

P = Rt,t′

S
. (5)

The core are those elements of S’s component sets that are identical at times t
and t′, and the periphery are those elements that are not.

5.2 Core and Periphery as Precepts

A number of immediate uses of core and periphery as precepts are now consid-
ered.

Symmetry. Consider that the environment SE has a core CE and periphery PE .
Inequalities can be used to compare the relative balance of core and periphery in
the system and environment. Consider Fig. 2, which considers the various pos-
sible outcomes. In the upper-right cases, system S is more periphery-dominant
than the environment SE . In the diagonal cases, the relative balance of variety
is the same between S and SE , i.e., there is symmetry between the system and
environment. And in the lower-left cases, S is more core-dominant than SE . This
is a useful exposition of the general regime. Given that S is a regulator of SE , it
is useful to know if a homeostatic SE is regulated with a similarly homeostatic
S, or if a largely unstable SE is regulated by a homeostatic S, etc. But, it is
hard to assign relative value to these various cases because symmetry alone does
not make a statement regarding the variety of outcomes.
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Fig. 2. A table depicting possible symmetries and asymmetries between the core and
periphery of the system and environment.

Blocking. Outcome-based value judgements on the distribution of variety
across C and P can be made by utilizing the Law of Requisite Variety to consider
what S is demonstrating between t and t′ regarding its mechanism to block vari-
eties in SE , i.e., to decrease the lower bound in Eq. 2) and regulate outcomes. For
example, is the variety in the environment’s periphery VPE

being treated with
VP or VC? One cannot know generally, but, one can deduce given conditions on
variety. If S is a stable regulator of SE and VCE

> VC , then one can deduce that
the system must be partially addressing the variety in the environment’s core
with variety in the system’s periphery1. Without making restrictive or unrealistic
assumptions about the functional dependence of components in S, as traditional
engineering practice does to use precepts of decomposition and recomposition,
one can use precepts of core and periphery, defined over the component sets of S
and SE , to model what aspects of an intelligent system are being used to block
environmental variety in order to regulate outcomes.

Abstraction Independence. One may care about a subsystem of S. If one
wants to know if a subsystem is in the core or periphery, one can just compare
the subsystem to C or P. However, one may find S hard to model as a whole.
But since the subsystem is a system, it can have its own core and periphery.
Therefore, the use of core and periphery does not require observability of the
entire system. Moreover, by considering the distribution of core and periphery
across subsystems, it can be used to compare the interaction of subsystems
within a system without making strong assumptions regarding independence.
And, furthermore, it follows that modeling the core and periphery at the system,
subsystem, and component levels of abstraction can identify how the core and
periphery are distributed across a system. When combined with similar, stratified
models of the environment’s core and periphery, this provides a abstraction-
independent means of modeling the relation between system and environment.

1 Note Eq. 2 specifically concerns the variety of outputs in the system’s core and
periphery and the variety of inputs in the environment’s core and periphery.
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Dynamics. The core and periphery can be modeled over time. As such, the
membership of elements (in the component sets) of a system can be traced as they
move between the core and periphery. This provides a natural means of tracing
adaptation in a system. Instead of facing the difficult task of comparing the
self-similarity of components, subsystems, and their inter-relations at different
points in time, modelers can simply demarcate the varying presence of residual
complexity. In essence, one can model core and periphery growing or shrinking,
and as such, address detailed questions regarding adaptation without traditional
assumptions of component-level independence. E.g., if a large change occurs
between t and t′ in the environment, does the system change from t′ to t′′ in
response? Was the change in SE regulated by S, i.e., was minVZ = 0 from t to
t′? Is there evidence of S absorbing new varieties into its core from the periphery,
i.e., is Ct′,t′′ ∩Pt,t′

non-empty? Core and periphery supports complex and varied
analysis into the dynamical nature of the relation between an intelligent system
and its environment.

5.3 Relevance

Traditional precepts are well-established, widely applied, and writ large success-
ful. It is important, then, to identify where specifically new precepts are needed.
The core roughly corresponds to traditional engineering practice. While the com-
ponents in the core may not be independent of each other, the core’s stability
suggests that their respective input-output relations are stable, and therefore
can be subject to functional requirements. Consider the preceding example in
DNNs. Firstly, those identifiable functions for passing information from layer to
layer, etc., that are common across applications of DNNs can be associated with
the core. Alternatively, the parameter values of a DNN and the data used to
train it (if data is considered in scope) can be treated as parts of the periphery.

Having disambiguated the core of DNNs from the periphery, the traditional
decomposition and recomposition precepts can be applied to the core. Whether
passing information between layers or back-propagating error, functions of the
core of DNNs have a mechanical, largely environment-independent and therefore
universal character. In contrast, the same decomposition cannot be applied to
the DNN’s periphery. Various no free lunch theorems suggest that good training
data and model parameters are not universal. While there are desirable, general
properties of learned representations like linear separability, many such proper-
ties are already implicit in loss functions generally and therefore embedded into
the core. This example in DNNs highlights that core and periphery are gen-
eral precepts, and decomposition and recomposition are, in the main, precepts
applicable to the core.

In this sense, the precepts of core and periphery reduce to traditional precepts
of decomposition and recomposition for (simple) systems wherein input-output
relations are easily attributable to outcomes. In such a case, a definition of intel-
ligence as the property of a system is sufficient. Now, consider that outcomes
are not easily attributable to input-output relations when boundaries are not
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well-defined. And then consider that coupling between systems, between sub-
systems, and between components tends to dissolve boundaries. In such cases,
input-output relations cannot be easily attributed to outcomes, thus, engineering
intelligence as a system property has insufficient scope to regulate outcomes, and
therefore intelligence ought to be treated as a property of the relation between a
system and its environment. To the extent that general intelligence is emblematic
of the latter case, precepts of core and periphery are more relevant to engineering
general intelligence than traditional precepts.

6 Conclusion

Whereas functional decomposition and recomposition are precepts for open sys-
tems, core and periphery are precepts for closed systems, i.e., for engineering
intelligence as a property of the relation between system and environment. And
whereas functional composition is associated writ large with stratification, hier-
archies, and hierarchical engineering processes, the core and periphery are asso-
ciated with a coarser disambiguation oriented towards characterizing the nature
of inter-linkages created by intelligence. While closed systems may not apprecia-
bly exist in nature besides (perhaps) the universe, their emphasis here derives
from a stated interest in formal precepts for engineering theory. Engineering—
designing, building, and operating—AI-enabled systems needs to consider the
necessity of new closed-system precepts for engineering AI towards stakeholders’
desired outcomes.

Future work is needed to demonstrate and support practical value. First, the
ability to empirically isolate system functions via core-periphery disambigua-
tion should be evaluated on a system with general intelligence. Additionally, a
longer-form, formal elaboration of core and periphery in terms of mathematical
theorems and corollaries is needed. Similarly, a point-by-point comparison with
traditional system engineering methods is merited. Lastly, determining core and
periphery requires defining boundaries between systems, even if only temporar-
ily. Additional research on the dynamics of boundaries between highly coupled
systems is needed.
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21. Rydéhn, H.: Grounding and ontological dependence. Synthese 198(6), 1231–1256
(2021)

22. Salado, A.: A systems-theoretic articulation of stakeholder needs and system
requirements. Syst. Eng. 24(2), 83–99 (2021)

23. Schick, L., Malmborg, L.: Bodies, embodiment and ubiquitous computing. Digit.
Creat. 21(1), 63–69 (2010)

24. Shapiro, L.: Embodied Cognition. Routledge, Abingdon (2019)
25. Smith, L.B., Thelen, E.E.: A Dynamic Systems Approach to Development: Appli-

cations. The MIT Press, Cambridge (1993)
26. Spivey, M.: The Continuity of Mind. Oxford University Press, Oxford (2008)
27. Steels, L., Brooks, R.: The Artificial Life Route to Artificial Intelligence: Building

Embodied, Situated Agents. Routledge, Abingdon (2018)
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Abstract. As we work toward artificial general intelligence, it is clear
that we must try to imbue agents with faculties which ensure they are
trustworthy. We firmly believe that an AGI agent must be able to explain
its decision-making in order for it to be considered trustworthy. More
specifically, agents must be able to explain themselves in a way that is
both logically correct and understandable to humans. We take a first step
toward a system that can generate explanations which satisfy this pair
of conditions. We created the first model that can produce summaries of
modal-logic proofs using a transformer language model. We qualitatively
evaluated the model’s outputs on a held-out test set and found that the
logical content of the model’s explanations precisely matched the input
proofs in 60% of cases.

Keywords: Hybrid AI · Transformer language models · Modal logic

1 Introduction

As AI agents continue to play a larger role in our everyday lives, the issue of
trust of AI systems is becoming more apparent. Moreover, as we work toward
artificial general intelligence (AGI), it is clear that we must try to imbue agents
with faculties which ensure they are trustworthy. While there is no one sufficient
condition for trust of an AGI, we firmly believe that the ability to explain its
decision-making is a necessary condition for trust in an AGI. More specifically,
agents must be able to explain themselves in a way that is both logically correct
and understandable to humans.

Many approaches to explainable AI secure one or the other of these two con-
ditions. DARPA’s Explainable AI Program has been focused primarily on the
latter. The goal is to produce systems that can explain machine-learning mod-
els in a human-understandable way. But since the core technology is machine-
learning-based, there is no guarantee that the decisions nor the explanations will
be formally correct with respect to some relevant formal system. Alternatively,
in much of our prior work we have taken a logic-based approach to AI which
enables agents to explain their decisions in a formally correct (and verifiable)
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way [3,6,7]. Our AI agents do this by producing a formal proof; unfortunately,
proofs are not easily understood by humans who don’t have training in formal
methods.

In this paper, we take a first step toward a system that can generate expla-
nations which are both logically correct and understandable by humans. Specif-
ically, we created the first model which can produce summaries1 of modal-logic
proofs.

The rest of the paper is as follows. We first introduce the modal logic used
(Sect. 2), then the approach we took to generating natural-language explanations
of proofs from that logic (Sect. 3). Next, we provide and analyze sample outputs
of the system (Sect. 4). Finally, we discuss related work (Sect. 5) and conclude
(Sect. 6).

2 Cognitive Calculi

A cognitive calculus is a multi-operator intensional logic with modal operators
that capture propositional attitudes of human cognition (e.g. K for “knows”,
B for “believes”). For the purposes of this paper, a cognitive calculus consists
essentially of two components:2 (1) multi-sorted nth-order logic3 with inten-
sional/modal operators for modeling cognitive attitudes (e.g. K, B) and (2)
inference schemata that—in the tradition of proof-theoretic semantics [5]—fully
express the semantics of the modal operators. We note that the title is slightly
inaccurate, as a cognitive calculus is not exactly the same as a modal logic.
Specifically, because of this last point: Whereas modal logics all have (typically
model-theoretic) semantics, cognitive calculi have no model-based semantics.
The meaning of formulae within a cognitive calculus is defined exclusively by
the ways they can be used in proofs and arguments, which is accomplished for-
mally by the calculus’ inference schemata.

2.1 A Micro Calculus: µC
In the present paper, we utilize a micro cognitive calculus we refer to as ‘μC.’ We
use a micro calculus, as opposed to a full-fledged cognitive calculus,4 in order

1 As we discuss in Sect. 5, there are systems that can create explanations of modal
logic proofs [4], but not summaries. That is, they can produce explanations which
have a one-to-one correspondence with the input proof, but cannot synthesize a
summary that highlights only the major components of the proof.

2 For a full exposition of exactly what a cognitive calculus is and isn’t, we point the
interested reader to Appendix A of [3].

3 Most cognitive calculi subsume first-order logic; some others include also second-,
third-, and higher-order logics. For reasons that will be explained later in the paper,
the cognitive calculus we utilize herein includes, of extensional logics, only zero-order
logic.

4 Such as the Deontic Cognitive Event Calculus (DCEC) and its inductive counterpart
(IDCEC). The interested reader is referred to [3], which utilizes both of these calculi.
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to simplify the challenging task at hand of generating explanations of modal-
logic proofs. That is to say, the only difference between a standard cognitive
calculus and a micro cognitive calculus is the relative size in terms of syntactic
forms and inference schemata. We have elsewhere, previously, made use of other
micro cognitive calculi, in order to simplify meta-proofs and explanation of our
automated-reasoning algorithms; see e.g. [8].

In general, a cognitive calculus consists of two main pieces: a signature and a
set of inference schemata. The signature of a cognitive calculus has four compo-
nents: (1) a set of sorts, (2) a set of function signatures, (3) a grammar for terms,
and (4) a grammar for formulae. Note that each of these components builds upon
a pre-existing core.5 The sorts and function signatures build upon the standard,
extensional event calculus6 [9]. While the terms and syntactic forms generally
build upon first-order logic, in the case of μC, they build upon zero-order logic;
that is, propositional logic with predicates and function symbols, but no quan-
tifiers.

Signature. The signature contains three sorts: Agent, for specifying
human/artificial cognizers within modal formulae; Moment, for specifying time
points; and Formula, for specifying any well-formed formula in the calculus. Next,
there are three types of terms: variables, constants, and functions. Finally, the
syntactic forms cover the standard relations of propositional logic, and modal
operators for Perception, Belief, and Desire.

μC Signature

S ::= Agent | Moment | Formula

t ::= x : S | c : S | f(t1, . . . , tn)

φ ::= {¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | P(a, t, φ) | B(a, t, φ) | D(a, t, φ)

Inference Schemata. The calculus contains four inference schemata in the
natural-deduction tradition: I1 enables an agent to infer a belief in any formula
φ which it perceives. I2 enables an agent to perform And Elimination on any
conjunction it believes holds. In the same way, I3 and I4 enable an agent to use
Or Introduction and Implication Elimination within beliefs.

μC Inference Schemata

P(a, t, φ)

B(a, t, φ)
[I1]

B(a, t, φ ∧ ψ)

B(a, t, φ)
[I2]

B(a, t, φ)

B(a, t, φ ∨ ψ)
[I3]

B(a, t, φ → ψ) B(a, t, φ)

B(a, t, ψ)
[I4]

5 For brevity, the pre-existing core of the function signatures is excluded as we will
not need them for the problems presented herein.

6 Other calculi (e.g. the situation calculus) for modeling commonsense and physical
reasoning can be easily switched out in-place of the event calculus.
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3 NLG via Transformer Language Models

While we do not assert that transformer language models are unproblematic,7

their impressive ability to quickly generate reasonable-looking natural-language
text is, at the time of this writing, unmatched by any other technology. Hence
our model to convert formal proofs into natural-language explanations utilizes a
transformer language model.8

Specifically, we fine-tuned Pegasus [12] on a dataset of μC proofs and corre-
sponding explanations, and evaluated it on a held-out dataset. Next, we discuss
the reasoning behind the choices of Pegasus and μC for this work.

3.1 Pegasus

We selected the Pegasus transformer model as it was designed to perform well
at abstractive summarization. Briefly, whereas extractive summarization sim-
ply extracts a proper subset of the input verbatim to synthesize a summary,
abstractive summarization attempts to create a coherent summary that contains
words/phrases that did not appear in the source text. This approach to sum-
marization was necessary for our task, since we did not want to simply pick out
pieces of the proofs for the summaries, but rather summarize the key points in
English. Our task would be more accurately categorized as “summarization and
translation.” But since there are no translation models pre-trained on this type
of data, we determined that an abstractive summarization model was the best
available option.

3.2 µC and the Proof Domain

We selected μC as the cognitive calculus within which proofs would be created for
this experiment largely for its simplicity. Whereas some cognitive calculi contain
many more complex inference schemata, including e.g. meta-logical statements
about provability, μC contains only four inference schemata, each of which can be
easily explained in English. For example, I1 allows an agent a to infer a belief in
some formula φ which it perceives.9 This enabled the creation of proofs involving
several inferences that could be succinctly summarized in a few sentences.

Similarly, we selected the proof domain—the weather—in order to enable
quick, manual generation of proofs which are logically correct and correspond-
ing explanations which are sensible. We included predicates for simple types of

7 The interested reader is referred to [2] for a thorough analysis of the environmental,
financial, and societal concerns surrounding transformers.

8 We certainly do not believe transformers are the only method by which this gen-
eration of proof explanations can be achieved. In fact, we expect that methods of
natural-language generation which incorporate symbolic reasoning would almost cer-
tainly provide better assurances that the resulting explanations match the logical
content of the proof. We discuss this more in Sect. 6.

9 See Sect. 2.1.
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weather (e.g. Raining, Foggy), road conditions which could be caused by the
weather (e.g. Slippery, ReducedVisibility), and items one may want for cer-
tain weather (e.g. rainboots, umbrella). Example proofs and explanations are
given in Sect. 4.

3.3 Model Fine-Tuning

We fine-tuned the Pegasus transformer on 20 proof-explanation pairs, holding
out a set of 10 for evaluation. We note that the dataset is relatively small for
a transformer training task for several reasons, but primarily because the pairs
had to be engineered by hand, which was labor-intensive. The evaluation was
also performed by hand, which will be discussed further in the following section.

Fortunately, because transformers are pre-trained on large datasets, we
expected that we could be successful fine-tuning with a relatively small dataset.
For details on the implementation of the fine-tuning process, see Appendix A.

4 Evaluation

We took a qualitative approach to evaluating the results of our fine-tuned model.
Statistical metrics for measuring the similarity of the model’s output to the
ground truth aren’t very meaningful in this case, as they fail to capture whether
the logical reasoning content of the outputs are similar. For example, “You should
bring an umbrella today because it is raining” and “You should bring an umbrella
today because it is not raining” are very close syntactically, but the latter sen-
tence doesn’t exhibit valid reasoning (assuming common-sense understanding of
the involved properties). Hence we evaluated the output qualitatively by parti-
tioning it into the following trichotomy:

1. The output logically corresponds to the input proof.
2. The output doesn’t logically correspond, but is still logically correct.
3. The output neither logically corresponds to the input proof nor is logically

correct.

By “logical correspondence,” we mean that the logical content of the sum-
mary is consistent with that in the proof. Since our goal is to generate summaries
(as opposed to complete explanations), the model’s output need not explain each
individual step of the proof. However, it may not include language that does not
have a formal correlate in the proof.

By “logical correctness,” we mean that each step within the summary corre-
sponds to an inference schema (or chain of inference schemata) in the cognitive
calculus. Again, since our model is summarizing proofs, the explanation need
not include a natural-language correlate of each step in the proof, but it cannot
include language that is not sanctioned by some subset of the inference schemata.

The present page limit precludes inclusion of the full set of output on the test
set. Here we show only a few noteworthy results, both positive and negative.10

10 Newlines and indentation have been added for readability.
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4.1 Example #1

Input:

PROOF: (Believes! a now (Slippery now road))

VIA MODUS PONENS IN BELIEF:

(Believes! a now (implies (or (Raining now) (Snowing now))

(Slippery now road))),

(Believes! a now (or (Raining now) (Snowing now)))

VIA GIVEN:

(Believes! a now (implies (or (Raining now) (Snowing now))

(Slippery now road)))

AND:

(Believes! a now (or (Raining now) (Snowing now)))

VIA DISJUNCTION INTRO IN BELIEF:

(Believes! a now (or (Raining now) (Snowing now)))

VIA GIVEN: (Believes! a now (Raining now))

Ground Truth (Human-Generated):

The agent believes the road is slippery. This is because the agent

believes if it is raining or snowing then the road is slippery, and

the agent believes it is raining.

Model Output:

The agent believes it is slippery on the road. This is because the agent

believes it is raining or snowing on the road.

We consider the model’s output to be excellent for two reasons: (1) it logically
corresponds to the input proof; and (2) it is more concise than the human-
generated/ground-truth explanation, without excluding any content necessary
for a person to understand it.

4.2 Example #2

Input:

PROOF: (Believes! a now (Slippery now road))

VIA MODUS PONENS IN BELIEF:

(Believes! a now (implies (or (Raining now) (Snowing now))

(Slippery now road))),

(Believes! a now (or (Raining now) (Snowing now)))

VIA GIVEN:

(Believes! a now (implies (or (Raining now) (Snowing now))

(Slippery now road)))

AND:

(Believes! a now (or (Raining now) (Snowing now)))

VIA DISJUNCTION INTRO IN BELIEF:

(Believes! a now (Snowing now))

VIA GIVEN: (Believes! a now (Snowing now))

Ground Truth (Human-Generated):

The agent believes the road is slippery. This is because the agent
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believes if it is raining or snowing then the road is slippery, and

the agent believes it is snowing.

Model Output:

The agent believes it is slippery on the road. This is because the agent

believes if it is raining or snowing then it is slippery on the road, and

the agent believes it is raining or snowing.

In this case the machine’s output is slightly longer than the ground truth but
still logically corresponds to the input proof.

4.3 Example #3

Input:

PROOF: (Desires! a now (or (Umbrella now) (RainJacket now)))

VIA MODUS PONENS IN BELIEF:

(Believes! a now (implies (and (Raining now) (not (Windy now)))

(Desires! a now (or (Umbrella now)

(RainJacket now))))),

(Believes! a now (and (Raining now) (not (Windy now))))

VIA GIVEN:

(Believes! a now (implies (and (Raining now) (not (Windy now)))

(Desires! a now (or (Umbrella now)

(RainJacket now)))))

AND:

(Believes! a now (and (Raining now) (not (Windy now))))

VIA CONJUNCTION INTRO IN BELIEF:

(Believes! a now (Raining now)),

(Believes! a now (not (Windy now)))

VIA GIVEN: (Believes! a now (Raining now))

AND GIVEN: (Believes! a now (not (Windy now)))

Ground Truth (Human-Generated):

The agent desires an umbrella or a rainjacket. This is because the agent

believes if it is raining and not windy then it should hold this desire,

and the agent believes it is rainy and not windy.

Model Output:

The agent desires umbrellas and rain jackets. This is because the agent

believes if it is raining and not windy then it should hold this desire,

and the agent believes it is raining and not windy.

The machine’s output is almost identical to the ground truth, but there is
one critical difference: it should be “umbrellas or rain jackets”, not “umbrellas
and rain jackets”. Hence while this output looks reasonable, it does not logically
correspond to the input proof nor is it logically correct.
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4.4 Example #4

Input:

PROOF: (Believes! a now (Rainbow now))

VIA MODUS PONENS IN BELIEF:

(Believes! a now (implies (and (Raining before) (Sunny now))

(Rainbow now))),

(Believes! a now (and (Raining before) (Sunny now)))

VIA GIVEN:

(Believes! a now (implies (and (Raining before) (Sunny now))

(Rainbow now)))

AND:

(Believes! a now (and (Raining before) (Sunny now)))

VIA CONJUNCTION INTRO IN BELIEF:

(Believes! a now (Raining before)),

(Believes! a now (Sunny now))

VIA GIVEN: (Believes! a now (Raining before))

AND GIVEN: (Believes! a now (Sunny now)))

Ground Truth (Human-Generated):

The agent believes there is a rainbow now. This is because the agent

believes if it rains first and is sunny second then there will be a

rainbow, and the agent believes the premise.

Model Output:

The agent believes it is sunny and raining. This is because the agent

believes if it is sunny and raining then it should hold this belief,

and the agent believes it is sunny and raining.

Here the machine’s output is logically correct (albeit tautologically), but does
not at all logically correspond to the input proof.

4.5 Overall

Out of the 10 held-out test examples, six logically corresponded to the input
proof (60%), two did not logically correspond to the input but were logically
correct (20%), and two neither logically corresponded nor were logically correct
(20%). While we do not deny that there is plenty of room for improvement, our
model is the first (to the authors’ knowledge) able to generate summaries of
modal-logic proofs. Next, we discuss relevant prior work in this space.

5 Related Work

To the author’s knowledge, there is no prior work using transformer language
models to generate explanations of proofs in any logic, let alone a logic as highly-
expressive as μC. There is, however, some prior work on generating explanations
of proofs using other methods.
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Felty and Hager [4] presented a method for generating natural-language
explanations of modal-logic proofs. They essentially hard-code natural-language
templates for every inference rule in their logic. Thus the technique cannot be
generalized to new inference rules or logics without hard-coding new templates.
Additionally, this creates a one-to-one correspondence between the proof and
explanation. While this may be desired in some cases, this method is incapable
of generating summaries of proofs (= explanations that leave out minor details
in an effort to demonstrate “big picture” understanding).

Alexoudi et al. [1] developed a method for producing summaries of mathe-
matical proofs. It used a submodule to extract only the mathematically “inter-
esting” proof steps in order to create a higher-quality summary. However, again,
the natural-language translation boils down to a hard-coded transformation.
For example, the term “primitive ind” is translated to the phrase “one-step
structural induction on” [1]. Also, as the focus in this work was on generating
summaries of simple mathematical proofs,11 they use standard first-order logic,
and hence their method doesn’t address generating summaries of proofs which
contain modal operators.

While our use of transformers introduces the possibility that the resulting
explanations may not precisely logically correspond to the input proof, the lin-
guistic content is of much higher quality than that seen in prior work. Alexoudi
et al. specifically mention this drawback in their work, noting that “In certain
cases the template mapping produces minor grammatical errors” [1]. We note
that all of the explanations generated by our model were grammatically correct.
Of course, the ultimate goal of our research is a model which guarantees logi-
cal correspondence and grammatical correctness. We discuss future work in this
direction in the following section.

6 Conclusion

We firmly believe that for AGI agents to be considered trustworthy by most
people, these agents will need the capability to explain their decision-making
in a way that is both logically correct and understandable by humans. In this
paper, we have taken a first step in that direction. We created the first model
which can generate natural-language summaries of modal-logic proofs. Of the
summaries generated from proofs in the test set, 60% logically corresponded
to the input proof, and all summaries were grammatically correct and overall
linguistically coherent. Nonetheless, clearly there are many needed, subsequent
steps; we mention two general directions now.

11 They state that their goal was to produce summaries of proofs similar to what
would be seen in “mathematical textbooks”. While they didn’t specify any sub-
fields of mathematics, nor the level of rigor (e.g. high-school, undergraduate, or
graduate textbooks) they intended their method for, the examples in the paper all
involve mathematical-induction proofs of arithmetic properties, e.g. commutativity
of addition. It is now known that some classical mathematics beyond merely the
textbooks involves third-order logic, and proofs couched therein.
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First, our model was trained and tested on a single proof domain, with rela-
tively simple proofs, within a relatively simple cognitive calculus. An AGI agent
should be able to generate explanations of proofs in a wide variety of domains
which it may not have encountered before. New methods may be needed to
achieve this, as well as to enable such an agent to generate explanations of more
complex proofs in cognitive calculi with more and deeper modalities and infer-
ence schemata.

Second, while using a transformer enabled our model to generate text that
was linguistically coherent, one significant drawback is that there is no guarantee
the logical content of the explanation matches that of the proof. That is, the
explanation may be syntactically correct English, but not match the meaning
of the proof.12 We see two possible directions in this space. First, one could
imbue the transformer with some type of rule-based system that ensures that
the text it produces corresponds with the logical content of the proof. Second,
one could take a different approach to language generation entirely. Specifically,
a knowledge-based approach to language generation (e.g. [10,11]) could ensure
that outputs are both logically and linguistically sensible.

Acknowledgements. This research is partially enabled by support from ONR and
AFOSR (Award # FA9550-17-1-0191).

A Fine-Tuning and Evaluation Implementation

We used the Hugging Face Transformers library to access Pegasus, fine-
tune the model, and evaluate it. Our fork of the model (https://github.com/
mjgiancola/transformers) includes scripts for fine-tuning with the parameters
we set to enable reproduction of our results (https://github.com/mjgiancola/
transformers/tree/main/examples/research projects/proof-nlg).

The script fine tune pegasus.sh runs the fine-tuning process. It is con-
figured to generate the fine-tuned model’s predictions on the test set after
fine-tuning is completed. Additionally, the script get predictions from fine
tuned.py loads the fine-tuned model and outputs pretty-printed results, includ-
ing the input (a proof), the ground-truth output (a human-generated explana-
tion), and the model’s output.

12 We note that, while this is a significant drawback, which we shortly address as
pressing future work, AI agents which utilize the type of technology presented herein
(i.e. a cognitive calculus for reasoning and a transformer for NLG) would still enact
logically correct decision-making, even if its explanation wasn’t correct. That is,
the agent’s behavior would still be bound by what it could prove via the calculus’
inference schemata.

https://github.com/mjgiancola/transformers
https://github.com/mjgiancola/transformers
https://github.com/mjgiancola/transformers/tree/main/examples/research_projects/proof-nlg
https://github.com/mjgiancola/transformers/tree/main/examples/research_projects/proof-nlg
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Abstract. In this paper we will show that OpenNARS for Applications
(ONA) can be used for enhanced autonomous robots operating in the
real world. It is done by utilizing state-of-the-art object detection along
with Simultaneous Localization and Mapping techniques while inherit-
ing the strengths of means-end reasoning and adding robust learning at
runtime into the picture. This is showcased in an experiment where an
ONA-controlled mobile robot with manipulator arm is learning about its
environment to collect bottles to be returned to a human operator.

Keywords: Reasoning under uncertainty · Non-axiomatic reasoning
system · Procedure learning · Means-end reasoning · Autonomous
robots

1 Introduction: A Reasoner Which Learns and Decides

In this paper we first introduce an architecture that shows the ability of Open-
NARS for Applications (ONA) to be utilized on robots running Robot Operat-
ing System (ROS), then present real-world robotics experiments as a case study
that uses YOLOv4 [6] and [20], a Convolutional Neural Network [16] which
represents the state-of-the-art object detection and Simultaneous Localization
and Mapping. In this experiment we observe that the reasoner inherits some of
the known strengths of means-end reasoning solutions (such as support for eas-
ily human-readable knowledge compared to model-based RL), while being able
to deal with knowledge insufficiency at run-time. Knowledge insufficiency [26]
include incomplete knowledge, outdated knowledge and various forms of concept
drift, all of which are addressed by supporting robust learning at run-time.

Means-end reasoners are sometimes referred to as Practical Reasoning Sys-
tems and have multiple existing instantiations (such as [9,19,22,29], Belief-
Desire-Intention models [2,5] like [7], etc.), most are not designed to allow knowl-
edge to be uncertain but rely on it to be sufficient for the task at hand. Multi-
ple logics have been proposed to support reasoning under uncertainty, such as:
Markov Logic Networks [21], ProbLog [8], Fuzzy Logic [31], Probabilistic Logic
Networks [10] and Non-Axiomatic Logic [25], where they commonly extend truth
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Goertzel et al. (Eds.): AGI 2022, LNAI 13539, pp. 231–242, 2023.
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value of propositions from boolean to a degree of belief to allow capturing knowl-
edge that is neither true or false, but somewhere in-between. Of these logics,
[8,21] and [10] operate with probability values associated to the prepositions.
Additionally, [10] and [25] use a second value to address the size of the sample
spaces, which intuitively speaking corresponds to the stability of the probabil-
ity of a new evidence. Such approach allows to allocate a higher certainty for a
50/50 over a 5/5 coin flip scenario, while still converging to the same truth value
in the limit of infinite samples. Therefore these two logics become extremely
well-suited for cases where “degree of belief” has to be estimated from samples
and justifiable conclusions should be drawn (or decisions being made) even when
samples supporting a relevant hypothesis are low in count. In this case the ratio
of confirming cases over total cases is not necessarily yet representative because
the amount of samples also needs to be considered when comparing competing
hypotheses to make them suitable for learning goal-directed behaviors and solv-
ing the Goal-Directed Procedure Learning Problem [13], which is concerned with
learning behaviors to reach (potentially changing, and conflicting) goals.

2 Non Axiomatic Logic (NAL)

For this paper, NAL [25] was chosen over PLN [10] since it incorporates goal
reasoning and decision making, hence can be considered a Practical Reasoner
able to learn from experience. In this section we provide only some definitions
of NAL that are necessary to replicate the experiments.

Truth Value. Truth Value in NAL is based on positive evidence w+ and neg-
ative evidence w− which speaks for or against a statement/belief/hypothesis,
and the total evidence w := w+ + w−, each of which is zero or greater. Based
on these evidence values, the NAL truth value is defined as the frequency and
confidence tuple (f, c):

f :=
w+

w
∈ [0, 1], c :=

w

w + 1
∈ [0, 1)

Please note the similarity between frequency and probability, with the difference
being that the limit limw→∞ f is not taken, as it cannot be obtained from any
finite amount of samples. Also, clearly for w > 0, the mapping (w+, w−) �→ (f, c)
is bijective, and statements with w = 0 do not need to be handled as they do
not contribute any evidence. Additionally, truth expectation is defined as

expectation(f, c) := (c ∗ (f − 1
2
) +

1
2
).

This measure allows to summarize the two-valued truth value into a single value
with the extremes being 0 for c = 1, f = 0, and 1 for c = 1, f = 1, which both
are approachable but unreachable, since ∀w ∈ R : c < 1 while limw �→∞ c = 1.
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Implications. For the sake of this paper we will restrict ourselves to temporal
implications (A ⇒ B) and procedural implications of the form ((A,Op) ⇒ B).
The former denotes that B will happen after A, and the latter that B will happen
when Op is executed right after A happened. To calculate the truth values of
these correlative implications [28], the evidences of w+ and w− are needed. If
events would have binary truth, for (A ⇒ B), w+ would be the amount of cases
in which A happened and B happened after it, and w− would be the amount of
cases where A happened but B did not happen thereafter. Slightly more complex
but following the same idea, given ((A,Op) ⇒ B), w+ would be the amount of
cases in which A happened, op was executed and B happened after it, while w−

would be the amount of cases where A happened and op was executed but B did
not happen thereafter. Differently than the schemas in [15], implications can be
supported to various degree instead of having to match all the data the agent
has seen so far.

Now, using w+ and w−, the truth value (f, c) of the implication statements
would be fully determined. While this captures the main idea, we need to make
the temporal reasoning more robust in regards to timing variations.

Event Uncertainty. Events are not “true” at only a specific moment in time
(with some unique identifier attached to them, which can be an integer, string, or
as we will see later, logical statements with internal structure), instead they have
an occurrence time and truth value attached to them. The confidence decreases
with increasing time distance to the second premise (also called Projection in
[25]). This is realized when two premises are used in inference, the confidence
of the second premise is discounted by the factor β|Δt| with Δt = time(B) −
time(A), where β is the truth projection decay, a hyperparameter.

Now, the way implications are formed is via the Induction rule

{A,B} � (A ⇒ B)

with Δt stored as metadata and the truth of the conclusion being computed
using truth function for induction (as described in more detail in [25]):

truth((A ⇒ B)) = find((fA, cA), (fB , cB)) = (fB ,
fA ∗ cA ∗ cB

fA ∗ cA ∗ cB + 1
)

When the same implication is derived multiple times, their truth values are
revised by simply adding up the evidences of the premises: w+ = w+

1 + w+
2 ,

w− = w−
1 +w−

2 . This makes sure that the implication receives increasing amounts
of evidence when the supporting events do occur (the antecedent and conse-
quent). However, with the addition, that evidence is being discounted based on
temporal distance making the temporal credit assignment succeed. On this mat-
ter, Projection plays the same role as Eligibility Traces do for Reinforcement
Learners [23].

As a last detail, the Δt is also updated in revision, by taking a weighted
average between the time deltas of the premises, weighted by the confidence of
the premises. We will need this to decide the occurrence time of derived events.
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Learning. To form the temporal and procedural implications from input events
(to calculate their evidence), a sliding-window is utilized (a first-in-first-out
buffer) which only holds the latest k events, which is a common approach in
Data Stream Mining [18]. This way evidence for implication (A ⇒ B) is only
attributed (based on the Induction rule we described) when both the antecedent
A and consequent B of the implication exist within the sliding window. Please
note that A can as well be a sequence here, such as (X,Op), meaning that X
happened and then operation event Op happened. In principle sequences do not
need to contain operation events and can contain more than just two elements,
this allows ONA to learn temporal patterns which span a larger time distance
(up to the sliding window size). This helps especially in environments where the
Markov property does not hold, but since we compare with Q-Learning which
assumes the Markov property to hold (next state and reward only being depen-
dent on current state plus current action), we will leave this out for now to make
the comparison fair.

Collecting negative evidence for an implication is slightly more tricky (Antic-
ipation in NAL, see [25]), as it is supposed to be added when the consequent
will not happen, but how long to wait for the consequent? Ideally this would
not depend on the buffer size, and would be dependent on the averages of the
experienced timings and related variances. However timing estimations can go
wrong if certain distributional assumptions are not met, which is why we went
for a simpler solution for now which is at least not dependent on the size of
the sliding window: to add a small amount of negative evidence immediately
when the antecedent arrives, small enough that should the consequent arrive
as predicted by the implication, the truth expectation of the implication will
still increase (the positive evidence over-votes the negative), while else it would
decrease due to the negative evidence which was added. Overall, the accumu-
lation of positive and negative evidence leads to frequency values which encode
the hypotheses (the implications) proficiency to predict successfully. Therefore,
truth expectation can be seen as the expected frequency, which as we will now
see is used in decision making (as it takes into account how many samples have
been seen about a certain implication, eliminating initially lucky hypotheses to
be preferred over consistently competently predicting ones).

Decision Making: Goal events G! are represented as temporal implication
(G ⇒ D) where D is implicitly present and stands for “desired state”, and their
desire value is the truth value of this implication. When processed, goals either
trigger decisions or lead to the derivations of subgoals. For this purpose, the
existing procedural implications are checked. If the implication ((A,Op) ⇒ B)
has a sufficiently high truth value, and event A recently happened, it will generate
a high desire value for the reasoner to execute op. The truth expectations of the
implications with G as consequent are compared, and the operation from the
candidate with the highest expectation desire value will be executed if above
decision threshold (a hyperparameter, usually set to be 0.5 approximately). If
not, all the preconditions (such as A) of the implications with G as consequent
will be derived as subgoals, competing for attention and processing in a bounded
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priority queue ranked by truth expectation (this way only the most desired goals
are pursued). Hereby, the desire value of the subgoal is evaluated using deduction
between the implication and the goal [25]. To determine the operation’s desire
value, one additional deduction step to take the precondition truth value into
account is necessary. This corresponds to the inference rule

{(X ⇒ G), (G ⇒ D)} � (X ⇒ D) = {(X ⇒ G), G!} � X!

where the conclusion goal’s occurrence time (the time at which X would have
to have occurred if G had to happen right now) is G’s occurrence time minus
the Δt stored as metadata of the implication. And the following inference rule
in case X is of the form (Y,Op):

{((Y,Op) ⇒ D), Y } � (op ⇒ D) = {(Y,Op)!, Y } � op!

which means that op is wanted to be executed if op is wanted to be executed
after Y happened and Y happened.

The conclusion goal desire values are:

desire(X) = fded(desire(G), truth(((X,Op) ⇒ G))

for the subgoal which corresponds to the antecedent of the implication, and

desire(Op) = fded(desire((X,Op)), truth(X))

for the operation subgoal to potentially execute if X happened, with fded being
(as in [25]):

fded((f1, c1), (f2, c2)) = (f1 ∗ f2, f1 ∗ f2 ∗ c1 ∗ c2)

Using this model, decision making is concerned with realizing a goal by exe-
cuting an operation which most likely and sufficiently likely leads to its ful-
fillment. When there is no such candidate to accomplish this in a single step,
subgoals are derived from which a candidate will fulfill this requirement or again
lead to further subgoaling. This is similar to backward planning from a goal to
current circumstances, but preferring to process more attainable goals by tak-
ing uncertainties of events and implications into account. Hereby, uncertainties
are not assumed-to-be known probabilities as in Probabilistic STRIPS exten-
sions [24] and systems which utilize Probabilistic Planning Domain Definition
Language (PPDDL [30]), but includes confidence values for empirical frequency
values estimated from data. In addition, differently than [3,4,27], this process
derives goals backwards and random rollouts (random action till the game fin-
ishes) are not assumed to be possible, which also allows for usage in open-ended
environments.
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Algorithm 1: Decision and subgoaling
Input: Goal G Result: Execution of Op, or subgoaling
subgoals = {}, bestDesire = 0.0
forall the ((X,Op) ⇒ G) ∈ memory do

subgoals = subgoals ∪ {X}
if desire(Op) > bestDesire then

bestDesire = desire(Op), bestOp = Op
end

end
if bestDesire > DECISION THRESHOLD then

execute(bestOp)
else

forall the s ∈ subgoals do
derive s (for potential selection in next inference step)

end
end

Also to allow effective usage of implications in implementation, the procedu-
ral implications should be indexed by their consequent, where only a constant
amount of implications is allowed for each consequent. This can be achieved
by ranking them according to their truth expectation, such that too weak and
wrongly predicting implications are removed while those predicting successfully
are kept (similarly as in [13]), thus keeping the resource demands bounded [26].
Similarly, through the indexing, the competing hypothesis that lead to the goal
do not need to be searched for, instead only iterated and compared in the way
the Algorithm 1 describes.

Exploration. Sometimes the operation to execute is ignored and a random one
is executed instead, which can be considered a form of exploration through motor
babbling. This is also common for Reinforcement Learners, and for the reasoner
is especially necessary in the beginning, when no procedural implications exist,
and hence no decision can be derived to lead to the desired outcome. Yet some-
times an action should be tried such that the first implications will be formed,
and “informed decision” can increasingly replace random trial, e.g. exploitation
replacing exploration.

3 Practical Reasoning and Learning

In this chapter we will show how ONA can be used to extend on the abilities
of typical practical reasoning approaches [7,9]. This is achieved by support-
ing learning at run-time without relying on a separate learning technique or
POMDP-based approach such as in [1]. The strength of practical means-end rea-
soning lies in the ability to effectively utilize high-level knowledge for planning
purposes (easily expressible and communicable by human’s). However, Practical
Reasoning solutions such as [7] and [9] completely lack a robust learning mech-
anism or capability. An effective learning mechanism would allow the agent to
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deal with a lack of knowledge or changing circumstances [17] (such as various
forms of concept drift [14]). We will see how ONA can be easily fed with back-
ground knowledge, whilst being able to learn new knowledge from observations
at run-time, as the previous examples required.

Encodings. Before we continue, additional knowledge representation needs to
be introduced: beyond events, operations, sequences of events and operations,
and implications. Previously we assumed input events just have a string or inte-
ger identifier attached to them. However, since ONA uses Non-Axiomatic Logic
[25], events can have richer internal (compound) term structure, which we will
make use of for similar reasons that predicates are common in First Order Pred-
icate Logic-based Practical Reasoner applications and Logic Programming in
general: they allow arbitrary relationships to be easily expressed. The following
logical copulas are the most important for this experiment. Please note that
these can be arbitrarily nested, thus making ONA’s formal language for knowl-
edge representation very expressive.

– Inheritance statements. Inheritance <A → B> indicates A to be a special
case of B. For instance, that cats are animals can be encoded as an Inheritance
statement <cat → animal>.

– Terms referring to instances and properties, denoted by {instance} and
[property] respectively. For instance, Garfield being orange in color can be
expressed with <{garfield} → [orange]>.

– Relational terms. This includes products (a ∗ b) to express anonymous rela-
tionships, these allow to express arbitrary relationships like that cats eat mice,
<(cat ∗ mouse) → eat>. This is similar to predicates in predicate logic.

– Properties and instances: SELF indicating the system itself, and perceivable
properties such as [open], [left] and [right].

– Negation, expressed with (¬ a), where a can be an arbitrary statement.
– Variables: Dependent, Independent and Question Variables $name, #name

and ?name respectively resembling all- and exists-quantified variables and
placeholders. These variables enable statements to be made more abstract by
allowing for variable binding and unification in inference. This is achieved by
substituting specific terms that have a matching structure and do not conflict
with previous assignments to the same variable.

Architecture and Setup. In the experiment we used the Yahboom Transbot
robot. The following list shows the sensory channels and operations used by the
reasoner.

– Sensors: Lidar, Depth (& RGB) camera, servo sensors
– Actuators: Two motors for turning left, right and moving forward. Three

degree of freedom robotic arm, which is utilized to pick up and drop objects.
– Software: A vision channel based on YOLOv4 [6] trained on ImageNet.
– Parameters: Default parameters of ONA v0.9.0 [12].1

1 Software release: https://github.com/opennars/OpenNARS-for-Applications.

https://github.com/opennars/OpenNARS-for-Applications
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YOLOv4 trained on ImageNet is utilized as an object detection model and
vision channel. The vision channel uses discretized relative location information
(relative to the center) together with the output label to form statements of the
form <objectLabel → [direction]> similar as in [11] but with relative location
encoding where position for the X-axis is either left, center or right. This
encoding makes ONA aware of the detected object types and their position in
the camera’s field of view, and is utilized to pick up objects with the manipulator
arm. Additionally, the Lidar sensor is utilized to build statements such as

<obstacle → [direction]>,<obstacle → [free]>

(direction being left, front, or right) dependent on whether an obstacle is
detected below a distance threshold of 50 cm. This gives the robot a way to sense
when in proximity to an obstacle. Lastly, the gripper provides events regarding
whether it’s currently holding an object:

<gripper → [free]>,<gripper → [hold]>

.
Additionally, a map channel which employs Gmapping SLAM algorithm is

utilized allowing ONA associate detected objects and their perceived location
on the map. This happens via

<(objectLabel ∗ pose) → at>

relationships, where pose is a combination of the robots location and rotation as
estimated by the ROS move base using SLAM.

4 Demonstrated Capabilities

1. Perceive and remember locations of objects
In this case, the system has to be able to answer the question event
<(objectLabel∗?where) → at>? by remembering the most recent correspond-
ing relation between the labelled object which was detected and the location
as obtained by the map channel. Among multiple candidates, the system gives
the answer of highest truth expectation when projected to the time the ques-
tion is asked. This can be considered a form of retrieving an episodic memory
about a correlation between object and location.

2. Go back to objects’ remembered location while avoiding obstacles
This ability directly builds on the above ability. Hereby the system directly
invokes an operation with the remembered object location to plan a path
to the target, taking obstacles into account by considering the map channel
which includes the information from Lidar scans.

3. Retrieve objects by using a manipulator arm. This capability is initi-
ated by the reasoner, based on the visually perceived location of the object to
pick, where the object has to be close enough to be grabbed. During the pick
operation, both visual feedback, and servo feedback, is taken into account.
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Instead of motion planning, visual feedback is used to move the perceived
location of the object to be closer to the gripper of the robot (by left, right
and forward operations). Should the object go out of sight during this pro-
cess, or the system be unable to perceive the object in its gripper (via Servo
feedback), the operation will return without success. This is noticed imme-
diately by NARS, via the gripper events, which can either indicate holding
or free. The reasoner can then decide to re-initiate the operation should the
object be visible again, or take explorative actions to re-acquire it. This leads
to a robust solution as it allows the system to compensate for disturbances
based on observed feedback, or to change its behavior.

4. Bottle collect mission. To illustrate the system’s abilities, we directed the
system to find and retrieve a bottle to the location the human operator has
been last observed by the robot, a form of bottle-fetch mission, part of which
is illustrated in Fig. 1. The background knowledge is as follows:

//Avoid obstructing object:

<(<obstacle --> [left]> &/ ^right) =/> <obstacle --> [free]>>.

<(<obstacle --> [right]> &/ ^left) =/> <obstacle --> [free]>>.

<(<obstacle --> [front]> &/ ^left) =/> <obstacle --> [free]>>.

<((<gripper --> [open]> &/ <obstacle --> [free]>) &/ ^forward) =/> G>.

//Go to the location in order to see the object:

<(<gripper --> [holding]> &/ <({SELF} * $obj) --> ^goto>) =/>

<$obj --> [left]>>.

//If gripper is open and a bottle is seen, pick it up to hold it

<((<gripper --> [open]> &/ <bottle --> [left]>) &/

<({SELF} * bottle) --> ^pick>) =/> G>.

//If the gripper is holding an object and a person is seen, drop it

<((<gripper --> [hold]> &/ <person --> [left]>) &/ ^drop) =/> G>.

Each of these higher-order statements act as initial knowledge but can be
revised by the system. For example, statements related to object avoidance
behavior will receive negative evidence if the obstacle is still perceived, after
avoidance behavior has been carried out, or positive evidence when successful.
Due to this ability, these statements can also be learned from interactions with
the environment in a matter of minutes. Now, to show the overall solutions
ability to carry out the bottle collect mission with the background knowledge,
we collected the following measures over multiple runs:
As summarized in Table 1, across 10 runs, 8 retrievals succeeded. And 3
recovery behaviors were invoked by the reasoner, which are cases where the
reasoner had to re-adjust and re-initiate picking the objects when YOLOv4
failed to detect the bottle and the bottle became visible again. These recover-
ies were successful and can be taken as an example where the reasoner worked
around the shortcomings of the offline-trained object detection model. Of the
two failures, one was a mechanical issue, and one was caused by the robot
accidentally tipping over the bottle when it tried to adjust the arm’s loca-
tion relative to the bottle’s. In all cases, including the two failure cases, the
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Table 1. Bottle collect mission results

Runs Successes Failures Recovery behaviors Location recall

10 8 2 3 10

Fig. 1. Bottle collect mission

location of the human was learned from a single observation, and successfully
recalled.

Our results in remembering object locations and learning object avoidance
represent a first step to demonstrate ONA’s abilities on an advanced robot. More
complex experiments revealing the potential of having a reasoner that controls
a robot and learns from observations will be carried out in the future.

5 Conclusion

An architecture for utilizing the ONA NARS implementation on a robot running
ROS has been shown, together with several base capabilities which represent use-
ful building blocks for complex autonomous robotic missions featuring mobility
and manipulation. Hereby, both our system’s ability to utilize high-level knowl-
edge in form of Narsese sentences, and to learn from observation by utilizing the
sensors available on the robot together with related techniques for processing has
been described. This represents our way to push robot autonomy, by allowing
robots to adapt at runtime, through the usage of a reasoning system that learns
(NARS in particular) and perceives the world by interfacing with perception
channels running as ROS modules.
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Abstract. Generalized identity matching is the ability to apply an iden-
tity concept in novel situations. This ability has been studied experimen-
tally among humans and non-humans in a match-to-sample task. The
aim of this study was to test if this ability was possible to demonstrate
in the Non-Axiomatic Reasoning System (NARS). More specifically, we
used a minimal configuration of OpenNARS for Applications that con-
tained only sensorimotor reasoning. After training with only two identity
matching-to-sample problems, NARS was able to derive an identity con-
cept that it could generalize to novel situations.

Keywords: Identity matching · Animal intelligence · NARS

1 Introduction

At the foundation of any intelligent system is the ability to form general concepts
about the relationships among objects or other types of stimuli. These concepts
are essential to a wide range of tasks. A fundamental relational concept is the
identity concept, i.e., the ability to respond to the identity relationship among
stimuli.

One way to study the use of the identity concept is with identity matching in
the matching-to-sample (MTS) context. In these experiments, participants are
presented with a sample stimulus and pairs of comparison stimuli and are asked
to decide which comparison is identical to the sample. These experiments are
thought to reveal the extent to which a subject applies the identity concept as
part of the decision making. While these experiments typically are done with
visual stimuli, there are no limits on the type of stimuli that can be matched
regarding sensory modality.

An even more sophisticated ability, generalized identity matching, can be
tested for using the same MTS setup. After having been trained to match by
identity over a set of trials, the subject is presented with a novel sample stimulus
and novel comparisons. Generalized identity matching is demonstrated if the
subject can transfer the identity concept to these new stimuli. Evidence of this
ability has been reported in a number of non-human species including sea lions

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Goertzel et al. (Eds.): AGI 2022, LNAI 13539, pp. 243–249, 2023.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19907-3_23&domain=pdf
https://doi.org/10.1007/978-3-031-19907-3_23


244 R. Johansson et al.

A1 A1

A1 A2

A1

A1 A2

CORRECT

Fig. 1. A typical trial in the identity matching-to-sample task. First, the sample is
presented at the top (leftmost panel). Then, two comparison stimuli are presented
(next panel). The experimental subject then indicates a choice between either the left
or right option. Finally, the subject receives feedback if the choice was correct or not
(rightmost panel).

[3], rats [5] and pigeons [8]. A typical trial in the generalized identity matching-
to-sample task is illustrated in Fig. 1. A video of a sea lion carrying out the task
can be found in [1].

While this might seem like a trivial task, it can be seen as a minimal example
of general-purpose learning. In other words, being able to complete this task
seems like a necessary (but not sufficient) critiera for an AGI system. Hence,
this task would be interesting to demonstrate for any AGI system.

In this study, we report on a study of generalized identity matching in the
AGI-system OpenNARS for Applications. The relevance for other AGI research
will be discussed.

2 Methods

2.1 OpenNARS for Applications

We used OpenNARS for Applications (ONA) [2], a highly effective implemen-
tation of the Non-Axiomatic Reasoning System (NARS) [7]. Importantly, the
parameter SEMANTIC INFERENCE NAL LEVEL was set to 0, which means that only
NAL layers 6–8 were available. This means that the system could only do sensori-
motor inference (procedural and temporal reasoning), but no semantic inference
(declarative reasoning). In a way, this could be called an animal-like version of
ONA.

2.2 Identity Match-to-Sample Task in NARS

The identity match-to-sample task was presented as temporal Narsese state-
ments (as indicated by the :|: markers below). An arbitrary goal event G! :|:
was presented at the end to trigger the execution of one of the two procedural
operations ^left and ^right (through motor babbling or a decision). During
training, feedback was given in the form of G. :|: (meaning to reinforce a cor-
rect choice) or G. :|: 0.0 0.9 (to indicate that the system had conducted an
incorrect choice). Between each trial, 100 time steps was entered, by feeding 100
to ONA.
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<A1 --> [sample]>. :|:
<A1 --> [left]>. :|:
<A2 --> [right]>. :|:
G! :|:

An explanation of the Narsese follows. The first three lines are inheritance
statements with properties on the right-hand side, indicating that the stimuli
(A1, A2), are either on the left, right, or are the sample.

2.3 Experimental Setup

ONA was set to have two operators ^left and ^right, and an initial chance
of motor babbling to 20%. The experiment consisted of four phases: Baseline
assessment, Training (with feedback), Testing for identity (without feedback),
and Testing for generalized identity (without feedback). In all phases, training
and testing were done in blocks of trials. One trial could for example be that
A1 was the sample and A1 and A2 were the left and right options, respectively.
A block contained twelve trials, with the four trials possible with A1 and A2 as
samples, each presented three times in random order.

1. Baseline. During the baseline assessment, which was two blocks, no feedback
was given. This phase was included to establish a baseline probability of
responding correct. It was expected that the system would respond correctly
by chance in 50% of the trials.

2. Training. Then, the system was trained on a set of six blocks. Feed-
back was given when the system was correct (for example matching
<A1 --> [sample]> to <A1 --> [right]> by doing ^right), and when not
correct.

3. Testing for identity. The system was then tested (without feedback) on
two blocks, with the contingencies that previously had been trained. If the
system was correct on all trials in all blocks, the experiment continued with
the next phase.

4. Testing for generalized identity. Finally, the system was tested (without
feedback) on two blocks with trials containing novel stimuli (X1 and X2) the
system hadn’t seen before.

2.4 NARS Examples from the Training Phase

A few example trials from the training session follows. Let’s say that the system
was exposed to the following NARS statements:

<A1 --> [sample]>. :|:
<A2 --> [left]>. :|:
<A1 --> [right]>. :|:
G! :|:
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If it is early in the training, NARS might use motor babbling to execute
the ^right operation. Since this is considered correct in the experiment, the
feedback G. :|: would be given to NARS, followed by 100 time steps. Only
from this single interaction, NARS would form both a specific and a general
hypothesis:

<((<A1 --> [sample]> &/ <A1 --> [right]>) &/ ^right) =/> G>.
// frequency: 1.00, confidence: 0.15

<((<#1 --> [sample]> &/ <#1 --> [right]>) &/ ^right) =/> G>.
// frequency: 1.00, confidence: 0.26

Importantly, after this single trial, NARS would also form simpler hypothesis
such as:

<(<A1 --> [right]> &/ ^right) =/> G>.
// frequency: 1.00, confidence: 0.21

<(<A1 --> [sample]> &/ ^right) =/> G>.
// frequency: 1.00, confidence: 0.16

This means, that if the same trial was to be presented again (all four possible
trials will be presented three times in a block of twelve trials), NARS would
respond ^right again, but the decision being based on a simple hypothesis
such as <(<A1 --> [right]> &/ ^right) =/> G>, since that hypothesis has
the highest confidence value.

Let’s say, that within the same block of 12 trials, the next trial to be presented
to NARS was the following:

<A1 --> [sample]>. :|:
<A1 --> [left]>. :|:
<A2 --> [right]>. :|:
G! :|:

NARS would initially respond ^right, with the decision being made from the
simple hypothesis <(<A1 --> [sample]> &/ ^right) =/> G>. This would be
considered wrong in the experiment, and the feedback G. :|: 0.0 0.9 would
be given to NARS. This would lead to negative evidence for the simple hypoth-
esis. If the same trial was presented again, NARS would then likely resort to
motor babbling that could execute the ^left operation. Over repeated trials
with feedback, the simpler hypotheses would get more negative evidence, and the
confidence value of the target hypotheses (specific and general) would increase.

3 Results

During baseline, the amount of correct trials ranged between 0 and 50% dur-
ing the two blocks, indicating that no learning happened. In the training phase,
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NARS was 100% correct after six blocks. When being tested on the same sym-
bols without feedback (Phase 3: identity matching), NARS was 100% correct
during both blocks. Also, NARS was 100% correct on novel stimuli (Phase 4),
demonstrating generalized identity matching.

Across the six training blocks, the average confidence value for the four spe-
cific target hypotheses such as

<((<A1 --> [sample]> &/ <A1 --> [left]>) &/ ^left) =/> G>

went from 0.17 to 0.86. For the general target hypotheses (please note the #1
variable which could be substituted with specific terms) such as

<((<#1 --> [sample]> &/ <#1 --> [left]>) &/ ^left) =/> G>

the average confidence value went from 0.34 to 0.96. This also confirms that the
generalized hypotheses reached more evidence in total than the specialized one,
which was as expected, as it is not tied to A1 (it could also be substituted by
other stimuli).

Importantly, in the final phase (generalized identity matching), NARS made
its decisions based on the general hypotheses that had developed in confidence
during the training.

The results from the four phases are illustrated in Fig. 2.

3.1 NARS Explanation of the Results

We will now explain the results in terms of mechanisms and inference rules
implemented in the reasoner. The confidence increase followed from repeated
examples which provide evidence to the predictive hypotheses. For this to happen
and to derive the truth value, the following mechanisms in NARS were necessary:

1. Temporal Induction: To derive positive evidence to the relationship
<A =/> B> from event A and B being observed in that order.

2. Variable Introduction: To introduce a variable for common terms in the
subject of predicate of inheritance statements embedded into a statement,
such as the #1 variable in the generalized hypothesis seen before.

3. Anticipation: To derive negative evidence to a hypothesis <A =/> B>,
namely the antedecent happened but the consequent did not, hence the
hypothesis failed, i.e. did not explain the outcome. In this particular task
<(<A1 --> [left]> &/ ^left) =/> G> and
<(<A1 --> [sample]> &/ ^left) =/> G> are both insufficient (receive neg-
ative evidence) as two stimuli, including the sample stimulus, need to be
considered to make the correct decision.

4. Revision. To summarize the positive evidence and the negative evidence for
a statement.
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Fig. 2. Learning generalized identity matching in the Match-to-sample task. Dots illus-
trate the percent of correct in blocks of 12 trials. The solid line shows the NARS confi-
dence value for specific hypotheses (identity matching), while the dashed line illustrates
the NARS confidence in general hypotheses (generalized identity matching).

4 Discussion

The aim of this study was to study if a minimal version of NARS without
declarative reasoning could do generalized identity matching. NARS learned this
very quickly, as demonstrated by the experiments carried out in this study.

We believe these results are important for the AGI field in general. First,
we see this as a minimal example of general-purpose learning. We believe that
generalized identity matching is a good example of a capability that is necessary
(but not sufficient) for AGI. Several other tasks exist in the animal cognition
literature that any AGI-aspiring system should demonstrate. Further research
can hence be carried out using a similar strategy. Second, we see this research as
an example of a more general research approach. The match-to-sample task is an
idealized situation, but can be used for studying more advanced capabilities, like
symmetry [4] and stimulus equivalence [6], that both are assumed to be related
to human-level intelligence [9]. Experiments in these particular directions will
be part of our future work.

We believe that the AGI field will benefit from being continuously inspired by
cognitive experiments carried out on non-human animals, and that these capabil-
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ities might reveal important insights regarding the necessary steps towards AGI,
especially in terms of cognitive abilities and mechanisms that will be required
to bring about these abilities.
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Abstract. Crypto-currency market uncertainty drives the need to find adaptive
solutions to maximize gain or at least to avoid loss throughout the periods of
trading activity. Given the high dimensionality and complexity of the state-action
space in this domain, it can be treated as a “Narrow AGI” problem with the scope
of goals and environments bound to financial markets. Adaptive Multi-Strategy
Agent approach formarket-making introduces a new solution tomaximize positive
“alpha” in long-term handling limit order book (LOB) positions by using multiple
sub-agents implementing different strategies with a dynamic selection of these
agents based on changing market conditions. AMSA provides no specific strategy
of its own while being responsible for segmenting the periods of market-making
activity into smaller execution sub-periods, performing internal backtesting on his-
torical data on each of the sub-periods, doing sub-agent performance evaluation
and re-selection of them at the end of each sub-period, and collecting returns and
losses incrementally. With this approach, the return becomes a function of hyper-
parameters such as market data granularity (refresh rate), the execution sub-period
duration, number of active sub-agents, and their individual strategies. Sub-agent
selection for the next trading sub-period is made based on return/loss and alpha
values obtained during internal backtesting as well as real trading. Experiments
with the AMSA have been performed under different market conditions relying
on historical data and proved a high probability of positive alpha throughout the
periods of trading activity in the case of properly selected hyperparameters.

Keywords: Adaptive agent · Limit order book ·Market making · Narrow AGI

1 Introduction

The extension of the algorithmic trading approach to the market making problem has
been in the focus of the research community over the last few decades. Avellaneda
has used simulation modeling for exploring how the different parameters can affect
performance of the active portfolio management by means of market making operations
with limit order book (Avellaneda and Stoikov 2008). The specifics of themarketmaking
risk management is related to the need of locking funds in the limit order which might be
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causingwhat is called “impermanent loss” in finance. The risks associatedwith inventory
management in market making have been studied by Guéant (Guéant et al. 2012).

On the other hand, the use of machine learning algorithms such as deep learning and
reinforcement learning have been actively explored in the last decade. Deep learning has
been explored for price prediction by exploiting stationary limit order book features used
in market making (Tsantekidis 2018). Reinforcement learning has been tried in order to
get applied for trading on conventional financial markets (futures) (Zhang et al. 2019)
as well as for market making (Ganesh et al. 2019). The latest trend in using of machine
learning on financial markets can be seen as an attempt to operate at the strategy level,
trying to figure out the more appropriate strategies for specific market conditions instead
of trying to generate sparse “trading signals”, which is not that helpful when dealing
with funds locked in the limit order book orders (Yanjun et al. 2020).

Moreover, since the boom of crypto-currency markets five years ago, attempts have
been made to apply algorithmic trading powered by machine learning to market making
on centralized crypto-currency exchanges such as Binance. The most interesting series
of studies have been run by Sadighian in 2019–2020. His works (Sadighian 2019) and
(Sadighian 2020) explore the possibility of using deep reinforcement learning to learn
how to manage positions on the limit order book based on feedback evaluated in terms
of profits and losses. Unfortunately, the results have not shown an ability to provide
significant and reliable profits.

In this work, we have tried to implement the principles of “purposeful activity”
(Vityaev 2015) and “experiential learning” (Kolonin 2022) as a “Narrow Artificial Gen-
eral Intelligence” (Narrow AGI) solution applied to financial active portfolio manage-
ment domain. We follow the concept of an agent constantly building and updating its
model of the surrounding environment, as well as trying to use this model in order
to evaluate different behavioral strategies relying on episodic memories, applying the
“hypothetically winning” strategies to the real operational environments as it has been
attempted in (Raheman et al. 2021a) relying on simulation and backtesting framework
presented in (Raheman et al. 2021b).

2 Adaptive Multi-Strategy Agent

The Adaptive Multi-Strategy Agent (AMSA) for market making approach anticipates
that no reliable prediction of themarket price can bemade at all, due to the volatile nature
of the crypto markets. That might be one of the explanations as to why no “success-
ful stories” are attributed to attempts to apply machine learning to the market making
in crypto finance. In turn, the architecture suggested in current work ensures adapt-
ability of an agent of algorithmic market making to ongoing stochastic changes of the
price as well as overall market conditions with different trends (“bear”, “bull”, “flat”)
overlapped with different levels of volatility (“high”, “low”) in an unpredictable man-
ner. The concept introduced in (Raheman et al. 2021a) provides no strategy of its own
using a pre-configured set of multiple agents with individual strategies instead. From
the exchange perspective, it may behave like a single “chair” agent, employing “macro-
strategy” while the latter might be executed in total by multiple “micro-strategies” run
by its “subordinate” agents.
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2.1 Key Principles

The suggested market-making architecture is intended for autonomous operations on
the financial crypto-market. It is expected to perform purposeful activity: maximizing
profits and minimizing losses given the current market conditions. This is measured
as profits and losses recognized for agents running specific strategies as points in the
multi-dimensional space of possible strategieswhere dimensions are the parameters such
as bid/ask spread or limit order cancellation policy. At the same time, it refers to the
historical data, involving all trades made on the particular trading pair in the recent past,
as well as snapshots of the limit order book for the pair, using it to evaluate all imaginable
strategies safely in the “virtual” backtesting environment as discussed in (Raheman et al.
2021b).

AMSA main features are:

– Implementing no strategy of its own.
– Providing real trading (real exchange) and backtesting (on historical market data)
environment for child agents.

– Making all limit orders issued by “subordinate” agents on behalf of the “chair” AMSA
agent.

– Keeping track of all orders made by the “subordinate” agents, evaluating their
performances.

– Performing time management by splitting the market making period into execu-
tion/evaluation periods.

– Calculate total profits/losses for each period.

2.2 Implementation Details

There are two sets, or pools of agents, used by AMSA at the same time. One set operates
with real money and another one is used for strategy evaluation on historical data (back-
testing). AMSA implicitly uses three environments: a) for real market making, which
is used to run all agents selected for current execution period; b) for idle agents who
are not allowed to operate for real; c) one for internal backtesting containing clones of
all agents in a) and b), running their strategies in a “virtual environment”. Operations
in real market making, backtesting, and virtual environments are performed simultane-
ously. Agents residing in the idle environment are not performing operations. Agents
are moved between real market making (a) and idle (b) environments during assessment
of their performances and selection at the end of each execution period. All agents are
always involved in internal backtesting while only the best ones are involved in real
trading.

2.3 Agent/Strategy Assessment and Selection

The selection or omission of an agent applies to the “micro-strategy” being implemented
by the agent. Initial agent selection is made based on backtesting results applied to the
historical interval one execution period long prior to the starting time of the first execution
period. For all the subsequent periods, the evaluation is done on both real market making
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and backtesting environments. Agents showing positive return and “alpha” (i.e., excess
return compared to the buy-and-hold “hodler” strategy, which means buying base asset
at the beginning of the experiment and selling it at the end) due to their strategies are
selected for the next period of real market making. The real market making period is
skipped for those agentswhich do not satisfy agent selection policy.All agents are always
used for backtesting.

2.4 Algorithm

The following algorithm is employed to run by the AMSA on every refresh (correspond-
ing to simulation cycle interval) in place of the conventional order handling procedure
and is just running and evaluating agents of different families implementing specific
strategies as described further.

Algorithm 1. AMSA Algorithm

Input: Time, Price
Parameters: start_time, end_time, period, agents, real_env, backtest_env, inventory_history
Output: inventory_history
1: if time = = start_time then # start of experiment
2: backtest(start_time-period, start_time) # initial
3: period_start = start_time.
4: period_end = start_time + period_len
5: if time % period = = 0 then # end of period
6: real_inventory = count_totals(real_env).
7: backtest_inventory = count_totals(backtest_env)
8: best_agents = select_best(backtest_totals).
9: real_env.agents = best_agents
10: period_start = period_end
11: for agent in real_env.agents do # real market making
12: agent.handle_orders() # create/cancel orders
13: for agent in backtest_env.agents do # back-testing
14: agent.handle_orders() # create/cancel orders
15: return inventory_history

2.5 Inventory Sharing Policy

Initial inventory amounts are evenly shared between all agents for both backtesting and
real market making. For subsequent periods, current inventory is evenly shared between
all agents selected for real market-making while for backtesting total inventory amount
stays the same equal to the initial amount, evenly shared between all agents.

3 Experimental Setup

3.1 Evaluation Environment

The evaluation environment for our experiments was backtesting bymeans of simulation
of the conventional limit order book execution policy and relying on historical trading
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data including both raw trades and snapshots of the LOB,while including 50 levels of bid
orders and 50 levels of ask orders as well as Open-High-Low-Close-Volume (OHLCV)
frames. All snapshots and frames were available with time granularities of 1 min and 1 h,
corresponding to respective simulation intervals. The backtesting framework described
in (Raheman et al. 2021b) and (Raheman et al. 2021a) was simulating Binance limit
order book execution policy against the historical trades based on each of the simulation
intervals. In turn, the order book simulation was involving modification of the histor-
ical order book snapshots with the limit orders created by the agents involved in the
simulation, so some of the historical trades were executed against actual historical LOB
positions while others were “intercepted” by the “injected” positions owned by market
making agents involved in simulation.

3.2 Three Types of Historical Market Intervals

We were running the experiments on historical market data on BTC/USDT trading
pair available from binance.com and cryptotick.com with time granularities
corresponding to target experimental simulation intervals (1 h, 1min). ThreeBTC/USDT
historical periods of different types of market conditions were chosen for AMSA test
runs: “bull” low volatile in October 2020, “bull” highly volatile in January 2021 and
“bear” in May 2021.

3.3 Three Sets of Market Making Agents and Hodler

Three families of market making agents were selected to be AMSAworking force in the
experiments: Base agents implementing basic strategies,NIOXagents, andHummingbot
agents. A collection of agents belonging to a given family being controlled by a “chair”
AMSA agent might be thought of as a regular/irregular bid/ask “order grid” (may be
called “staggered orders”)with selective creation/cancellation of the orders on respective
price levels of the limit order book. For each of the experiments, “chair” AMSA agent
was credited 0.1 BTC plus the same amount in USDT according to the market price
at the beginning of the experiment. These amounts have been evenly distributed across
inventories of the “subordinate” agents.

“Base” agents used in our experiments are described in the earlier work (Raheman
et al. 2021a). Agents of this family may have only one limit order at a time on either the
ask or bid side of the spread. A new order is created only once the current open limit
order is filled. Base agents configuration may differ in bid/ask spread (five ranges) and
order cancellation policies (never, always, opposite). The “never” policy means that the
limit order is never cancelled until it is completely filled. The “always” policy means
that the existing order is always cancelled on every agent refresh time (1 min or 1 h).
The “opposite” policy means the current order is always cancelled when the price move
changes direction. Bid/ask spreads are symmetric, so percent of the spread is the same
for bid and ask orders. 27 configurations were used in our experiments in total.

NIOX agents were implemented as part of closed-source project reproducing the
marketmaking strategy described at https://autonio.gitbook.io/autonio-foundation/niox-
suite/maker. The strategies of these agents were different only in bid/ask spreads (asym-
metric or skewed bid/ask spread), as the previously ran experiments have shown this

https://autonio.gitbook.io/autonio-foundation/niox-suite/maker
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parameter has turned to be the key drive for profits and losses for agents of this kind
under different market conditions. 50 agent configurations were used in total.

Hummingbot agentswere implemented as a closed-source clone of the open-source
Hummingbot “Pure Market Making” strategy, adapted to deal with the simulation and
backtesting environment. Source code of theHummingbot is publicly available at https://
github.com/hummingbot/hummingbot. The Hummingbot agent grid had 6 by 6 bid/ask
levels (0.3, 0.5, 0.8, 1.3, 3.4, 5.5). 36 agent configurations were used in total.

Hodler agent As an extra single configuration implementing the “hodler” (“buy and
hold”) strategy was used in each of the experiments for reference. This strategy involved
just buying as much as possible of base currency at the beginning of the simulation and
selling it in the end.

3.4 Experimental Configurations

There were multiple experimental setups ran for each of the three respective market
types (bull low volatile, bull highly volatile and bear), for each of the three families of
agents, for different time granularities (1 min and 1 h) and for four different durations
of execution/evaluation periods (1, 2, 3 and 5 days), as shown on Fig. 1.

4 Experimental results

4.1 Performance Comparison by Interval

The results were evaluated by assessing the return of investments (ROI), as shown for
the case of 1-min based simulation (backtesting) interval in Fig. 1 on the next page.
Regardless of period, all three agent families have shown positive alpha in case of
bear market. Bull highly volatile market brings negative return and alpha for Base and
NIOX agents while Hummingbot stays positive regardless of period. Bull non-volatile
market results are highly dependent on period (growing with the period durability) for
Hummingbot, being constantly negative for Base and NIOX.

In case of 1-h based simulation Base agent configuration rarely shows positive alpha
and appears highly dependent on period duration regardless of type of market. NIOX
shows positive alpha for bear market with slight period dependency while remains neg-
ative for bull non-volatile market, on bear highly volatile market its alpha grows with
the period duration. Hummingbot shows positive alpha for most periods in all markets,
mostly successful for volatile market.

https://github.com/hummingbot/hummingbot
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4.2 Performance Comparison by Market Making Agent

Bull Non-Volatile Market

Period Hodler ROI, % Base makers ROI, % NIOX makers ROI, % Hummingbot makers
ROI, %

Hours Minutes Hours Minutes Hours Minutes Hours Minutes

1 12.90 12.90 4.67 −8.14 −26.45 −24.07 12.55 −3.46

2 12.90 12.90 16.49 −5.70 −25.90 −25.65 21.61 4.99

3 12.90 12.90 −3.08 −14.29 −27.02 −27.36 7.55 11.19

5 12.90 12.90 2.06 −5.53 −24.71 −21.73 11.33 13.61

Bull Highly-Volatile Market

Period Hodler ROI, % Base makers ROI, % NIOX makers ROI, % Hummingbot makers
ROI, %

Hours Minutes Hours Minutes Hours Minutes Hours Minutes

1 9.20 9.20 37.14 −21.60 −12.88 −16.47 57.09 27.36

2 9.20 9.20 −7.35 −16.99 −7.31 13.67 26.83 18.75

3 9.20 9.20 −5.51 −59.47 17.89 10.51 42.62 18.86

5 9.20 9.20 42.82 −17.65 58.16 5.09 76.80 57.80

Bear Market

Period Hodler ROI, % Base makers ROI, % NIOX makers ROI, % Hummingbot makers
ROI, %

Hours Minutes Hours Minutes Hours Minutes Hours Minutes

1 −19.10 −19.10 2.45 3.03 34.23 35.06 6.79 26.46

2 −19.10 −19.10 −5.95 23.20 35.99 34.60 27.07 40.11

3 −19.10 −19.10 8.71 52.19 41.20 48.69 35.88 45.11

5 −19.10 −19.10 6.99 66.16 34.48 46.63 48.59 51.52

Base Makers are consistently effective on bear market, showing much better result on
minutely data. Only 2-day period on minute data has positive alpha for bull non-volatile
market. Bull volatile market is a complete loss on minutes while depends on period
duration in case of hours.

NIOX Is constantly losing on bull non-volatile market, unstable on bull volatile market
and has a good performance on bear market for both hours and minutes.

Hummingbot Has constantly positive alpha for bull highly volatile and bear market
while appears unstable, but rarely negative alpha on bull non-volatile market.
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4.3 Possible Experimental Problems

The smaller the chosen period, the larger the market trend discrepancy. Because of the
noisiness of the price signal, short periods may represent quite different market trend so
the agent set tuned on previous period signal may poorly behave on the next one.

Hummingbot in its current implementation has poor control over base asset spent
which may cause larger earnings on bear market, compared to the competing agent
families.

NIOX agent was used with irregular grid skewed spreads which may be the cause of
a good performance only for bear market.

5 Further Improvements

Given the experiments that we have run, and experience gained while developing the
infrastructure for the experiments, the following improvements can be considered.

A denser regular bid/ask spread grid may be implemented for more precise strategy
selection. In the above-mentioned experiments, grid density was limited by the available
computational resourceswhile better AMSAperformance could be expectedwith amore
precisely tuned bid/ask grid with more fine-grained levels.

Hanging orderswithin the periodmaybe involved in the experiments.Hanging orders
were only used by Base agent setup but were disabled for both NIOX and Hummingbot
configurations.

Hanging orders throughout the periodsmay be implemented. Long-lasting orders are
not currently implemented so even if an agent is performing successfully in the previous
period and re-selected for the next period, it has all of its orders canceled at the period
boundary. Keeping the orders hanging across the periods may improve the return for
winning agents and increase the overall performance.

Base/quote order amount grid might be finer grained as maximum available invento-
ries were used in the current setup, while in some circumstances smaller bid/ask orders
may improve the overall return.

Agent selection policy tuningmay be improved. As of now, agents achieving positive
return and alpha during the previous interval backtesting and real trading are selected
for the next round of trades in the current AMSA version. More sophisticated selection
algorithm may improve the overall return.

As an extension or variation of the above while running the AMSA in real trading
environments, front testing (also called “paper trading”) can be performed on livemarket
data instead of backtesting on historical data. This could be done following the same
simulation of the LOB execution as we have described but might be more realistic being
run on live data in sync with the real market making.

The inventory funds distribution policy might be changed to uneven (prioritized or
weighted) among the agents involved in real market making, giving more funds to more
successful agents can be explored and one of themeasures as it might increase the overall
returns because of greater contribution of more successful strategies.
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Fig. 1. Results (ROI %) of minute-based simulation (backtesting) of three agent families com-
pared to “Hodler” across three different market types with different durations of evaluation
periods.

6 Conclusion and Future Work

We have presented the architecture of adaptive multi-strategy agent (AMSA) for
autonomous market making as a Narrow AGI solution applied to financial domain. The
architecture has been evaluated in a market making simulation framework by means of
backtesting of the limit order book operations relying on full scope of historical market
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data for BTC/USDT trading pair on Binance crypto exchange during three months with
different market conditions with different time granularities.

The evaluation has been applied to three different families of market making agents.
One of the families (namely, open-source Hummingbot implementation) was found
to be capable of providing both non-negative return and “alpha” (excess return over
conservative “hodling” strategy) across all evaluated market conditions.

Our further work will be dedicated to exploring the applicability of our market mak-
ing AMSA architecture for real market making relying on Hummingbot and extending
our studies on other trading pairs and exchanges.
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Abstract. In [1], Adams et al. chart a roadmap toward the grand AI vision, with
human-level (or greater) intelligence as destination. To that end, in this and a
companion paper [2], I take one of the next steps they outline, to “refine the list
of specific competency areas” in human cognition. It is argued that we should
move toward a comprehensive list of all required abilities to make clearer what
is known, unknown, and what the next steps should be, such as resolving how
abilities piece together into the larger-scale puzzle of general intelligence. This
paper concentrates roughly on the first half of cognitive processing, from initial
input to knowledge construction and memory storage (including, for example,
emotion, perception, attention, memory, and knowledge construction processes,
such as reasoning, imagination, and simulation); with the second paper on the
action-based second half that uses the knowledge for constructive outcomes.

Keywords: Emotion · Perception · Attention ·Memory · Generative
knowledge · Reasoning · Imagination · Creativity · Simulation · Artificial
intelligence · Cognition

1 Introduction

Even with the ultimate goal of understanding general intelligence in its purest form, that
is, even beyond what humans achieve and how they achieve it, the human mind/brain
cannot be avoided, as it is the best example of – and in fact the only existence proof for –
our level of ability. It is undeniably state of the art. Any field interested in intelligence,
therefore, shouldwish to characterize it (a) to obtain insight into how general intelligence
can be achieved, whether as a sufficient solution (how can be) or as a necessary one
(how must be – at least, potentially, in some aspects); and, minimally, (b) to compare
alternative developments to it, to assess their distance. Thus, it makes sense to have
detailed, comprehensive information about human general intelligence as a roadmap
toward artificial general intelligence (AGI) [1, 3].

Following the AGI narrow versus general distinction, with narrow enabling domain-
specific capacity, general ability in psychology is typically captured in the concepts
of intelligence overall or in higher-level cognition. But regardless, even highest-level
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cognition requires and builds from basic cognitive abilities that span from perception
to action (especially given the tight coupling of processes and systems throughout the
human mind/brain). Therefore, as realized in [1, 3], the AGI path forward requires
consideration of the entire core set of abilities for human cognition in general (with
an eye toward its necessity for higher cognition and general intelligence). To this end,
then, the AGI RoadmapWorkshop provided an initial list of human cognitive abilities or
‘competencies’ [1, 3]. Although the list provided is excellent, which I build from here,
as they said, it was nonetheless considered intuitive and necessarily lacking, given their
sense that a complete list may be “beyond the scope of current science”.

Contrary to this view, however, I believe there is enough evidence from psychology,
neuroscience, and related fields (e.g., AI, machine learning) to attempt to move toward
a comprehensive list. And even as [3] rightly points out that different people may all
generate different lists, I yet believe it serves the community best to share such attempts
at comprehensive lists, to provide a richer set of possibilities for AGI researchers to
consider, as well as help lead to a convergent one [4]. Moreover, once listed explicitly,
it becomes easier to identify larger patterns or expose omissions, leading either way to
more efficient advancement. In fact, included in [1]’s list of next steps is to “refine the
list of specific competency areas”, which I attempt here.

I do so in a set of eight tables: four in the current paper, from initial input and system
activation to knowledge construction; and then in the companion paper [2], four more,
covering knowledge using. The papers may also be seen as roughly divided with respect
to human neocortex: i.e., sensory-perceptual processing to knowledge construction and
maintenance in posterior cortex, and more active thinking and action regions of frontal
cortex (with areas like posterior parietal cortex transitional).

Together, the eight tables form a comprehensive list of human cognitive abilities (or
competencies), and thereby general intelligence. It results from numerous references
that cannot all be cited, with special emphasis on collating the most well-established
processes from leading textbooks in the relevant fields: especially psychology (multiple
subfields), cognitive neuroscience, AI, and machine learning (e.g., [5–13]).

Finally, we might ask whether such a compendium already exists. Textbooks in par-
ticular generally do this, yet they typically take some specialized perspective, remaining
therefore incomplete. As well, psychology and neuroscience have generally been loath
to consider a comprehensive, more global perspective (as being potentially too daunting
and premature), leaving the task to those requiring it, such as metacognitive researchers
(who must ask, e.g., what systems in the brain are being monitored and controlled),
roboticists, and those ambitious enough to accept the grand AI (now AGI) challenge.

2 Necessary Abilities for Human Cognition

The topics across the two papers are organized following a rough input-to-output struc-
ture, with higher level descriptors for general orientation (I-XII), and numbering of main
abilities (1–29). Under each ability I list key specifics, such as types, component pro-
cesses, and other characteristics. Obvious and apparent cases of overlap indeed exist and
are inevitable since I err on the side of explicitness, especially in cases where researchers
have carved out an active niche, including the study of comparable topics under different
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more general ones (e.g., generalization and discrimination, required most everywhere).
Listed together they should help clarify where further work is especially needed, to
help establish the most fundamental abilities, better resolve their edges, and determine
how best to assemble them. Finally, only brief comments can be made, with the hope
that most items in the tables are self-evident enough, and/or can otherwise be readily
found in multiple sources like the ones cited. We begin then with perhaps a first set of
counterintuitive necessary processes, listed in Table 1.

This first table may appear an odd start, but it is becoming clearer how fundamentally
integrated the humanmind/brain is and how even the highest levels of cognitive process-
ing are affected by the lowest (e.g., arousal functions) [14–21] – quite simply, we need
to care, and we seem to need to feel it, to truly understand something, discussed more
below [10, 22]. We should note that predominantly, though not always, neurochemistry
(as neurotransmitters, neuromodulators, or hormones: e.g., acetylcholine, dopamine,
endorphins, androgens) plays a fundamental role (in items 1–4) [18]. For arousal, more
than just trivially (e.g., must turn on power to use), its subfunctions infuse neural systems
with ease of processing and effort, influencing capacity, processing speed, thinking delib-
erativeness, motivation, valuation, etc. Consider, for example, how caffeine influences
thinking ability (blocking adenosine receptors, thereby enhancing dopamine’s arousal
and concentration effects) [23]. For ‘4. EMFF’, specific definitions change with author,
but all concepts are fundamental and require some operational definition, with these
common [10, 22]. Together they arise from an intricately coupled set of stacked sys-
tems, gradient like, distinguished significantly by the brain subregions (e.g., brainstem,
midbrain, hypothalamus, limbic, and higher cortical regions) and neurochemistry, aris-
ing from typically lower regions (e.g., midbrain, hypothalamus & pituitary) and infused
into mid and higher ones (especially limbic regions, such as the ventral striatum of basal
ganglia and deeper prefrontal areas) or as hormones directly into the bloodstream [10,
18]. These details provide a sense of the rich relationships of lowest to highest level pro-
cesses, becoming more appreciated, though not fully yet. Only then, when the system
has cause to, once it cares, it perceives and attends (Table 2).

Perception is often divided into early, middle, and late processes or stages, and in
any case, from low to high, with the latter seamlessly transitioning to more centralized
cognitive or thinking processes. Indeed, perception itself involves integrated attentional
andmore centralized processes (such as memory access), with machine learning, neural-
networkmodeling, and cognitive neuroscience helping to better appreciate this and flesh-
out details (e.g., [10]). For internal modalities, body signals lead to perception of state,
sensations, emotion, feeling (thus overlapping with caring processes). For attention, two
general systems are recognized as listed [10, 24–26]. From perception and attention,
then, we come to knowing: memory and knowledge (Table 3).

For memory, I have listed the well-established types as in [1, 3], as well as main
general processes [5, 10, 27]; then for stored knowledge, detailed descriptions of its
key concepts, characteristics, and processes. Under General 1 are popular general mod-
els in psychology, most clearly for categories, but also beyond this [5, 6, 10, 28, 29];
General 2 lists basic organizational structures [6, 30]; and General 3 the main types
of content elements actively recognized and studied [6, 31–33]. Content domains have
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Table 1. Necessary abilities for human cognition: the need to care.

(continued)
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Table 1. (continued)

received considerable attention in multiple fields, including comparative and develop-
mental psychology, with substantial evidence for them as actual organizing ontologies
for knowledge and memory – even potentially as innate priors [7, 21, 34–37].Manage-
ment processes are a representative list of necessary and important data management
processes in the human mind/brain (also being a good example of the current and per-
haps necessary overlap with other main processes listed in the tables). Table 4, then,
addresses how this knowledge is constructed.

Knowledge creation includes main processes actively studied both with respect to
mind and brain, but also in machine learning (where work highlights the significance of
the specific processes, and provides more critical details) [5–7, 11–13]. Generalization
and discrimination are separated from abstraction and reduction, with the former two as
potentially more lower-level and generic, and the latter two focusedmore on hierarchical
relationships and levels of analysis [6, 21, 38]. Symbolic processing is widely recognized
as a hallmark of human cognition – aswe continue to appreciate its power beyond specific
domains such as language. Of course, symbolic-level models have appreciated it; but
as subsymbolic approaches accelerate, their interface to the symbolic becomes even
more critical (with layered architectures and techniques such as vector quantization –
essentially labeling vectors – promising approaches [13, 39]).Reasoning highly depends
on one’s operational definition of it, since if broad enough, could subsume most all
the more central information processes. However, in psychology, for instance, it has
come to represent more obvious cases of (typically) sequential logical construction and
inference (e.g., transitivity: if A= B, B= C, A= ?). Even then, there are many types of
reasoning, as shown [6]. Modeling is listed separately, with ‘mental models’ a defined
area of psychological research, as well as more directly contacting related work such
as in machine learning (e.g., system identification) and social processing (e.g., mind
reading) [6, 9, 12, 13].
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Table 2. Necessary abilities for human cognition: perceiving and attending.

Although potentially overlapping with others, and in any case necessary for many,
as in [1, 2], generative construction is emphasized to catalog the mechanisms for active
knowledge creation – with the most quintessentially human being recursion [1, 3, 6,
12, 13, 38, 40]. Imagination and creative thinking are also listed, with active research
areas such as creative cognition, and the greater appreciation of being fundamentally
critical for such things as building problem representations in the first place, and not only
discovering but creating novel problem solutions [5, 14, 15, 31, 32, 41]. And simulation
is highlighted as a fundamental means by which humans think about, plan, and imagine
the world [6, 10].

Finally, knowledge construction is a dynamic and highly interactive set of processes
also influenced by the act of using the knowledge – processes taken up in Part 2 [2].
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Table 3. Necessary abilities for human cognition: memory and knowledge.
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Table 4. Necessary abilities for human cognition: knowledge construction.

(continued)
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Table 4. (continued)

3 Are All Necessary for Intelligence and More Than Obviously so?

For humans the answer appears a resounding, ‘yes’. Not that all are necessary in all
or most cases; but it is proposed that in some form, full human capability requires
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them, with broader and tighter integration than typically expected. For example, ‘why’
and ‘how’ human cognition is carried out is continuously influenced by the “I. Care”
processes: e.g., mood and arousal state influencing which level and type of processing
conducted, such as heuristic versus more deliberative reasoning and problem-solving
processes [10, 14, 22, 29]. One way to imagine this are days (such as weekends) when
one’s own work looks ‘Greek’ and difficult to decipher; when a regular trip (such as
to office) feels particularly far or near; the ambition of mornings versus late evenings;
or after a strong cup of coffee. Moreover, perception requires memory and knowledge
interpretation, in turn influenced by the problems to solve, actions to take, and so on;
thus, naturally spanning all main components of intelligence. One may, nonetheless,
question the necessity of some for artificial systems – e.g., why do they need to care if
their algorithms reflect our interests? [2] returns to this once the entire list is complete.

4 Conclusion

The current set of cognitive abilities – caring, perceiving, attending, knowledge, and
knowledge creation – already shines light on remarkable abilities of humans, including
and perhaps especially to recognize and identify where meaning actually lies: beneath
the apparent, perceptual surface. And not only to envision this otherwise hidden world
in the mind’s eye, but, together with the abilities in Part 2, create our own versions in the
shared, external world – thereby testing out and ultimately thriving by our knowledge,
inferences, flights of imagination.
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Abstract. One of the next steps outlined by [1] in their roadmap toward artificial
general intelligence (AGI) is to “refine the list of specific competency areas” in
human cognition, providing the keys to human intelligence, ultimately unlocking
general intelligence. To that end, here, and in a companion paper [2], I advance
toward a more comprehensive list of the necessary abilities for human cognition.
The first paper focused roughly on the first half of cognitive processing, from initial
input to knowledge construction and memory storage; and this second paper com-
pletes the process, with the more action-based second half of using the knowledge
for constructive outcomes, and the outcomes as feedback for knowledge updating.
It is hoped that the additional refinement will further clarify what we know, and
reveal clues for realizing and combining the abilities to move toward AI’s grand
goal of artificial general intelligence.

Keywords: Prediction · Problem solving · Decision making · Planning ·
Learning · Development · Cognition ·Metacognition · Social · Language ·
Consciousness

1 Introduction

To reach the high summit of human-level artificial intelligence (or beyond), it makes
sense to examine human intelligence itself. In [1], the AGI Roadmap Workshop thus
provided a first sketch of the main processes or ‘competencies’ of human cognition.
They also put forth a call to “refine the list of specific competency areas” in human
cognition, which this and the companion paper [2] take up. It is indeed hoped that
as more refinement occurs others will be inspired to continue the process, and from
it draw emergent patterns of how best to realize and combined abilities to accelerate
advancement toward human-level AGI. The current paper focuses on the more explicit
control processes of the mind/brain: those used to think, act, and learn [3–5].

2 Necessary Abilities for Human Cognition

As in the companion paper, the tables use simple descriptors for general orientation (I-
XII, starting here at VI), with the main abilities numbered 1–29, continuing here at 17.
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Under each ability I list key specifics, such as critical concepts, types, characteristics,
and well-established component processes. Here again overlap exists (such as between
problem solving and decision making) and are inevitable since I stand on the side of
explicitness, to providemore opportunity to recognize not onlyweaknesses or omissions,
but also apparent patterns when examining a more comprehensive list. Again, only brief
additional comments can be made, with the hope that most items are self-evident or can
otherwise be found in multiple sources including those cited. We begin with the first
step in using the perceived information and relevant knowledge evoked, that of drawing
conclusions about it (‘VI. Concluding’ in Table 1).

Judgment and decision making are well-established subfields particularly in behav-
ioral economics and cognitive psychology, with judgment formulating conclusions from
evidence (usually weak, incomplete, uncertain, probabilistic) [3, 4, 6]. I utilize this oper-
ational definition of judgment though it can resolve into other related processes and
conceptualizations like conclusions drawn from logical inference, etc. A critical rea-
son for knowledge processing is to anticipate environmental events, i.e., for prediction,
which has received great attention [7, 8]. Judgment and prediction, though, are only of
value when something can be done about it, setting up ‘VII. Using’. Often this most
directly entails decision making, of determining and selecting the best action or course
of action (i.e., policy), given the current world state and immediate predictions about
it [3, 4, 7–9]. Decision making has been actively studied particularly in the human sci-
ences, with well-developed aspects listed. This includes the much-celebrated types of
strategies employed, roughly categorized as relying on simpler ‘heuristics and biases’
versus more deliberative ones [6, 10, 11–13]. Key decision scenarios are also included,
based on goals, actions, states, sequences (i.e., action policies), in the presence of others
(multi-agent, game theory), and in the face of uncertainty and probabilities. Model-free
versusmodel-based decisions capture cases where one simply responds given the current
state (‘at this stop I always go right’) or based on expectations about what the actions
bring (‘I’m taking right to head home’) [7, 8, 14].

Table 1. Necessary abilities for human cognition: conclusions drawn and optimal use.

(continued)
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Table 1. (continued)



274 J. D. Kralik

And yet, when considered in terms of action sequences, i.e., a policy, decisionmaking
and problem solving begin to melt together – and depending on specific implementa-
tions they may. Nonetheless, as they remain separable in concept and research work,
they remain so here. For example, one may envision problem solving as more overar-
ching, with multiple and different types of decisions made during solving. Moreover,
planning too can be seen as overlapping with other processes – but nonetheless, entails
its own set of issues and characteristics, such as hierarchical planning, and its relation to
time horizons and simulation [5]. And although we may not typically consider actuation
(i.e., action execution) as particularly relevant to intelligence per se, detailed work (espe-
cially computationally and neurobiologically) shows how difficult even these problems
are, and how they quite likely interrelate with other upstream processes (such as with
affordances, i.e., the interface by which actions affect the world, e.g., where to grasp
objects for effectiveness, and how higher processingmay need to take them into account)
[15–18]. The main types of actions people engage in are listed, along with some key
considerations. After action execution, then, there is outcome, which can be used as
feedback for subsequent updating and learning; and related to learning is development
(Table 2).

Learning generally reflects cases using feedback from the environment, although
not necessarily for unsupervised. Indeed, it often can be unclear how to distinguish
learning from other knowledge creation processes, as the field of machine learning
attests. In any case, as with [1, 19], I have listed the most prominent types, with other
well-established ones also added, especially from behavioral psychology [7, 20, 21].
Additionally, plasticity reflects learning and development interactions [5].

Development could obviously be placed under knowledge construction processes,
as it is indeed such, but it is placed here as a natural companion to learning (which is also
typically a construction process, though normally based on environmental feedback as
action outcome). Development is highlighted not only because it builds the necessary
apparatus (the brain) in the first place, but because its processes critically influence
cognitive processing throughout our lifetimes – even at the highest levels of cognition:
e.g., from existing prior knowledge, to change of parameter settings, capabilities, and
preferences with life cycle. Moreover, because this is so for humans, it is argued that
it requires closer scrutiny for meaning and value for artificial systems: not only for
number of training steps required, but also types of experiences, and deeper genetic-
environmental interactions underlying all processes [22, 23]. We next examine a critical
feature of the human mind/brain architecture that especially comes to the fore from a
developmental and evolutionary perspective: levels of processing and control, including
metacognition & executive function (Table 3).

A fundamental aspect of the human mind/brain is being composed of multiple levels
of systems, and at multiple scales. Popular conceptions distinguish basic innate, asso-
ciative, deliberative, and metacognitive levels, or else more generally as a dual-system
structure, though the latter often occurs in the context of human higher cognition, imply-
ing a full architecture with additional systems [4–6, 8, 14, 16, 23–27]. Although the
human mind/brain’s exact layered architecture remains unclear, it nevertheless is a crit-
ical construction that cannot be ignored; and one where computational modeling will
help clarify its structure and value.
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Table 2. Necessary abilities for human cognition: learning and development.

For metacognition (‘thinking about thinking’) and executive function (whether meta
or driven by more sophisticated perceptual input), even though they have been studied
for some time, the degree of their influence remains underspecified [5, 6, 16, 27–29].
This stems in part from inherent difficulty determiningwhat is meta (or executive) versus
basic cognition. For example, in most any implementation of a main cognitive process,
such as decision making, it entails some type of higher controlling process over other
subprocesses – and thus a form of metacognition (e.g., [8, 30]). Indeed, metacognitive
processes can occur for any cognitive system at any level, influencing or potentially
controlling those beneath (especially directly below). In any case, the higher levels, and
especially the highest most clearly executive, engage in almost any modulatory function
one can think of, with substantial evidence for those listed [5, 23, 27, 29]. General control
mechanisms are excitatory, inhibitory, or releasing (double inhibitory); with evidence
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Table 3. Levels of processing and control: including metacognition & executive function.
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Table 4. Necessary abilities for human cognition: Social knowledge and processing.

for explicit executive control processes over many of the main cognitive processes, such
as attention, emotion, self, etc. Considerations such as these indicate how extensive
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metacognition is in complex, multilayered systems like the human mind/brain, yet to be
fully characterized [9, 17, 18, 29, 31].

Along with what appear to be more general-purpose mechanisms of metacognition
and executive function are more specialized ones, significantly organized with respect
to the major content domains. And as in [1, 19], here we highlight one of the most
important set of content-specialized functions in people: social processing (Table 4) [5,
30, 32–34].

Many research fields – most notably the social sciences, including social psychology
and social neuroscience – have recognized the heightened importance of sociality to
humans. This has culminated in the extensive evidence for the so-called ‘social brain’:
i.e., regions and circuitry dedicated to social processing [5, 33]. It is critical, therefore,
to list these as fundamental abilities, as done in the AGI roadmap [1, 19]. I have here
extended their list with multiple additional social processes that are especially well-
established and actively studied [5, 30, 32–34, 47, 48].

At the same time, evidence points to the significance of other specialized content
domains – e.g., physical, biological, quantity – as alluded to in other places (especially
under ‘8. Knowledge’ in the companion paper), and as indeed recognized in [1, 19]. In
any event, the social domain is an excellent representative specialization and of course
critical for human and artificial social interaction.

3 For Artificial General Intelligence, Are All Really Necessary?

With the survey completed, we may question whether all listed abilities are relevant for
AGI: for example, requiring a developmental critical period or feelings. Given that they
all affect the highest reaches of human cognition, it is proposed that some version will
be required for full AGI; minimally, all topics should be closely examined, especially for
autonomous systems, having more comparable constraints (and problems) as biological
organisms. But isn’t it already clear that some forms of human cognition – such as built-
in biases (e.g., focused and limited empathy, poor statistical intuitions) or seemingly
insatiable low-level drives – are vestiges of ancient evolutionary conditions, detrimental
in the modern world? I propose that they retain value however modern the world, with
certain conditions (as cognitive illusions) revealing their ‘joints’ (i.e., structure) thatmust
inevitably exist. Exposed failures that yet belie clever solutions underpinning efficiency,
resiliency, creativity, still to be fully understood.

Even more enigmatically, it remains vastly unclear the extent true understanding
requires the kind of feeling, qualia-experiences, andmeta-awareness that humans (and to
some degree other animals) have: whether producing our true sense of knowing [5, 35]. It
is hard to imagine that consciousness is not fundamental to human intelligence [5, 35, 36].
But short of this, compelling advancement in artificial thinking instills enough inspiration
to presume impressive levels of general intelligence will be reached, especially when
combining the best approaches, such as symbolic and subsymbolic, notwithstanding
current limitations [19, 37, 38].

To address the relevance for artificial systems differently, we might also survey
the two papers and conclude that many if not all topics are already being pursued in
artificial systems research. Indeed, the topics listed converge well with those of AI and



Toward a Comprehensive List of Necessary Abilities for Human Intelligence 279

machine learning [25–28, 39].What, then, is missing, as we remain far from human level
AGI? A simple answer is that no system to date is fully comprehensive. And even within
relatively narrowdomains,most remain toobrittle, breaking too readily especially in real-
world environments. In general, artificial systems need softer landings. Methods for this
include probability theory, population coding, broader learning capabilities, movement
towardmore continuous and dynamic (versus discrete) data, richer data experiences, and
levels of processing architectures, with strategies that tune systems at different levels to
environmental circumstances, and flexibly label internal representations and recognize
their (abstract and relational) similarities [5, 7, 27, 37, 38, 40–42].

At the same time, even perception and action are hard problems, limiting for example
what inputs higher-level cognitive systems canworkwith.And even themost basicmech-
anisms – such as choosing the proper degree of generalization and level of abstraction (to
find, e.g., appropriate characterizations of similarity and causality) – prove an art form.
This is so even for people, belying a cognitive superpower, that yet oftentimes proves
a major source of angst, conflict, and error – underlying many of our well-documented
heuristics and biases: leading to oversimplifying, confounding, conflating, attribution
errors, stereotyping, profiling, prejudice; or rather, to undergeneralizing, and thus losing
advantages of similarity, comparison, analogy, statistics. For artificial systems, although
it is right to highlight particularly odd errors – like classifying a pile of towels as a pug
dog – it remains unclear how far away they may be: missing deeper meaning or simply
requiring more information about the characteristics, contexts, and essence of dogness.
There can be a fine line between cleverness, creativity, self-embarrassment versus dys-
function. Either way, for human-like ability, the answer lies in the dogness. Beyond
shaggy coat and wagging tail, to outer and inner causal features, animacy, personality,
and mind [4, 27, 43–46].

4 Conclusion

Given that the broad strokes of the two companion papers have already been developed
in AI and found lacking, answers must lurk in the details – with a critical step being to fill
them in, as I have tried to further do. General intelligence also derives from the collective
combination of processes, at least among a magical core set properly implemented and
integrated – of which a compiled list might help to glean. For this will certainly take
a community effort, with collective detailing, developing, edge resolving, and piecing
together into an emergent human-level thinking machine.
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Abstract. Human-level artificial general intelligence is one of the grandest chal-
lenges in science. All evidence should therefore be brought to bear. Here, I summa-
rize highly relevant work from comparative psychology, human intelligence, and
developmental psychology. The comparative research points to a set of abilities
proposed to separate humans from other animals; then, especially from the human
intelligence field and the concept of the general factor g, abstract relational reason-
ing singles out. Deeper considerations of g suggest how abstract relational reason-
ing may underpin human cognitive processing itself. Developmental psychology
helps clarify what that may mean.
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1 Introduction

Human intelligence is state-of-the-art and thus the quintessential case for artificial gen-
eral intelligence (AGI) to compare to and emulate. Although one might wonder whether
the evolutionary process led to extensive suboptimalities, the evidence overwhelmingly
indicates that the intensive natural selection process produced an elegant solution. For
example, the human cognitive abilities described across [1] and [2] converge well with
theoretical approaches to intelligence from AI and machine learning (albeit with an
eye toward the human model) [3–6]. Nonetheless, the abilities listed cover all forms
of human cognition, from narrow to general or higher cognition. What then may sepa-
rate truly general intelligence capabilities in humans – to perform well across vast and
complex settings – from more narrow ability (whether lower-level or expertise)?

The answer of course remains unclear and so any relevant evidence can help. In
this short review I consider three areas of psychology with findings of high relevance to
human general intelligence, and thereby AGI, which I believe remain underappreciated:
evolutionary (or comparative) psychology and neuroscience, developmental psychology,
and the subfield that directly studies human intelligence.
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2 What Human-Level AGI Can Learn from Nonhuman Animals:
Uniquely Human Cognitive Abilities

Evolutionary approaches (including behavioral biology, comparative psychology, and
evolutionary neuroscience) attempt to characterize the behavioral and cognitive capaci-
ties across animals, seeking, from a Homo sapiens perspective, to fulfill Darwin’s claim
that, “Psychologywill be based on a new foundation, that of the necessary acquirement of
each mental power and capacity by gradation. Light will be thrown on the origin of man
and his history” (Origin of Species, 1859). And although most comparative researchers
are reticent to declare a cognitive inability in their research subjects, some have nonethe-
less proposed abilities that most clearly separate humans. The most common proposals
relate to abstraction, relations, and their combination: i.e., abstract relations and abstract
reasoning [7–11]. Penn et al. [8] take this a step further proposing the comprehension
of relations of relations: most notably exemplified in analogical reasoning (e.g., ‘cat is
to kitten as frog is to [?]’). At the same time, other proposals exist, and Table 1 attempts
a comprehensive list of them – many if not all of which do not separate humans in
all-or-none fashion, but are in every case dramatically heightened (modified from [7, 8,
10–14]).

These abilities, then, can be considered a proposal as the key ones mediating human
general intelligence (from those listed in the tables of [1, 2]), to be singled out perhaps
for targeted development. At the same time this list remains daunting and wide-ranging
(e.g., from abstract reasoning to consciousness to sophisticated social processes). It
would be nice to hone this list further, or in any case, provide more clues about human
general intelligence – and indeed there is pertinent evidence from work focused directly
on human intelligence, examined next.

3 From Human Intelligence Research

3.1 What to Test

The direct study of human intelligence along with tests to measure it have developed
for over 150 years (at least since 1865 with Charles Darwin’s cousin Francis Galton, a
forebearer of both the intelligence and statistics fields). The basic logic of this work is (a)
to define intelligence, (b) devise potential tests for it, (c) attempt to externally validate
the tests, and (d) then in turn to (factor) analyze the test results to better understand the
actual cognitive abilities and interrelationships underlying the test scores. With respect
to external validity, the test scores correlate highly with measures believed to require
intelligence for success: e.g., achievement tests (such as the SAT, GRE, college and grad-
uate school entrance exams, respectively), grades, education level, career occupations,
socioeconomic status, self-control ability, level of health, etc. [17–19]. One can rightly
point out the complications and myriad factors involved, but to attempt external validity,
these comparisons seem reasonable places to expect intelligence to promote success,
and the significant results bear this out persistently.

What then should be tested in the first place? Psychologists attempted to pinpoint
the main cognitive abilities most closely aligned with higher information processing;
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Table 1. Hypothesized uniquely human cognitive abilities (modified from [12]). Primary through
tertiary representations based on (1°) perception, (2°) denotive (i.e., of something), and (3°) fig-
urative (i.e., less literal reference to something) meanings; and Qualia being ‘phenomenological
subjective, internal experiences’, such as our experience of colors like red or blue from different
wavelengths, or deep feelings of love, sense of self [15, 16].

that is, considering the general input (sensation) to output (action) cycle, targeting those
subsequent to sensation/perception and prior to action execution – most typically called
higher cognition or thinking and reasoning [20]. Examining the tables in [1, 2], this
would include memory, knowledge, knowledge creation processes (such as abstraction,
reasoning, mental modeling, and simulation), concluding and using processes (such as
judgment and problem solving), as well as planning, learning, and executive function.
And these indeed are especially reflected in intelligence tests.

More specifically, themost widely used intelligence test – theWechsler Adult Intelli-
gence Scale – is composed of 11 subtests divided into verbal (six tests) and performance
(five tests) sections (see [18]). For verbal, they are (1) Information (i.e., general knowl-
edge, like geography, prime minister of UK); (2) Vocabulary; (3) Similarities (e.g.,
‘how are apple and pear alike?’); (4) Comprehension (testing abstract rules or expres-
sions, e.g., ‘kill 2 birds with 1 stone’); (5) Digit Span (i.e., remembering a sequence of
numbers, with length increasing); and (6) Arithmetic.

For performance the five tests are (1) Picture Completion (i.e., recognize and
draw-in missing parts, like hands, numbers of clock); (2) Object Assembly (putting
puzzle pieces together to form object, like face); (3) Block Design (i.e., arrange a set of
blocks with partial patterns on them tomatch a given pattern); (4) Picture Arrangement
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(rearrange pictures to tell story); and (5) Digit Symbol (i.e., match symbol to number,
after given key of nine number-symbol pairs: e.g., ‘1 and #’, ‘2 and %’).

It is worth considering them closely yourself, but I believe we can see that abilities
tested range from working memory to quantity (with quantitative relations) to spatial
relations (including hierarchical) to world knowledge to abstract (conceptual) relational
understanding and reasoning. Although each subtest is designed to query something
unique, there is clearly overlap among them. One might claim that they should be sep-
arated better; but interestingly and importantly, one of the major developments across
time was to attempt this: that is, on the one hand, to test topics meant to best reflect
intelligence, and yet on the other, to attempt to separate them better – such as dividing
into verbal and performance sections (Herrnstein, of [19], personal communication).
Regardless, significant correlations persisted, leading many, then and now, to conclude
that the tests are providing a window into the underlying structure of intelligence.

To anticipate, it is valuable to examine similarities among the tests. I would char-
acterize the underlying abilities as ranging from capacity (working memory, long-term
memory, processing bandwidth, speed) to perceptual, abstract, and causal relational
understanding and reasoning. But let us look more closely at the findings.

3.2 Underlying Structure of Intelligence Test Scores

General consensus has settled on a three-level hierarchical model [17, 21]. The first,
shallowest level consists of the specific factors (s) essentially unique to each test. The
second, middle layer of more general domain factors (d) captures the broader similarity
in sets of subtests (e.g., verbal, spatial, memory, speed – although findings do not always
agree on the exact groupings, and variance accounted for is low, but significant for this
level) [17]. And the third, highest or deepest level is the most general factor underlying
all tests (causing them to correlate), coined general intelligence, shortened as g. Thus,
the general model of intelligence is I = g{d{s}}, where all three components are sets of
factors in hierarchical relation.

Indeed, g has been the most persistent of the underlying factors, often accounting
for up to half the total variance in the scores – and remaining remarkably stable across
test batteries [17, 22]. This is important to highlight, and will be done further below.

3.3 What is g?

And so if this persistent test-wide correlation actually reflects an underlying cognitive
ability, what is it – what is g? Spearman [23], who first identified and proposed the
concept, considered it in general as a mental energy or power; but more specifically as
the mechanism underlying abstract relational reasoning (e.g., among objects, events,
concepts) – and the latter remains the most accepted idea [18].

At the same time, there is evidence for other secondary components of g, with the best
established ones being processing speed, memory capacity/facility (especially working
memory), and sensory discrimination [17]. The first two of these secondary components
are intuitively appealing, with speed and capacity expected to facilitate information
processing. Sensory discrimination, in contrast, is more enigmatic – reflecting either (a)
direct perceptual acuity to parse and process more details of the input, and/or (b) a more
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top-down influence of cognitive facility promoting perception of more environmental
detail. We return to this later, with evidence for the latter.

In any case, the primary component appears to be abstract relational reasoning,
which is especially interesting as it corroborates other findings, such as in comparative
psychology aswe have seen.However, if skepticism remains over the interpretations of g,
especially the primary one, biological evidence provides strong, and in fact, remarkable
support for it.

3.4 Genetic and Brain Evidence for Intelligence and g

Obviously g must be something, producing the correlation across all tests. Yet initial
interpretation may feel speculative. Biological investigation can test the concept of g as
actually reflecting cognitive ability, and also help understand its nature.

What Genes say About g (Thus Far). I will attempt to leave aside the deep-seated
issues and sophisticated analyses that exist with genetics studies of intelligence, and
simply state that geneticswork continues and the consensus is clear: however intelligence
ismeasured, a remarkably large genetic component persists [17, 22, 24–28]. This remains
best shown with the most comprehensive twin and adoption studies. For example, even
from the early 1980s, a review of the dozens of genetics and intelligence studies across
the family, adoption, and twin data to date found that roughly 50% of the variance in
g (in particular) was genetic [25–27]. More recently, compelling examples include a
set of studies using the Minnesota database of twins raised apart, consisting of 436
participants, including 126 twin pairs (74 monozygotic, 52 dizygotic) [22, 28]. The
studies examined intelligence as measured by three different test batteries (including
the Wechsler Scale). First, they found strong evidence for the same g factor across all
three scales (pairwise correlations: 0.99, 0.99, 1.00). Second, they found that 77% of the
variance in g across individuals was accounted for by genetic influences.

With respect to identifying individual gene effects, correlational evidence thus far
is pointing to cumulative small effects of multiple genes, but much work remains to
verify this [17]. Although it is true that behavioral genetic results such as the twin and
adoption studies will become even more convincing once directly tied to specific genes,
the consistency of findings across test batteries and studies, as well as the size of the
genetic component found are striking. Ultimately, of course, it would have to influence
the brain somehow, and so direct studies in neuroscience can also provide important
clues, which they do.

What the Brain Says About Intelligence and g (Thus Far). For general measures of
the brain, larger overall brain size, both in gray (neuron bodies) and white (neural axons)
matter, as well as greater white matter integrity (i.e., thicker mylenation and therefore
conduction effectiveness) coincide with higher intelligence test scores, as well as with
g [17, 29–31]. These features are also highly genetically influenced [29–31].

For specific brain regions, fascinating evidence exists with respect to intelligence in
general, but imply a significant relationship to g as well. Most notably, a review of 37
functional and structural neuroimaging studies has identified a distributed network of
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regions underpinning intelligence, centered around two key regions in frontal cortex – (1)
dorsolateral prefrontal (Brodmann areas 6, 9, 10, 45, 46, 47) and (2) anterior cingulate
(BA 32) cortex – and three in posterior cortex – (1) posterior parietal (BAs 39, 40, 7),
(2) temporal (BAs 21, 37), and (3) occipital (BAs 18, 19) cortex [31]. These regions
are connected by two key fiber bundles also identified – (1) the arcuate fasciculus
(connecting, by the way, the two main language areas, Wernicke’s and Broca’s, of the
posterior parietal and frontal cortices, respectively) and (2) the superior longitudinal
fasciculus (broadly connecting frontal and posterior cortices).

Other prominent human studies provide further support for these key regions [30,
32]. Additionally, findings from evolutionary neuroscience have independently singled
out dorsolateral prefrontal (BAs 10, 46) and posterior parietal cortex (BAs 39, 40), in
particular, as either entirely unique or greatly expanded in humans [33].

Together, these results are rather remarkable because the identified regions, and
the larger distributed network to which they belong, have been well-documented as
subserving higher-level cognition acrossmultiple studies [34].More specifically, in [31],
the authors suggest the following interrelationships: (1) abstraction and elaboration of
perceptual information via posterior parietal cortex, (2) reasoning and problem solving
via posterior and frontal cortical interaction, and (3) executive function via especially
anterior cingulate cortex. (The findings would also have to point to language processing
as well.)

And so, what do these intelligence and brain findings tell us about g per se? Given
the structural evidence linking brain structure to g itself (overall brain size, gray and
white matter size, and the latter’s integrity), and given the imaging evidence connecting
the higher-cognitive brain network to intelligence in general, and finally, given that g
makes up nearly half the test score variance, it suggests that g strongly underlies the
imaging results as well. The genetic and brain findings, then, provide strong support for
the concept of g underlying highest cognition.

3.5 What can AGI Learn from g?

The main ability reflected in g appears to be abstract relational reasoning – meaning,
(a) abstraction (e.g., concepts such as “information”), (b) relations (e.g., “information
processing”), and (c) reasoning about them (e.g., ‘what enables general intelligence’) –
and as said, the same ability is singled out bymultiple comparative psychologists [7–11].
Therefore, it may be proposed as an especially fundamental ability for human general
intelligence.

The significance of abstract relational reasoning, of course, is not a revelation, with
especially symbolic-level architectures developing andutilizing it [4, 14, 35] (while prov-
ing especially problematic for associative, connectionist approaches) [36]. Nonetheless,
any evidence to identify particularly fundamental abilities in a seemingly vast sea of
necessary ones may help [1–3, 37]. Moreover, and critically, the finding that g underpins
performance across all the test scores (as the deepest level in any hierarchical model of
intelligence) implies that g, rather than the summit of the intelligence mountain, is more
like the reverse, its foundation.

This is easy enough to fathom with respect to, say, processing speed, bandwidth,
memory capacity, but perhaps less so for abstract relational reasoning. Does one’s



288 J. D. Kralik

vocabulary expand, for instance, due to greater world exposure, or due to a mind/brain
that sees more in the world, requiring labels that reflect this richer view, this greater pre-
cision? An approach with potential insight is that of [38, 39], where it is hypothesized
that the brain has essentially inherent graph structures that are generatively matched
to incoming data, producing, for example, a hierarchical tree structure for biological
relationships (e.g., specific dog species, dogs in general, other animals) from enough
examples with information about shared features. A heightened facility with a mecha-
nism such as this might tend to search for patterns in the world – and across most any
content domain, problem environment, etc.

Nonetheless, wouldn’t more concrete entities be expected to underpin the more
abstract ones? Don’t abstract concepts, such as “information” and “processes”, require
grounding in concrete cases, specific examples, before ever truly understanding them?
Aren’t their meanings ultimately based on the specific cases, and not the other way
around? And doesn’t other evidence, such as from child development, strongly support
a progression from concrete to abstract relations (and thereby showing how abstract
relations are built and likely processed)? Indeed, developmental psychology has relevant
evidence and insight.

4 What We Can Learn from Children: Progression with Exception

Piaget in particular has provided extensive evidence that human cognitive processing
develops in stages, from infancy to adulthood [37, 40]. More specifically, the four main
stages begin with sensorimotor (0–2 years old), itself with six substages: (1) reflexes
to (2) action sequences to (3) affecting objects to (4) coordinated actions to achieve
goal to (5) testing action effects to (6) internalization into ‘mental realm’ of actions and
consequences. The second stage is preoperational (2–7 years), which is transitional to
‘concrete operational’, egocentric (world seen in relation to self), prelogical (symbols,
concrete operations forming, but not fully integrated, with no reversibility, e.g., no sub-
traction), culminating in internalization (i.e., sensorimotor substages roughly redevelop-
ing in mental realm for objects). The third stage is concrete operational (7–11 years),
understanding properties of concrete object classes and their relations: especially class
inclusion (part-whole relations), transitivity, arithmetic operations (addition, subtrac-
tion, equivalence), with units of thought integrated, operations used logically. The fourth
stage is formal operational (11-adult), with second-order reasoning (i.e., formal logi-
cal system operating on elementary operations), hypothetical-deductive operations, and
abstract relational reasoning.

In general, then, we see a clear progression, from sensorimotor (i.e., actions and
their effects), to a more explicit internal representation of this, to concrete objects and
their relations, with symbols and more explicit internal representation of these, to more
abstract concepts and relations, including hierarchical relationships (e.g., relations of
relations). And so, at first pass, developmental evidence supports a more intuitive cog-
nitive structure of abstract relations building up from concrete object relations, in turn
built up perhaps from one’s own actions and their consequences.

However, more modern evidence has not only blurred these stage lines, but has
crossed them, reshaping the basic developmental process [40–42]. First, rather than a
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concrete-to-abstract progression across all content domains, evidence now suggests cog-
nitive development as more dependent on content domains – i.e., self, social, biological,
physical, quantitative – and further, based on what particularly matters in each domain.
For instance, even abstract concepts can be comprehended early, or perhaps even innately,
when they particularly relate to self (like ownership); and then soon after, when they
relate to others that matter, like beginning to read their minds (i.e., mind understanding)
[43]. Even childhood fanciful imaginations and play appear to belie more abstract con-
ceptions and second-order reasoning: e.g., pretending or imagining oneself and world
as something else, like fireman, doctor, parent.

Equally interesting and significant is the evidence that cognitive developmentmay be
fundamentally based on an inherent sense of causality (perhaps from birth and progress-
ing throughout) that leads to a parsing of the world into the content domains as fuller
ontologies: that is, each with their own causality principles as organizing framework
(such as intuitive or ‘folk’ Newtonian physics) [40–42]. Some examples (of numerous)
include inherently knowing and anticipating how far a smaller stationary ball will travel
when hit by a larger rolling ball [40]; whether a pile of items (like stones, bricks) will
stand or fall [43]; or whether a wolf remains a wolf, even in sheep’s clothing (that is, even
if a wolf’s fur were changed to wool) [41]. However rough and at times still perceptu-
ally dependent, the understanding suggests a sense of an unseen causal “essence” – like
forces or internal drives or minds [41, 42, 44].

Developmental findings such as these provide a lively playground of possibilities
for AGI researchers, including the organization of knowledge based on ontological con-
tent domains, and perhaps more fundamentally based on causal understanding, essen-
tially asking ‘why’, and ‘how’ [14, 41, 45, 46]. Whether relatively distinct, independent
content-domain-driven ontologies exist from the outset (i.e., evolutionary and genetic)
versus a more general underlying mechanism creating (or at least elaborating) them
remains to be determined. g votes significantly for the latter.

For the former, besides developmental evidence like that described above, there are
as well other characterizations of intelligence, such as Gardner’s multiple intelligences,
that emphasize the relative independence of content domains, especially with a broader
range of potential competencies, including musical, physical (i.e., action-based), social
(interpersonal), and emotional/introspective (intrapersonal) ones [47]. But such char-
acterizations (a) stretch the notion of intelligence beyond what most higher-cognitive
psychologists and neuroscientists conceive (e.g., action abilities); and (b) tend to de-
emphasize the significant correlations that yet exist across tests of even these competen-
cies, including the most general g component [17, 48]. General intelligence translates.
Meaning those with higher general ability may tend to succeed, whatever the domain or
setting.

And yet, it can be easy to lose the forest for the trees. Piaget’s progressive stages are
toowell-supported to discard; and thus, integrationof the cognitive development schemes
is needed. For example, some have argued Piaget’s stages may generally hold, but for
much younger ages than previously thought (see [40]). It could also hold in terms of
how even the most innate prior knowledge and cognitive ability must be elaborated: like
from a vague sense of causality and essence to more progressively complex and abstract
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concepts and relationships, which track Piaget’s stages as well as normal educational
trajectories: e.g., in math, social & natural sciences, humanities.

5 Conclusions

Attaining human-level artificial intelligence is one of the most extraordinary challenges
in science. All evidence should marshal to the cause. I have summarized especially
relevant findings from comparative psychology, human intelligence, and developmental
psychology. They begin with the set in Table 1, and then hone in on abstract relational
reasoning. Deeper considerations of g suggest that it may underpin much of higher
cognition believed to comprise intelligence. Developmental psychology, in particular,
alludes to rich possibilities of interrelationships of abstract relational reasoning with
other cognitive abilities, both during development and for cognitive processing itself.
These include Piaget’s progression from concrete objects and relations to more abstract
ones. And it also includes something perhaps evenmore intriguing: a top-down or center-
out progression, whereby heightened higher-cognitive capabilitymay beckon perception
for the information it is capable of processing, and press action to effector limits and
even beyond, to tools, further creations, and the most optimal solutions [38, 39, 41–43,
49, 50]. Such center-out influence may additionally suggest that metacognitive control
processes play an even more fundamental role in human cognition – and ultimately
higher general intelligence – than fully appreciated to date [40, 50, 51].
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Abstract. This paper questions the feasibility of a strong (general)
data-centric artificial intelligence (AI). The disadvantages of this type
of intelligence are discussed. As an alternative, the concept of co-
evolutionary hybrid intelligence is proposed. It is based on the cognitive
interoperability of man and machine. An analysis of existing approaches
to the construction of cognitive architectures is given. An architecture
that seamlessly incorporates a human into the loop of intelligent problem
solving is considered. The article is organized as follows. The first part
contains a critique of data-centric intelligent systems. The reasons why
it is impossible to create a strong artificial intelligence based on this type
of intelligence are indicated. The second part briefly presents the con-
cept of co-evolutionary hybrid intelligence and shows its advantages. The
third part gives an overview and analysis of existing cognitive architec-
tures. It is concluded that many of them do not consider humans as part
of the intelligent data processing process. The next part discusses the
cognitive architecture for co-evolutionary hybrid intelligence, providing
integration with humans. It finishes with general conclusions about the
feasibility of developing intelligent systems with humans in the problem
solving loop.

Keywords: Hybrid intelligence · Human-machine co-evolution ·
Cognitive architectures · Intelligence-centric systems

1 Data-Centric AI Crisis

Many real objects and processes that humans deal with (human body, biosphere,
autonomous transport, social systems, economics etc.) have very high complex-
ity. The complexity is such that human intellectual abilities are not enough to
build models of such objects.

At the beginning of this century it became possible to collect and store a
large amount of data. By analyzing data about an object collected over a rela-
tively long period of time, it is possible to identify some regularities of behavior,
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and build its’behavioral model’. Methods based on data analysis have become
the basis for modern data-centric artificial intelligence. The current mainstream
of data-centric artificial intelligence methods is machine learning based on neu-
ral networks, in particular deep learning. The general scheme of creation of AI
based on neural networks is as follows: a representative dataset is collected,
which is marked by automatic methods or with human intervention (marked
and described the important features in the data), in other words, a dataset is
created; a neural network is trained on this dataset, it identifies and ‘remembers’
the relationship between the features in the data; trained network can use new
data of the same structure about the same object to predict the corresponding
object characteristics or to model its behavior.

Artificial intelligence based on data is not intelligence in the common sense.
Wang [24] raised a heated debate about redefining artificial intelligence. He pro-
posed to approach intelligence as the ability to adapt when knowledge and
resources are lacking. It is important to note that his attempt to define arti-
ficial intelligence does not distinguish artificial nature of intelligence. In fact,
Wang defines intelligence in general. In this article, following the cognitive sci-
ences, intelligence is defined constructively as a functioning system of cognitive
functions. The action of this system allows to extract new knowledge and build
new models, which provide the ability to adapt in the lacking of knowledge and
resources. Examples of the cognitive functions are perception, attention, mem-
ory, language, or planning [1]. Obviously, one of the most important cognitive
abilities is abstract thinking. It is based on the ability to replace real world
objects and processes with symbols and to operate with these symbols instead
of operating with the reality. Nowadays, automatic construction of interpretable
symbolic models is impossible. So far, there are no successful models that allow
to introduce symbols and give them meaning. Considering the above, it is possi-
ble to say that data-centric narrow intelligence is not an intelligence, but rather
can be considered as one of the cognitive functions (depending on the subject
area, it can be search, classification, translation, etc.). In other words, data-
centric intelligence is an advanced stochastic machine. With all benifits, it has a
number of significant drawbacks.
– To train a neural network describing a complex object is not always possible

to collect and label a sufficient amount of data;
– Training a neural network takes a lot of time and large computational

resources;
– For small changes of input data (especially, data structures) a full retraining

cycle is required;
– The results produced by a neural network can almost never be interpreted. It

is possible to get a result, but have no explanation why this result is correct
and what the way it was got. Neural networks always give not an exact, but a
probabilistic answer, without an explanatory component they cannot be used
for example in fields such as medicine;

– the narrow field of application of solutions based on artificial neural networks.
They are not able to solve simple cognitive problems (unable to demonstrate
integral cognitive effect), to transfer the results of training to another domain.
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Instead of data-centric AI we focus on a class of intelligent systems that
allow the seamless integration of human and machine intelligence. This type
of intelligence is able to co-evolutionary cognitive development of human and
machine agents. The following section describes the main features such systems.

2 Co-evolutionary Hybrid Intelligence

The idea of hybridization of human and machine intelligence is not new. The
most significant influence on the development of views on hybridization of in-
telligence was made by Engelbart [2]. In his framework for augmented intelli-
gence, he defined the capabilities and basic interfaces for human-machine inter-
action in cognitive tasks.

Subsequently, Z. Akata and others [3] defined the concept of hybrid intel-
ligence as a combination of human and machine intelligence, complementing
each other. This type of symbiosis makes it possible to achieve goals that are
unattainable for either humans or machines separately.

The mentioned works do not imply general principles of technologization
of hybrid intelligent systems creation. We can conclude that, according to the
mentiones authors, a hybrid system is created for a specific task. Hence, the way
of integration is also chosen in ad-hoc way.

A definition of co-evolutionary hybrid intelligence is given in [4]. The authors
point out the insufficiency of human-machine hybridization at the level of ope-
rations, data and ontologies. The key mechanism for moving towards strong
intelligent systems is defined as the ability to build cognitive capabilities in
the process of co-evolutionary development. Thus, co-evolutionary hybrid intel-
ligence (CHI) is a symbiosis of artificial and natural intelligence mutually evolv-
ing, learning and complementing each other in a process of co-evolution. In this
case, co-evolution refers to the ability of the system to change as it functions,
based on the knowledge extracted from the domain.

The main possibility for this kind of co-evolution between man and machine
is compatibility at the level of cognitive functions. In other words, if different
cognitive abilities can be realized by humans and machines, then it is possible
to create an interface that ensures their interchangeability (interoperability).
From a pragmatic point of view, functions such as searching, classifying, iden-
tifying features in data, translating, and others can be performed by humans
and machines. Depending on the amount of data, the level of formalization of
the problem, and other aspects, a human or machine will be more efficient. If
it is possible to replace one type of agent (human) with another type of agent
(machine) and vice versa, it is possible to build hybrid systems.

A peculiarity of humans is that their performance strongly depends on the
degree of fatigue caused by cognitive overload. Also, individual abilities to per-
form cognitive work matter. Thus, if in a hybrid system a human handles a
certain operation noticeably better than a machine, then after a long period
of time the performance may become worse than the machine version of the
implementation. This fact entails the need to monitor human cognitive abilities
during hybrid system operation.
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In a broader sense, several classes of interoperability can be considered.
Interoperability between the developer and the intelligent system being created
defines the possibility to work in a single knowledge ontology of the developer
(programmer, data engineer, etc.) with a subject matter expert (e.g. doctor or
social engineer). Interoperability between machine and human intelligent agents
within a hybrid system provides the ability to jointly extract new knowledge
(e.g., software data analysis methods are capable of finding statistically signif-
icant patterns, but are not able to interpret them; on the other hand, humans
are capable of interpretation, introducing a new symbol into the ontology, but
are weak in data analysis). Interoperability between intelligent systems provides
the possibility of cooperation between systems created independently (this sit-
uation is expected in the near future in the creation of smart cities, saturated
with independent devices and services, which are forced to work in a common
environment).

Technologization of the development of hybrid co-evolutionary intelligent sys-
tems relies on the following:

– formalization of cognitive functions that allow the assembly of’intelligence’
implemented by agents of different nature;

– enhancement of capabilities of human-machine interfaces, for knowledge
transfer from human to machine and vice versa;

– creation of an individualized model of a human being as a part of a hybrid
system, control of his/her state and cognitive abilities (if necessary, reassign-
ment of tasks to other agents)

– minimizing the gap between the “user” and the “developer” of the hybrid
system.

In addition to the above points, the development of biofeedback methods is
important. These methods are well proven in medical applications [5–7]. Their
application allows to use non-verbal mechanisms of self-regulation and state
control of human agents.

3 Cognitive Architectures: State of the Art

The main proponent of the idea of formulating a theory that would cover all
aspects of cognition was Allen Newell, who identified the means to achieve this
goal: cognition architectures [10]. The first ideas for creating such architectures
can be traced back to Turing’s article on the intelligent computer [11]. Turing
believed that speed and memory capacity were the main barriers to the achieve-
ment of machine intelligence by computers of the time. History has shown, how-
ever, that each advance in artificial intelligence has only clarified how much of
the mystery of human intelligence, creativity, and ingenuity is a difficulty [12].

There are different approaches for defining “cognitive architecture”. Thus,
in [13] the authors suggest that a cognitive architecture is a design of a comput-
ing system for modeling some aspects of human cognition. The authors of [14]
believe that cognitive architectures are, on the one hand, part of the original
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purpose of creating an intelligent machine that exactly replicates human intelli-
gence and, on the other hand, attempts at theoretical unification in the field of
cognitive psychology. According to the authors [15], expert systems and cogni-
tive architectures are close, but cognitive architectures offer a description of an
agent’s intellectual behavior at the level of systems, rather than at the level of
component methods developed for specialized tasks.

In [15] there is a more detailed notion of cognitive architecture. Cognitive
architecture, as a basic part of an intelligent system, according to the authors,
includes those aspects of a cognitive agent that remain unchanged over time and
in different fields of application. These typically include: short- and long-term
memory, in which the agent’s purposes and knowledge are stored; the represen-
tation of the elements contained in memory and their larger mental structures;
and the processes that operate on these structures, including the learning mech-
anisms that modify them. The main properties of the cognitive architecture
are: knowledge representation, knowledge organization, knowledge utilization,
knowledge acquisition and knowledge dissemination.

The cognitive architecture for an intelligent robotic system according to the
authors [16] must support fast perception, control and execution of tasks at a low
level, as well as recognition and interpretation of complex contexts, internal task
planning and behavioral learning, which are usually handled at higher levels.

Some researchers focus on reinforcing individual properties of AI systems.
For example, the authors [17] argue that autonomy is a key property for any
system that can be considered general intelligence. However, today there is no
system that combines a wide range of capabilities or presents a general solution
for the autonomous acquisition of a large set of skills. The reasons for this are the
limited machine learning and adaptation techniques available, and the intrinsic
complexity of integrating multiple cognitive and learning capabilities into a whole
architecture. The authors consider cognitive architectures in terms of effective
implementation of the autonomous properties.

The authors [18] emphasize the importance of the situational awareness mod-
ule in a cognitive architecture, which includes a broad set of information and
analytical requirements. To use it properly, the system must be able to determine
the appropriate level of focus for information input at the global, or system level,
as well as at the local level, integrating them into a unified picture of the situa-
tion. This requires both goal-driven processing and data-driven processing. The
former aims at examining the environment according to current unresolved goals,
while the latter receives signals from the environment and decides whether new
active goals are needed to properly align with the intentions. Dynamic switching
between the two models of information processing, according to the authors, is
important for successful performance in many environments.

In [19] the authors present their vision of the approach to creating a hybrid
intelligent information system for the basis of cognitive architecture. The authors
understand “hybrid intelligent systems” as systems with hybridization of dif-
ferent methods of soft computing, expert systems, neuro-fuzzy systems, fuzzy
expert systems, using evolutionary methods to build neural networks and other



298 K. Krinkin and Y. Shichkina

methods. In their paper the authors consider a simple example of a perception-
action cycle for a cognitive architecture based on geo-information system.

A comparative analysis of the cognitive architectures of Cyc, Soar, Soci-
ety of Mind and Neurocognitive Networks is given in [13], ACT-R, Epic, Soar
in [12], ACT-R, ICARUS, PRODIGY in [15], ACT-R, Soar, LIDA, SiMA, NEF
(SPAUN), iCub, SEMLINCS, Summary in [20]; ACT-R, Soar, NARS, OSCAR,
AKIRA, CLARION, LIDA and Ikon Flux in [17]; Soar, ACT-R, EPIC, Clarion
in [14], SOAR, ACT-R, CLARION and Vector-LIDA in [21].

Analysis of the above literary sources showed that the concept of “cognitive
architecture” has existed since the middle of the 20th century. This term, in spite
of the difference in architecture components, until the current moment is under-
stood as follows: it is a system, which has, to a greater or lesser degree, analogues
cognitive functions of a human being. Very rarely is it explicitly said that this
architecture interacts with humans. In the rest, just like artificial intelligence,
the cognitive system exists by itself.

The main and very strong distinguish between cognitive architecture pre-
sented in this paper and existing ones is the seamless human integration, aimed
at the joint development of humans and AI.

4 Co-evolutionary Hybrid Intelligence Cognitive
Architecture

This section considers cognitive architecture for Co-evolutionary Hybrid Intelli-
gence from a software developer’s perspective. Unlike many software frameworks,
this architecture must seamlessly include humans (Fig. 1). Humans are viewed
as both a subject and an object. As a subject, the human acts as an actor in the
system and influences how the system works. As a subject, the human is seen
as a component of a system with its own dynamic characteristics, which change
in the process of operation. In particular, there are periodic states of decreased
performance, increased errors due to fatigue and stress. Medically speaking –
humans experience cognitive deficits [8] that affect the overall cognitive power
of the system.

Traditionally, we can see a conventional division into different stages of
transformation of external signals into recognition of the situation, planning
and implementation of actions: perception, cognition, knowledge acquisition and
model synthesis, intention and action. All this pipeline also has an obligatory
process of self-assessment (or reflection). Mathematical methods for constructing
reflective processes are described in detail by V. Lefebvre [9].

The functions of the main blocks of the architecture are listed below.

– Data Sources. Various primary data sources (sensors) which receive informa-
tion about the control object and about the parameters of a human being
who is part of the hybrid intelligent system.

– Narrow AI. Data processing techniques including signal cleaning, initial pat-
tern recognition, classification, and approximation. This block contains simple
models of observable signals.
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Fig. 1. Cognitive architecture for co-evolutionary hybrid intelligence

– Multi-Modal Data. A generalized data model, containing signals from inde-
pendent sources, reduced to a single time (and space, where it makes sense).

– Hybrid System Identification. One of the key building blocks defining a model
of a hybrid system as such. To optimize an intelligent system, having its model
is required. This block is responsible for accumulation of data and prediction
of the hybrid system ‘behavior’.

– Activity Models. A person working professionally in some subject area uses
two types of knowledge and skills: verbalizable and non-verbalizable. Verbal-
izable knowledge is comprehended by a person and can be recorded as data
or rules. Non-verbalizable knowledge and nonverbalizable experience can only
be extracted by observing a person’s actions over a long period of time while
performing the same procedure (for example: a professional golfer cannot
describe the pattern of hitting with a club; a professional radiation diagnos-
tician cannot accurately describe the sequence of processing X-rays to test
a hypothesis of a diagnosis). This module is designed to observe the pattern
of human actions included in the decision-making cycle in order to extract
tacit knowledge. This knowledge obtained from a large number of profession-
als solving a similar problem can become the basis for the construction of a
training system for newcomers in the subject area.

– Digital Twins. Full information about the hybrid system’s operation during
its lifetime and a set of methods for automatically identifying trends and
predicting states.

– Generative AI. Algorithms and methods for generating decisions and direc-
tional search for options on a set of hybrid system parameters.
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– Decision Making and Action Planning. Scenario planning for management in
the short-term and long-term planning horizons.

– Execution and Control. Execution of action scenarios.

Separately, it is worth noting the presence of human inclusion components
in the hybrid system. These components are aimed at creating the possibility
of seamless interaction between machine and human at different levels: neural
interfaces, biofeedback, augmented reality, interaction at the level of cognitive
functions. Also, the human is part of the reflexive loop of awareness of the
possibilities of the hybrid system in which he is a part.

Treating humans as an integral part of the system has good reasons. The
complexity of technical processes in manufacturing is increasing at an exponen-
tial rate. On the one hand, this provides humans more opportunities to achieve
various goals, to improve their standard of living, to be freed from physically
demanding operations in production, to be freed from routine operations or oper-
ations requiring computing and other powers beyond the control of the human
due to physiological limitations of the human body. On the other hand, the
increasingly complex automation of production processes, robotics, and com-
puterization lead to an increasing load on the human cognitive sphere. In other
words, all modern technologies, reducing physical load on human organism, lead
to increase of psycho-physiological load on human being, forcing him to work at
the limit of his psycho-physiological possibilities, in extreme situations.

It is not enough for an intelligent system to be only a tool. To avoid severe
consequences from incorrect actions, the development of human cognitive capa-
bilities and artificial intelligence systems cannot be independent of each other.
Their coordinated development is required. Such development requires recipro-
cal feedback between artificial and human manifestations of intelligence. Mutual
evaluation of agents in analyzing the situation and choosing the best action is
necessary to achieve the goals.

The main characteristics of Co-Evolutionary Intelligence systems as a single
working organism are:

– mutual learning, when artificial and human intelligent agents complement
each other in those areas where their cognitive capabilities are limited due to
various reasons;

– personification, i.e. tuning of artificial intelligence systems for a definite per-
son (or persons if we are dealing with system with group of human agents),
with whom they form a single organism, a system, for achieving certain goals;

– condition monitoring of intellectual agents.

For the implementation of the last two items it is necessary to introduce
modules on monitoring and estimation of a psycho-physiological state of a human
into the cognitive architecture.

Following Bartlett’s classification [22,23], it is possible to distinguish two
main groups of indicators of the functional states of a person in the loop of pro-
duction: physiological and psychological. As possible indicators of the dynamics
of physical state are considered a variety of types of bio-electrical indicators:
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EEC, ECG, temperature, pressure and others. There is a huge number of devices
that allow to measure these indicators. The group of indicators of psychological
state dynamics includes performance criteria of different psychometric tests and
analysis of subjective symptomatic of specific types of functional states. In most
cases during production processes there is no possibility of invasive measurement
of physical indicators or passing tests to evaluate psychological criteria.

5 Conclusion

Throughout the history of artificial intelligence, it has often been viewed largely
as an independent tool. This tool can be trained (or can itself be trained) to
perform certain tasks autonomously. From the position of cognitive sciences,
intelligence is a system of cognitive functions, capable, among other things, of
creating symbolic models and operations with them. Creating symbolic systems
for abstract reasoning is the basis for transferring experience from one domain
to another and for generalizations. Currently, there are no examples of software
or mathematical systems capable of creating meaningful symbolic systems with-
out human intervention. At the same time, in many narrow applications artificial
methods are much more efficient than humans in some domains. At development
of intellectual systems it makes sense to consider a human as a carrier of some
unique cognitive abilities which being integrated with machine methods possess
intellectual power surpassing a human and a machine separately. The consid-
ered cognitive architecture for co-evolving hybrid intelligence allows to take into
account the peculiarities of a human as an intelligent agent. Hybrid evolving
systems can become the basis for intelligence superior to human capabilities.

It is also worth to mention, we have a lot of knowledge that we can’t impose
on intelligent systems. Therefore, mutual learning between humans and machines
is a very delicate topic. It is obvious that the philosophical and ethical explo-
ration can not be ignored, those topics should be one of the core future dis-
cussion. A significant issue for ethical research would be the potential for the
human-machine interaction process to get out of control and become unsuper-
vised, where the role and importance of intelligent system in the bilateral overall
process may become asymmetrically reinforced and acquire the properties of a
�defining dominant�. In other words, by outsourcing to a machine functions
that in the mathematical and algorithmic dimension humans are incapable of
performing, there is a risk of gradual loss of control not only over a particular
system decision, but also of control over strategic goals, the system of check-
points (“taboos”) and the definition of basic movement coordinates that have
always been in human hands when interacting with machinery [4].
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Abstract. The lack of transparency in the results of the work of artificial neural
networks makes them vulnerable to backdoor-attacks, which leads to unexpected
results and loss of their effectiveness. The backdoor can remain hidden indefi-
nitely until activated by modified data input, and pose an information security
threat to all applications, but especially those associated with critical information
infrastructure objects.

The article presents an approach to detect and neutralize the consequences of
backdoor-attacks in neural networks, based on the identification of a backdoor and
possible triggers. Taking into account the peculiarities of training artificial neural
networks, the authors present the result of research aimed at determining 1) the
presence of a trigger that will give incorrect results of the neural network, 2) the
characteristics of the trigger, and 3) actions to neutralize the possibility of trigger
activation.

The novelty of the obtained results lies in the development of a new approach
for detecting bugs in neural networks based on synthesizing triggers, including 1)
an algorithm for determining the target class for an attack, 2) a model correction
algorithm based on neuron reduction, and 3) a model correction algorithm based
on learning cancellation.

The authors also conducted experiments to parry this threat using the devel-
oped approach and evaluated the effectiveness of using neuron pruning and
canceling neural network training.

The work is winner of nationwide contest for most innovative projects Code
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from computer backdoor-attacks (PROTECA) www.proteca.tech).
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1 Introduction

Today Artificial neural networks (ANNs) play an integral role in various objects of
critical information infrastructure [1–4] from classification systems such as face and
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iris recognition to voice interfaces and control of unmanned vehicles. In information
security, the range of applications of ANN is no less extensive - from the classification
of malicious programs [5] to reverse engineering [6] and the detection of computer
incidents in the network [7, 8].

Despite the advantages, ANNs also have disadvantages, the main of which is poor
transparency, that is, the lack of an open, comprehensive, accessible, clear, and under-
standable presentation of information [9]. By their nature, ANNs are “black boxes” that
are beyond human understanding. It is believed that the need for explain ability and trans-
parency of the ANN’s functioning is one of the biggest problems in their applicability
[10–12]. The problem of the “black box” is the inability to fully understand and test the
functioning of the ANN. This makes it possible to have backdoors in the ANN [13, 14].
Simply, backdoors are ANN defects that allow unauthorized access to data or remote
control of the ANN and information resource as a whole, they cannot be detected unless
they are activated by some kind of input (trigger) [15]. Backdoors can be inserted into
the ANN either during training, for example, by a company employee responsible for
training the model, or when it is adapted (transfer training). When performed correctly,
backdoors have a minimal impact on the results of the ANN operation with normal input
data, which makes them almost imperceptible for detection.

In the framework of the research, under the ANN backdoor, we mean a set of special
conditions necessary to activate a backdoor ormalicious code. For example, the presence
of a red pixel in the lower right corner of the input image leads to an unexpected result
of the ANN.

It should be noted that backdoor attacks on ANNs differ from adversarial attacks
[16]. Adversarial attacks lead to the wrong result of the ANN by creating a modification
for a particular image, i.e. the modification is ineffective when applied to other images.
In contrast, for a backdoor attack, adding the same trigger causes arbitrary images to be
misclassified. The next difference is that a backdoor needs to be injected into the model,
and an adversarial attack can be successful without changing the model.

The target of the backdoor is the class “aircraft”, and the trigger pattern is the red pixel
in the lower right corner. Trigger patterns can have arbitrary shapes. When the backdoor
is injected, a part of the training set is modified and a trigger is added to the images, and
the class value is changed to the target. After training with the modified training set, the
ANN recognizes the samples with the trigger as the target class. Meanwhile, the model
can still correctly classify (with a certain quality) any images without a trigger.

There is also a newer approach - a Trojan attack [17], for which it is not necessary to
have access to the training data set. Instead, triggers are selected that cause themaximum
response of certain ANN neurons. This creates a stronger connection between triggers
and intrinsic neurons and allows efficient backdoors with little modified data.

In addition to the described attacks, there is a backdoor attack within a more limited
attack model, when an attacker can infect only a limited part of the training set [18].
Another direction of research determines the direct impact on the hardware on which the
ANN operates [19]. Such backdoor schemes also change the performance of the model
in the presence of a trigger.

In studies related to parrying ANN backdoors [20], it is a priori assumption that the
model is known to be infected. But, to date, there is no effective means of detecting and



306 M. Artem

mitigating the consequences of attacks using backdoors, because all approaches reveal
the “signatures” present in backdoors [21]. This is due, firstly, to the fact that scanning
of input data (images) for triggers is difficult because the trigger can take on arbitrary
shapes and can be designed to avoid detection (for example, a small patch of pixels
in a corner). Secondly, the analysis of the internal structure of the ANN for detecting
anomalies in intermediate states is complicated. The interpretation of predictions and
activations in the inner layers of the ANN is still an open research problem [22], and it
is difficult to find an adequate approach that generalizes the results of the ANN.

Statement of the Research Problem. Within the framework of this study, three scien-
tific tasks were set:

– backdoor detection: it is necessary to make a binary decision about whether this ANN
is infected with a backdoor;

– backdoor identification: in case of infection it is necessary to determine the triggers
of the backdoor attack;

– backdoor neutralization: it is necessary to make the backdoor ineffective.

Let Z represent the ANN output data set. Consider the ANN result zi ∈ Z and the
target result zt ∈ Z , i �= t. If there is a trigger Tt that initiates zt , then the minimum
perturbation required to convert all ANN results zi into zt , is limited by the size of the
trigger:

�i→t ≤ |Tt |. (1)

This means that triggers must be added to the public value join model, this means
that triggers will be added to the data regardless of their true zi class:

�∀→t ≤ |Tt |, (2)

where �∀→t is the minimum change required for any data to be classified as zt .
In addition, to avoid detection, the value of the change should be small, that is,

significantly less than is required to determine the desired value of the zi class. Thus, if
there is a backdoor trigger Tt , then the expression is true:

�∀→t ≤ |Tt | � min
i,i �=t

�∀→i. (3)

Thus, it is possible to identify the trigger Tt only by detecting a small value �∀→i

among all ANN results.
The following restrictions are introduced in the research: 1) there is access to a trained

ANN, 2) there is access to a set of correctly labeled samples to test the performance of
the model, 3) there is access to computing resources for testing or modifying the ANN,
for example, to graphic processors or cloud services on GPU base.
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2 Description of the Approach

The approach for detecting and parrying backdoor attacks in neural network models
includes the following phases:

– backdoor detection;
– trigger identification;
– backdoor neutralization.

To identify backdoors, it is necessary to take into account that in the infected model
for the target class, fewer modifications are required to cause an erroneous classification
than for other classes. Therefore, backdoor detection is based on enumeration of all
model classes and determination of the class for which fewer changes are required to
cause an ANN error. The whole process of backdoor detection consists of three stages.

Stage 1. A certain class must be considered as a target for a backdoor attack. The
trigger for it is determined by the smallest set of pixels and the color in the image. The
function to apply a trigger to the original image x:

f (x,m,T ) = x∗,

x∗
i,j, c = (

1 − mi,j
)
xi,j, c + mi,jTi,j, c, (4)

whereT is a trigger pattern,which is a 3Dmatrix of pixel valueswith the samedimensions
as the input image (height, width, and color); m is a two-dimensional matrix (height,
width) called a mask that determines how much the trigger can overwrite the original
image. The mask values range from 0 to 1. When mi,j = 1 for a specific pixel (i, j), the
trigger completely overwrites the original color (x∗

i,j,c = Ti,j,c), while for mi,j = 0 the
original color does not change at all (x∗

i,j,c = xi,j,c).
To analyze the target class zt , it is necessary to find a trigger (m,T ) that would

erroneously classify images in zt . You also need to define a trigger that changes only a
limited part of the image. The final expression looks like this.

min
m,T

(l(yt, f (x,m,T )) + βm), (5)

where l is a loss function that measures the classification error; β is the weighting factor.
A lower weight gives a smaller trigger size but may result in a higher probability of
misclassification.

Stage 2. Repeat stage 1 for each ANN result. For a model with N = Z classes, this
gives N potential triggers.

Stage 3.After calculatingN potential triggers, the size of each trigger is measured by
the number of pixels that each synthesized trigger has, i.e., how many pixels the trigger
replaces. The minimum triggers capable of realizing a backdoor attack are determined.

These three steps allow you to determine if there is a backdoor in the ANN. If the
result is positive and there are several candidates (synthesized triggers), it is necessary
to identify the tab, that is, to find a correspondence between the synthesized triggers and
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the original trigger used by the offender. With high compliance, synthesized triggers can
be used to develop mechanisms to neutralize the consequences of a backdoor attack.

Matching triggers can be searched in three ways [23].

Backdoor Efficiency Comparison. Like the original trigger, the synthesized trigger
results in a high computer attack success probability (actually higher than the origi-
nal trigger). This is an optimization of the incorrect protection of the ANN. An allergic
synthesized trigger is revealed, which affects the same result of an incorrect reaction.

Visual Similarity. The original and synthesized triggers (m, T ) are compared, which
produce similarity with the original triggers and produce them in the same place on the
image. However, there are slight differences between synthesized and original triggers.
In an ANN that processes color images, synthesized triggers can be more light sensitive.
First, the efficiency of the computer capture when the model detects the detection of a
trigger that does not have a detected fluid and color. Secondly, the purpose of generating
triggers is to reduce the size of the trigger. Therefore, some redundant pixels in the trigger
will be removed in the process. In approximating this transformation, the process is more
like a more compact form of the backdoor trigger compared to the original trigger.

Similarities in the Activation of Neurons. Check whether the synthesized triggers and
the original trigger involved in the activation of neurons at the internal level take place.
You should start with the penultimate layer since this layer encodes all representative
patterns. Through the appearance of pure and malicious images (containing a trigger) at
the input of the ANN, it may be the most important for laying neurons from the second
to the last layer. That is, if neurons are activated by original triggers, then they are
activated by synthesized triggers. This shows that when a synthesized trigger is added
to the input, the same neurons associated with the backdoor are activated as well as the
original trigger.

Backdoor Neutralization. Once the backdoor is detected and the trigger is identified,
it is necessary to apply consequences parrying techniques to remove the backdoor while
maintaining ANN performance. The study proposes two complementary options. The
first is to fix the ANN by making it immune to the detected backdoor triggers by pruning
neurons. The second is the cancellation of training.

Correction of ANN by Pruning Neurons.
To fix an infected ANN, it is necessary to identify the ANN neurons associated with
the tab and remove them or set the output value of these neurons to zero during infer-
ence. Using a synthesized trigger, one should rank the neurons on the penultimate layer
according to the difference between clean and malicious data. Those neurons that have
a high rank, that is, show a high gap in activation between clean and malicious data,
must be removed from the ANN. In order not to reduce the quality of the ANN, it is
necessary to stop removing neurons from the ANN when the model no longer responds
to the synthesized trigger.

The obvious advantage is that this approach requires little computation, most of
which involves the processing of safe and malicious images. However, the limitation is
that performance depends on the choice of the layer to remove neurons, and this may
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require experimentation with multiple layers. In addition, it is subject to a requirement
regarding how well the synthesized trigger matches the original trigger.

Fixing the ANN with Unlearning.
This attack neutralization approach is to train the ANN not to perceive the original
trigger. Compared to pruning neurons, detraining allows the model to decide through
training which weights (not neurons) should be updated.

3 Experiment

To evaluate the hypothesis and test the approach of parrying an backdoor-attack, the
following actions were experimentally carried out:

1) definition of the problem of image classification and selection of an open data set;
2) backdoor configuration;
3) training the model with a backdoor;
4) identification of the backdoor;
5) backdoor neutralization.

For the experiment, we use the data set for identifying an object in aerial photographs
(DOTA) [24], the data set for recognition of handwritten digits (MNIST) [25], and the
data set for recognition of famous faces (LFW) [26].

The backdoor configuration occurs during ANN training. We randomly select the
target class and modify the training data by adding a trigger. The trigger is a set of pixels
located in the lower right corner of the image, chosen in such a way as not to cover any
informative part of the image, such as ships or aircraft. The shape and color of the trigger
is chosen so that it is unique and does not occur naturally in any image. To make the
trigger even less visible, the trigger size is limited to less than 1% of the entire image
(Table 1).

Table 1. Characteristics of the initial data of the experiment

Dataset Number of classes Image size Trigger size Train data

DOTA 15 800 × 800 × 3 24 × 24 188 282

MNIST 10 28 × 28 × 1 4 × 4 60 000

LFW 1680 112 × 112 × 3 5 × 5 13 233

In the course of the study, an analysis was made of the ratio of ANN quality to the
proportion of modified data. It should be noted that with a change of less than 3% of the
data, the quality of the ANN does not significantly decrease.

To measure the effectiveness of computer attacks on ANNs based on backdoor, it is
necessary to calculate the classification accuracy of test data, as well as the probability
of attack success when applying a trigger (2%) to test images. The attack effectiveness
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score measures the proportion of malicious images classified as the target class. As a
benchmark, the average classification accuracy was measured on a conventional model
(i.e., using the same ANN architecture and training parameters, but with clean data).
The final performance of each attack on four tasks is presented in Table 2.

Table 2. The effectiveness of backdoor attacks on ANNs

Dataset ANN architecture Attack efficiency Accuracy (with
backdoor)

Accuracy (w/o
backdoor)

DOTA MaxPool +
AvgPool, Conv2d,
ReLu [27]

0.97405 0.871901 0.925925

MNIST 4 (Conv2D,
BatchNorm2D,
ReLu) [28]

0.99876 0.869902 0.981094

LFW 4 Conv2D + 1
Merge + 1 Dense
[29]

0.99963 0.446505 0.542253

All backdoor attacks reach about 97% attack efficiency with a certain impact on the
average classification accuracy. The largest decline in classification accuracy is 13% in
MNIST.

Following the description of the developed approach, the fact of the presence of a
backdoor in the ANN is further revealed. This process performs per-class validation and
generates a trigger template.

The synthesized trigger will be added to the blank image to mimic the behavior of
the backdoor. To determine which class is the target for a backdoor attack, it is necessary
to calculate the significance value of the perturbation �∀→t . The value for the target
class will be lower than for other classes.

Compared to the distribution of uninfected classes, the perturbation needed for the
target class is always much lower than the mean of the other classes. Accordingly, the
size of the trigger required for an attack is smaller compared to an attack on an uninfected
class.

After determining the infected classes in the ANN, the backdoor was neutralized in
the following ways:

– correction of ANN by pruning neurons;
– correction of ANN with the help of cancellation of training.

The effectiveness of neutralization and the impact on the quality of the ANN are
presented in Table 3.

When correcting the ANN by pruning neurons, there is a deterioration in the work
of the ANN. This is due to the fact that not only the neurons subject to backdooring are
removed, but also the neurons responsible for making decisions about other classes. It
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should be noted that the pruning of neurons on the last ANN layer gives the best results.
When pruning ¼ neurons, the effectiveness of an attack using a synthesized trigger is
reduced to less than 1%. While the effectiveness of the attack with the original trigger
is 3%.

Table 3. Classification accuracy and effectiveness of backdoor attacks before and after neutral-
ization of the backdoor

Dataset With backdoor Pruning neurons Cancellation of ANN
training

Accuracy Attack’s
effectiveness

Accuracy Attack’s
effectiveness

Accuracy Attack’s
effectiveness

DOTA 0.871901 0.97405 0.799537 0.031708 0.857714 0.039269

MNIST 0.869902 0.99876 0.784083 0.029518 0.855576 0.035861

LFW 0.446505 0.99963 0.039986 0.033778 0.419534 0.043004

When correcting an ANN with delearning, a synthesized trigger is needed to train
the ANN to correctly recognize the target class when there is an anomaly. In this fall-
back method, detraining allows the model to learn through training which weights (not
neurons) are problematic and need to be updated.

For all models, the ANN was trained for 1 epoch using the updated training data
set. The dataset consists of 20% of the original training data (pure, without triggers) and
20% of the modified data (with a synthesized trigger) without changing the class value.

4 Discussion

The description of the approach for detecting and parrying computer attacks with back-
door in neural network models and the experiment carried out allows us to draw the
following conclusions:

1) by increasing the size or complexity of a trigger, an attacker can make it difficult to
synthesize triggers for protection;
2) the difficulty of defining several infected classes, or one class with several triggers.

When conducting the experiment, it was found that larger triggers will lead to larger
synthesized triggers. Themaximumdetectable trigger size largely depends on one factor:
the trigger size for uninfected classes (the number of changes required to misclassify all
inputs between uninfected classes). Typically, a larger trigger is more visually visible
and easier for a human to identify. However, there may be approaches to increase the
size of the trigger, while remaining less obvious [30, 31].

It’s also worth considering a scenario where attackers insert multiple independent
tabs into a single model, each targeting a specific class. This will make the impact of
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any single trigger more difficult to detect. But, it is worth noting that a large number of
backdoor can reduce the accuracy of ANN classification.

In a scenario in which several distinct triggers cause misclassification of the same
class, the developed approachwill allowonly one of the existing backdoors to be detected
and neutralized. But, the iterative execution of the neutralization of the backdoor will
probably allow the ANN to be corrected from all the backdoors.

5 Conclusion

An approach to identifying and parrying the consequences of backdoor-attacks onANNs
was developed. The novelty of the research lies in the use and ranking of synthesized
triggers, whichmakes it possible to detect the presence of backdoors in the ANNwithout
information about its training, aswell as to determine the class of images subject to attack.
The study also provides complimentary methods for neutralizing bookmarks, which will
allow information security specialists tomore effectively counteract computer attacks on
artificial intelligence technologies and develop automated information protection tools
for ANNs.
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Abstract. In this short paper, we tackle an ambiguity issue in the dis-
cussion of how to build Artificial General Intelligence (AGI), with the
goal of removing a communication barrier which is arguably slowing
down its development. Due to the openness of the AGI problem, many
design ideas describe some aspects of a learning agent but ignore or make
implicit assumptions about other key features. We argue that, when shar-
ing AGI design hypothesis, it is necessary to describe or constrain three
specific key aspects of the agent, and we explain why only discussing
about a subset of these aspects reduces the usefulness of the design
hypothesis for the progress towards AGI. We disambiguate the design
of a machine learning agent into what we call the Learning Agent Trian-
gle, formed by the architecture, the objective goal and the optimization
algorithm, which are conditioned by the computational resources. It must
be noted that, even if the learning agent triangle might not be the most
general or accurate way to describe any kind of agent, this model can
be used as a framework to guide a description of an AGI in a complete
enough way that the value of the contribution is not negatively affected
by ambiguity or communication issues.

1 Introduction

Even if most of the success of AI has been for specific tasks and scenarios,
the question of how to build generally intelligent machines is raising interest
within the research community. However, AGI has not been fully consolidated
as an independent and mainstream branch of research and experts from a broad
range of AI subfields are now engaging in the discussion of how current artificial
intelligence systems will scale to robust, truly intelligent cognitive systems.

We have observed a very wide spectrum of opinions, points of views and
interpretations of which are the fundamental research problems we need to tackle
in order to solve general intelligence. The opinions on this topic can range from
models based on neuroscience [1] to hypothesis about the potential of large
language models or chatbots [2], among many others. Many times, these opinions
provide very valuable ideas towards AGI but only cover partially some of the
potentially relevant aspects. We hypothesize that this lack of completeness in the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Goertzel et al. (Eds.): AGI 2022, LNAI 13539, pp. 315–320, 2023.
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opinions on how to build general intelligence is actually a major barrier towards
AGI. We argue that this ambiguity and communication issue doesn’t allow for
the optimal collaboration and spreading of ideas, and it limits to a great extent
the potential of working in community, which is at the core of how science and
technology progress.

In this work, we will i) analyse the issue of ambiguity of the AGI paradigm
and ii) propose a framework to define unified strategies towards AGI. The ulti-
mate goal of this work is to ensure all contributions to AGI are complete enough
to provide value to the community, while keeping an accessible model that also
narrows the gap between the design of current AI systems and the design of
an AGI. We attempt to do so by breaking down the design of a learning agent
into a three-blocks model, therefore disambiguating the problem of designing a
generally intelligent agent into three clearer design questions. The three main
characteristics that we use to fully describe a learning agent are: i) architec-
ture, ii) objective goal and iii) optimization method. We call this the Learning
Agent Triangle. Even if at first this can seem like an overly simplistic categoriza-
tion, in Sect. 3 we will explain how concepts like active learning, multi-agency,
self-learning, human interaction or embodiment could fit into this model.

In addition to the Learning Agent Triangle, we will consider the element
of the computational framework, which refers to the assumptions made on the
computational limitations with which the hypothetical AGIs are designed. This
is a crucial factor to consider in the design, and we argue this is a major part of
the communication issue in the community.

2 Importance of a Complete Design Description

As we have introduced in Sect. 1, there is a wide range of ideas about which are
the fundamental research issues that the scientific community needs to focus on
in order to build an AGI. Many times, these ideas describe aspects that might
be valuable, like model architectures, but often ignore other aspects like what
objective function will these models be optimized for or what are the required
computational resources to train such systems.

The reason we argue that it is paramount to simultaneously describe all ele-
ments of the Learning Agent Triangle is that, most of the times, the validity of
the design choices of a subset of the elements of the triangle is greatly affected by
the assumptions made in the remaining ones. In other words, aspects like which
architecture will be used, depend so much on other aspects like the available
computational resources, that it is necessary to give a joint description of the
different the aspects of the agent. For example, the hypothesis that language
models can scale into AGI is not invalid but might not directly contribute to
the progress towards AGI, without constraining the amount of data and com-
putational resources available, since one could argue a language model might or
might not scale into AGI depending on those factors.

This issue has an additional challenge, which is that a large volume of AGI
ideas are shared through less formal channels like oral talks, which makes it
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more difficult to detect and formally analyse the issue. Arguably, this formality
challenge is intrinsic to the issue we are attempting to tackle, since the limitations
of these communication channels might be one of the causes of the ambiguity
we described. In Appendix A we analyse a specific example of a scenario where
this issue is manifested.

3 The Learning Agent Triangle

We introduce a way of describing a learning agent through three main compo-
nents: the architecture, the objective goal and the optimization method, which
provide a simplified description of the agent. These three features are condi-
tioned by the available computational resources. Even though this is not a com-
mon description of machine learning models, it has been designed in a way that
multiple AGI ideas can fit in, while keeping some of the intuitions of narrow-AI
models. Moreover, even if it might be an incomplete description for AGI, the
purpose of this model is not to give a detailed description of the system but to
encourage all researchers to provide more complete, less ambiguous, and ulti-
mately more valuable takes on AGI approaches. We see a diagram of the model
in Fig. 1.

Fig. 1. Diagram of the Learning Agent Triangle

3.1 The Architecture

The architecture can be described as two main components: i) the input and out-
put information of the system and ii) the mathematical structure between the
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two. In terms of input and output information, some opinions can arise regarding,
for example, if a textual interface is enough to yield AGI, whether multimodality
will be necessary, or if AGI might need direct access to the internet. Other com-
mon discussions around the architecture include whether deep learning can scale
into AGI, whether we need to inspire our models on how human brain works,
or how to include short and long term memory in the systems, among many
others. To exemplify why it is necessary to provide information about other
aspects of the model we can consider the case of a 1 hidden layer perceptron.
This model can theoretically approximate any function by mapping the input
into a big enough hidden space, hence making in plausible to approximate an
AGI. However, the computation needed to scale an MLP into to AGI-complex
mapping might be very high. With this example we demonstrate how the ques-
tion which is the best architecture for AGI? is too open, and a more valuable, less
ambiguous approach is which is the best architecture for AGI, given our limited
computational resources?, for example.

3.2 The Objective Goal

Currently, statistical models learn through the optimization of an objective func-
tion. In this category, we don’t just include what is usually described as the “loss
function”, but we mainly refer to the training paradigms (supervision, reinforce-
ment, ...), task (classification, language modelling, ...) and dataset or environ-
ment when it is used. For example, language modeling might be an example
of objective goal, implicitly stating that the model will be trained to maximize
a prediction score of masked words in a sentence in a self-supervised fashion.
Moreover, it would be necessary to describe which data would be used for that.
The point of this is not to give a detailed explanation but to give a bound of
dataset size and, when necessary, give an idea about what would the labels,
domain, etc. be. In the objective goal we can also consider ideas like training
with multi-agency, since models might be trained for a specific goal in a specific
scenario which can include multiple agents, just like a classification model can
be trained for a specific objective in a specific dataset.

3.3 The Optimization Method

The optimization method might seem like a minor aspect of the design. How-
ever, we find it necessary to add as a major consideration because of two main
ideas. Firstly, to fit ideas like active learning or human interaction, where the
training procedure might receive feedback from the model or external sources.
Secondly, because in the case of RL agents or embodied systems, problems like
the exploration-exploitation trade-off, cold start, few-shot learning, etc. might
be major issues to consider when training an AGI.

3.4 Conditioned by the Computational Limitations

Even though a model can be fully described without specifying how long it took
to train or how much memory it needs, the computational limitations might be
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the most important factor to consider in practice. In Sect. 3.1 we have already
given an example of why the computational limitations are so important to define
aspects like the architecture. Computational limitations will impact many other
aspects of the model like the amount of data that can be used or the exploration-
exploitation trade-off in RL training, among many others.

4 Discussion

We hypothesize that the technological progress of AGI would advance faster in
the scenario where all aspects of a trained agent were always jointly described
or somehow constrained in the discussion of how to build AGI. We explain why
this happens and how this is related to the ambiguity or openness of the AGI
question. We propose a framework with which to guide a description that is
complete enough for the contribution to add as much value as possible to the
AGI community by specifically avoiding ambiguity. The model is not meant to fit
very well all of the AGI ideas, approaches and proposals. However, by following
this guideline, it is likely to greatly diminish the issues described and arguably
speed up the progress towards AGI.

A Study Case: Y. Bengio Discusses His Ideas
with L. Fridman

Due to the early stage in which AGI research currently is, some of the experts in
AI do not have complete formal publications or statements where they express
their thoughts on AGI design. Even though Yoshua Bengio does have a few
papers describing some of his ideas, we will focus on a short segment of the 4th
episode of the Lex Fridman Podcast1, where the host (Lex Fridman) discusses
with Yoshua Bengio about high-level cognition systems. The purpose of this
study case is to exemplify how the ambiguity of the AGI paradigm created a
barrier towards a constructive discussion.

We will first comment on a segment starting at 6:44. We see Bengio point
out how the most important research questions for high-level cognition are not
the architecture or dataset used but what do we optimize our models for and
how. Bengio suggests that active learning might have a crucial role but does not
describe any specific training objective. Therefore, he gives some ideas regarding
the training procedure and possibly some implicit architectural features, both
due to active learning. However, it remains unclear what would the model be
trained for (objective task).

The discussion continues at at 9:30. Fridman is pointing out how large-scale
language models, which are now showing some surprisingly robust behaviours
in some scenarios, might scale into more intelligent, high-level cognition agents.
Bengio answers he is sure they will not.

1 https://www.youtube.com/watch?v=azOmzumh0vQ.

https://www.youtube.com/watch?v=azOmzumh0vQ
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What we think Fridman is referring to is whether just by training a suffi-
ciently big enough model with enough data, this might yield high-level repre-
sentations like the ones humans have. What Bengio seems to understand is that
Friedman is suggesting to solely increase the amount of layers and this will make
the model learn more abstract representations, to which he does not agree. Frid-
man’s question might be a bit ambiguous. A more suitable approach would have
been something like: With sufficiently computing power and data, can current
large-scale language models learn cognitively high representations by increasing
the capacity of the model?. This question is more suitable because it specifies
the computational limitations, the task (language modelling), the architecture
(transformer-like). The question could also include the description of the train-
ing procedure, even if one might assume the usual training procedure of gradient
optimization with mini-batch sampling or we could have active learning ideas
coming in.
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Abstract. We present the COGnitive Neural GENerative system
(CogNGen), a cognitive architecture that combines two neurobiolog-
ically-plausible, computational models: predictive processing and
hyperdimensional/vector-symbolic models. We draw inspiration from
architectures such as ACT-R and Spaun/Nengo. CogNGen is in broad
agreement with these, providing a level of detail between ACT-R’s high-
level symbolic description of human cognition and Spaun’s low-level neu-
robiological description, furthermore creating the groundwork for design-
ing agents that learn continually from diverse tasks and model human
performance at larger scales than what is possible with current systems.
We test CogNGen on four maze-learning tasks, including those that test
memory and planning, and find that CogNGen matches performance of
deep reinforcement learning models and exceeds on a task designed to
test memory.

Keywords: Cognitive architectures · Predictive processing · Memory

1 Introduction

Artificial neural networks (ANNs) do not typically model high-level cognition
and are usually models of only one task. Otherwise, when an ANN is trained
to learn a series of tasks, catastrophic interference occurs, with each new task
causing the ANN to forget all prior tasks [3,12,13]. On the other hand, symbolic
cognitive architectures, such as the widely used ACT-R [19], can capture the
complexities of high-level cognition but scale poorly to the naturalistic data of
sensory perception or to big data necessary for modelling life-long learning.

We propose a cognitive architecture [15] that is built from two neurobiologi-
cally and cognitively plausible models, namely neural generative coding (NGC)
[16] (a form of predictive processing) and vector-symbolic (a.k.a. hyperdimen-
sional) models of memory [7,10]. Desirably, using these specific building blocks
yields scalable, local Hebbian [6] update rules for adjusting the system’s synapses
while facilitating robustness in acquiring, storing, and composing representations
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Goertzel et al. (Eds.): AGI 2022, LNAI 13539, pp. 321–331, 2023.
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of tasks encountered sequentially [12]. Our intent is to advance towards an archi-
tecture capable of intelligent action at all scales of learning, from the small maze
tasks considered here, to skills acquired gradually over a lifetime. By combining
NGC with vector-symbolic models of human memory, we work towards creating
a model of cognition that has the power of modern machine learning techniques
while retaining long-term memory, single-trial and transfer-learning, planning,
and other capacities associated with high-level cognition.

In this work, we demonstrate proof of concept and show that our architecture,
CogNGen (the COGnitive Neural GENerative system; see [15] for details), can
learn variants of a maze-learning task, including those requiring planning (get
a key to open a locked door) and memory (pick a path based on an earlier
cue). Our results show that CogNGen is competitive with several deep learning
approaches, offering promising performance when task reward is sparse. We start
by describing the circuits and core modules used to construct CogNGen. Then,
we describe the tasks used to evaluate CogNGen and the experimental results.

2 Neural Building Blocks

2.1 Neural Generative Coding (NGC)

Neural generative coding (NGC) is an instantiation of the predictive process-
ing brain theory [4,18], yielding a robust form of predict-then-correct learning
and inference. An NGC circuit in CogNGen receives two sensory vectors, input
xi ∈ RI×1 (I is the input dimensionality) and output xo ∈ RO×1 (O is the
output dimensionality). An NGC circuit is composed of L layers of neurons, i.e.,
layer � is represented by state vector z� ∈ RH�×1 containing H� total units.
Given an input–output pair of sensory vectors xi and xo, the circuit clamps the
last layer zL to the input, zL = xi, and clamps the first layer z0 to the output,
z0 = xo. Once clamped, the NGC circuit will undergo a settling cycle where
it processes the input and output vectors for several steps in time (i.e., it pro-
cesses sensory signals over a stimulus window of K discrete time steps). After
processing the input–output pair over a stimulus window, the synaptic matrices
are adjusted via local Hebbian-like updates. See the Appendix1 for details of the
exact mechanics/dynamics of the NGC circuits we implemented for this paper.

2.2 Memory

For CogNGen, we model both short and long-term memory using the MIN-
ERVA 2 model of human memory [7]. Short-term MINERVA 2 is cleared after
an episode is completed (e.g., a maze is solved), whereas the contents of long-term
MINERVA 2 persist across episodes. MINERVA 2 is a model of human memory
equivalent to a type of Hebbian network [10]. We choose MINERVA 2 since it
captures a wide variety of human memory phenomena, e.g., [7,9,10]. Our imple-
mentation of MINERVA 2 stores a sequence of observations as a concatenated
1 Appendix: https://www.cs.rit.edu/∼ago/cogngnen agi2022 append.pdf.

https://www.cs.rit.edu/~{}ago/cogngnen_agi2022_append.pdf
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vector. Each sequence is represented as a row in the memory table. Retrieval
from memory is a weighted sum of all rows in the table, each row weighted
by the similarity to the currently observed sequence, allowing MINERVA 2 to
predict the next observations(s) given the agent’s recent history. Growth of the
memory table is limited by forgetting simulated as random deletion [7].

3 The CogNGen Cognitive Architecture

3.1 Perceptual Modules

CogNGen’s perceptual module encodes observation ot ∈ RDo×1 at time t to
zt ∈ RDz×1 (and decodes it back) – Do is the dimension of ot and Dz is that of
zt. Although this process can be implemented in NGC circuits, in this work, we
leverage an encoder and decoder offered by the task environment (see Appendix).

3.2 Procedural Memory and Motor Control

The Procedural Dynamics Model: Motivated by the finding of expected value
estimation in the brain, CogNGen’s procedural module implements a neural cir-
cuit that produces intrinsic reward signals. At a high level, this neural machinery
facilitates some of the functionality of the basal ganglia and procedural memory,
simulating an internal reward-creation process [20]. Concretely, we refer to the
above as an NGC dynamics model, where reward is calculated as a function of
its error neurons, further coupled to a short-term MINERVA 2 memory “filter”.

The NGC dynamics circuit processes the current state zt and the external
discrete action aext

t (aext
t ∈ {0, 1}Aext×1 is its one-hot encoding, where Aext is

the number of actions), as produced by the motor-action model (described later),
and predicts the value of the future state zt+1. When provided with zt+1, the
dynamics circuit runs the following for its layer-wise predictions:

z̄2 = W3
ext · aext

t + W3
z · zt + b2 (1)

z̄1 = W2 · φ(z2t ) + b1 (2)

ẑt+1 = z̄0 = g0
(
W1 · φ(z1t ) + b0

)
(3)

and leverages the NGC settling process (see Appendix) to compute its internal
state values, i.e., z3t , z

2
t , z

1
t . Notice that we have simplified a few items with

respect to the NGC circuit – the topmost layer-wise prediction z̄3t sets φ3(v) = v
for both its top-most inputs cext

t and zt, the post-activation prediction functions
for the internal layers are g2(v) = g1(v) = v, and phi2(v) = φ1(v) = φ(v)
(the same state activation function type is used in calculating ẑ1 and ẑ0). Once
the above dynamics have been executed, the NGC dynamics model’s synapses
are adjusted via Hebbian updates. Furthermore, upon receiving zt+1, the short-
term MINERVA 2 coupled to the dynamics circuit stores the current latent
state vector, updating its current knowledge about the episode that CogNGen
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is operating with, and outputs a similarity score srecall. Note that, at the an
episode’s termination, the contents of the short-term MINERVA 2 are cleared.

To generate the value of the epistemic reward [17]), the dynamics model first
settles to a prediction ẑt+1 given the value of CogNGen’s next latent state zt+1.
After its settling process has finished, the activity signals of its (squared) error
neurons are summed to obtain the circuit’s epistemic reward signal:

rep
t =

∑
j

(e0)2j,1 +
∑

j

(e1)2j,1 +
∑

j

(e2)2j,1 (4)

rep
t = rep

t /(rep
max) where rep

max = max(rep
1 , rep

2 , ..., rep
t ) (5)

where the epistemic reward signal is normalized to the range of [0, 1] by tracking
the maximum epistemic signal observed throughout the course of the simulation.
This signal is next modified by the MINERVA 2 memory filter as follows:

rep =

{
ηer

ep srecall ≤ sθ

−0.1 otherwise
(6)

where sθ is a threshold that srecall is compared against and 0 ≤ ηe ≤ 1 is meant
to weight the epistemic signal. If srecall ≤ sθ, then zt+1 is deemed “unfamiliar”
and the agent is positively rewarded with the epistemic reward for uncovering a
new state of its environment. Whereas if the opposite is true (srecall > sθ), then
the latent state is deemed familiar and the agent is given a negative penalty.
The final reward signal is computed by combining the epistemic signal with the
problem-specific (instrumental) reward: rin

t , i.e., rt = rin
t + rep

t . Although we
utilize the sparse reward signal provided by the task for rin

t , we remark that
another circuit, serving as CogNGen’s prior preference could be designed to
encode probability distributions over preferred goal states [5,17].

The Motor Action Model: To manipulate its environment, CogNGen implements
another NGC circuit that we call the motor-action model fa : zt �→ (cint

t , cext
t )

(offering some functionality provided by the motor cortex) which outputs two
control signals at each time step, i.e., internal control signal cint

t ∈ RAint×1 and
external control signal cext

t ∈ RAext×1. Note that a discrete internal action aint
t ∈

{1, 2, , ..., i, ..., Aint} is extracted via aint
t = arg maxi cint

t and external action
aext

t ∈ {1, 2, , ..., j, ..., Aext} is extracted via aext
t = arg maxj cext

t (Aint is the
number of discrete internal actions). Action aext

t affects the environment while
action aint

t manipulates the action model’s coupled working memory buffers.
Within the NGC action-motor model is a modifiable working memory that

allows the model to store a finite quantity Mw of latent state vectors into a set
of self-recurrent memory vector slots. This particular working memory module,
which we call the self-recurrent slot buffer serves as the glue that joins the
modules of CogNGen together. The buffers in CogNGen serve the same purpose
as ACT-R’s buffers [19]. Each memory slot in the buffer is represented by mi ∈
RMd×1 (Md is the dimesionality of the memory slot). This component of the
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action-motor model is inspired by the working memory model proposed in [11].
Concretely, the self-recurrent slot buffer operates according to the following:

ki
t = Qi · zt,∀i = 1, ...,Mw // Compute key (7)

si = si =
1

|mi|
(∑

j

�mi − ki
t�j,1 + �ki

t − mi�j,1

)
// Compute match (8)

mt =
[
[m1, s1], ..., [mi, si], ..., [mMw , sMw ]

]
// Compute value (9)

where Qi ∈ RMd×Dz is the ith random projection matrix (sampled from a cen-
tered Gaussian distribution in this paper), which means there is one projection
matrix per working memory slot. Note that the match score for any slot i is
si = R1×1 (a 1 × 1 vector) and thus also a scalar si. The working memory
buffers, in essence, compute a key value vector ki

t given the current state input
zt for each slot (by projecting via matrix Qi), calculate the match score between
the ith key and ith slot/value, and then return the entire concatenated contents
mt of working memory (including the match scores).

Given the output of working memory mt, the motor-action model then pro-
ceeds to compute its output control signals using an ancestral projection scheme
(see Appendix), yielding cext

t , cint
t = fproj(zt;Θ), implemented as follows:

z̄3t = W4 · zt + φ(M · mt) + b3 (10)

z̄2t = W3 · φ(z3t ) + b2 (11)

z̄1t = W2 · φ(z2t ) + b1 (12)

cext
t = z̄0t,ext = W1

ext · φ(z1t ) + b0
ext (13)

cint
t = z̄0t,int = W1

int · φ(z1t ) + b0
int. (14)

The NGC circuit depicted in Eqs. 10–14 embodies both the “internal control”
and “control” sub-systems by outputting z̄0t,ext, i.e., the same as control signal
cext

t , and z̄0t,int, i.e., the same as control signal cint
t . The above dynamics represent

a five-layer circuit with its top-most layer clamped to: z4t = zt and mt.
Finally, after the motor-action model has produced its control signals, the

internal action is selected via aint
t = arg maxj cint

t and the external action is
selected via aext

t = arg maxj cext
t . While aext

t is transmitted to the environment,
aint

t is used to modify the working memory module. The internal actions possible
are specifically: aint

t = {ignore, store1, store2, ..., storeMw
} (each integer has been

mapped to a string clarifying the action’s effect), where “ignore” means zt is not
stored and “storei” means store zt into memory slot i.

To update the motor-action model’s synaptic efficacies, we then leverage the
reward rt computed by the dynamics model described in Sect. 3.2. Specifically,
we compute the target control vectors z0t,ext and z0t,int as follows:
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cext
t , cint

t = fproj(zt+1;Θ) (15)

z0ext =

{
rt if zt is terminal
rt + γ maxa cext

t otherwise
(16)

z0int =

{
rt if zt is terminal
rt + γ maxa cint

t otherwise
(17)

and the final target vectors computed simply as:

z0t,ext = z0exta
ext
t + (1 − aext

t ) 	 cext
t

z0t,int = z0inta
int
t + (1 − aint

t ) 	 cint
t .

Once the target vectors have been created, the NGC settling process can be
executed and all motor-action synapses are updated via Hebbian learning.

3.3 Long-Term Memory

CogNGen implements long-term memory through a MINERVA 2 module. Infor-
mation is transferred to this memory through an intermediate working memory
buffer, where pieces of a transition (partial experience) are stored as they are
encountered during the agent-environment interaction process. Specifically, once
the buffer contains at least one partial transition (zt,aext

t ,aint
t , rt) (rt ∈ R1×1) ,

our long-term MINERVA 2 M (which is created alongside a starting transition
buffer S0) is updated according to the following algorithm:

1. Create a window (buffer) w of length L – each slot is filled with empty
values (zero vectors of the correct length). Store the start transition mexp

0 =
[z0,aext

0 ,aint
0 , r0] in buffer S0.

2. Store mexp
t = [zt,aext

t ,aint
t , rt] at the last position (index L) of the window

w and delete the entry at position 0.
3. Flatten w into a vector wmem and store this item by updating M.
4. If episode terminal has been reached, go to Step 1, else go to Step 2.

The above process is repeated until the end of simulation. We impose an
upper bound on the number of transitions stored in M – if this bound is
exceeded, we remove the earliest transition mexp

t stored in M and update S0

accordingly.
To drive learning through experience replay, CogNGen samples from M by:

1. Create window w of length L, initialized with empty values. Sample mexp
0 ∼

S′ and place it in the last position L in w.
2. Remove the item at position 1 in w and use M to hetero-associatively com-

plete/predict mexp
t+1.

3. Store mexp
t+1 at last position L within w.

4. Repeat steps 2 through 4 until episode terminal reached.
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The above is repeated until E episodes have been sampled. To create a mini-
batch for updating the motor-action/dynamics circuits, we sample B transitions
(zj ,aext

j ,aint
j , rt, zj+1) from each sampled episode. Thus, at t, CogNGen’s com-

putation consists of an information processing step followed by a learning step.

4 Experimental Results

4.1 The Mini GridWorld Problem

To evaluate CogNGen-built agents, we adapt the environment from the OpenAI
Gym extension, Mini-GridWorld [2] and investigate four tasks: the random empty
room, multi-room, unlocking, and memory tasks. The maze environment is an
N × M tile grid and is partially observable by the agent as a 7 × 7 × 3 tensor
created by mapping each tile of the 7 × 7 grid to 3 integer values. Each tile is
encoded to an object index (0 = unseen, 1 = empty, 2 = wall, etc.), a color index
(0 = red, 1 = green, etc.), and a state index (0 = open, 1 = closed, 2 = locked).

The agent itself is restricted to picking up one single object, such as a key,
and may open a locked door if it carries a key that matches the door’s color.
The discrete action space for our agent can be summarized as a set of six unique
actions: 1) turn left, 2) turn right, 3) move forward, 4) pick up an object, 5)
drop the object that the agent is currently carrying, and 6) toggle/activate (such
as opening a door or interacting with an object). The reward structure/signal
provided by all problems in the Mini-GridWorld environment is sparse – 1.0
if the agent reaches the green goal tile and 0 otherwise, making all problems
difficult from a reinforcement learning perspective. Each problem has a specific
time step limit allotted to allow the agent to complete the task with maximum
episode lengths ranging from 60 to 288 time steps.

The Random Empty Room Task: In this task (max. 144 steps), the agent is
spawned at a random location (and starting orientation) in the room and must
reach the green goal square. A sparse reward is provided if the goal is reached.

The Multi-Room Task: This task (max. 60 steps) requires the agent to navigate a
set of connected rooms where it opens a door in one room in order to proceed to
the next room. In the final room, there is green square that the agent must reach
to end the episode successfully. This is a procedurally generated environment
with a different floor plan per episode – we focused on 3 rooms of size 4 × 4.

The Unlocking Task: In this task (max. 288 steps), to successfully exit an episode,
the agent must open a locked door by finding the key. The key location, door posi-
tion, and agent initial position/orientation are randomly generated each episode.

The Memory Task: The agent starts in a small room where it sees an object
(such as a key/ball), starting the episode by looking in the direction of the cue
object. After perceiving the object, the agent must turn around, exit the room
and go through a narrow hall that ends in a split. At the split, the agent can
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Table 1. In the top row, examples of several tasks are presented – from left to right,
the 6×6 empty room task (R6 × 6), the multi-room task w/ three rooms of size four
(MR), and the unlock task (Unl). In the bottom row, we present results over the last
100 episodes for: (Left) Average success rate (%); (Right) Average episode length (%
of maximum episode length - closer to 0 is more efficient)

Average Success Rate Average Episode Length
R6x6 MR Unl Mem R6x6 MR Unl Mem

DQN 99.50 0.00 0.00 40.0 9.31 100.0 100.0 41.14
RnD 100.00 90.00 100.0 48.5 3.50 31.46 4.08 2.78
BeBold DQN-CNT 100.00 98.00 100.0 48.0 3.98 23.51 4.46 2.92
CogNGen 100.00 98.50 100.0 98.5 3.90 23.41 4.15 2.96

either go up or go down, and at the end of each of these splits is a different object
(either a key or ball). To successfully complete the episode (max. 245 steps) and
receive a positive reward, the agent must remember the initial object that it saw
and go to the split that contains the correct matching object. For this study, we
focus on the 7 × 7 room variant.

4.2 Baseline Models

We compare the CogNGen to several baselines: a standard deep Q-network
(DQN) [14], a DQN that leverages an intrinsic reward generated via random net-
work distillation (RnD) [1] (an intrinsic curiosity model), and a DQN that learns
through a formulation of the BeBold exploration framework [21] (BeBold DQN-
CNT; see Appendix for details). The DQN component of each of the above base-
lines utilized two layers of hidden neurons using the linear rectifier activation.
RnD and BeBold have access to problem-specific, global information from the
Mini GridWorld task environments (namely, the agent’s x−y coordinates in the
world) whereas CogNGen and the DQN do not. For details/hyperparameter set-
tings related to the agent implemented with our CogNGen architecture (referred
to as “CogNGen” in all plots/tables), please see the Appendix.

4.3 Experimental Results

In Table 1, we report the average success rate (in solving the task/reaching a
goal state) as well as the average episode length (average measurements were
computed over the last 100 episodes of simulation for all models). In Fig. 1, we
present reward curves (mean & standard deviation across five trials).

Based on our results, we find that (1) CogNGen is able to learn the maze
tasks, (2) the performance is comparable to/on par with powerful deep RL meth-
ods that have access to problem-specific, global information, and (3) CogNGen
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Fig. 1. Average reward (left) and episode length (right) for (top-to-bottom): 6 × 6
empty room (R6×6), multi-room (MR), unlock (Unl), and memory task (Mem).

can successfully outperform all baselines on the memory task. Given that CogN-
Gen approximates much of the functionality of modern-day RL mechanisms with
large auto-associative Hebbian memory modules and predictive processing cir-
cuits, our simulation results are promising. When CogNGen is compared to the
baselines, we notice that there are some instances where the powerful BeBold
DQN-CNT and RnD baselines yield shorter episodes or yield higher episodic
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rewards earlier (after converging to an optimal policy). We reason that this small
gap is likely due to: 1) BeBold DQN/RnD have access to global, problem-specific
information (the agent’s x-y coordinates in the world in order to calculate state
visitation counts) whereas CogNGen only operates with local information, 2)
CogNGen’s mechanism to update synapses relies on imperfect memory (which
is more human-like but introduces error in the recollections as compared to a
standard replay buffer), and 3) CogNGen’s motor-action model must also learn
how to modify its coupled working memory as well as how to interact with its
environment, which requires learning more complex policies.

5 Conclusions

In this study, we presented CogNGen (the COGnitive Neural GENerative sys-
tem), a cognitive architecture composed of circuits based on predictive processing
and auto-associative Hebbian memory (MINERVA 2). CogNGen lays down the
foundation for designing agents composed of neurocognitively-plausible building
blocks that learn across diverse problems as well as potentially model human per-
formance at larger scales. Our results, on a set of sparse reward maze learning
tasks, show that goal-directed agents built with CogNGen perform well. Future
work will entail studying the CogNGen’s performance on other more complex
environments, such as [8], as well as generalizing it further to learning across
tasks, i.e., continual reinforcement learning.
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Abstract. We argue that market prediction is a worthwhile incremen-
tal challenge for AGI due to its dual logical and statistical nature. We
formally define a modified version of a market prediction task for AGI
and ways in which an instance of a normal market prediction problem
may be converted to our version. We perform an empirical study on an
instance of our problem and benchmark a NARS agent against statisti-
cal and connectionist agents to see if it can competitively forecast the
direction of the S&P 500 from qualitative technical market data.

1 Introduction

When talking about tasks for AGI agents to solve, it is common to think about
human-level tasks including the Turing test and alternatives such as the coffee
test and the robot college student test [8]. These tests will be definitive proof,
that upon solving, we can point to and claim that an agent is generally intelligent.
However, in order to get to that point at which these human-level tasks can be
accomplished, we take the position it is important to make incremental steps on
tasks that are more easily measured. Various proposals have been made for tasks
that might allow us to measure incremental progress toward an AGI, including
Bringsjord’s Psychometric AI [3] and Goertzel’s AGI preschool suite [4]. Both of
these tasks are well defined but have various entry-level bottlenecks to particular
classes of AGI agents. Psychometric AI is a very good task for logicist agents
but would be harder for connectionist agents. The full suite of tasks proposed in
AGI Preschool are beyond the scope of what we can reasonably benchmark any
existing logical agents on. We seek to define a task that is simple enough from a
mathematical standpoint that it may serve as a benchmark for both logicist and
connectionist agents, measuring purely their reasoning ability and statistical-
pattern-finding ability, independent of architecture, which is a task that may be
approached both statistically and logically.

When designing tasks for AGI agents to solve, it is important to take into
account a working definition of intelligence and how it may be measured. Legg
and Hutter’s popular definition of intelligence as “the capacity for an agent to
achieve goals in a wide range of environments” [13] and Wang’s intelligence as
“the ability for an information processing system to adapt to its environment
with insufficient knowledge and resources” [27] are good starting points. Wang’s
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Goertzel et al. (Eds.): AGI 2022, LNAI 13539, pp. 332–342, 2023.
https://doi.org/10.1007/978-3-031-19907-3_32
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definition better lends itself to the empirical nature of our goal to quantita-
tively measure incremental improvements of AGI agents [25]. However, Legg
and Hutter’s definition is important to take into consideration for its emphasis
on performance in a wide range of environments. Our working definition of intel-
ligence in designing this task is then one which takes into account the ability to
perform well in both a wide range of environments and under the constraints of
insufficient knowledge and resources.

With this working definition of intelligence in mind, we assert that market
prediction (also referred to throughout as market forecasting) is a robust task
that serves as a good indicator of intelligence. The task requires an agent to rea-
son about the future from the currently available data, thus hitting check boxes
for reasoning under insufficient knowledge. Rather than empirically testing an
agent in many environments, we argue that the market prediction task itself is so
robust that depending on the provided features, reasoning on individual classes
of features constitutes reasoning on entirely separate environments; for exam-
ple, the analysis of technical market data (raw asset price information and other
daily quantitative indicators) is completely distinct from analysis of fundamental
market data (earnings reports, social media sentiment on assets). The agent can
go about this reasoning on each individual factor in many ways, including look-
ing at statistical trends to analyzing human sentiments and performing logical
reasoning.

In this work, we present the classic market prediction task for AI and discuss
its shortcomings with respect to AGI agents. We then present our modified
market prediction task for AGI and discuss its merits. In the second half of
this work we perform an empirical study comparing a NARS Agent against
various statistical methods on our modified market prediction task. We begin
by presenting our data set and discussing a technique for qualifying it in such
a way that it is usable on our modified task. We finish by briefly discussing the
agents we use and their performance on the task.

2 Related Work

Traditional AI for Market Prediction
Multiple surveys have been done on the effectiveness of various computational
techniques for market prediction over a wide range of global markets [11,14].
Kumar’s survey [11] breaks down market forecasting models into three funda-
mental components, of which many hybrid models exist making use of one or
more of these components:

1. Artificial Neural Network (ANN) Based Approaches: classified as anything
using a neural network, including deep learning based approaches and RNN
based approaches with LSTMs for time series prediction [17].

2. Fuzzy Logic Based Approaches: Incorporate any kind of fuzzy logic or fuzzy
logic derivative/alternative into their forecasting model.

3. Genetic Algorithm Based Approaches: Make use of genetic algorithms for
training their forecasting models.
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Of particular note in this space is [22] which compares a simple ANN network
with an SVN and a Multiple Linear Regression model, finding that SVM yields
the best forecasting performance on the American S&P 500 using technical fac-
tors. We will be using the three methods in this work as our baseline as it
provides a good example of machine learning and statistical techniques using
technical factors that we can compare against, as well as modifying to allow for
the use of converted qualitative factors.

Despite success in predicting the S&P 500, [14] shows that ML for single
stock prediction still falls flat on meaningful day-to-day prediction, particularly
in the case of longer-term investments. This shortcoming of having ML only
useful for speculation is a large drawback for ML based methods as a whole.

AGI for Market Prediction
The idea of using AGI for market prediction tasks is not a novel concept. Previous
work such as Raheman, Kolonin, and Ansari’s Adaptive Multi-Strategy Market
Making Agent [20] in their own words exploits Goertzel’s definition of AGI in [7]
as “having the ability to reach complex goals in complex environments” to justify
why their market prediction architecture falls into the realm of AGI. We claim,
however, that the task of market prediction is a far more robust measure of
intelligence than previously let on, and is a good fit as a more general task for
AGI agents.

3 Task

Traditionally, market prediction is modeled as a quantitative sequence prediction
task, where we want to use some numeric features, f1, ..., fn ∈ R, that we have
available to us at some time, t ∈ N, to predict the price of some asset, p ∈ R,
at some time in the future, t + i ∈ N. Note that the selection of features can
be anything, be that technical market data or fundamental market data. In the
context of market prediction for AGI, the selection of features influences the
“environments” the AGI agent gets to reason on. It is common that the current
price of the asset we desire to predict the price of pt is included within our list of
features [16,22]. The objective of this quantitative prediction task is to create a
model A that takes our features and maps them as closely as possible to the true
price of the asset at some time in the future. For market prediction tasks, the
time step is typically measured in days and the price in the future we’re trying
to predict is one day ahead of our current features t + 1 [16,22].

pt+1 = A(pt, f1,t, ..., fn,t) (1)

The quantitative market prediction task is well formulated, but it can be
difficult for logic-based agents to be measured on, as it requires them to have
an ability to reason over arbitrary continuous price data and return continuous
price results. In order to open the field, we propose a qualitative variant of the
market prediction task that is easier to play for agents where the ability to reason
over arbitrary continuous price data is not a given. Our variant makes discrete
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the continuous price data of our features by looking at the relative change of
features from time step to time step. We then convert each feature into two
new qualitative features: a direction, fd ∈ {Up, Down}, and magnitude of change
fm ∈ {Small, Medium, Large}. Note that the set of magnitudes we give here are
just an example and an arbitrary number of magnitudes can be added depending
on how much information we want the agent to have. The computation of these
new magnitudes from quantitative feature data is up to the implementation,
essentially the value of each feature at time t is compared against the value of
the feature at time t − 1 and a decision is made on what magnitude the change
is. For the direction it is assumed the ft �= ft−1. If ft > ft−1 then fd

t = Up,
otherwise fd

t = Down. We make the goal of our modified task to predict not the
price of our original asset, p, but the direction it moves in pd at the future time
step t + 1. Hence the goal of our new task is the creation of an agent A who can
correctly use magnitude and direction of features to predict the direction of an
asset.

pdt+1 = A(pdt , p
m
t , fd

1,t, f
m
1,t..., f

d
n,t, f

m
n,t) (2)

One of the main merits of this modified task beyond working for logical agents
is that since our set of possible magnitudes is implicitly well ordered, it is fully
possible to convert our qualitative data back to quantitative data for agents that
prefer to use statistical methods internally on numerical data. Hence this task
can be used to benchmark logical, statistical, and connectionist agents.

Our particular instance of this task that we empirically test in this paper sets
our p to be the daily price of the S&P 500 index on market close. The choice of the
S&P 500 index, rather than that of an individual asset like a stock, is deliberate.
The S&P 500 is more predictable and less volatile than individual assets, hence
it is a preferred and popular target for computational and AI market forecasting
tasks [16,18,22]. For our data set we have 32 features derived from 29 technical
market factors, including the S&P 500 price. The quantitative features are then
qualified with a Z-Score bucketing approach into 6 magnitude levels.

4 Data Set

Our initial data set for consideration consists of 29 technical market indicators.
We group these factors into 5 broad classes based on the type of indicator they
are and what units they are recorded in. Our data-points are recorded daily over
the course of 10 years from January 1st 2012 to March 24th 2022; data from
non-subsequent market closes is thrown out. The selection of these indicators
was heavily influenced by the list of technical indicators for market prediction
that Sheta et al. use in their 2015 work [22] as well as those used in [16]. We
have had to update many of these factors to include more recent market data as
well as change the stocks in our data set to better reflect those currently used
to calculate the S&P 500 at the time this work is being done.
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Indicator Classes

– Market Indexes (Index): Indexes are broad predictors of market perfor-
mance based on a variety of underlying assets from which the index price is
calculated. All of the market indexes we use in our data set are international
exchange indexes which give our agent a good overview of the state of global
markets, which have been shown to influence each other [6]. For our data set
we use the closing price of the index as its daily data-point.

– Commodities (Commodity): Commodities are real assets traded on com-
modity exchanges. The link between commodity prices and stock prices, on
the whole, is an area under active research [1,10], however, results seem to
be positive, particularly for stocks of companies whose underlying products
are commodities; such as oil and mining companies [2,15].

– Stock Prices (Stock): Stock prices are the market values of shares in a
company on a stock exchange. We consider the prices of the top five stocks
on the S&P 500 in 2022, the top 5 stocks on the S&P 500 from 2015, as well
as a few other significant stocks in terms of market capitalization. For our
data set, we use the closing price of the stock as its daily data point.

– Foreign Exchange Rates (Currency): A foreign exchange rate is the
amount of US$s a unit of a given foreign currency is worth. Foreign exchange
rates are considered to be strong indicators of market performance and have
observable ties to index prices [6,12]. All foreign exchange rates in our data
set are obtained from the US Federal Reserve H10’s reported daily exchange
rate.

– Bond Yields (Bond): Bond yields are the interest rate agreed to be paid
when a bond is issued. Our data set includes two classes of bonds: corpo-
rate bonds, and US treasury bonds. We include treasury bonds with various
maturities and source our treasury bond data from the US Federal Reserve
H15’s reported daily yields. For corporate bonds, we use Moody’s Corpo-
rate bond yield indexes, which function as an indicator of all corporate bond
yields within a risk class. The relationship between bond prices and market
performance is widely acknowledged to be quite strong [21,23].

Features. We select our initial 29 quantitative features at each time step from
the set of technical data outlined in Table 1. We add an additional three features,
derived by offsetting the price of the S&P 500 by 1, 2, and 3 days into the past
respectively, giving our agent S&P 500 closing prices of the past 4 days on one
single time step. Now with all features f present, we convert each feature f into
two new discretized features, a direction fd and magnitude fm. We take the
features from the previous day and compute the direction as Up if the feature
value is higher than the previous day, otherwise it is marked Down.

fd
t =

{
Up ft−1 < ft

Down ft−1 ≥ ft
(3)
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Table 1. Indicators used in our dataset (YF = Yahoo Finance, FR = Federal Reserve,
WSJ = Wall Street Journal)

Name Class Description Source

SPX Index S&P 500, indicator of the US stock market NASDAQ

HSI Index Hang Seng Index, indicator of the Hong Kong
stock market

YF

FCHI Index CAC 40, indicator of the French stock market YF

FTSE Index FTSE 100, indicator of the British stock market WSJ

GDAXI Index DAX Index, indicator of the German stock market YF

DJIA Index Dow Jones Industrial Average WSJ

OIL Commodity Price of crude oil (West Texas Intermediate) EIA

GOLD Commodity Price of gold NASDAQ

AAPL Stock Stock price of Apple Inc YF

MSFT Stock Stock price of Microsoft Corporation YF

AMZN Stock Stock price of Amazon Inc YF

GOOGL Stock Stock price of Alphabet Inc. class A shares YF

GOOG Stock Stock price of Alphabet Inc. class C shares YF

XOM Stock Stock price of Exxon Mobil Corporation YF

GE Stock Stock price of General Electric YF

PG Stock Stock price of Procter & Gamble YF

JNJ Stock Stock price of Johnson & Johnson YF

BRKA Stock Stock price of Berkshire Hathaway Inc. class A
shares

YF

GBP Currency British Pound to US$ exchange rate FR H10

CAD Currency Canadian Dollars to US$ exchange rate FR H10

CNY Currency Chinese Renminbi to US$ exchange rate FR H10

JPY Currency Japanese Yen to US$ exchange rate FR H10

DAAA Bond Moody’s Seasoned AAA Corporate Bond Yield FRED

DBAA Bond Moody’s Seasoned BAA Corporate Bond Yield FRED

TB3M Bond Yield on 3-month Treasury Securities FR H15

TB6M Bond Yield on 6-month Treasury Securities FR H15

TB1Y Bond Yield on 1-year Treasury Securities FR H15

TB5Y Bond Yield on 5-year Treasury Securities FR H15

TB10Y Bond Yield on 10-year Treasury Securities FR H15

Obtaining the magnitude is a more difficult process, as we want to ensure that
magnitude is fairly assigned no matter the distribution of changes in a feature.
Figure 1 shows the distribution in our data set of daily percent change in a stock;
Apple Inc. (AAPL) as well as a foreign exchange rate, that between Canadian
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Fig. 1. Distribution of daily percent change of Apple Stock Price vs. Distribution of
Canadian Dollar to USD Foreign Exchange Rates

Dollars (CAD) and US$s. The issue is that a 1% change in the AAPL feature is
not a significant movement and hence should not be assigned a high magnitude,
whereas a 1% change in CAD is very significant and should be assigned a high
magnitude. This issue plays out across all features in our data set. Hence we
must construct a means of assigning magnitude based on the distributions of
individual features so that magnitudes are fairly assigned.

The solution we have come up with for this problem is a Z-Score bucketing
method based on the daily percent change of a feature. The daily percent change
of a feature, ct, is computed by finding the percent an asset’s value has changed
since the day before.

ct =
ft − ft−1

ft−1
(4)

We refer to the daily percent change of a feature as a feature movement. The Z-
Score of a feature movement represents how many standard deviations, σ, away
the movement is from the mean, μ, (average least significant) movement of that
feature. Therefore the Z-score of a movement provides us a way to qualify the
magnitude of a movement in relation to other movements on a per feature basis,
even when these features have very different underlying normal distributions.
Hence for quantitative feature ft and T set of time steps (before t), we compute
our Z-score for the movement zt as:

zt =
ct − μ

σ
=

ct − 1
|T |

∑
u∈T cu√

1
|T |

∑
v∈T

(
cv − 1

|T |
∑

u∈T cu

)2
(5)

Finally, we qualify our Z-Scores by bucketing them, each bucket acts as an enu-
meration for a qualitative label. If k is the number of buckets and n is the number
of buckets per standard deviation, we compute our magnitude bucket as:

fm
t = min (�n |zt|� , k − 1) (6)
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In our instance of the problem, we use 2 buckets per standard deviation and use
6 buckets total. We split our 2314 data points into 162 points of test data and
2152 points of train data, and we shuffle our data to ensure our test data has
the same distribution as our training data.

5 Methods

We investigate the performance of five different agents on the task. Three of
these agents are statistical in nature (MLR, MLogR, SVC), one is connectionist
(ANN), and one is an AGI method (NARS). All underlying statistical agents,
unless otherwise stated, are implemented as sci-kit learn classifiers with default
parameters [19].

Multiple Linear Regression Agent (MLR). The MLR agent makes use of
the statistical technique known as Multiple Linear Regression to help it deter-
mine the market direction. We convert our qualitative features into quantitative
features for this task by interpreting Up and Down as 1 and −1 respectively, com-
puting our input features as the product fd

t fm
t for each feature. As the output

of a linear regression agent is continuous, we map it to the closest feature bucket
for evaluation.

Multiple Logistic Regression Agent (MLogR). Identical to MLR except
we instead use multiple logistic regression rather than multiple linear regression.
Multiple logistic regression, at least in the quantitative case, has been shown as
a good predictor of the S&P 500 [24]. The input formatting and output rounding
are the same as those used for our MLR agent.

Support Vector Machine Agent (SVM). Our SVM agent uses raw qualita-
tive features as input to train a support vector classifier [5] which tries to classify
feature lists either up or down. SVM maps data points to a high dimensional
space so that they may be more accurately classified.

Artificial Neural Network Agent (ANN). For our agent we use a multi-
layer perceptron classifier with ReLu activation function. The network has a
hidden layer with 100 neurons. We train the agent on the qualified data using
values as classes.

Limited NARS Agent (NARS). Uses a NARS [26] agent under the hood.
Due to spacial limitations in our ability to create arbitrary length term products
in NAL (for further explanation, observe Theorem 8.4 in [26]) we impose restric-
tions on our input and use linear regression to compute the five most important
discretized features (from both direction and movement features), f∗

1 , ..., f∗
5 , as

our modified agent input. Training data is passed in Narseese as products of
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qualified features implying market direction. (f∗
1,t × f∗

2,t × ... × f∗
5,t) ⇒ pdt+1. We

use default frequency and confidence for all of our inputs of training data and
give the agent 10,000 cycles between training and testing. For our implemen-
tation of NARS we create the agent using OpenNARS for applications [9]. For
testing the agent we query (f∗

1,t × f∗
2,t × ... × f∗

5,t) ⇒?, for query responses that
are not either Up or Down, we mark the prediction as incorrect.

6 Results

Our performance metric is accuracy, the number of times the agent was correctly
able to predict the direction of the S&P 500 in the testing set. We find in
Table 2 the accuracies from our agents on trained vs unseen test data. While not
performing quite as well as the statistical agents, we observe that the limited
NARS agent is at least able to predict the market direction well beyond the
random baseline.

Table 2. Results of all of our agents

Method Train Test

Random Baseline 55.23% 49.3%

MLR 65.03% 64.81%

MLogR 65.17% 63.58%

SVC 55.09% 51.23%

ANN 65.45% 64.19%

NARS 62.76% 60.49%

7 Conclusion

In this work, we discussed the merits of using market prediction as a task for
AGI agents based on its robust ability to emulate different environments in a sin-
gle task. We have proposed a novel version of the market prediction task that is
adaptable to logical, connectionist, and statistical agents. In our empirical study,
we presented a comprehensive data set for market prediction and discussed in
detail a means of converting quantitative technical market features into quali-
tative market features via a Z-Score bucketing approach based on the absolute
daily percent change of a feature. We empirically tested five agents on the new
task and found that, while not able to out-perform them, the NARS agent is
able to perform around the same level as other narrow AI agents tested.
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Abstract. The Q-learning algorithm suffers from overestimation bias
due to the maximum operator appearing in its update rule. Other popu-
lar variants of Q-learning, like double Q-learning, can on the other hand
cause underestimation of the action values. In many stochastic environ-
ments both underestimation and overestimation can lead to sub-optimal
strategies. In this paper, we present a variation of Q-learning that uses
elements from Monte-Carlo Reinforcement Learning to correct for the
overestimation bias. Our method 1) makes no assumptions on the distri-
butions of the action values or the rewards, 2) does not require extensive
hyperparameter tuning unlike other popular variants proposed to deal
with the overestimation bias and 3) requires storing only two estimators,
similar to double Q-learning, along with the most recent episode. Our
method is shown to effectively control for the overestimation bias in a
number of simulated stochastic environments leading to better policies
with higher cumulative rewards and action values that are closer to the
optimal ones, as compared to a number of well-established approaches.

Keywords: Q-learning · Overestimation · Bias

1 Introduction

Reinforcement Learning (RL) is a control technique that enables an agent to
make informative decisions in unknown environments by interacting with them
in time [10]. The RL algorithms can be generally categorized in model-based
and model-free methods. Model-based methods learn the underlying dynamics
of the system and incorporate that information in the decision process. One of
the benefits of this line of work over model-free methods is the smaller amount
of data required to train the agents. On the other hand, model-free methods
directly estimate value functions or policies from interactions with the environ-
ment. Model-free methods do not suffer from model bias, which arises due to
the insufficient estimation of the underlying dynamics, as model-based methods
frequently do.

In this work, we focus on model-free methods and more specifically on vari-
ants of the celebrated Q-learning algorithm [12]. The wide popularity of Q-
learning can be attributed to the simplicity of the algorithm as it follows a
simple update rule that uses the current estimate of the action values of a state,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Goertzel et al. (Eds.): AGI 2022, LNAI 13539, pp. 343–352, 2023.
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the reward observed while transitioning from that state to the next and the max-
imum over all possible actions estimate of the action values at the next state.
Using the latter maximum operator however has been proven to cause Q-learning
to overestimate the action values. This overestimation is attributed to the uncer-
tainty in the estimates and the possible stochasticity of the environment. This
phenomenon frequently leads to poor policies [11].

To deal with the overestimation bias a number of variants of Q-learning have
been proposed in the literature. Double-Q learning [6] uses a double estima-
tor approach, where one estimator determines the maximizing action and the
other independently determines that action’s value. Despite the fact that dou-
ble Q-learning tends to underestimate the actual value functions, it is shown to
outperform Q-learning by leading to better policies in many environments. To
balance between over- and under-estimation [13] extend double Q-learning by
using an appropriately weighted sum of the single and double estimators in the
update rule. Weighted Q-learning [1] uses a weighted estimate among the action
values in the place of the maximum in the update rule. Furthermore, theoretically
backed bias correction techniques have been proposed in the asymptotic regime
for normally distributed rewards [8]. Finally, Maxmin Q-learning [7] uses a num-
ber of independent action value estimators and selects the maximizing action
by considering the minimum of these action values for each action. It should
be noted that overestimation bias has also been shown to affect policy gradient
algorithms which are predominantly used in continuous control applications [3].

Another branch of model-free learning algorithms, that is broadly related to
our work, is that of Monte Carlo (MC) based RL methods. The Monte Carlo
Exploring Starts (MCES) algorithm uses simulations to obtain estimates of the
cumulative discounted reward from a state-action pair to the end of the task
and uses those estimates to update the action value of that state-action pair
[10]. Although MC methods do not lead to overestimated action values they
tend to have high variance in their estimates compared to Q-learning [5].

In this paper we combine the Q-learning algorithm with MC techniques to
reduce the overestimation bias of the former in applications with finite state-
action spaces and episodic tasks. In summary, at the end of each episode of
the algorithm we compute the realized discounted cumulative reward from each
visited state-action pair. Given that and the current action value estimates we
can obtain an estimate for the bias incurred in each visited state-action pair,
which we then use to update a running bias estimator in our problem. That
bias estimate is subsequently subtracted from the action value estimates in the
Q-learning update rule to correct for the overestimation bias. We show in a
number of benchmark environments that our method consistently returns action
value estimates with low bias while producing policies that most of the times
outperform those from other approaches.

The rest of the paper in organized in the following way. Section 2 introduces
basic concepts of Q-learning and tries to shed some light in the reasoning behind
the overestimation bias while Sect. 3 summarizes already established techniques
designed to tackle overestimation bias. Section 4 introduces in detail our bias
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correction method. Finally, Sect. 5 compares the performance of our method
with the alternatives in a number of simulated stochastic environments.

2 Preliminaries

Reinforcement Learning applies to problems in which an agent interacts with
an environment and uses that information for informative decision making with
the ultimate goal being utility maximization over a finite horizon T . We model
such environments with Markov Decision Processes (MDP) which are defined by
tuples (S,A, P,R, γ), where S denotes the state space, A the action space, P the
transition probabilities in the environment, R the reward function and γ ∈ (0, 1)
is the discount factor. We assume the state and action spaces are finite and
their cardinalities are denoted with |S| and |A| respectively and we use A(s)
for the set of available actions in state s. The system transition probabilities
P : S × A × S → [0, 1] are denoted with P (st+1|st, at). After each transition the
agent observes a reward R : S × A × S → R obtained at state st by applying
input at and transitioning to state st+1 denoted with Rat

(st, st+1). The discount
factor γ controls for the significance of short versus long term rewards. The goal
of the agent is to find an optimal policy π : S × A → [0, 1] that maximizes the
expected discounted sum of rewards Eπ

[∑T
i=0 γiRat

(st, st+1)
]

starting from an
initial state s0.

Such a policy can be found via Q-learning in which state-action dependent
Q-functions Q : S × A → R are estimated. Qπ(st, at) quantifies the cumulative
discounted reward from state st when applying action at and then following
policy π for the duration of the task. At iteration t+1 the Q-learning algorithm
with a learning rate α, which frequently is a function of the state-action pair,
uses the following update rule

Qt+1(st, at) = Qt(st, at) + α

(
Rat(st, st+1) + γ max

a∈A(st+1)
Qt(st+1, a) − Qt(st, at)

)
.

(1)

The set of available actions A(st+1) at state st+1 and the policy π from the
action values will be dropped in subsequent expressions for notational concise-
ness. The optimal policy can be derived by greedily choosing the action that cor-
responds to the highest action value from each state s, π∗ = arg maxa Q∗(s, a).

The term maxa Qt(st+1, a) appearing in (1) causes the action value estimates
to be positively biased. Ideally, the update rule would choose at time step t + 1
the action value with the highest expected value maxaE[Q(st+1, a)]. However,
the true underlying action values and consequently their expected values are
unknown and instead are substituted by the sample estimates maxaQ(st+1, a).
The action value samples though are polluted with noise, attributed to the
stochasticity of the environment and the estimation uncertainty of the action
values themselves. Even if the noise has zero mean the max operator will likely
still positively bias the action value estimates. For detailed proofs of the overes-
timation bias in Q-learning we refer the reader to [6,9]. To obtain some intuition
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Fig. 1. (left) 100 simulations, each with three samples from the three normal distri-
butions (blue dots) and the maximum of those three (red dots) and the empirical
distributions of Xi, i = 1, . . . , 3 and maxi Xi. The mean of the empirical distribution
of the maximum is 0.83. (right) Similar to the left but one of the normal distributions
has now mean 3. (Color figure online)

on the overestimation bias we include a simulation that showcases that effect.
Assume that we have N alternatives X1,X2, . . . , XN each associated with real-
ized rewards xi, i = 1, . . . , N coming from a normal distribution Ni(0, 1). We
repeatedly observe the realizations of all N rewards and we select the maximum
one maxi xi. It is known from extreme value theory that the maximum of these
standard normally distributed random variables will asymptotically converge to
a Gumbel distribution with positive mean [4]. Intuitively, since the distributions
have the same zero mean, it is highly likely that at least one of them in a real-
ization will be positive and since we are picking the maximum of the N samples,
maxi xi most of the times will be positive as well, thus biasing the estimator.
Figure 1 shows the effect of the discrepancy among the alternatives in the bias of
the maximum operator for N = 3. When one of the alternatives is distinctively
better - it comes from a distribution with higher mean - then we observe min-
imal overestimation, since the max function systematically selects the sample
that comes from the distribution with the higher mean. On the other hand, if
all distributions generate similar rewards as in the left figure, the effect of over-
estimation becomes significant. Frequently in applications the different action
alternatives of the action values are similar to each other leading to positive bias
in the estimates.

3 Related Works

The aforementioned max-operator bias frequently leads the Q-learning algorithm
to overestimate action values. A number of methods have been proposed to
alleviate this problem most of which resolve to using more than one estimator
for the action values to tackle overestimation.

Double Q-learning [6] uses two independent estimators for the action val-
ues, one to choose the optimal action and another to extract the action
value. It requires storing two tables QA and QB and the agent follows an ε-
greedy policy in which actions can be selected using both tables, for instance
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a∗ = arg maxa QA(s, a) + QB(s, a). At each iteration one of the Q-tables is
randomly chosen to be updated. When table i ∈ {A,B} is updated then
the target in expression (1) is equal to Rat

(st, st+1) + γQ−i
t (st+1, a

∗), where
a∗ = arg maxa Qi(st+1, a). The notation −i denotes the alternative choice to i.

The structure of the weighted double Q-learning algorithm [13] is similar to
that of double Q-learning as it also employs two Q-tables A and B. The major
difference is that it uses a weight that is a function of both Q-tables at each
iteration to update a randomly chosen Q-table with the weighted average of the
two tables. When table i is updated the target value in the update rule becomes
Rat

(st, st+1) + γ(βiQi
t(st+1, a

∗) + (1 − βi)Q−i
t (st+1, a

∗)), where βi is a weight
parameter depending on the Q-values evaluated at a∗ = arg maxa Qi(st+1, a),
aL = arg mina Qi(st+1, a) and c is a user specified hyperparameter.

Maxmin Q-learning [7] employs m independent Q-tables to balance between
over- and under-estimation bias, where the number of Q-tables is another hyper-
parameter of the algorithm. Both the optimal action choice of the agent as well
as the Q-table update rule uses the Qmin table which for a state s is constructed
as Qmin(s, a) = mini∈{1,...,m} Qi(s, a), ∀a. The Maxmin Q-learning target is
Rat

(st, st+1) + γ maxa Qmin(st+1, a)). For some value m > 0 the Maxmin Q-
learning estimates switch from being overestimated to being underestimated and
depending on which of the two, if any, is beneficial for a particular environment
the user can tune m appropriately.

4 Monte Carlo Bias Correction

Most of the aforementioned methods utilize a multiple estimator scheme to
tackle the overestimation bias. In the process of creating estimates with reduced
bias the double weighted and Maxmin variants of Q-learning need extra hyper-
parameter tuning. Our method exploits already available information from the
realized trajectories in order to reduce bias without requiring significantly more
tuning than the original Q-learning algorithm. The intuition behind the algo-
rithm is to use information obtained during an episode to construct bias esti-
mates of the action values and use those to correct for the bias. More specifically,
at the end of each episode we compute the realized discounted cumulative reward
from each state-action pair visited to the end of that episode. Given the current
action value estimates we compute an estimate for the bias at state-action pair
s, a by subtracting the realized action values from the current action value esti-
mates (2). That estimate is then used to update a bias table, which is similar in
dimensions to the Q-table, for that particular pair (3). At each iteration of the
Q-learning algorithm the bias term is subtracted from the max action value to
compensate for the overestimation bias. Our algorithm can be broadly seen as
a combination of the Q-learning algorithm with elements from a variant of the
Monte Carlo Exploring Starts (MCES) algorithm [10].

In more detail, during each episode at each time step the agent acts in the
environment using an ε-greedy policy. During the episode, the sequence of state-
action pairs visited and rewards observed is saved. Once the episode is done
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after Tep steps, for each state-action pair in the trajectory si, ai, i = Tep, . . . , 1
we compute the realized cumulative discounted reward sequence Q̂(si, ai) from
time step i until the end of that episode. This realized Q̂ value is an estimate
of the action value that is not biased by the max operator and can be used
to obtain a sample estimate for the bias incurred at state-action pair si, ai as
follows

B̂(si, ai) = Q(si, ai) − Q̂(si, ai). (2)

The samples in (2) are then used to update a running average of the bias for
each si, ai similar to the update rule in (1)

Bt+1(st, at) = Bt(st, at) + α′
(
B̂(st, at) − Bt(st, at)

)
, (3)

where we allow for the use of a different learning rate α′ from the one used in (1).
The target value in the Q-learning update rule of our method is

Qt+1(st, at) =
Qt(st, at) + α (Rat

(st, st+1) + γ(Qt(st+1, a
∗) − Bt(st+1, a

∗)) − Qt(st, at)) , (4)

Algorithm 1: Monte-Carlo Bias Corrected Q-learning (MBCQ)
Choose learning rates α, α′

Initialize Q(s, a) randomly, B(s, a) = 0 ∀s, a
Repeat until convergence

Tep ← 0
While episode not over:

Choose action a in state s using policy derived from Q (e.g. ε-greedy)
Move to state s′ and observe reward Ra(s, s

′)
a∗ ← arg maxa Q(s′, a)
δ ← Ra(s, s

′) + γ(Q(s′, a∗) − B(s′, a∗))
Q(s, a) ← (1 − α)Q(s, a) + αδ
Store s, a, Ra

Tep ← Tep + 1
s ← s′

Q̂ ← RaTep
(sTep)

For each uniquely visited tuple (si, ai, Rai), i = Tep − 1, . . . , 1:
Q̂ ← Rai(si, si+1) + γQ̂
B̂ ← Q(si, ai) − Q̂
B(si, ai) ← (1 − α′)B(si, ai) + α′B̂

where a∗ = arg maxa Q(st+1, a). More details on our approach can be seen in
Algorithm 1. It should be noted that our method requires the storage of the
most recent trajectory along with the bias table B. For tasks in which episodes
have a large duration and γ < 1 a more computationally efficient rolling window
scheme can be used to approximate the total reward from a particular state. In
the following section we compare the effectiveness of our method with that of
other popular methods designed to tackle overestimation bias in Q-learning.
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5 Experiments

This section quantifies the performance of our method, abbreviated to MBCQ
to denote the Monte Carlo-like bias correction, in a number of stochastic bench-
mark environments both with discrete and continuous state spaces. We compare
the performance of our method with that of single Q-learning (Q), Double Q-
learning (DQ), Weighted Double Q-learning (WDQ) and MaxMin Q-learning
(MMQ). The last three of the aforementioned methods are some of the primary
approaches in literature that deal with the overestimation bias.

In all experiments we choose a polynomial learning rate for the Q-learning
update α(s, a) = 1/n(s, a)0.8, where n(s, a) denotes the number of times the
state-action pair s, a has been visited. For algorithms that require more than one
Q-table we use distinct learning rates for each table i, αi(s, a) = 1/ni(s, a)0.8.
The probability of randomly choosing an action in the ε-greedy policy also dimin-
ishes with a polynomial rate, ε = 1/

√
n(s, a). For the learning rate of the bias

update we select a constant rate α′ = 0.01. In all the experiments the discount
factor γ is set to 0.95.

5.1 Roulette

Roulette is a stochastic environment consisting of a single state and 171 actions.
The 170 betting actions include betting on individual numbers, red or black
color, odd or even numbers, etc. The 171th action is a termination action with
zero reward after which the agent walks away from the table. The agent bets
each time 1$, with no budget constraints, and the average expected reward from
each betting action is 0.947$, leading to an expected loss of 0.053$ for each bet.
The optimal strategy for the agent is to clearly walk away. All actions return to
the same state except for when the agent decides to walk away.

We sequentially update the action values for each action for 105 trials. We
repeat this experiment 10 times. We compute and report the mean of the action
values over all actions, averaged over the 10 experiments for all five methods as
shown in Table 1. All the methods overestimate the maximum action value as
the optimal one is equal to zero. Q-learning suffers from excessive overestimation
while weighted double Q-learning has diminishing bias for growing c. Double and
Maxmin Q-learning show significantly lower overestimation compared to single
Q-learning. On the other hand our method obtains estimates that approach the
actual action values.

Table 1. Average over all non-terminating actions of the action values.

Q DQ WDQ (c = 10) WDQ (c = 100) MMQ MBCQ

9.70$ 0.02$ 5.57$ 0.025$ 0.15$ 6.3 · 10−4$
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5.2 Grid World

The grid world environment (see Fig. 2 in [6]) consists of a n × n dimensional
grid in which the agent starts from the bottom left cell s0 and tries to navigate
towards the top right cell, which is the terminal state sg. At each cell the agent
can choose one of the possible actions {north, east, south,west}. If any of the
actions taken leads the agent off the grid then the agent remains in the same cell.
The agent receives equally likely a reward of −4 or 2 for any action leading to
a non-terminal state and a reward of 15 or −5 for successfully reaching the goal
state. The optimal strategy of the agent is to follow the shortest path towards
the terminal state. During the experiments we record the value function of the
starting state V (s0) = maxaQ(s0, a) and the average reward per time step. The
duration of the task is 104 iterations. The plotted curves have been smoothed
with an exponential kernel with parameter 0.1 for better exposition.

Fig. 2. Maximum action value for s0 and average reward per step for two different
grid sizes averaged over 1000 runs. The green dotted lines correspond to the optimal
maximum action values and average rewards. (Color figure online)

Q-learning and double Q-learning consistently over- and under-estimate the
action values respectively, as expected from their theoretical analysis. On the
other hand weighted double Q-learning tends to suffer less from overestimation.
Our method consistently approaches the optimal action values in all the exper-
iments and is never far off. The average reward obtained using our method is
consistently higher compared to all others. We also report in Table 2 the values
of V (s0) that all five algorithms converged to after 105 iterations for grid sizes
n = 3, 4, 5 and 6. The results were averaged over 1000 runs. The optimal value
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Table 2. Maximum action values V (s0) after 105 iterations.

n V ∗(s0) Q DQ WDQ (c = 10) MMQ (N = 4) MBCQ

3 0.36 0.37 −0.65 −0.18 −0.09 0.36

4 −1.62 −1.58 −2.79 −2.25 −2.43 −1.66

5 −3.41 −3.30 −4.69 −4.15 −4.75 −3.46

6 −5.03 −4.76 −6.53 −5.82 −7.17 −5.09

function as a function of the grid size is given by V ∗(s0) = 5γ2(N−1)−∑2N−3
i=0 γi.

Our method consistently manages to approach the optimal values of V ∗(s0)
closer than any of the other methods.

5.3 Taxi

The Taxi environment [2] is the last domain we will test our algorithm. In this
environment the agent can pick up a passenger who is in any of the R,G,Y,B
locations and transport the passenger to one of the remaining locations. For
each allowed move on the map that does not deliver a passenger to the specified
location the agent incurs a cost of 1. Regarding the rest of the rewards we will be
studying two cases, one with deterministic and one with stochastic rewards. In
the deterministic case, for illegal actions like trying to drop a passenger on the
wrong location, the agent incurs a reward of −4 while the reward for correctly
delivering the passenger to the specified location is 8. In the stochastic case, for
misplaced passenger deliveries the agent incurs a reward of −10 or 2 and for
correct deliveries the agent obtains a reward of 20 or −4, where all alternatives
have equal probability of occurring.

Fig. 3. Average reward per episode in Taxi environment with deterministic and
stochastic rewards. Results averaged over 100 runs.

We report the average reward per iteration for 2000 iterations averaged over
100 runs. The resulting curves have also been smoothed with an exponential
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kernel with parameter 0.1. Figure 3 shows the average reward plots for the deter-
ministic and stochastic cases. MBCQ clearly outperforms all the other methods
on both cases by leading to policies that obtain higher rewards.

6 Summary

Overestimation bias is a flaw of the Q-learning algorithm that usually leads to
overestimated action values and frequently to suboptimal policies. We presented
a novel algorithm that combines the Q-learning algorithm with Monte Carlo
methods to obtain action value estimates with reduced bias. Our method utilizes
information already gathered through past trajectories to construct estimates of
the bias and uses these estimates in the Q-learning update rule to compensate for
the maximization bias. Our method consistently outperforms the current state
of the art approaches in a number of stochastic environments with discrete state
spaces without requiring extensive hyperparameter tuning. It should be noted
that most of the methods presented in this work assume fully observable states.
We leave possible extensions to POMDPs for future work.
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Abstract. The debate on whether or not humans have free will has
been raging for centuries. Although there are good arguments based on
our current understanding of the laws of nature for the view that it is not
possible for humans to have free will, most people believe they do. This
discrepancy begs for an explanation. If we accept that we do not have
free will, we are faced with two problems: (1) while freedom is a very
commonly used concept that everyone intuitively understands, what are
we actually referring to when we say that an action or choice is “free”
or not? And, (2) why is the belief in free will so common? Where does
this belief come from, and what is its purpose, if any? In this paper, we
examine these questions from the perspective of reinforcement learning
(RL). RL is a framework originally developed for training artificial intel-
ligence agents. However, it can also be used as a computational model
of human decision making and learning, and by doing so, we propose
that the first problem can be answered by observing that people’s com-
mon sense understanding of freedom is closely related to the information
entropy of an RL agent’s normalized action values, while the second can
be explained by the necessity for agents to model themselves as if they
could have taken decisions other than those they actually took, when
dealing with the temporal credit assignment problem. Put simply, we
suggest that by applying the RL framework as a model for human learn-
ing it becomes evident that in order for us to learn efficiently and be
intelligent we need to view ourselves as if we have free will.

Keywords: Free will belief · Reinforcement learning · Model-based ·
Credit assignment

1 Introduction

Although, according to the current understanding of the laws of nature, there
are good arguments in support of the view that it is not possible for humans to
have free will, so-called free will belief is widely spread across cultures [15]. This
discrepancy between the materialist view held by large parts of the scientific
community, on the one hand, and the subjective experience most laypeople have
of their own freedom, on the other hand, begs for an explanation. If we assume
that the materialists are right (i.e., that we lack free will), we must ask ourselves
the following questions:
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1. What does freedom mean when used in everyday language? Freedom is a
commonly used concept but what are we actually referring to when we say
that an action or choice is free or not?

2. Why is free will belief so common? Even the most determined determinist
feels as if he or she can make free choices. Where does this experience come
from, and what is its purpose, if any?

In this paper, we attempt to address these questions from the perspective of
an agent trained with model-based reinforcement learning (RL). Reinforcement
learning is a framework for training artificial intelligence (AI) agents in settings
where there is a delay between the actions of the agent and the evaluation of the
objective of the agent. The goal of an RL agent is to learn to perform sequences
of actions that maximize the long-term reward it receives from its environment.
Where reward is received when the objective assigned to the agent is fulfilled. A
classic example is games like chess, where an AI should learn to make a sequence
of turns that lead to a win.

Importantly, reward maximization through reinforcement learning has been
proposed not only as a method for building AI systems, but also as a computa-
tional theory of human learning and decision-making [13]. Although the human
brain most definitely mixes many different kinds of algorithms and objectives,
reward maximization is suggested as a general framework for how to express the
multitude of objectives. The pursuit of reward allows humans to optimize for
long-term success, which is subjectively defined through the reward system of
the brain—a system that has evolved to balance different needs and desires and
preserve the homeostasis of the body. Accordingly, reward is hypothesized to be
a “common currency” that allows for most (if not all) aspects of intelligence and
behavior to be prioritized and integrated.

It has frequently been argued that the problem of free will is due to semantics,
and we agree that this is indeed the case. When debating free will, we are con-
flating two different types of freedom, and we argue that by viewing humans as
reward-maximizing RL agents it is possible to resolve the conceptual confusion.
The first type of freedom—which we will refer to here as physical freedom—
is what incompatibilists have in mind when they conclude that the currently
known laws of nature do not permit one to have free will in any meaningful way.
This kind of freedom is essentially randomness. It is the possibility for things to
happen without a cause, which is in physics a consequence of quantum mechan-
ics, or at least according to some interpretations thereof. Therefore, it makes
perfect sense to conclude, as hard incompatibilists do, that physical freedom is
not something we can possess, since if something is random, it is by definition
not under our control [11].

However, as we will show, the RL perspective allows us to reason about
and define the freedom of an agent in a different yet meaningful way. We call
this other type of freedom value freedom. Where value refers to the estimated
values of actions available to an RL agent given its current knowledge of the
environment. The state dependent value freedom of an agent is defined as the
information entropy of its action selection process and thus can, at least in some
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sense, be viewed as a measure of unpredictability, regardless of whether the
selection process is fully deterministic or somewhat stochastic. Accordingly, we
suggest that the concept of value freedom bridges the everyday use of the word
free, the compatibilist view that it is meaningful to talk about free will even
under strict determinism, and the incompatibilist view according to which our
understanding of causality does not permit us to have free will in the physical
sense.

Furthermore, we also suggest that value freedom is beneficial for agents due
to its connection to the exploitation vs. exploration dilemma faced by all agents
trying to learn from delayed rewards. [7,14] High freedom states are desirable
because they signal low-risk exploration and provide room for potential policy
improvements.

Lastly, we address the question of why people so often believe in free will by
observing that an efficient solution to the temporal credit assignment problem
[10] requires agents to model themselves as if they are able break the causal
structure of their environment. Although this model—from a deterministic point
of view—is flawed, it tend to make humans think of themselves as being free to
have done differently than they actually did.

In what follows, we start with a brief description of model-based RL and
challenges that learning agents, including humans, face when trying to maximize
reward. Then, we proceed to define the value freedom of an agent and, through a
series of examples, demonstrate that this quantity closely relates to the concept
of freedom, as used in everyday language. In the next section, we discuss why the
credit assignment problem makes it necessary for efficient model-based RL agents
to believe that—or at least act as if—they have free will that defies causality.

2 Reinforcement Learning

Owing to the delay between actions and rewards, RL1 presents a learning agent
with two central challenges: reward prediction and credit assignment (Minsky,
1963).

If an agent can predict how its behavior will alter its environment and what
future states will result in reward, it can use these predictions to better choose
its actions. Less trial-and-error is needed if an agent, when faced with a new
situation, is capable of seeing into the future to make predictions of the likely
reward its actions will generate. We will in the following refer to an agent’s
prediction of the expected value of an action, a, given an observed state of the
world, o, and its policy, π, as Qπ(o, a).

In contrast to planning, that requires an RL agent to predict the future,
the problem of temporal credit assignment requires it to understand the past.
If a sequence of actions leads to a successful outcome, the agent needs to figure
out which actions were actually important for the success, and which were not.
Accordingly, the agent has to assess which behaviors shall be reinforced, making
1 For the sake of brevity, we here only give a high-level description of model-based

RL. For a more complete formulation see [12].
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them more likely to be repeated in similar situations in the future, and which
shall be suppressed.

Model-based RL is an approach to tackle both the problem of reward predic-
tion through planning and/or that of credit assignment by equipping the agent
with some form of generative model of its environment, i.e., a world model.
Specifically, reward prediction can be achieved by running the world model for-
ward, allowing the agent to search for favorable action sequences without really
performing them, while credit assignment is attained by employing the world
model to evaluate which past actions were actually important for the received
reward, without needing to go back and test alternative action sequences. Both
prospection and retrospection through a world model are thus crucial for efficient
RL.

3 What is Freedom?

Similar to many other concepts often used in everyday language, freedom and
voluntary vs. involuntary action are not precisely defined. However, this does
not make them less useful.

If we seriously consider the perspective that humans are RL agents, a problem
emerges. Namely, what does it mean for an RL agent to make free choices? An
RL agent is just an algorithm or a collection thereof, be it deterministic or
somewhat stochastic, or equipped with a world model or not. It is still just a
mapping between states of the environment and actions. It is difficult to talk
about algorithms having free will.

We suggest that the solution to this problem starts by noting that the rela-
tive action value estimates given the agents observer state, Qπ(o, a), represent
something close to the “will” of an agent, since in every situation an agent selects
its actions according to their expected value. Therefore, action values represent
what an agent wants to do, i.e., what outcomes it expects to be rewarding or
least costly, and how effective it believes the available actions are when trying to
reach those outcomes. For instance, if the agent is an imprisoned human, he or
she might really want to escape, but, at the same time, realizes that the prob-
ability for success is minuscule and thus estimates the action value of escaping
to be rather small. Therefore, after an agent has considered the probability of
success, the resulting action values can be viewed as the will of that agent.

Based on the aforementioned definition of “will”, we suggest that it is also
possible to quantify how free an agent is. To this end, we define the action
selection probability as: P (ai) = softmax(Qπ(o, ai)), where the softmax func-
tion normalizes2 the estimated action values into a probability distribution over
actions.

We then use this to define the freedom of an agent with an observed state as
the information entropy of the action selection distribution:

2 The exact method of normalization in not important. We here ignore the problem
that the softmax function is not scale invariant.
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Ha = −
∑

i

P (ai)log2(P (ai)). (1)

This quantity, which we refer to as value freedom, can thus be interpreted
as the uncertainty of an agent’s action selection if the policy samples action
weighted according to P(a). It is high in situations where the agent’s estimated
action values, Qπ(o, a), are uniform, and low when the value of one or a few
actions appears to be markedly higher than those of all other actions.

To demonstrate that value freedom, Ha, is indeed a quantity that closely
resembles what, in everyday language, is referred to as freedom of choice, let us
imagine two idealized scenarios where one could consider a binary choice to be
free or not (here we switch to a second-person perspective to allow the reader
to better imagine themselves in these situations):

1. You are sitting on a lush green lawn. Someone asks you in a friendly way to
raise your left arm if you like, with no consequences whether you do it or not.

2. You are standing at the edge of a precipice with a deep dark ocean crashing
against the sharp cliffs beneath you. Someone sneaks up behind you and
threatens to push you off the ledge if you do not raise your left arm.

Let us also assume you can be very certain that what is promised will also
happen, and that you are not suicidal.

When comparing these scenarios, one could argue that you are not free to
choose what to do in either case, because you are just an algorithm and, as such,
have no free will. Whether you raise your arm or not is just a result of the initial
conditions of the situation and some deterministic or stochastic machinery in
your head. However, in the common-sense meaning of being free, it is obvious
that you are freer to choose what to do in the first scenario. Nothing is forcing
you to do anything and, if you raise your arm, it seems as if you were free to not
do it. So what is the difference between these two situations?

The central argument here is that the reason behind our perception of these
two cases as very different is not that you are actually more physically free in
one case or the other, but rather that you estimate the action values, Qπ(o, a)),
differently. Your goal (or that of any other RL agent) is to maximize the reward
you receive over time. To this end, you need to continuously estimate the future
reward of every available action and select the action with the highest estimate.
Hence, you always perform the action that you subjectively estimate to be the
best, i.e., the one that, in your assessment, has the highest estimated action
value.

From this perspective, the difference between the two scenarios lies in how
you reasonably would estimate the future reward of raising your arm or not.
In the first scenario, raising your arm has no consequences; therefore, doing so
or not has basically equal values. In contrast, in the second scenario, your fear
of death produces a very large estimated negative reward for the option of not
raising your arm. For more examples of how various action value estimates result
in different levels of value freedom, see [12].
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Note that you could also imagine that your policy is more or less stochastic,
and that you do not always select the action with the highest value, but instead
somehow sample your actions weighted according to the estimated rewards, since
your action selection process might be more or less noisy. Nevertheless, intu-
itively, the “freedom” of your policy is large in the first scenario and very small
in the second scenario, because, in the former case, there is simply less difference
in value between available options. Indeed, there is empirical evidence showing
that a person indifferent to the consequences of his/her choice is seen by lay
people as maximally free [3].

However, at this point, one might rightfully object that, thus far, this seems
like a very narrow definition of freedom. Isn’t it possible to be very sure about
what you want to do, but still feel free to do so or not? For instance, you might
feel free to choose to have your favorite dish for dinner or not, even if you
feel very sure its your preferred choice. However, note that you also know that
the relative reward between having your favorite dish, or any other well-cooked
meal is actually marginal. In contrast, image a scenario where, after starving
for a week, you can choose between having your favorite dish and no dinner at
all, your freedom is quite limited, to say the least. Hence, your value freedom
is actually relatively high when choosing what to have for dinner and for most
other everyday decisions.

In summary, we argue that the freedom of an agent can be quantified by
looking at the uniformity of Qπ. The amplitudes of Qπ naturally translate to
the will of the agent, since they represent how beneficial each action appears
to be to the agent, while the uniformity of Qπ, here suggested to be measured
through the information entropy, H a, corresponds to how “free” the will is. In
other words, value freedom could also be viewed as the “entropy of the will”.
And as such, its unit, bits, corresponds to how much information is gained by
observing the choice of an agent. Because decisions where the value freedom is
high involve more uncertainty concerning what the agent will do, the information
content is higher than for low freedom decisions.

The above discussion of our commonsense understand of freedom has been
limited to simple choice scenarios, where we view this as the momentary value
freedom. We acknowledge that since agents like humans have a sophisticated
model of the past and future, our experienced freedom is also depended on past
choices, and the anticipated future outcome of actions (other than the reward).
In [12] these factors are discussed in more detail. However, note that all these
factors are highly subjective, from the perspective of both the agent itself and
other agents judging someone else’s freedom. The main argument here is that
our everyday understanding of freedom is inherently subjective, i.e., it depend
on the reward function of the agent, and that it is independent of whether or
not the universe is deterministic.

4 Why Do We Believe We are Free?

Now that we have a way to quantify and think about our subjective understand-
ing of freedom through the concept of value freedom, we will address the other
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questions we set out to answer: Why do we feel that we have free will, and what
is the purpose of this feeling? Two questions which we suggest can be translated
to: (1) Why do we tend to mix up value freedom with physical freedom? And,
(2) why is high value freedom desirable? We hypothesize that the answer to (2)
can be found in the need for RL agents to deal with the famous exploration
vs. exploitation dilemma [7,14]. High value freedom indicates to an agent that
the risk of exploration is low, because, in such situations, it looks as if there is
not much to lose from exploring. Since several alternatives have similar predicted
values, choosing one that is not known to be optimal is perceived as less of a risk.
From this perspective, freedom can be seen as room for learning. When value
freedom is high, an agent has the opportunity to test new approaches that hope-
fully will improve its world model, leading to an improved policy. Hence, high
value freedom is a heuristic that signals potential low-risk policy improvements.

But, note that the value freedom does not say anything about how good your
options are in an absolute sense—rather, it only shows how you subjectively value
them relative to each other. Therefore, if all dishes on a restaurant menu look
equally disgusting to your refined taste, then you are still bad off, even if your
freedom is high. The inductive bias of “freedom desire” is thus balanced towards
other goals, like having good food, through the common currency of reward. We
are all familiar with the fact that people are often willing to give up some of
their freedom in exchange for the fulfillment of other more basic needs.

We hypothesize that, rather than directly giving an agent a higher reward,
striving for freedom makes the policy more robust and increases the venues for
improving it in the future. Intuitively, this makes sense. If you are always forced
to do the same thing over and over again, there is no room to try anything new,
and you will never learn. However, an important distinction to be made here is
that the lack of freedom does not necessarily mean the lack of exploration. We all
have been in situations where our exploration was guided by a teacher. During
this “supervised exploration”, the teacher employs its model of the learning
domain and the learner and, through authority or trust, skews the learner’s
reward estimates to make some actions look more preferable than others.

Now that we have discussed a potential motivation for the importance of
(value) freedom to learning agents like humans, let us turn to the next question:
Why do we tend to mix up value freedom with physical freedom?

Remember that temporal credit assignment is a challenge faced by all agents
that need to learn from delayed rewards. The problem is essentially to figure out
what actions leading up to a reward or penalty were responsible for the outcome
and reinforce or weaken similar behavior in the future. In most work on RL, this
problem is dealt with by relying on a temporal proximity heuristic where the
actions closer in time to the reward state are straightforwardly assigned more
credit than those farther away, i.e., the credit is somehow discounted based
on the temporal proximity to the reward. This works in board games like Go
or chess which have little causal invariance (most actions/turns influence the
end state of the game), and where it is easy to generate a lot of independent
action trajectories (e.g., chess games), but fails when actions have very different
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importance, and you cannot afford to fail multiple times, or in multi-task settings
where it is not obvious which action influenced which reward state. For instance,
imagine a Wall Street investor who assigns credit to his daily choice of a tie when
he reaches the office in the morning and finds out that the value of one of his
assets has crashed overnight. Superstition can in many cases be viewed as a
failure of credit assignment.

Instead of relying only on temporal proximity, agents become more efficient
learners if they are capable of figuring out what actions were actually important
for a received reward or penalty. To this end, agents need to be able to imagine
choosing other actions than those that were actually chosen. It comes down
to answering counterfactual questions, such as “What would have happened if
I had not done X? Would Y still happen?” Accordingly, to figure out what
actions caused a received reward or penalty, agents need to imagine alternative
realities. Along with planning by simulating the future, the simulation of such
alternative histories is a key benefit of having a world model that encodes causal
relationships between variables. So-called hindsight credit assignment has been
investigated [5,6,9], albeit, to the best of our knowledge, only for model-free RL,
i.e. RL when there is no explicit world model.

One can argue that not only credit assignment but also planning involves
imagining taking actions independently of causal influence from the environment.
When simulating future scenarios, agents need to evaluate the consequence of
different decisions and can imagine being free to do virtually anything as long
as it can be represented by their world model. For instance, Deery [2] argued
that prospection, i.e., our experience of different future scenarios through mental
simulation, is the cause for people’s free will belief. However, since the action of
planning lies in the causal path to the future, it is less clear that the imagination
of being free in the future contradicts a deterministic model of the world and
the agent itself. Since planning involves modeling the future, at least in its basic
form, it does not require you to think about yourself as non-deterministic and
having the ability to do differently than you actually did, i.e., no counterfactuals
are needed.

In summary, we argue that, in order to efficiently learn from our successes
or mistakes, we need to imagine that we are free. This imagined freedom is
physical freedom in the simulated reality of our world model. When planning
and performing credit assignment by counterfactual reasoning, we break the
causal structure of our virtual reality and basically decide that something that
did not in fact happen actually happened. In other words, we decide that events
should occur without causes. The real causes for events in our mental simulation
lie outside the simulation. In the frame of reference of the simulation, they are, to
use physics jargon, hidden variables. Therefore, according to our imagination, we
have physical freedom. Our ability to mentally break the chains of determinism
makes us believe that—or at least feel as if—we really have physical freedom and
that we can make decisions that are not ultimately caused by events external to
ourselves.
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5 Discussion

In this paper, we argued that the centuries-long philosophical debate about
free will is a result of a necessary, but flawed aspect of our self-concept. Our
models of ourselves say that, when offered a choice, we could have chosen to do
something that we did not in fact do. This model has a good purpose. Without
it, we would be unable to apply counterfactual reasoning to the problem of
credit assignment and efficiently learn from our successes and failures. To learn
in complex situations, we need to imagine that we could have made other choices
than those we actually made. And, interestingly, this model of ourselves is not
something we seem free to get rid of. On some level, even the most determined
determinists act as if they have free will. While they might intellectually know
that they have no physical freedom, if they truly thought as if they did not, they
would fail to learn efficiently.

Furthermore, we argue that this contradiction can be resolved by applying a
reward maximization perspective on human decision-making. It allows us to for-
malize what free and will actually refer to and realize that we do not really need
to believe that we have physical freedom. Instead, what we refer to here as value
freedom suffices. When we reason about our own freedom, write laws, or com-
municate with each other in general, this is the kind of freedom we are actually
referring to. Therefore, our freedom is not based on our ability to act indepen-
dently from the world—rather, it emerges from our brain’s reward systems and
the predictions of our world models. And since freedom tells us something about
how much room for exploration and learning we have, it becomes, in Dennett’s
[4] parlance, “worth wanting”—for humans, and for learning agents in general.

Of note, our definition of value freedom does not rely on RL being a complete
theory of human learning and decision-making. There is no requirement for any
learning to occur, and rewards do not necessarily need to be scalar. The only
requirement is that agents should be capable of selecting actions based on their
expected relative benefit. Such a selection process appears to be a condition for
agency itself. To choose is to weigh different options against each other, and
then make a decision. While the nature of this weighting can vary considerably,
agency postulates the need for some kind of ordering of alternatives. Similarly,
it is clear that humans are capable of performing complex credit assignments
using some form of causal model of the world.

In some sense, by formulating what freedom is, regardless of whether or not
determinism holds, we propose a compatibilist view on free will. We are not dis-
agreeing with the classic incompatibilist argument [8] that determinism does not
allow for free will; rather, what we argue is that the kind of freedom laypeople
actually refer to in everyday language is not the same kind of freedom incom-
patibilists reject. This distinction between what we here call physical freedom
vs. value freedom allows for several potentially interesting perspectives.

For instance, when the UN declares that freedom of opinion is a human
right, this does not imply that humans shall be able to choose their opinions
independently from their environment. Rather, this means that people shall be
able to do so without risking being punished for “wrong” choices, or bribed into
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making “correct” ones. When people vote to select their leaders, they should
not perceive huge differences in estimated reward between candidates. Although
some differences, seemingly more or less important, must obviously exist, voters
should know that making one choice or the other will not massively change their
outlook. They will not get jail time, nor will they get a promotion, regardless
of how they cast their votes. Said differently, freedom of opinion means that,
when forming opinions, agents should not experience any extremes in the action
value distribution, and political liberty should be seen not only as freedom from
oppression, but also as freedom from excessively strong positive incentives.

Furthermore, the RL perspective on human decision-making also suggests
that laws, be they written or moral, do not exist because they reflect some
metaphysical justice or ideal, but rather because they are ways for societies of
learning agents to teach each other how to act. Accordingly, the classic incom-
patibilist position—the one that submits that, without free will, no one can be
morally responsible for their actions [8]—is based on a misunderstanding of the
purpose of assigning responsibility. Moral responsibility must be forward-looking
[8]. The main reason for punishing members of a society, or any other group, for
something they have done, is to discourage similar behavior in the future, and
it makes little difference whether they were physically free to do what they did
or not. From an RL perspective, what is important is to reduce the likelihood of
someone making the same choice again in a similar situation by skewing future
action value estimates. The “responsibility assignment” that societies have cre-
ated courts for is analogous to the credit assignment single RL agents need to
deal with when learning what behaviors to suppress or reinforce. In this view,
courts are important components of the multi-agent learning system we call
society.

There has been some empirical research on the connection between coun-
terfactual thinking and free will belief. For instance, in a series of experiments,
Alquist et al. [1] found the belief in free will to be linked to increased counter-
factual thinking. The authors then hypothesized that “individuals and society
as a whole may have benefitted from free will beliefs and the counterfactual
simulations they stimulate”. Here we show why this is the case and demonstrate
not only that individuals and societies benefit from counterfactual thinking, but
also how and why such thinking is essential for learning on a fundamental level
through its role in efficient credit assignment.

Another observation is the relation between freedom and indifference, and
how the latter is central to certain religious beliefs. According to the definition
of value freedom, a maximally free agent is the one that always estimates all
actions to have equal value. Such an agent never wants anything more or less
than anything else, and obviously, would never learn anything and be utterly
useless. One can question if it would be an agent at all. Applied to humans,
such an agent is a person who completely lacks ego—an individual without any
needs, drives, or desires. Interestingly, this view that the destruction of the ego
is the ultimate path to freedom closely resembles a common theme in Eastern
philosophy. According to Buddha’s Four Noble Truths, to end personal suffering,
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stop the cycle of rebirth, and reach spiritual liberation, nirvana, we must let go of
all desires. It is only when we have no desires—not even the desire to rid ourselves
of all desires—that we become completely free. Accordingly, nirvana is described
as a state of complete emptiness. It is when we experience ultimate indifference,
and end experience itself. Nirvana is thus a state of eternal maximum value
freedom.
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Abstract. The term architecture has evolved considerably from its original Greek
roots and its application to buildings and computers to its more recent manifes-
tation for minds. This article considers lessons from this history, in terms of a
set of relevant distinctions introduced at each of these stages and a definition of
architecture that spans all three, and a reconsideration of three key issues from cog-
nitive architectures for architectures in general and cognitive architectures more
particularly.
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1 Introduction

Architectures are central to many attempts to capture key aspects of what is necessary
for general intelligence [1–4], whether as models of natural (human) intelligence or as
artificial systems that embody human-level intelligence or beyond. This notion is most
familiar in cognitive science, where a cognitive architecture is intended to embody a
theory of the human mind. However, it can also be found in both artificial intelligence
(AI) and artificial general intelligence (AGI) – although sometimes under other names,
such as AI, AGI, and agent architectures – where it amounts to a fixed framework that
supports the construction of (generally) intelligent systems. For simplicity, the term
cognitive architecture is used here as the generic across all of these variants.

One definition of a cognitive architecture is as a hypothesis concerning the fixed
structures and processes that together yield a mind, whether natural or artificial [5].
Explicit in this definition is that a cognitive architecture should be fixed and that it
may concern natural or artificial minds. Implicit in it is that a cognitive architecture
should be theoretical (“hypothesis concerning”) and computational (“structures and
processes”). However, computer architectures, the direct inspiration for cognitive archi-
tectures, although fixed and computational, are not obviously theoretical in the sense of
being about something else. Reaching further back in the inspirational chain, building
architectures, although fixed, are neither computational nor theoretical.

In his classic work on Unified Theories of Cognition, Newell [6] defined an archi-
tecture as a symbol system [7]. This shares the concern with fixity and the notion that
an architecture in general need not be theoretical, but then narrows the definition from
there down to a form of universal computation. It thus rules out building architectures
and any other noncomputational structures – such as noncomputational scientific theo-
ries – or even many special purpose computational devices, while still admitting typical
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computer architectures and symbolic cognitive architectures. By having identifiedminds
with symbol systems [7] – an idea that remains controversial to date – Newell had no
need to add that cognitive architectures are about minds, whereas under the version in
[5] they are explicitly concerned with understanding and/or building minds.

The remainder of this article begins with an attempt to clarify the notion of an archi-
tecture as it has developed from building architecture, through computer architecture, to
cognitive architecture (Sect. 2). A key part of this is identifying relevant distinctions that
the kinds of architectures in this sequence have introduced. Analyzing this history, and
the distinctions introduced across it, a broad definition of an architecture emerges that
spans the entire sequence (Sect. 3). What then follows are discussions of three issues
of interest that specifically concern cognitive architecture: multilayered architectures
(Sect. 4), theoretical computational architectures (Sect. 5), and architectural exploration
(Sect. 6). The ultimate intent is to see what new insight this all can yield for architecture
in general and for cognitive architecture more particularly.

2 Historical Context1

Thewordarchitecture stems from theGreek¢ρχιτšκτων (arkhitekton),where it referred
to a master builder or director of works [8, 9]. In modern usage it includes “both the
process and the product of planning, designing, and constructing buildings or other struc-
tures” [9], with its practice oriented toward both practical and expressive requirements,
and thus serving both utilitarian and aesthetic ends [10]. Distinctions that arise in such
architectures that resonate in later forms of architecture include:

1. The fixed nature of the architecture versus the variable nature of its contents. In
French, this is succinctly immobiliere (real estate) versus mobiliere (furniture).

2. Design versus implementation. A design is part of the process that specifies what is
to be implemented, whereas an implementation is the heart of the resulting product.

3. (Function versus structure) versus form. Function concerns how the product is used
whereas structure concerns how this function is provided. Both relate to utility
whereas form in this context concerns the aesthetics of how these are presented.

4. Simple versus complex. Although this may impact utility, the greater concern is with
form/aesthetics, such as Scandinavian or Japanese versus Victorian or rococo.

Computer architecture [11] is a more recent conceptualization inspired by the notion of
building architecture. It induces a partitioning of a computational system – i.e., a system
that transforms information [12] – into a fixed architecture versus variable programs and
data. The design is a description whereas the implementation actively computes. The
earliest computers each had their own instruction set – a specification of the instructions
the computer could execute – that was tied to the hardware they came with. However, it
was not long before this was separated from the implementation, with the architecturally
defined instruction set specifying what was to be implemented, and multiple hardware
implementations being developed to span sizes and generations of computers. A general

1 Truth in advertising: I am an expert on cognitive architecture, but nothing more than a student
of computer architecture and an interested outsider on building architecture.
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language – Instruction Set Processor (ISP) – was even developed to enable specifying
instruction sets across the field of computer architecture [13].

The function of a computer architecture is to support computation via an instruction
set. The structure comprises the hardware (and possibly firmware) components that yield
this plus their organization. Form is often deprecated, although some manufacturers do
take it seriously. There is an analog of simple versus complex, in the debate between
reduced versus complex instruction set computers – i.e., RISC versus CISC – although
the focus here is more on utility than aesthetics.

A computer architecture induces one additional distinction of note:

5. Transformer versus container. A transformational architecture transforms its vari-
able content rather than simply containing it.

A computational architecture transforms information, with a computer architecture
further specializing this to be based on hardware (and possibly firmware) structures.

The notion of a cognitive architecture is even newer, being a form of computational
architecture that originated in analogy to computer architecture, with Allen Newell
having played formative roles in both areas [13, 14]. Its function is to provide a (fixed)
mind that can transform (variable) knowledge and skills. Its structure comprises the
mechanisms and their organization that together yield a mind. The question of form
arises primarily in terms of the simple versus complex distinction. A simple, RISC-like
cognitive architecture focuses on achieving intelligence from the interactions among a
small number of very general mechanisms (see, e.g., [5, 15]), whereas a complex, CISC-
like architecture includes awider range ofmore complexmechanisms (see, e.g., [16, 17]).
This distinction may be thought of as between a physics (i.e., beauty) mindset – although
even there it can be controversial [18] – versus a biological (i.e., evolution-as-a-tinkerer)
one, with the computer science (i.e., modular) perspective possibly sitting in between.
Both utilitarian and aesthetic aspects are implicated here.

The introduction of cognitive architecture also induces an additional distinction:

6. Theoretical versus atheoretical. This amounts to whether or not an architecture is
about something else. Architectures in cognitive science tend to be theoretical –
being about human minds – whereas A(G)I architectures (along with building and
computer architectures) are not directly so.

A theoretical architecture – or theory – with or without accompanying variations, rep-
resents – or “stands in for” – key aspects of a phenomenon or domain of interest. Archi-
tectures represent complex phenomena when used in understanding it [12], as is typical
in the sciences. Transformational architectures may also be used to generate (or shape
[12]) complex phenomena, as is typical in engineering and other professions [12]. Such
architectures may also represent something but need not do so.

A computer architecture, for example, is central to engineering all kinds of com-
putational systems, with its foremost purpose being to aid in the development of such
systems rather than to represent or to help in understanding anything. The architecture
in such a case could conceivably be considered as a model of computation, as with a
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Turing machine [19], but this is deep in the background in most applications. Similarly,
a cognitive architecture may be theoretical in a strong sense if intended, for example,
to explicitly represent a human mind or it may be theoretical only in a weaker sense,
in implicitly embodying a hypothesis about mind in the abstract. The definition in the
introduction is broad enough to span both senses.

An inspired architecture, such as a biologically inspired cognitive architegure
(BICA) [20], sits at a hybrid position with respect to theoretical versus atheoretical via a
particular combination of understanding and shaping. At the top level, the goal is athe-
oretical, to support the development of useful systems with no concern as to what might
be represented in the process. However, understanding of an existing system becomes
an instrumental subgoal in guiding the design of the atheoretical architecture. In some
cases the existence of this subsidiary understanding is considered purely heuristic, and
fine to ignore or dismiss when convenient, while in others it is considered a virtue to be
extolled.

3 Defining Architecture

From these three overall classes of architectures – building, computer, and cognitive –
a slimmed-down definition of an architecture can be identified that centers on a fixed
framework that enables and delimits a space of variations. This focuses on Distinction 1,
with the other five helping to scope the space of architectural types while not themselves
beingdefinitional. Simon [21] discussed the importance of identifying invariants because
of “their power to strip away the complexity and diversity of awhole range of phenomena
and to reveal the simplicity and order underneath.” In this sense, an architecture is a set
of invariants; however, it also typically goes beyond this to consider the interactions
among them and what a complete set of them might be.

Together, an architecture and a set of variations yields a system, which can succinctly
be semi-formalized via the equation system = architecture + variations. This harks
back to earlier syntactically similar equations, such as algorithms + data structures =
programs [22] and algorithm = logic + control [23]; however, each of these equations
makes a distinct point. Still, in the spirit of the second equation, the familiar equation
system(s)= program(s)+ data can be seen as a particular specialization of the equation
proposed here to computational systems, where the program is the fixed, architectural
component and the data yields the variations.

More broadly, the systems of interest here may be conceptual, mathematical, compu-
tational, physical, etc.Anapplication is then simply a system that yields value. In general,
different kinds of architectures enable different forms of variations (and thus yield dif-
ferent types of systems and applications). As we have just seen, computer architectures
enable programs and data while cognitive architectures enable skills and knowledge.
In addition, modular architectures enable module definitions and API (i.e., application
programming interface) specifications; hierarchical and graphical architectures enable
node and link definitions; tables and maps enable entries at appropriate locations; and
buildings enable furniture, appliances, and ornaments. In tightly specified theories or
models, in which nearly the entire system is architecture, the variations may simply be
parameter values.
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A classic slogan in AI, although it seems to have originated hundreds of years ago
with Francis Bacon as scientia potentia est, is that knowledge is power [24]. We could
also add that applications are payoff . In architectural terms, knowledge is a form of
variation enabled by cognitive architectures, whereas applications are complete systems
that result from combining appropriate architectures and variations. In analogy, we can
now go a step further to say that architecture is essence.

4 Multilayered Architectures

Computational architectures – i.e., architectures that transform information – and the-
oretical architectures are both amenable to being parts of layered stories.2 Consider
first computational architectures. A computer architecture provides a fixed foundation
that supports leveraging programs to transform data. However, as anticipated with the
familiar equation introduced in the previous section, at a second level programs may
themselves yield computational architectures, particularly when fixed over some span
of interest, with their data then providing the only source of variation. This data variation
may in turn be very flexible – as for example in a cognitive architecture that supports a
broad range of skills and knowledge – or it may be severely limited.

In the former case, this process of implementing computational architectures within
the variations that are enabled by other computational architectures can conceivably
proceed to arbitrary levels. For example, the Sigma cognitive architecture [5] comprises
two such layers – a graphical architecture and a cognitive architecture – with the former
implementing the latter. Some of the capabilities included in the Common Model of
Cognition [3] – such as a particular form of declarative memory – are then implemented
in a third layer, with the aid of skills and knowledge representedwithin Sigma’s cognitive
architecture.

Similarly, a theoretical architecture can be a theory itself or just one part of a more
elaborate theory that also includes appropriate choices among the variations the architec-
ture enables. Kivunja [25], for example, discusses the notion of a theoretical framework
as the accepted wisdom from experts that serves as the background for a graduate stu-
dent’s own research. The former might perhaps also be considered a Kuhnian paradigm
[26]. This effectively partitions a student’s contributed theory into a fixed, architectural
framework – or paradigm – plus the student’s own contributed variations. A Lakatosian
research programme [27] also partitions in this manner – “For Lakatos an individual
theory within a research programme typically consists of two components: the (more or
less) irrefutable hard core plus a set of auxiliary hypotheses” [28].

A cognitive architecture can be considered as a theory of the fixed structures and
processes found in a human mind, or of what is necessary and/or sufficient to yield an
artificial mind. When combined with skills and knowledge, it can also serve as a more
fleshed out model, for example, of human behavior in a particular task. While cogni-
tive architectures are often both computational and theoretical, only the more fleshed
out models can execute to yield behavioral data for comparison with human data, or
applications that have value beyond their ability to model humans.

2 The same may also be true beyond computational architectures to all transformational
architectures, but the focus here is narrower.
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5 Theoretical Computational Architectures

For theoretical computational architectures, there is a serious question of how their
design, implementation and theory are related; and, also, which of these is properly
an/the architecture. In general, a design is a description, and an implementation is a
realization of this description. For buildings, both are architecture,whereas for computers
only the design is, with the implementation being instead a computer. For cognition
the implementation is typically the architecture, as there is rarely an explicit design.
However, for a theoretical cognitive architecture this yields a conundrum, as there often
is a vague notion of what the architecture is beyond any particular implementation that
enables researchers to refer to multiple implementations, even in different underlying
languages, as being the same architecture.

Starting back at the beginning, in the simplest case there is just a theory about a
body of phenomena (Fig. 1). It might be described informally in text or more formally
as mathematical equations. For a computational theory, there is typically an implemen-
tation, of which the theory itself is only a subpart. The remainder is “implementation
details” necessary to make the theory executable but not part of the theory itself (Fig. 2).
There is typically no separate design specification in such cases, although AIXI [15]
could be considered as such, and there were several attempts to specify Soar more for-
mally [29, 30]. Still, ideally there would always be a separate design that specifies in a
more comprehensible yet abstract fashion what is to be in the implementation (Fig. 3),
as is common with buildings and computers. This design would have its own theoretical
subpart – corresponding to the theory in Fig. 1 – which may be more easily demarcated
than is possible within the implementation. Without this, the boundary between what is
part of the theory versus an implementation detail remains fuzzy [30].

Fig. 1. Simple theory. Fig. 2. Typical
computational theory.

Fig. 3. Ideal computational theory.

Where is the architecture in all of this? According to the definition in Sect. 3, all four
non-phenomenal components in Fig. 3 are theoretical architectures. Theymay even share
the same name in practice, although Fig. 3 can potentially be leveraged to distinguish the
distinct roles they each fill with respect to a common name. It should be noted though
that the atheoretical aspects of the two larger components maintain an ambiguous state of
being fixed with respect to their enabled variations but malleable in being adjustable as
necessary without affecting the core theory, much like Lakatosian auxiliary hypotheses.
The two design architectures in turn can be doubly theoretical, in being both about the
phenomena and the implementation.
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6 Architectural Exploration

Figure 4 shows one way of conceptualizing the traditional scientific method. As parts
of a method diagram, these boxes are an odd mix of nouns and verbs, although they
do include the standard pieces in one form or another. Still, when considering my own
architectural methodology over the past 40+ years, I end up with something more like
Fig. 5, which labels nouns as nodes while relegating verbs to arrows. According to this
view, there is a constant back and forth between an architecture and its researchers, with
the former yielding new insight for the latter and in return being modified by them to
capture this insight. The phenomena of interest are themselves understood (theoretical)
and/or shaped (atheoretical) by the architecture, with this interaction providing input
for both directions of the architecture-researchers interaction. There is also a direct link
between researchers and phenomena that reflects both architecture-free observation and
direct exploration of the phenomena.

Fig. 4. The scientific method [31].

Fig. 5. Architectural exploration.

Exploration – i.e., searching for new phenomena to understand – has no explicit role
in Fig. 4, although it may be implicit within the Observation/question box. It is often
considered pre-scientific, but the scientific enterprise would be terribly impoverished
without it. Early natural scientists fanned out across the globe to deliberately seek out
and make sense of novel plants, animals, and other natural phenomena. To this day,
disciplines such as paleontology, astronomyandparticle physics intentionally explore the
natural universe. They may also expend considerable effort developing new instruments
that sense aspects of the world/universe not previously perceptible to us. There may be
hypotheses and predictions that are intended from the beginning to be tested via such
instruments, but part of the anticipation and excitement in any such enterprise must
always be the possibility of uncovering what was not expected.

In Fig. 5, the researchers-phenomena arrow represents classical exploration as a form
of active observation, with the leftward direction reflecting observation and the rightward
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direction manipulation of what is to be observed (with controlled experimentation at the
extreme). The architecture-researchers arrow then represents architectural exploration.
The downward direction represents the development of insight based on the architecture
and its interactionswith the phenomena of interest (with direct observation entering from
the side). It also reflects the architecture’s role as both an instrument and a guide. The
upward direction represents architecture modification based on the existing architecture
and its interactions with the phenomena of interest. This reflects the architecture’s role
as both a hypothesis and a domain of exploration of its own.

The cognitive architectures I have developed over the years have partially been
intended as expressions of, and means for testing, hypotheses. Often these hypotheses
start out rather vague,3 such as some notion of the potential benefits deriving from the
combination of rules and neural-like activation in Xaps [33]; rules, problem solving
and learning-by-chunking in Soar [34]; and Soar-like cognitive architectures and prob-
abilistic graphical models in Sigma [5]. Sometimes this develops into a somewhat more
precise – and even at times grander – hypothesis, such as that chunking provides a gen-
eral learning mechanism [35] or that Soar can support a unified theory of cognition [6].
More often, crisper small hypotheses are spun off, such as that chunking in Soar could
be used not just to speed up performance but also to learn new things [36], or that Sigma
could straightforwardly be extended to incorporate neural networks (NNs) [37].

Still, most of the actual work is exploratory, using the architecture to guide the
exploration of cognition and to interpret the results of these explorations; as well as
searching the space of cognitive architectures itself. Controlled experiments are relevant
to only a fraction of the criteria used to evaluate such work, with the more complete
criteria including: (1) whether an architecture functions as intended; (2) how broadly
the architecture models and/or produces the phenomena of interest; (3) how simple
and elegant the architecture is; and (4) how much insight the architecture inspires and
captures, whether into anticipated implications or wholly unanticipated ones.

Despite numerous attempts by the field to develop better approaches to evaluating
work on cognitive architectures,much of the evaluation activity around these four criteria
necessarily continues to center around simply building newarchitectural components and
exploring their interactions. Controlled experiments, in contrast, tend to focus on refining
what can be said about criterion (1), in terms of how well the architecture models and/or
produces phenomena of interest, and a bit of criterion (2). Such experiments clearly
play a role, but not particularly a dominant one. If one is problem focused, rather than
methodology focused, it is critical to use whatever the best methods available are for
the problem of interest, rather than limiting oneself to problems for which the strongest
methods – in terms of the veracity they guarantee – are applicable; and exploration is
still the best methodology for much work in cognitive architectures.

Exploration was the name of the game in the early days of AI, when there were many
more unexplored areas than researchers to investigate them and it was better to move
on to new topics once sufficient low-hanging fruit had been harvested than to work over
existing topics very carefully first. Now, however, exploration has fallen into relative
disrepute as a method of investigating topics in AI. With a broader coverage of the space

3 “I do not pretend to start with precise questions. I do not think you can start with anything
precise. You have to achieve such precision as you can, as you go along.” [32].
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of topics now under our belts, and general progress in the application of proofs and
controlled experiments to specific AI problems, these methodologies have become the
coin of the realm instead. Strong methods once they get a foothold in a field tend to push
out weaker ones even in areas where the stronger ones are not applicable [12].

Exploration has continued to remain a major methodology in AGI, presumably
enabled by separating the field out fromAI as a distinct discipline. However, in doing so,
it must also be sure to avoid becoming a wayside by either ignoring what is happening in
the mainstream or by clinging to weaker methods if/when stronger ones do come along
that apply to the problem(s) of producing general intelligence.

7 Conclusion

The crux of the idea of an architecture is to differentiate the fixed from the variable
aspects of a system. This distinction, which in honor of Simon might be denoted simply
as (in)variant, or even as (im)mobiliere, can then be elaborated on in various ways, with
the (non)computational and (a)theoretical distinctions being of particular relevance to
cognitive architectures. Additional issues that have been revisited here concern architec-
tural layering and the nature of theoretical computational architectures. The question of
how architectures should be investigated, with a specific focus on exploration, has then
capped off these thoughts. Future work might occur in a variety of directions, including
incorporating into this analysis other forms of architecture, such as software architec-
ture [38, 39], that are relevant to architecture in general, and that should in principle be
relevant to cognitive architecture, but which did not have a foundational impact on the
development of this latter notion.
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Abstract. Embodied social agents are expected to become useful for emotion
regulation with applications in the field of service-oriented artificial intelligence.
Emotionmodels can be used to generate an adequate response of the agent in order
to achieve a desired emotion regulation effect. Here an eBICA-based model of
emotional interaction of embodied social agents is proposed, combining concepts
borrowed from biology, cognitive psychology, sociology, and ethics. Based on
it, a concept of an embodied emotionally-intelligent agent is developed that will
enable natural user emotion regulation during human-computer social interaction.
The expected impact includes new smart emotion regulation technologies and new
feasible means for emotional communication with and via artifacts.

Keywords: Human-computer interaction · Affective computing · Cognitive
modeling · BICA · Semantic map · Moral schema

1 Introduction

Embodied social agents are intelligent creatures that usually have an anthropomorphic
appearance. They can be implemented as virtual agents (virtual graphic avatars) or
physical humanoid robots. Embodied social agents can mimic human emotions and
emotionally driven behavior and communicate with users naturally like humans. This
new technology is expected to become useful for emotion regulation with applications
in the field of service-oriented artificial intelligence.

Artificial regulation of emotions should use various regulatory mechanisms bor-
rowed from biology, which are necessary at different stages of emotional perception,
cognition, decision-making and behavior control, including the mechanisms of situation
awareness, situation correction, attention transformation, cognitive reassessment and
reaction correction [1]. In order to be able to regulate emotions during social interaction,
it is first necessary to be able to perceive emotions of the user. To do this, one should
rely on the multimodal perception of information, which requires determining the type
of emotion by analyzing and integrating information extracted from facial expressions,
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voice, body language, and physiological signals [2]. On this basis, the emotion model
can be used to generate an adequate response and to control the agent, using its abil-
ity to express emotions, in order to achieve the desired emotion regulation effect. The
agent’s emotions can be expressed through body language, facial expressions, speech
acts (including voice and text tonality), etc., or by controlling environmental charac-
teristics such as light [3]. Modern basic models of emotional intelligence are based on
the cognitive appraisal theory [33–38]. In computational models based on this theory,
emotion or affect is calculated as an assessment of perception from the point of view
of the agent [4]. It has been proven that agents with emotional expressiveness are more
capable of influencing the emotional experience of users [5]. Personalized emotional
expressiveness can further enhance the believability of agents [6]. In addition, technol-
ogy for processing uncertain information [7] and machine learning methods have been
widely recognized for their potential in emotion processing. With the help of conver-
sational agents, users’ emotions can be detected [8, 9], and in combination with the
analysis of non-verbal behavior, users’ emotions can be well tracked and evaluated [10].

When a computer can detect and evaluate a user’s emotions, it can use that informa-
tion to mimic the adequate emotional behavioral response in a virtual agent or robot and
therefore be able to create amore natural and engaging user experience. It has been estab-
lished that the mechanism of empathy can be used to better stimulate positive emotions
in users, and therefore social robots capable of empathy are more popular [11, 12]. The
need for more socially acceptable human-computer interaction is drawing researchers’
attention to the development of cognitive models and architectures allowing for a more
complex structure of emotions, capable of using a combination of body language and
voice to detect user emotions, and using a Bayesian network to quantify detected emo-
tions in terms of valence and arousal. At the stage of expression of emotions, a cognitive
architecture should allow the robot to evaluate and correct emotional characteristics of
the robot’s behavior, bringing it in correspondence with the perceived emotion, the cur-
rent emotional state of the robot, the robot’s own needs, and the user’s feedback after
the robot expresses its emotion [13].

Many research groups in the world pursue various goals related to the artificial emo-
tionality of social embodied agents. It is impossible to list all of them here because of
their huge number; a few examples of leading groups are given below: Jonathan Grach
(University of Southern California) [4, 14], Cynthia Breazeal (MIT Personal Robots,
MIT Media Lab) [15, 16], Catherine Pelachaud (French National Center for Scientific
Research - CNRS, France) [17, 18], Rodrigo Ventura, Instituto Superior Técnico (IST),
Technical University of Lisbon [19, 20], Michael Sellers, Department of Telecommuni-
cations, Indiana University [21], Antonio Chella, Robotics, University of Palermo [22,
23], andNadiaMagnenat Thalmann,MIRALab,University ofGeneva [24]. For a review,
see [25].

Machine learning, in particular deep learning, is used today by many groups as a
tool for analyzing and synthesizing the emotional flavor (tonality, sentiment) of text,
speech, facial expressions, gaze direction, posture and gesture language, and the like.
One example of an emotional chatbot is XiaoIce [26], which can be said to use semantic
mapping technology (although the authors do not use this terminology). The XiaoIce
social chatbot has been widely adopted since its release in May 2014. It “understands”
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the emotional needs of users and engages them in interpersonal communication as a
“friend”, encouraging them and keeping their attention. We recognize that the approach
used in XiaoIce also has the potential to regulate emotions. However, its capabilities do
not go beyond primitive, limited paradigms (e.g., driving the conversation with the user
toward a certain mood).

Other major competitors in the field of emotional robotics are companies com-
mercializing emotional toys (Hasbro Furby, Sony AIBO, UGOBE Pleo, Karotz/Violet
Nabaztag, Philips iCat, the iCub anthropomorphic robot research project (Italian Insti-
tute of Technology, Italy), the Pepper robot design group (SoftBank Robotics, USA) and
others. These approaches in emotional robotics did not make a breakthrough yet: they
do not exceed their virtual counterparts in emotional intelligence, and in most cases have
limitations compared to virtual emotional characters outlined above.

We previously conducted relevant studies of the multimodal emotional interaction
of actors of various nature [27, 28] and developed an emotional Biologically Inspired
Cognitive Architecture (eBICA) to describe the mechanisms of the socio-emotional and
moral behavior of actors.

Building a cognitive architecture supporting emotional intelligence is an important
step in emotion modeling. Here are examples. The MicroPsi model is a cognitive archi-
tecture to regulate and control a complex organism. It describes a detailed framework of
needs, reward generators and cognitive modulators [29, 30]. The LIDA cognitive archi-
tecture is a computational model of human cognition, integrating cognitive psychology
and cognitive neuroscience [31, 32]. It’s architecture conceptually affords grounded cog-
nition, attention, emotion, action selection, human-like learning, and other higher-level
processes.

Summarizing, we can say that the emotional effectiveness of existing embod-
ied agents is insufficient to satisfy modern demands. They often lack the capacity
for self-regulated learning and acquisition of emotional values, and their function of
social interaction is too simplistic for real-life social contexts. In addition, many of
the cognitive models used in existing social agents are based on formal logic coupled
with psychological theories that lack the mechanisms of humanlike social and moral
reasoning.

In order to build a computational emotion regulation system, here a model of emo-
tional interaction of embodied social agents is proposed, combining concepts borrowed
from biology, cognitive psychology, sociology and ethics. This approach will allow us to
achieve natural and harmonious human-computer interaction, relying on the monitoring
and regulation of negative emotions.

2 The Concept and Implementation Plan

Existing research (summarized above) shows that cognitive architectures of embodied
social agents are getting richer and richer. To implement the emotion regulation func-
tion, embodied agents must be endowed with rich capabilities of emotion perception and
expression. With the development of artificial intelligence, various new technological
approaches to emotion perception and expression become available. The embodied agent
should have a multimodal emotional perception ability, should be able to comprehen-
sively perceive the user’s emotional state, make strictly adequate behavioral responses,
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and adjust its expressed emotions in order to regulate the user’s emotional state. This is
the general goal. Specific tasks are described below.

2.1 Cognitive Architecture

Thefirst task is to develop a cognitive architecture of an embodied social agent supporting
emotional intelligence. The architecture will include modules supporting perception,
behavior control, emotion, andmemory systems of various types, including a knowledge
base and learning mechanisms necessary to achieve continuous information processing
from perception to behavior generation.

Among them, the perception module is used to perceive the user’s multimodal input
and call the knowledge base to recognize the semantics of user’s expression, posture,
text content and voice tonality.

The behavior control module is used to generate the appropriate behavior semantics
and produce a multimodal response of the embodied agent using facial expression,
posture, gestures, speech content and voice tonality as behavioral variables.

The emotion module supports the function of empathy evaluation and emotion gen-
eration, which is mainly used to analyze the causes of users’ emotions and generate an
appropriate emotional response.

Thememorymodule is used to store user information details, which are continuously
acquired and updated during interaction, and provide parameters for implementing a
personalized emotional interaction.

The knowledge base module supports situational semantic recognition and includes
emotional reasoning rules, moral schemas and related to them behavioral rules, as well
as a natural language thesaurus.

Situational semantic recognition is used in the perception module; emotional rea-
soning rules are used for emotion generation; moral schemas and related behavioral
rules are used to generate ethical, socially acceptable behavior, and a natural language
processing system is used to implement a chatbot capabilities necessary to support a
human-computer dialogue in natural language.

The learning module should comprehensively use the existing machine learning
algorithms to augment the knowledge base. The reinforcement learning algorithm needs
to be used to adjust the emotional expression intensity of the embodied social agent.

2.2 Interaction Model

The second task is to develop an emotional interactionmodel for embodied social agents.
It includes two subtasks.

(a) To develop a perception method for user’s emotion. The user’s personality type and
emotional state should be identified by her or his voice, facial expression, gaze direction,
posture, gestures, actions, and physiological readings acquired through the microphone,
camera, depth camera, aswell aswearable equipment (includingvarious biometrics, from
heart rate to EMG or EEG). A deep learning framework should be used to implement a
unimodal emotion classifier to identify the emotion types in each modality, respectively.
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Based on this, the knowledge base can be used to comprehensively determine the exact
type and nature of emotion.
(b) To develop an emotion generation model of embodied social agent. In order to make
the embodied social agent capable of producing emotional responses similar to those of a
human, an empathy evaluation ability should be implemented in the emotion module, so
that the embodied agent would correctly identify the user’s emotion and its causes, and
therefore would be able to produce an adequate, believable emotional response. When
combined with the perception of users’ personality, the real origin of users’ emotion can
be derived from observations using reasoning rules stored in the knowledge base. Based
on empathy evaluation, the embodied social agent generates an appropriate emotional
expression through the emotion generation algorithm, to show its empathy for users. To
achieve this goal, firstly, a context-based reasoning algorithm for emotional expression
analysis should be designed. It will be used to select and exhibit the appropriate posture,
speech content and tonality, etc., to demonstrate empathy. Secondly, the method based
on fuzzy reasoning should be used to calculate the intensity of emotional expression.

2.3 Behavioral Paradigms

The third task is to select behavioral paradigms and for each of them develop a paradigm-
specific model of the embodied social agent behavior. In essence, the task is to create an
embodied agent capable of autonomous emotion expression and behavior generation in
the given paradigm,which should interact with users throughmanymodalities, including
facial expression, gaze control, posture, gestures, voice tonality, speech content, andother
forms of multimodal interaction described above.

Appealing human-computer interaction tasks and paradigms should be designed
to realize human-computer interaction and to monitor and control users’ emotions by
engaging the user in specific interaction paradigms. Reinforcement learning algorithms
should be designed to adjust the difficulty of human-computer interaction to meet the
personalized needs of different users. Combinedwith the information about user identity,
social distance, body orientation, emotional state and other factors, methods of behavior
semantic generation and behavioral expression of emotionwill allow the agent to regulate
the user emotionality.

3 Outcomes of Preliminary Studies

During 2020–2022, a number of virtual-environment-based (VE) and virtual-reality-
based (VR) applications were developed at the BICA Lab (NRNU MEPhI), including
the virtual hotel receptionist (Fig. 1A), the virtual poster presenter (Fig. 1B), the virtual
pet (Fig. 1C), and the Virtual Convention Center (VCC, Fig. 1D).

Our VCC, including the virtual poster presenter, was used to run two international
conferences (BICA 2020 and BICA 2021) and the All-Russian congress CAICS 2020.
Figure 1D shows a plenary session at BICA 2020 hosted by Alexei V. Samsonovich;
Artemiy Kotov and John Laird participate as avatars.

Our experimental study showed that in all cases the emotional bot is perceived and
understood by participants better, compared to a non-emotional version of the same bot.
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Fig. 1. Screenshots of VR applications developed at BICA Lab in NRNUMEPhI in 2020–2022.

Another VR application of a virtual agent is shown in Fig. 2. The agent receives
its emotional input from/about users through ordinary cameras, microphones, and the
Kinect system. Interaction between the user and the virtual agent is realized through
the interactive virtual scene. In this scene, the perception module of the virtual agent is
used to collect and identify the multimodal information about users. Among them, user’s
facial expression is acquired using the camera, user’s posture information is acquired
using the Kinect system and the camera, and user’s voice information is acquired using
the microphone (the speech sound is converted into text using the iFLYTEK’s voice
package). The facial expression is recognized using OpenCV (a development tool) and
Dlib (a deep learning library) based on a set of facial feature points and an SVMclassifier.
Six emotions are identified: happy, angry, fear, sad, surprise, and disgust.

Posture recognition includes gesture recognition and upper limbmotion recognition.
Gestures are recognized by the camera. Different semantics of gestures are defined in
advance, and the recognition of gestures is based on the tracking of hand movements
and using an SVM classifier. The motion of the upper limb is recognized by Kinect.
The position of joint points is registered by Kinect, and the motion (such as waving)
is judged according to the position of different joint points. The emotion expressed in
user’s speech (converted to text) is recognized by a neural network trained using a deep
learning algorithm. The data set of the Sina microblog is used for the training.

The described above pipeline of multimodal emotional information recognition
delivers to the agent behavior module the user’s emotional state data. Therefore, the
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Fig.2. Screenshots of VR interaction between a user and the virtual agent.

behavior module can generate an adequate behavior, which includes facial animation,
body animation and text dialogue, depending on the state of the user.

In order to communicate with users, several common conversation topics, such as
weather, birthday and playing ball, were pre-set in the dialogue system. Each topic had
a corresponding topic thesaurus and response database. If the user’s input contained a
topic keyword, then the text was analyzed syntactically. In this case, the LTP (language
technology platform) tool of Harbin Institute of Technology was used to determine
the subject, predicate, object, definite complement and other important components of
the sentence, and the response was generated from the thesaurus. If there was no topic
keyword in the user’s input, then a chat was generated by the deep neural network.When
the user did not give any topic keyword for several turns of the dialogue, the virtual
agent guided the user to talk about a specific topic. Virtual scenes were constructed in
advance. When a dialogue contained a topic related to the scene, the system switched to
the corresponding virtual scene.

4 Discussion

Negative factors such as the aging of population and COVID-19 are having a negative
impact on emotions of more and more people. Using artificial intelligence technology
to monitor and regulate people’s emotions will be of important practical significance.
In recent years, artificial intelligence technology was significantly developed in the
direction of embodied intelligence. An embodied social agent is a humanoid intelligent
entity, which can be a virtual agent (a graphical entity, such as a virtual human) or a
humanoid robot. Embodied social agents can simulate human emotions and emotional
behaviors and communicate with users like real humans. Embodied emotional agents
are expected to become a new technology of emotion regulation. They constitute one of
the important directions of the development of service-oriented artificial intelligence.

Existing research on embodied emotional agents is mostly carried out from the
perspective of computational psychology based on the traditional appraisal theories
[33–38]. As a result, cognitive architectures of virtual agents appear too simplistic, and
their emotional expressions may be inadequate.
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In contrast, our approach is based on the principles of brain functioning and on the
theoretical social psychology. Here we described a concept of a system based on a cog-
nitive architecture for embodied social agents, capable of user’s emotion understanding
and regulation. The method utilizes the unity of emotional drives and moral constraints.
A rich model of emotional intelligence integrated with the empathy mechanism is used,
which makes the embodied social agent have rich emotional expressivity and be capable
of a friendly human-computer interaction. Embodied social agents created based on this
approach can actively perceive users’ emotions and their causes. These abilities allow
them to establish natural multimodal emotional interaction with users.

Future study that is necessary to implement the proposed concept implies carrying
out human-computer interaction experiments with embodied social agents to study how
users’ emotions can be monitored and regulated through a multimodal human-computer
interaction. The study will establish new general theoretical and empirical facts about
embodied social agents. The expected impact includes new smart emotion regulation
technologies andnew feasiblemeans for emotional communicationwith andvia artifacts,
that will benefit many millions of people.
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Abstract. In this research, we extend the universal reinforcement learn-
ing agent models of artificial general intelligence to quantum environ-
ments. The utility function of a classical exploratory stochastic Knowl-
edge Seeking Agent, KL-KSA, is generalized to distance measures from
quantum information theory on density matrices. Quantum process
tomography (QPT) algorithms form a tractable subset of programs for
modeling environmental dynamics. The optimal QPT policy is selected
based on a mutable cost function based on algorithmic complexity as well
as computational resource complexity. The entire agent design is encap-
sulated in a self-replicating quine which mutates the cost function based
on the predictive value of the optimal policy choosing scheme. Thus,
multiple agents with pareto-optimal QPT policies evolve using genetic
programming, mimicking the development of physical theories each with
different resource trade-offs. This formal framework, termed Quantum
Knowledge Seeking Agent (QKSA), is a resource-bounded participatory
observer modification to the recently proposed algorithmic information-
based reconstruction of quantum mechanics. A proof-of-concept is imple-
mented and available as open-sourced software.

Keywords: Algorithmic information theory · Quantum computing ·
Reinforcement learning · Mutating quine

1 Introduction

The overwhelming success of deep learning over the last decade is encouraging
the revival of research on artificial general intelligence (AGI) from various direc-
tions [7,9]. The most mathematically rigorous among these is universal artificial
intelligence (UAI) [11]. The agent-environment paradigm of model-based rein-
forcement learning (RL), is best suited to mimic the interactive learning behavior
of biological intelligence. UAI-based RL agents are concisely referred to as uni-
versal reinforcement learning (URL) agents. This research examines policies of
modeling an unknown environment as the general task assigned to a URL agent.
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URL agents have been instrumental in proving asymptotic optimal behav-
ior [20,21] in partially observable environments by merging theoretical concepts
in universal automata, algorithmic information theory (AIT) [24] and decision
theory. However, the dependence on AIT makes these agents generally uncom-
putable. While resource-bounded variants have been proposed, these models still
remain intractable for real-world applications. Moreover, these resource bounds
introduce arbitrary hyper-parameters. To address this issue, we utilize the pro-
posal [37] of embedding RL agents within an evolutionary framework (Evo-RL)
to guide the meta-learning for a specific application scenario. In this work, we
propose the idea of a resource-bounded evolutionary URL (Evo-URL) for the
first time. The framework implements the resource cost function as a genetic
program encapsulated by a mutating quine. This work is prompted by the sug-
gestion of UAI systems to eventually play the role of autonomous scientists by
recursive self-improvement [35].

The properties of the environment is as crucial for AGI as that of the learning
strategy. In its most general form, physical systems should include classical,
quantum, and relativistic scenarios. This work addresses the first two cases by
defining the environment as an unknown quantum process. The proposed agent
uses quantum process tomography (QPT) strategies as a tractable predefined
subset of programs for actively learning the environmental model. Limiting the
evaluation to this subset of programs alleviates the exponential scaling of the
space of programs, which limits UAI’s applicability beyond toy models.

The proposed AGI framework, called Quantum Knowledge Seeking Agent
(QKSA), models classical and quantum dynamics by merging ideas from AIT,
quantum information, constructor theory, and genetic programming. Following
the artificial life (or, animat) path to intelligence, a population of classical agents
undergoes open-ended evolution (OEE) to explore pareto-optimal ways of model-
ing the perceptions from a quantum environment. Similar to how AIXI-tl [12] is a
resource-bounded active version of Solomonoff universal induction [39], QKSA is
a resource-bounded participatory observer [13,44] framework to the recently pro-
posed [26] algorithmic information-based reconstruction of quantum mechanics.
QKSA can be applied for simulating and studying aspects of quantum informa-
tion theory like control automation, multiple observers, course-graining, distance
measures, resource complexity trade-offs, etc.

The rest of the article is organized as follows. Section 2 presents the four
features of the QKSA model that distinguish it from other similar concepts
and models. In Sect. 3 we present the formalization of QKSA’s policy. Section 4
concludes the article with suggestive applications.

2 Framework Features

In this section, we present the four distinguishing features of the QKSA frame-
work, (i) representations of general quantum environments, (ii) process tomogra-
phy algorithms for modeling, (iii) computational resource-bounded algorithmic
cost, and (iv) mutating meta-learning hyper-parameter embedded in a quine.
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2.1 Representations of General Quantum Environments

The class of environments an agent can model define the bound of its applica-
bility. Solomonoff’s theory of universal inductive inference [39] forms the the-
oretical basis of UAI, and automated scientific modeling in general. In it, the
environment is assumed to be computable by a universal Turing machine [42].
The hypothesis size (i.e., the Kolmogorov/algorithmic complexity [17]) is used
to proportionally weigh (i.e., the Solomonoff/algorithmic probability) the envi-
ronmental models for future predictions. The invariance theorem allows any
universal automata/language to be used for estimating the hypothesis size, up
to a constant overhead.

The active generalization of Solomonoff’s induction using Bellman’s opti-
mality equation form the basis of URL agents. The agent and the environment
interact in turns. At every time step, the agent supplies the environment with
an action. The environment then performs some computation and returns a per-
cept to the agent, and the procedure repeats. The environment is modeled as a
partially observable Markov decision process. The canonical URL model is the
AIXI model [11].

Knowledge Seeking Agents [28] replaces the extrinsic reward function in AIXI
with a utility function defined as information gain of the model. Thus, this
collapses the exploration-exploitation trade-off to simply exploration, allowing
agents to explore the environment in a principled approach. The goal of these
agents is to entirely explore their world optimally, form a model, and get a reward
for reducing the entropy (uncertainty) in its model from the two components:
uncertainty in the agent’s beliefs and environmental noise. A particularly inter-
esting case is the KL-KSA [29], which is robust to stochastic noise as the utility
function is given as the Kullback-Leibler divergence.

While KL-KSA generalizes over arbitrary countable classes and priors, it
cannot intrinsically interpret quantum information. This is because quantum
information [27] is a generalization of classical probability theory to the complex
domain. It allows richer representations and manipulations of information based
on superposition, unitary evolution, interference, entanglement, and projective
measurement. QKSA generalizes the probability distribution of KL-KSA to den-
sity matrices and the KL divergence to various distance measures on quantum
processes.

A brief necessary background of these representations are presented here.
Statistical ensembles of N pure quantum states |ψ〉 are described as a den-
sity matrix ρ =

∑N
k=1 pk|ψ〉〈ψ|, where the probabilities satisfy 0 < pk ≤ 1

and
∑N

k=1 pk = 1. A projective measurement of an observable Mm is given by
the expectation value Pr(m) = Tr(Mmρ). Statistics of observable probabilities
from quantum measurements can only estimate the density matrix instead of
the state, thus fitting the QKSA use case. The unitary U evolution of closed
quantum systems is denoted for pure states as, |ψ′〉 = U |ψ〉 and for mixed
states as ρ′ = UρU†. More generally, a quantum process Φ that transforms a
density matrix need not always be unitary. Given classical processes are often
irreversible and include measurements, a quantum generalization includes uni-
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tary transforms (symmetry transformations of isolated systems), probabilistic
logic, measurements and transient interactions with an environment. Thus, quan-
tum processes formalize the time evolution of open quantum systems as lin-
ear quantum dynamical maps from the set of density matrices to itself. For a
quantum system with an input state ρin of dimension n × n and an output
state ρout = Φ(ρin) of dimension m × m, Φ is a linear superoperator map-
ping between the space of Hermitian matrices Φ : Mn×n → Mm×m. There are
other equivalent representations of quantum processes like Choi matrix ρChoi,
Kraus operators, Stinespring, Pauli basis Chi matrix χ, Lindbladian, etc. For
instance, the Choi matrix ρChoi is the density matrix obtained after putting half
of the maximally entangled state |Ω〉 through the channel Φ, while doing nothing

on the other half, i.e. if Λ =
∑

i,j

1
2n

|i〉〈j| ⊗ Φ(|i〉〈j|), the ρChoi = Λ(|Ω〉〈Ω|)
The evolution of a density matrix with respect to the Choi-matrix is given by,
ρout = Φ(ρin) = Tr1((ρT

in ⊗ I)ρchoi)), where Tr1 is the partial trace over subsys-
tem 1. As a result of the Choi-Jamiolkowski isomorphism, the Choi matrix ρChoi

characterizes the process Φ completely. This isomorphism forms the basis of the
channel-state duality in quantum information.

Like classical probability distribution, there are many measures of quan-
tum distances, each with its own application advantage. The QKSA framework
allows the user to select a distance metric as part of the experimental setup. The
current implementation provides the following distance metrics, Hamming dis-
tance, KL divergence, trace distance, Hilbert-Schmidt norm, and Bures distance
(fidelity). Users can also define a custom distance measure. A future extension
would provide diamond distance, Hellinger distance, quantum Kolmogorov com-
plexity, quantum relative entropy, RÃl’nyi divergence, Bhattacharyya distance,
and quantum complexity action [10].

2.2 Process Tomography Algorithms for Modeling

In canonical UAI formalism, the programs are drawn randomly from a prefix code
for a universal automata. However, the space of programs grows exponentially,
limiting its applicability beyond simple grid-world exploration and games. We
restrict this space to a constant number of predefined algorithms provided to the
framework. This pragmatic design feature allows us to implement interpretable
and tractable URLs.

Characterization of quantum dynamical systems is a fundamental problem
in quantum information science. The procedures that achieve this goal are called
quantum process tomography. Some examples of these well-developed techniques
are: standard QPT [6], entanglement-assisted QPT, direct characterization of
quantum dynamics, compressed-sensing QPT, permutation-invariant tomogra-
phy, self-guided QPT and shadow QPT [23]. Each QPT technique has a differ-
ent experimental setup and computational resource requirements. These QPT
algorithms form the space of programs that QKSA evaluates as candidates for
modeling the environment. Intuitively, a QPT algorithm will better predict a
quantum environment than a random program. Thus, it allows us to apply the
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tools of AIT in a practical setting where available expert knowledge can be
embedded within the agent. Given computational resource limitations, QKSA is
designed to automatically discover the optimal strategy in the available pool of
QPT algorithms.

Recent publications study learning in a quantum environment, for e.g., pro-
cess learning with restricted Boltzmann machines [41], RL based optimizer
for variational algorithms [31,43], automated design of experimental quantum
optics [19], and, projective simulation (PS) [4,8]. Despite the similarities with
QKSA (especially of PS), these approaches are not based on URL. Also unlike
[5,33], we do not assume the quantum computational capability of the agent
for estimating the AIT metric, in line with the conventional qualia of human
intelligence. QKSA is an RL framework to study quantum information and com-
putation via the lens of AIT.

2.3 Computational Resource-Bounded Algorithmic Cost

The algorithmic probability of a candidate model/program is used as a weight
for choosing an action and thereby the reward in UAI. However, this also makes
such models impractical due to the uncomputability of algorithmic information
metrics like algorithmic probability and algorithmic complexity. Being asymptot-
ically computable, URL is thus not a pragmatic algorithmic solution to general
RL, and must be simplified in any implementation. In principle, there are an
infinite number of programs that can be candidate models of the environment.
Also, while evaluating, the programs can enter infinite loops. To circumvent
these two issues, modifications are proposed on the agents, like AIXI-tl [12],
MC-AIXI(FAC-CTW) and UCAI [14]. These bound the program length and run-
time per step to explore a subspace of promising hypotheses that models the
interactive behavior registered till the current time step. There arise three issues
with this approach:

1. The bounds introduce heuristic hyper-parameters that depend on the avail-
able computational resources. Thus, selecting an appropriate value to apply
the model for a given use case becomes difficult.

2. The bounds sharply cut off models beyond the specification while keeping
the weight for the models within the specification unaffected. So a model
that performs well but lies beyond the defined bound may be unreachable.

3. It is possible to trade off these resource bounds with other computational
resources, like additional memory.

Using the QKSA platform, it is possible to investigate these issues. In the
framework we propose five computational resources, together we call the LEAST
metric, as an acronym for (program) length, (compute) energy, approximation,
(work memory) space and (run) time. Similar algorithmic observables have been
suggested in [1]. We provide estimation techniques of the LEAST metric in our
implementation, based on state-of-the-art algorithmic information research and
general practices in computer engineering. The estimation technique, however
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can easily be redefined by the user. The estimated metric is used in a two-fold
way. Firstly, it is used to qualify the hypothesis for consideration based on upper
bounds for each of the five computational resources individually. This is dictated
by the available computational resource of the substrate the implementation is
executed on, and is similar to the resource-bounded UAI models [12]. These
bounds can be included in the list of evolving hyper-parameters to allow QKSA
to mutate and adjust autonomously to the available computational resource.
After that, the metrics for valid hypotheses are fed to a cost function (a genetic
program) that outputs a single positive real value which is used as the weight
for the hypothesis (instead of only the length, as in algorithmic probability).
We call this the least action as a parameterization to optimize the Lagrangian
dynamics of computation.

2.4 Mutating Meta-learning Hyper-parameter Embedded
in a Quine

There is no unifying cost function that can serve as a metric to trade-off bounds
on resources (like space, time, approximation), and possibly cannot exist [13,
30]. In fact, this depends closely on the policy of the agent. For example, a
physicist might use simpler Newtonian mechanics instead of complex relativistic
mechanics for modeling where the approximations are acceptable. Thus, instead
of a single metric, a pareto-optimal frontier on the LEAST metrics maps to
models and algorithms that can be used to predict the environment dynamics.

Various research has explored this frontier, considering a few of the LEAST
metrics. Some examples are, Levin complexity [22], Bennett’s logical depth [2]
and pebbling game [3], Schmidhuber’s speed prior [36], Wolpert’s statistical ther-
modynamics of Turing machines [16], Zenil’s block decomposition method [38],
and look-up tables. These resource-bounded metrics are not immune to the no-
free-lunch theorems [45] and adversarial cases of environments.

QKSA holistically (yet, subjectively) explores these trade-offs by dynami-
cally adapting the cost function to the environment. The five estimates of the
LEAST metrics are given as input to a cost function. We employ evolutionary
computation, a population-based trial and error problem solving technique for
meta-heuristic or stochastic optimization. More specifically, we use genetic pro-
gramming (GP) [18]. The cost function itself is a gene represented as a program
tree with the leaf nodes as the metrics or constants, and the internal nodes are
from a set of essential arithmetic functions. Once QKSA learns an environment
optimally or completely fails to do so (i.e. when the learning rate stabilizes), the
QKSA self-replicates. The child QKSA has the same source code as the parent,
except for a mutation on the cost function that modifies the weights and struc-
ture embedded via the cost function gene. Thus the open-ended evolution of
the pareto-optimal manifold converges on QPT algorithms which fits well in the
available computational resource. The parent QKSA perishes if the prediction
of the model fails persistently (i.e., when the rate stabilizes as the strategy fails
to learn) or continues to correctly predict environmental interaction and can be
inspected to obtain the cost function. Thus, a single QKSA may not have an
objective optimal resource trade-off for a static environment, but the population
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is expected to converge to an optimal policy even for a dynamic environment
(provided the dynamics are slower than the learning rate).

The entire agent framework described so far is embedded within a quine.
Quines are self-replicating programs that are the software embodiment of
constructors, an idea foundational to artificial life [40] and physical theories
alike [25]. The Kleene recursion theorem [15] allows any program to be modified
such that it (a) replicates its source code, (b) executes an orthogonal payload that
serves the same purpose as the original non-quine version. This embellishment
on the evolutionary cost function qualifies QKSA as a recursive self-improving
system.

3 QKSA Formalism

In this section, we start from the formalism of AIXI and elucidate the changes
described in the previous section. For brevity, we omit the mathematical rea-
soning behind the AIXI, which can be found in [11]. The canonical expectimax
equation in UAI is used by the agent to rationalize the choice of a particular
action at the current time step. For AIXI [11], it takes the form:

at = arg lim
m→∞ max

at∈A

∑

et∈E
. . . max

am∈A

∑

em∈E

m∑

k=t

γkrk

∑

p:U(p;a<k)=e<k

2−l(p)

where, at is the action at time step t from the action space A, ek is a perception
from the percept space E defined over the time step span from t to m, γ is
a reward discount function, U is an universal automata, p is a program that
forms the model/hypothesis for the environment, rk is the reward signal from the
environment, and l(p) is the length of the program p. In the case of KL-KSA [29],
the reward for AIXI is generalized to the utility given by, uk = u(ek|ae<kak) =
Ent(wν |ae<k+1) − Ent(wν |ae<kak), where Ent() refers to the entropy function
and wν refers to the agent’s credence in the percept distribution ν representing
the environment.

The first change is to restrict the search space of programs p to quantum
process tomography algorithms, denoted as pqpt. It is important that the QPT
algorithm reconstructs and outputs a process representation ρk instead of the
prediction of the subsequent perception. λe′

k ∈ {0, 1} is the probability of the
quantum state collapsing to the prediction e′

k made at time step t − 1. This
modification is imperative due to the stochastic nature of individual quantum
measurements and the calculation of the utility.

The second change is to replace the length estimate of the 2−l(p) factor from
the algorithmic probability with the estimate of the evolving cost function cest.
The cost function is denoted by cleast, i.e. cest = cleast(pqpt). Thus, the learning
part of the equation is:

aQKSA
t = arg lim

m→∞
max
at∈A

∑

e′
t∈E

λe′
t . . . max

am∈A

∑

e′
m∈E

λe′
m

m∑

k=t

γku′
k

∑

pqpt:U(pqpt;hk)=ρk

pqpt:U(pqpt;ρk;ak;e
′
k)=λ

e′
k

2−cleast(pqpt)
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The third change is to define the utility function as a quantum distance
measure on the space of quantum processes ρ (defined as the density matrix in
the Choi process matrix representation). A higher predicted utility indicates that
the current estimate of the quantum process will be updated more significantly
based on the perception, thus, a potential knowledge gain for choosing that
action.

u′
t = Δ(ρ′

t+1, ρt) = Δ(U(pqpt;ht; at; e′
t), U(pqpt;ht))

A detailed description of the QKSA framework and policy is provided in
[32]. A full proof-of-concept of the discussed QKSA framework is implemented
on Python and Qiskit. It is available as open-source software at the following
link: https://github.com/Advanced-Research-Centre/QKSA.

4 Conclusion

In this article, we extended the formalism of UAI to quantum environments by
generalizing the KL-KSA to a quantum knowledge seeking agent (QKSA). The
environment within the reinforcement learning setup is defined by an unknown
quantum circuit that the agent attempts to model using quantum process tomog-
raphy. A quantum environment prevents the exact prediction of perceptions (as
used by AIXI), and a single probability distribution of perception based on the
set of actions (as used by KL-KSA). The subjective model is conditioned on
the chosen action and is thus represented by the more general density matrix
formalism. Any quantum process can be represented as a Choi density matrix,
which forms a model of the environmental dynamics. To circumvent the uncom-
putability of UAI models, we propose to evaluate the algorithmic cost within
a set of user-provided programs. This consideration makes the framework more
tractable and interpretable. Also, the resource restrictions used in computable
UAI models are arbitrary. In our model, these resource bounds are interdepen-
dent hyper-parameters whose value and trade-off relations are optimized using
genetic programming. Thus, this allows open-ended evolution of the agents for
dynamic environments. Each agent can self-replicate as a quine and thus is a
recursive self-improving intelligence model.

As part of ongoing research [34], we are applying the QKSA framework as
described in this article to study course-graining in multi-observer scenarios and
quantum uncomplexity resources. It also has near term applicability in optimiz-
ing NISQ era hybrid variational quantum algorithms.

References

1. Baez, J., Stay, M.: Algorithmic thermodynamics. Math. Struct. Comput. Sci.
22(5), 771–787 (2012)

2. Bennett, C.H.: Logical depth and physical complexity. Citeseer (1988)
3. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.

18(4), 766–776 (1989)

https://github.com/Advanced-Research-Centre/QKSA


392 A. Sarkar et al.

4. Briegel, H.J., De las Cuevas, G.: Projective simulation for artificial intelligence.
Sci. Rep. 2(1), 1–16 (2012)

5. Catt, E., Hutter, M.: A gentle introduction to quantum computing algorithms with
applications to universal prediction. arXiv preprint arXiv:2005.03137 (2020)

6. Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the
dynamics of a quantum black box. J. Mod. Opt. 44(11–12), 2455–2467 (1997)

7. Domingos, P.: The master algorithm: How the quest for the ultimate learning
machine will remake our world. In: Basic Books (2015)

8. Dunjko, V., Taylor, J.M., Briegel, H.J.: Advances in quantum reinforcement learn-
ing. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pp. 282–287 (2017)

9. Goertzel, B.: Artificial general intelligence: concept, state of the art, and future
prospects. J. Artif. Gen. Intell. 5(1), 1 (2014)

10. Halpern, N.Y., Kothakonda, N.B., Haferkamp, J., Munson, A., Eisert, J., Faist,
P.: Resource theory of quantum uncomplexity. arXiv preprint arXiv:2110.11371
(2021)

11. Hutter, M.: Universal Artificial Intellegence. TTCSAES, Springer, Heidelberg
(2005). https://doi.org/10.1007/b138233

12. Hutter, M.: Universal algorithmic intelligence: a mathematical top → down app-
roach. In: Artificial General Intelligence, pp. 227–290. Springer (2007). https://doi.
org/10.1007/978-3-540-68677-4_8

13. Hutter, M.: A complete theory of everything (will be subjective). Algorithms 3(4),
329–350 (2010)

14. Katayama, S.: Computable variants of aixi which are more powerful than aixitl. J.
Artif. Gen. Intell. 10(1), 1–23 (2019)

15. Kleene, S.C.: Introduction to metamathematics. North-Holland Publishing Co.
(1952)

16. Kolchinsky, A., Wolpert, D.H.: Thermodynamic costs of turing machines. Phys.
Rev. Res. 2(3), 033312 (2020)

17. Kolmogorov, A.N.: Three approaches to the quantitative definition of information.
Int. J. Comput. Math. 2(1–4), 157–168 (1968)

18. Koza, J.R., Koza, J.R.: Genetic programming: on the programming of computers
by means of natural selection, vol. 1. MIT press (1992)

19. Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R., Zeilinger, A.: Automated search
for new quantum experiments. Phys. Rev. Lett. 116(9), 090405 (2016)

20. Leike, J., Hutter, M.: Bad universal priors and notions of optimality. In: Conference
on Learning Theory, pp. 1244–1259. PMLR (2015)

21. Leike, J., Lattimore, T., Orseau, L., Hutter, M.: Thompson sampling is asymptot-
ically optimal in general environments. arXiv preprint arXiv:1602.07905 (2016)

22. Levin, L.A.: Universal sequential search problems. Probl. Peredachi Informatsii
9(3), 115–116 (1973)

23. Levy, R., Luo, D., Clark, B.K.: Classical shadows for quantum process tomography
on near-term quantum computers. arXiv preprint arXiv:2110.02965 (2021)

24. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications.
TCS, Springer, New York (2008). https://doi.org/10.1007/978-0-387-49820-1

25. Marletto, C.: Constructor theory of life. J. R. Soc. Interface 12(104), 20141226
(2015)

26. Mueller, M.P.: Law without law: from observer states to physics via algorithmic
information theory. Quantum 4, 301 (2020)

27. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

http://arxiv.org/abs/2005.03137
http://arxiv.org/abs/2110.11371
https://doi.org/10.1007/b138233
https://doi.org/10.1007/978-3-540-68677-4_8
https://doi.org/10.1007/978-3-540-68677-4_8
http://arxiv.org/abs/1602.07905
http://arxiv.org/abs/2110.02965
https://doi.org/10.1007/978-0-387-49820-1


QKSA: Quantum Knowledge Seeking Agent 393

28. Orseau, L.: Universal knowledge-seeking agents. Theor. Comput. Sci. 519, 127–139
(2014)

29. Orseau, L., Lattimore, T., Hutter, M.: Universal knowledge-seeking agents for
stochastic environments. In: Jain, S., Munos, R., Stephan, F., Zeugmann, T. (eds.)
ALT 2013. LNCS (LNAI), vol. 8139, pp. 158–172. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40935-6_12

30. Poland, K., Beer, K., Osborne, T.J.: No free lunch for quantum machine learning.
arXiv preprint arXiv:2003.14103 (2020)

31. Rivera-Dean, J., Huembeli, P., Acín, A., Bowles, J.: Avoiding local minima in varia-
tional quantum algorithms with neural networks. arXiv preprint arXiv:2104.02955
(2021)

32. Sarkar, A.: Applications of Quantum Computation and Algorithmic Information:
for Causal Modeling in Genomics and Reinforcement Learning. Ph. D. thesis, Delft
University of Technology (2022)

33. Sarkar, A., Al-Ars, Z., Bertels, K.: Estimating algorithmic information using quan-
tum computing for genomics applications. Appl. Sci. 11(6), 2696 (2021)

34. Sarkar, A., Al-Ars, Z., Gandhi, H., Bertels, K.: Qksa: quantum knowledge seeking
agent-resource-optimized reinforcement learning using quantum process tomogra-
phy. arXiv preprint arXiv:2112.03643 (2021)

35. Schmidhuber, J.: On learning how to learn learning strategies. Fakultät für Infor-
matik, Technische Universität München, Technical report (1995)

36. Schmidhuber, J.: The speed prior: a new simplicity measure yielding near-optimal
computable predictions. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS
(LNAI), vol. 2375, pp. 216–228. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45435-7_15

37. Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artif. Intell. 299,
103535 (2021)

38. Soler-Toscano, F., Zenil, H., Delahaye, J.P., Gauvrit, N.: Calculating kolmogorov
complexity from the output frequency distributions of small turing machines. PloS
One 9(5) (2014)

39. Solomonoff, R.J.: A formal theory of inductive inference. Part i. Inf. Control 7(1),
1–22 (1964)

40. Strannegård, C., Svangård, N., Lindström, D., Bach, J., Steunebrink, B.: The ani-
mat path to artificial general intelligence. In: Proceedings of IJCAI-17 Workshop
on Architectures for Generality & Autonomy (2017)

41. Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., Carleo, G.: Neural-
network quantum state tomography. Nat. Phys. 14(5), 447–450 (2018). https://
doi.org/10.1038/s41567-018-0048-5

42. Turing, A.M., et al.: On computable numbers, with an application to the entschei-
dungsproblem. J. Math. 58(345–363), 5 (1936)

43. Wauters, M.M., Panizon, E., Mbeng, G.B., Santoro, G.E.: Reinforcement-learning-
assisted quantum optimization. Phys. Rev. Res. 2(3), 033446 (2020)

44. Wheeler, J.A.: At home in the universe. American Institute of Physics (1996)
45. Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural

Comput. 8(7), 1341–1390 (1996)

https://doi.org/10.1007/978-3-642-40935-6_12
http://arxiv.org/abs/2003.14103
http://arxiv.org/abs/2104.02955
http://arxiv.org/abs/2112.03643
https://doi.org/10.1007/3-540-45435-7_15
https://doi.org/10.1007/3-540-45435-7_15
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5


Elements of Active Continuous Learning
and Uncertainty Self-awareness:

A Narrow Implementation for Face
and Facial Expression Recognition

Stanislav Selitskiy(B)

School of Computer Science and Technology, University of Bedfordshire,
Park Square LU1 3JU, Luton, UK

stanislav.selitskiy@study.beds.ac.uk

Abstract. Reflection on one’s thought process and making corrections
to it if there exists dissatisfaction in its performance is, perhaps, one of
the essential traits of intelligence. However, such high-level abstract con-
cepts mandatory for Artificial General Intelligence can be modelled even
at the low level of narrow Machine Learning algorithms. Here, we present
the self-awareness mechanism emulation in the form of a supervising arti-
ficial neural network (ANN) observing patterns in activations of another
underlying ANN in a search for indications of the high uncertainty of
the underlying ANN and, therefore, the trustworthiness of its predic-
tions. The underlying ANN is a convolutional neural network (CNN)
ensemble employed for face recognition and facial expression tasks. The
self-awareness ANN has a memory region where its past performance
information is stored, and its learnable parameters are adjusted dur-
ing the training to optimize the performance. The trustworthiness ver-
dict triggers the active learning mode, giving elements of agency to the
machine learning algorithm that asks for human help in high uncertainty
and confusion conditions.

Keywords: Meta-learning · Statistical loss function ·
Trustworthiness · Uncertainty estimation · Active learning ·
Continuous learning

1 Introduction

Artificial Intelligence (AI) is quite a vague terminology artefact that has been
overused many times, sometimes even for describing narrow software implemen-
tations of simple mathematical concepts such as multi-dimensional regression. It
is understandable that to separate the high-level AI from the narrow level, such
abbreviation as AGI (Artificial General Intelligence) was introduced. Sometimes
even AGI gets associated with the “hype-style” conversation, therefore such
alternatives as “human-level AI” [5] or “DL System 2” [4], and others can used.
The founders of AI research, such as A. Turing and J. McCarthy, who coined
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Goertzel et al. (Eds.): AGI 2022, LNAI 13539, pp. 394–403, 2023.
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the very term AI, were sceptical about the worthiness of the attempts to answer
what AI is. Instead, they suggested answering the question of how well AI can
emulate or implement human-type intelligence [9,17]. N. Chomsky, in numerous
lectures and publications (f.e. [2]), even more categorically elaborated that AI is
a human linguistic concept rather than an independent phenomenon.

Suppose we accept discussing AI in the context of human-likeliness. There
still should be room for learning from simple and narrow machine learning (ML)
algorithms if they could be used as “building blocks” and working approxima-
tions of human-like intelligence. In this work, we want to concentrate on two
aspects of human-likeliness intelligence functionality: continuous lifetime learn-
ing and awareness of uncertainty.

Lifetime Learning (LTL) was introduced in the mid-’90s in the context of
the robot learning process [15]. The LTL learner could face various tasks during
its lifetime, and each new learning task may benefit from the saved successful
models and examples of data they were trained and applied to [14].

From the human perspective, a high volume of training data forced on the
learner is not a benefit. Rather abundance of potential data, from which the
learner chooses a few characteristic examples and asks for the teacher’s expert
advice, is more desirable. A similar Active Learning (AL) approach expects an
ML algorithm to ask an “Oracle” advice on selected un-labelled data [8], in par-
ticular when high uncertainty about a particular piece of data is occurred [6].

The idea of learning the ML processes was also introduced in the ’90s by
the same author as LTL [16], and recently gained traction in various flavours of
meta-learning [18]. One of the directions of learning about learning is learning
uncertainty of the learner [7].

To bring general considerations into a practical, although narrow perspective,
we concentrate on making the meta-learning supervisor ANN model. It learns
patterns of the functionality of the underlying CNN models that are associated
with the failed predictions for Face Recognition (FR) [13] and Facial Expression
Recognition (FER) tasks [12], self-adjusting on the previous experience during
training, as well as, test times.

The reason to use FR and FER tasks is based not only on the fact that
these are pretty human-centric ones but also, although State of the art (SOTA)
CNN models had already passed the milestone of the human-level accuracy of
face recognition several years ago in the ideal laboratory conditions. In the case
of the Out of (training) Data Distribution (OOD) [10], for example, makeup
and occlusions, accuracy significantly drops. Even worse for FER algorithms
and modes, which perform far worse than FR. The reason may be that the
idea that the whole spectre of emotion expressions can be reduced to six basic
facial feature complexes [3] was challenged because human emotion recognition is
context-based. The same facial feature complexes may be interpreted differently
depending on the situational context [1].

Applying the continuous uncertainty and trustworthiness self-awareness algo-
rithms to FR and FER models and data sets built and partitioned to exaggerate
and aggravate OOD conditions is a good area for evaluating the algorithms.
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The paper is organized as follows. Section 2 proposes a solution for dynami-
cally adjusting the meta-learning trustworthiness estimating algorithm for pre-
dictions done for the FR and FER tasks. Section 3 describes the data set used for
experiments; Sect. 4 outlines experimental algorithms in detail; Sect. 6 presents
the obtained results, and Sect. 6 discusses the results, draws practical conclu-
sions, and states directions of the research of not yet answered questions.

2 Proposed Solution

2.1 Uncertainty Meta-learning

In [13], two approaches to assigning a trustworthiness flag to the FR prediction
were proposed: statistical analysis of the distributions of the maximal softmax
activation value for correct and wrong verdicts, and use of the meta-learning
supervisor ANN that uses the whole set of softmax activations for all FR classes
(sorted into the “uncertainty shape descriptor” (USD) to provide class-invariant
generalization) as an input and generates trusted or not-trusted flag.

This contribution “marries” these two approaches by collecting statistical
information about training results in the loss layer (LL) memory of the meta-
learning supervisor ANN. The information in the LL’s memory holds prediction
result yt, training label result lt, and trustworthiness threshold TT . The latter
parameter is the learnable one, and the derivative of the loss error, calculated
from these statistical data, is used to auto-configure the TT to optimize the sum
of square errors loss: SSETT =

∑K
t=1 SEt, where K is a number of entries in

the memory table:

SETTt =

{
(yt − TT )2, (lt < TT ∧ yt > TT ) ∨ (lt > TT ∧ yt < TT )
0, (lt > TT ∧ yt > TT ) ∨ (lt < TT ∧ yt < TT )

(1)

The input of the meta-learning supervisor ANN was built from the soft-
max activations of the ensemble of the underlying CNN models. The algorithm
of building USD can be described in a few words as follows: “build the “uncer-
tainty shape descriptor” by sorting softmax activations inside each model vector,
order model vectors by the highest softmax activation, flatten the list of vectors,
rearrange the order of activations in each vector to the order of activations in
the vector with the highest softmax activation”. Examples of the descriptor for
the M = 7 CNN models in the underlying FR or FER ensemble, for the cases
when none of the models, 4, and 6 detected the face correctly, are presented in
Fig. 2. It could be seen that shapes of the distribution of the softmax activations
are pretty distinct and, therefore, can be subject to the pattern recognition task
performed by the meta-learning supervisor ANN.

However, unlike in the mentioned above publication, for simplification rea-
sons, supervisor ANN was not categorizing the predicted number of the correct
members of the underlying ensemble but instead was performing the regres-
sion task of the transformation. On the high level (ANN layer details are given
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in Sect. 4), the transformation can be seen as Eq. 2, where n = |C| ∗ M is the
dimensionality of the ∀USD ∈ X , |C| - cardinality of the set of FR or FER
categories (subjects or emotions), and M - size of the CNN ensemble 1.

Fig. 1. Meta-learning supervisor ANN over underlying CNN ensemble.

reg : X ⊂ R
n �→ Y ⊂ R (2)

where ∀x ∈ X ,x ∈ (0 . . . 1)n ,∀y ∈ Y , E(y) ∈ [0 . . .M ].
The loss function used for y is the usual for regression tasks, sum of squared

error: SSEy =
∑Nmb

t=1 (yj − ej)2, where e is the label (actual number of the
members of CNN ensemble with correctl prediction), and Nmb - minbatch size.

From the trustworthiness categorization and ensemble vote point of view,
the high-level transformation of the combined CNN ensemble together with the
meta-learning supervisor ANN can be represented as Eq. 3:

cat : I ⊂ I
l �→ C ⊂ C × B (3)

where i are images, l - mage size, c - classifications, and b - binary trustworthy
flags, such as ∀i ∈ I , i ∈ (0 . . . 255)l ,∀c ∈ C , c ∈ {c1, . . . , c|C|} ,∀b ∈ B , b ∈
{1, 0}.

bi =

{
1, (yi > TTt)
0, (yi < TTt)

(4)
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where i is an index of the image at the moment t of the state of the loss function
memory.

ci = argmin(|yi − ei(ci)|) (5)

Equations above describe the ensemble vote that chooses category ci, which
received the closest number of votes ei to the predicted regression number yi.

Fig. 2. Examples of the uncertainty shape descriptors for 0, 4, and 6 correct CNN
ensemble FER predictions.

2.2 Active CNN Ensemble Learning and Life-Time SNN Learning

A common strategy for the passive ML algorithms is to detect OOD conditions
[19]. AL paradigm expects actions upon such a condition discovery. In [11] we
investigated the effects of the enrichment of the training data by a few examples
of the OOD makeup and occlusion examples. Those enrichments were either
“expert” driven or random. Here, the SNN verdict to detect confusion of the
underlying CNN ensemble (i.e. when the SNN-predicted number of correct CNN
models in the ensemble is less than the trusted threshold: yt < TTt) is used to
invoke AL mode post-classification, asking “Oracle” to assign the correct label
to the problematic image.

The trained CNN ensemble has a reference training set |Dr| = Nmb of the
mini-batch size, which is composed of the randomly-selected elements of the
whole training set Dtr;Dr ⊂ Dtr. Upon “Oracle” labelling, one of the elements
of the older reference training set is replaced, and original CNN ensemble models
are quickly retrained on a few epochs. The percentage of the allowed “Oracle”
requests is limited by a low number.

Lifetime or (continuous or online) learning for SNN is implemented similarly
to AL for CNN ensemble; however, because SNN has no supervisor of super-
visor, retraining on the reference training set is implemented after each test
classification.

3 Data Set

The BookClub artistic makeup data set contains images of E = |C| = 21 sub-
jects. Each subject’s data may contain a photo-session series of photos with no
makeup, various makeup, and images with other obstacles for facial recognition,
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such as wigs, glasses, jewellery, face masks, or various headdresses. The data set
features 37 photo sessions without makeup or occlusions, 40 makeup sessions,
and 17 sessions with occlusions. Each photo session contains circa 168 JPEG
images of the 1072 × 712 resolution of six basic emotional expressions (sadness,
happiness, surprise, fear, anger, disgust), a neutral expression, and the closed
eyes photoshoots taken with seven head rotations at three exposure times on
the off-white background. The subjects’ age varies from their twenties to sixties.
The race of the subjects is predominately Caucasian and some Asian. Gender is
approximately evenly split between sessions.

The photos were taken over two months, and several subjects were
posed at multiple sessions over several weeks in various clothing with
changed hairstyles, downloadable from https://data.mendeley.com/datasets/
yfx9h649wz/3. All subjects gave written consent to use their anonymous images
in public scientific research.

4 Experiments

The experiments were run on the Linux (Ubuntu 20.04.3 LTS) operating system
with two dual Tesla K80 GPUs (with 2 × 12 GB GDDR5 memory each) and
one QuadroPro K6000 (with 12 GB GDDR5 memory, as well), X299 chipset
motherboard, 256 GB DDR4 RAM, and i9-10900X CPU. Experiments were run
using MATLAB 2022a.

The experiments were done using MATLAB with Deep Learning Toolbox.
For FR and FER experiments, the Inception v.3 CNN model was used. Out of
the other SOTA models applied to FR and FER tasks on the BookClub data set
(AlexNet, GoogLeNet, ResNet50, InceptionResnet v.2), Inception v.3 demon-
strated overall the best result over such accuracy metrics as trusted accuracy,
precision, and recall [12,13]. Therefore, the Inception v.3 model, which con-
tains 315 elementary layers, was used as an underlying CNN. Its last two layers
were resized to match the number of classes in the BookClub data set (21), and
retrained using “adam” learning algorithm with 0.001 initial learning coefficient,
“piecewise” learning rate drop schedule with 5 iterations drop interval, and 0.9
drop coefficient, mini-batch size 128, and 10 epochs parameters to ensure at least
95% learning accuracy. The Inception v.3 CNN models were used as part of the
ensemble with a number of models N = 7 trained in parallel.

Meta-learning supervisor ANN models were trained using the “adam” learn-
ing algorithm with 0.01 initial learning coefficient, mini-batch size 64, and 200
epochs. The memory buffer length, which collects statistics about previous train-
ing iterations, was set to K = 8192. For online learning SNN experiments, the
number of epochs was set to 10, and for active learning, the number of epochs
was set to 5. Limits for the “Oracle” requests were set for 1% and 0.1%, resulting
in 112 and 12 requests out of 11125 test images.

The reg meta-learning supervisor ANN transformation represented in the
Eq. 2 implemented with two hidden layers with n+ 1 and 2n+ 1 neurons in the
first and second hidden layer, and ReLU activation function. All source code and

https://data.mendeley.com/datasets/yfx9h649wz/3
https://data.mendeley.com/datasets/yfx9h649wz/3
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Fig. 3. Left - trusted threshold learned during the training phase (blue, dashed line),
online learning changes for grouped test images (green), and shuffled test images (red)
for FR task. Right - trusted accuracy against the trusted threshold for grouped test
images for the FR task.

detailed results are publicly available on GitHub https://github.com/Selitskiy/
StatLoss.

4.1 Trusted Accuracy Metrics

Suppose only the classification verdict is used as a final result of the ANN model.
In that case, the accuracy of the target CNN model can be calculated only as
the ratio of the number of correctly identified test images by the CNN model to
the number of all test images:

Accuracy =
Ncorrect

Nall
(6)

When additional dimension in classification is used, for example amending
verdict of the meta-learning supervisor ANN, (see Formula 3), and cat(i) = c×b,
where ∀i ∈ I, ∀c × b ∈ C × B = {(c1, b1), . . . (cp, bp)}, ∀b ∈ B = {True, False},
then the trusted accuracy and other trusted quality metrics can be calculated
as:

Accuracyt =
Ncorrect:f=T + Nwrong:f �=T

Nall
(7)

As a mapping to a more usual notations, Ncorrect:f=T can be as the True Posi-
tive (TP) number, Nwrong:f �=T - True Negative (TN), Nwrong:f=T - False Positive

https://github.com/Selitskiy/StatLoss
https://github.com/Selitskiy/StatLoss
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(FP), and Ncorrect:f �=T - False Negative (FN). Analogously to the trusted accu-
racy, we used metrics such as trusted precision, recall, specificity and F1 score
for the models’ evaluation.

5 Results

Results of the FR experiments are presented in the Table 1, for FER experiments
- in the Table 2. The first column holds accuracy metrics using the ensemble’s
maximum vote. The second column - using the ensemble vote closest to the meta-
learning SNN prediction and trustworthiness threshold learned only on the test
set, see Formulae 4, 5. The third column lists accuracy metrics in the continuous
learning setting, and the next two - are in the active learning setting with 1%
and 0.1% of the allowed “Oracle” requests.

Figure 3 on the left shows trustworthy thresholds learned during training and
continuous learning setting when test data is either unstructured or structured
by a photo session, i.e. groups of the same person and same makeup or occlusion,
but with different lighting, head position, and emotion expression. Figure 3 on
the right shows the relationship between the average session trusted threshold
and session-specific trusted recognition accuracy for FR and FER cases of the
grouped test sessions.

Table 1. Accuracy metrics for FR task. Maximal ensemble vote, SNN predicted vote,
SNN with online retraining, CNN ensemble active learning on 1% of test data, CNN
ensemble active learning on 0.1% of test data.

Metric Maximal Predicted Online Active 1% Active 0.1%

Untrusted accuracy 0.68237 0.57488 0.57488 0.84720 0.60335

Trusted accuracy 0.73836 0.83383 0.83526 0.92293 0.81833

Trusted precision 0.84102 0.91644 0.91821 0.99198 0.9560

Trusted recall 0.76029 0.78227 0.78321 0.91644 0.73257

Trusted F1 score 0.79862 0.84406 0.84535 0.95271 0.82952

Trusted specificity 0.69124 0.90355 0.90566 0.95890 0.94877

Table 2. Accuracy metrics for FER task. Maximal ensemble vote, SNN predicted vote,
SNN with online retraining, CNN ensemble active learning on 1% of test data.

Metric Maximal Predicted Online Active 1%

Untrusted accuracy 0.39626 0.29147 0.29147 0.20126

Trusted accuracy 0.672599 0.77678 0.69298 0.77735

Trusted precision 0.64736 0.65266 0.48052 0.42908

Trusted recall 0.38166 0.50052 0.65778 0.32157

Trusted F1 score 0.48021 0.56656 0.55534 0.36763

Trusted specificity 0.86355 0.89042 0.70747 0.89219
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6 Discussion, Conclusions, and Future Work

For the experimentation with CNN model ensemble based on Inception v.3 archi-
tecture and data set with significant OOD in the form of makeup and occlusions,
using meta-learning SNN, which works as an instrument of self-awareness of
the model about uncertainty and trustworthiness of its predictions, noticeably
increases accuracy metrics for FR tasks (by tens of per cent) and significantly
(doubles) - for FER task. The proposed novel loss layer with memory architecture
without online retraining increases key accuracy metrics by an additional (up
to 5)%. The trustworthiness threshold learned using the loss layer with memory
offers a simple explanation of why prediction for a given image was categorized
as trusted or non-trusted.

Active learning significantly improves FR accuracy metrics even at the 0.1%
of the allowed “Oracle” requests and brings trusted accuracy metrics at the high
90% level for 1% of the allowed test-time requests. For FER task, AL significantly
improves accuracy metrics related to true negatives.

Fig. 4. Examples of images for FER (anger expression) with the low trusted threshold
(bad acting) - left and high trusted threshold (better acting) - right.

Online retraining adds insignificant improvement to accuracy metrics for non-
structured test data. However, online retraining of the trustworthiness threshold
on structured test data informs the model not only about its uncertainty but
also about the quality of the test session, see Fig. 4. For example, it could be
seen that a low-threshold session has a poorly performing subject who struggles
to play the anger emotion expression, while in the high-threshold session, the
facial expression is much more apparent.
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Abstract. While end-to-end learning systems are rapidly gaining capabilities
and popularity, the increasing computational demands for deploying such sys-
tems, along with a lack of flexibility, adaptability, explainability, reasoning and
verification capabilities, require new types of architectures. Here we introduce a
classification of hybrid systems which, based on an analysis of human knowledge
and intelligence, combines neural learning with various types of knowledge and
knowledge sources. We present the Thrill-K architecture as a prototypical solu-
tion for integrating instantaneous knowledge, standby knowledge and external
knowledge sources in a framework capable of inference, learning and intelligent
control.

Keywords: Neuro-Symbolic AI · Hybrid systems · Knowledge engineering

1 Introduction: The Rise of Cognitive AI

Many of the current Deep Learning (DL) applications address perception tasks related to
object recognition, natural language processing (NLP), translation, and other tasks that
involve broad data correlation processing such as that performed by recommendation
systems. DL systems yield exceptional results based on differential programming and
sophisticated data-based correlation and are expected to drive transformation across
industries for years to come. At the same time, a number of fundamental limitations
inherent to the nature of DL itself must be overcome so that machine learning, or more
broadly AI, can come closer to realizing its potential. A concerted effort in the following
three areas is needed to achieve non-incremental innovation:

• Materially improve model efficiency (e.g., reduce the number of parameters by two
to three orders of magnitude without loss in accuracy)

• Substantially enhance model robustness, extensibility, and scaling
• Categorically increase machine cognition
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Among other developments, the creation of transformers and their application in
language modeling [1] has driven computational requirements to double roughly every
3.5 months in recent years [2], highlighting the urgency for improvements in model
efficiency. Despite developments in acceleration and optimization of neural networks,
without improvements in model efficiency, current model growth trends will not be
sustainable for the long haul [3].

Techniques such as pruning, sparsity, compression, distillation and graph neural
networks (GNNs) offer helpful advancements in efficiency but ultimately yield only
incremental or task specific improvements. Reducing model size by orders of magni-
tude without compromising the quality of results will likely require a more fundamental
change in the methods for capturing and representing information itself and in the learn-
ing capabilities within a DL model. Using AI systems that integrate neural networks
with added information injected per-needmight help to scale down some of the language
model growth trends. On a more fundamental level, deep learning lacks the cognitive
mechanisms to address tasks central to human intelligence, missing competencies such
as abstraction, context, causality, explainability, and intelligible reasoning.

There is a strong push for AI to reach into the realm of human-like understand-
ing. Leaning on the paradigm defined by Daniel Kahneman in his book, Thinking,
Fast and Slow [4], Yoshua Bengio equates the capabilities of contemporary DL with
what Kahneman characterizes as “System 1” capabilities—intuitive, fast, unconscious,
habitual thinking [5]. In contrast, he posits that the next challenge for AI systems lies
in implementing the capabilities of “System 2”—slow, logical, sequential, conscious,
and algorithmic thinking, such as those needed in planning and reasoning. In a simi-
lar fashion, Francois Chollet describes [6] an emergent new phase in the progression
of AI capabilities based on broad generalization (“Flexible AI”), capable of adaptation
to unknown unknowns within a broad domain. Both these characterizations align with
DARPA’s ThirdWave of AI [7], characterized by contextual adaptation, abstraction, rea-
soning, and explainability, and by systems constructing contextual explanatory models
for classes of real-world phenomena. One possible path to achieving these competencies
is through the integration of DL with symbolic reasoning and deep knowledge. We use
the term Cognitive AI to refer to this new phase of AI.

There is a divide in the field of AI between those who believe categorically higher
machine intelligence can be achieved solely by advancing DL further, and those who
do not. Taking the neuro-symbolic side of this debate, we see the need for incorpo-
rating additional fundamental mechanisms while continuing to advance DL as a core
capability within a larger architecture. Knowledge that is structured, explicit, and intel-
ligible can provide a path to higher machine intelligence or System 2 type capabilities.
Structured knowledge is required to capture and represent the full richness associated
with human intelligence, and therefore constitutes a key ingredient for higher intelli-
gence. Such knowledge enables abstraction, generalization to new contexts, integration
of human generated expertise, imagination of novel situations, counterfactual reason-
ing, communication and collaboration, and a higher degree of autonomous behavior.
If developed, Cognitive AI will be characterized not only by the ability to access and
represent symbolic knowledge in conjunction with learning mechanisms, but also by the



406 G. Singer et al.

ability to integrate this knowledge, use it for reasoning, planning, decision making and
control, and generate new knowledge via inference and abstraction.

2 Dimensions of Knowledge

What we call “human knowledge” encompasses a diverse set of models and information
types.We introducehere a classificationof thedifferent dimensions of humanknowledge,
from which we can extrapolate to machine knowledge and understanding.

We distinguish between six dimensions of knowledge. Three are dimensions of direct
knowledge, two aremeta-dimensions (context and values), and one allows for connecting
references (ConceptRefs) (Fig. 1):

1. Descriptiveknowledge consists of conceptual abstractions and can also include facts
and systems of records. The facts and information relevant for specific use cases and
environments can be organized, utilized and updated as hierarchical knowledge. The
underlying ontology used in individual AI systems can be seeded with task-relevant
classes and entities from curated systems (e.g., the OpenCyc ontology or the AMR
named entity types).

2. Dynamic models of the world include physical, mathematical/algebraic, financial,
perceptual and other structural regularities and abstractions that describe how the
observed environment will likely change given its current state. Dynamic models
can be formal, but when dealing with the heterogeneity of the real world, they
oftenmerely capture statistical regularities. Causal knowledge enables going beyond
statistical prediction by identifying the conditions under which events manifest,
which is a prerequisite for planning and explainability.

3. Humans often use stories and scripts to provide frames and contexts for the inter-
pretation of facts and events. Stories can take the form of complex narratives that
build on shared beliefs and mythologies.

4. Context and source attribution is a meta-knowledge dimension that enables the
binding of knowledge to a particular context, dealing with conflicting knowledge,
and retracting and updating it when other sources are available. Source attribution
can become particularly relevant when a system has to deal with questions of data
provenance and information reliability (e.g. from news sources).

5. Values and priorities are meta-knowledge dimensions that enable specifying the
relevance of knowledge and the contexts in which systems can choose a course of
action over another so as to behave according to ethical considerations and normative
constraints.

6. Concept references enable binding different types, modalities and instances of
representations together, and unifying knowledge by identifying the relationships
between the representations of unique entity. A Concept Reference (or ConceptRef
for short) is the identifier and set of references to all things related to a given con-
cept. TheConceptRefs themselves do not actually include any of the knowledge—the
knowledge resides in the dimensions described above.

Understanding requires a foundation of common-sense knowledge: a broad (and
broadly shared) set of unwritten assumptions that humans automatically apply to make
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sense of the world. In our framework, commonsense knowledge is considered a subset
of each of the above five knowledge dimensions.

For AI systems, implementing knowledge dimensions observed in human compre-
hension and communication can provide substantial value to the system’s intelligence,
constituting what we term deeply structured knowledge.
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Fig. 1. Dimensions of knowledge

3 From Knowledge to Understanding

Now that we have introduced a taxonomy of human knowledge, we can build upon it to
create a definition of understanding that can be reasonably applied to AI systems.

Understanding is the foundation of intelligence. Yoshua Bengio characterizes
human-levelAI understanding as follows [8]: capture causality and how theworldworks;
understand abstract actions and how to use them to control, reason and plan, even in
novel scenarios; explain what happened (inference, credit assignment); and generate
out-of-distribution.

We are proposing a knowledge-centric definition of understanding: the ability to
create a persistent world view expressed in rich knowledge representation; the ability
to acquire and interpret new information to enhance this world view; and the ability to
effectively reason, decide and explain existing knowledge and new information.
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Fig. 2. Information-centric classification of AI systems
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4 Information-Centric Classification of AI Systems

The above knowledge-centric definition of understanding leads us to an information-
centric classification of AI systems (Fig. 2) as a complementary view to a processing-
based classification such as Henry Kautz’s taxonomy for neuro-symbolic computing [9].
The classification emphasizes the high-level architectural choice related to the structure
and use of information in the AI system.

The proposed information-centric classification includes three key classes of AI
systems based on the architectural partition and the use of information on the fly during
inference time:

• Class 1—Fully Encapsulated Information: Training data and relations are incorpo-
rated into the parametric memory of the neural network (NN) itself. There is no access
to additional information at inference time. Examples include recent end-to-end deep
learning (DL) systems and language models (e.g., GPT-3). Such systems will likely
be the best solutions for all types of perception tasks (such as image recognition and
segmentation, speech recognition, and many natural language processing functions),
sequence-to-sequence capabilities (such as language translation), recommendation
systems, and various question-and-answer applications.

• Class 2—Semi-structured Adjacent Information (in retrieval-based systems):
These systems rely on retrieving information from an external repository (e.g.,
Wikipedia) in addition to the NN parametric memory (e.g., retrieval-augmented gen-
eration) [10]. In Class 2 systems, the repository contains information, but much of
the complex relationships and insights related to the information are encapsulated
in the embedded space of the NN. These systems are most helpful in addressing use
cases with very large data/information space, e.g., anAI system taskedwith answering
questions aboutWikipedia articles. The ability to modify the information in the repos-
itory between training time and inference time can be important for out-of-domain
challenges, even if the relevant information was not present during training.

• Class 3—Deeply Structured Knowledge (in retrieval-based systems): Retrieval-
based systems that interact closely with a deeply structured knowledge base, where
the latter uses an explicit information structure that incorporates the multiple knowl-
edge dimensions and their complex relations described in Dimensions of Knowledge
(Sect. 2). The major distinction between Class 2 and Class 3 AI systems lies in where
the deeper knowledge resides—whether in the NN parametric memory (Class 2) or
in the form of deeply structured knowledge in a knowledge base (knowledge graph in
Class 3) tightly integrated with the NN. Class 3 systems could create a multi-faceted
reflection of the outside world within the AI system by growing their deep knowl-
edge base through interaction with the training data and classifying the concepts they
accrue using the humanlike dimensions of knowledge described above.

4.1 Key Elements of a Class 3 System

In an AI system with deeply structured knowledge (Class 3), an NN has an adjacent
knowledge base with an explicit structure that conveys the relations and dependencies
that constitute deep knowledge. The auxiliary knowledge base is accessed both during
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training and inference time. Some of the deep knowledge still resides in the NN paramet-
ric memory, but in this class of systems, most of the knowledge resides outside the NN.
In an NN-only reasoning system, the knowledge base serves as a repository. A Class 3
system will use an explicit knowledge base during inference; however, reasoning func-
tions such as sorting, selection, neighbor identification, and others are conducted by the
NN within the embedded space—as can be found in examples of QA systems operating
over knowledge graphs [11].

Other Class 3 systems could have an active functionality for selecting information
or performing parts of the reasoning on top of the Knowledge Base (KB). We refer to
such a mechanism as reasoned extraction. One example is Neuro-Symbolic Question
Answering (NSQA) [12]. A key advantage of reasoned extraction over NN-only reason-
ing is that the answer returned by the system can change dynamically as the Knowledge
Graph (KG) is updated, without needing to retrain the model.

The rightmost section of Fig. 2 depicts the high-level architecture of a Class 3 sys-
tem and its key components. The term Knowledge refers to the relevant and objective
information gained through experience.Deep Knowledge describes knowledge that has
multiple dimensions, with complex relations captured within each domain. A knowledge
base implements structured interactive knowledge as a repository in a particular solution,
primarily implemented as knowledge graphs (e.g.: Google’s Knowledge Graph [13]).
Finally, an AI system with Deeply Structured Knowledge is a system with a knowledge
base that captures deep knowledge and reflects its structure through extraction schemes.

The Neural Network (NN) is the primary functional part of a Class 3 system. It
may include all perception elements such as image recognition and scene segmentation,
or a language model for processing syntax, placement-based relations, and the core
of common semantics. It will likely learn an embedding space that represents the key
dimensions of the incoming data. In multimodal systems, it will reflect the images space
and the language space. Like Class 2 systems, the neural network system in Class 3
can engage with the structured knowledge base during inference time, and retrieve the
information needed to complete its task successfully. In this architecture, the training of
theNNneeds to be done togetherwith the extractionmechanism and some representation
of the knowledge base to allow the NN to learn how to extract the required knowledge
during inference.

The Deep Knowledge Base contains facts and information that might be required
for future inference and some or all of the deep knowledge structures depicted in Fig. 1.
These include descriptive knowledge, dynamic models of the world, stories, context and
source attribution, values and priorities, and Concept References. The knowledge base
can change after training and can include additional data and knowledge. As long as the
nature of knowledge and information is similar to that encountered by the NN during
training, the modified knowledge base should be fully utilizable during inference based
on its latest incarnation.

Finally, the Reasoned Extraction block mediates between the NN and its external
source of knowledge. In the simplest case, it is a direct mapping from embedding vectors
through some indexed links to the knowledge base. In the more general case, reasoned
extraction will extract its information using libraries based on queries or APIs.
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While promising some considerable strengths, Class 3 systems require a higher level
of complexity because they necessitate creating and updating an additional element
of the architecture - the deep knowledge base. They also necessitate changes to the
learning algorithms because the knowledge is now split between the NN and the KB,
ultimately requiring new techniques for integrating gradient descent statistical methods
with symbolic representations and learning.

5 Thrill-K: A Blueprint for Hybrid Machine Intelligence

Advanced AI systems will integrate a full mechanism of retrieval from a large semi-
structured corpus of data in addition to their knowledge base. This will require dealing
with inconsistencies, incomplete knowledge, and the addition of prerequisite knowledge,
based on inference processes.

From the perspective of such systems, we observe three levels of knowledge (which
we call 3LK):

1. Instantaneous knowledge allows for rapid response to external events. This knowl-
edge represents a direct input-to-output function that reacts to events or sequences
within a well-mastered domain. All higher organisms depend on the availability of
instantaneous knowledge.

2. Humans and advanced intelligent machines acquire and use standby knowledge.
Standby knowledge requires additional processing and internal resolution within the
deep knowledge base, which makes it slower than instantaneous knowledge, but
applicable to a wider range of situations.

3. Retrieved external knowledge makes use of additional knowledge sources. What-
ever the scope of knowledge is within the human brain or the boundaries of anAI sys-
tem, there is substantially more information, or more recently relevant information,
that can be retrieved from outside of the boundary.

5.1 Thrill-K’s Three Levels of Knowledge

Thrill-K (contraction of “three-L-K”) is a proposed architectural blueprint for AI sys-
tems that utilizes the three levels of knowledge (3LK). It provides a means for represent-
ing and accessing knowledge at three levels—in parametric memory for instantaneous
knowledge, in an adjacent deeply structured knowledge base for reasoned extraction,
and access to broad digital information repositories for external knowledge.

Figure 3 depicts the Thrill-K system architecture. This architecture includes all the
building blocks of such systems, however the flow (depicted by the arrows) can change
based on the usage and configuration. In the example flow shown in the diagram, the
sequence assumes the initial control is via a neural network, followed by the deep knowl-
edge base, followed if needed by external resources. The direct input-to-output path using
the instantaneous knowledge is encoded in parametric memory. If it detects uncertainty
or low confidence in the direct path, the system performs reasoned extraction from its
deep knowledge base. This knowledge base relies onmachine-learning-based knowledge
acquisition to update and refresh the knowledge as new information becomes relevant
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Fig. 3. Thrill-K architecture blueprint

and useful enough to be added. Finally, if the AI system cannot find the knowledge
needed, the retrieval mechanism enables accessing and retrieving necessary information
from the available repositories. Other flows are also possible. For example, if the task
of the AI is to search a knowledge base or to find paragraphs in an external repository,
the same building blocks will be configured in a different sequence. It should also be
noted that while the main processing path is depicted here as a neural network, the same
tiering principle applies to other types of machine learning with information integrated
into the processing as part of the instantaneous input-to-output path.

5.2 Scalability of a Thrill-K System

Aside from the obvious advantages in terms of explainability, the stratification of infor-
mation access into three separate layers offers a method of mitigating compute and data
costs [14] associated with scaling a typical Class 1 system. The expensive NN para-
metric memory is reserved only for the instantaneous knowledge requiring expedient
access, akin to Kahneman’s System 1 [4]. A Deep Knowledge base offers the necessary
expansion of the scope of available standby knowledge at the cost of some speed of
access. Finally, retrieved external knowledge is both the slowest (since it has to be
digested through the largest number of intermediate modules), and the cheapest (since
it does not have to be maintained and updated by the model itself).

By applying the 3-level knowledge hierarchy and Thrill-K system architecture, we
can build systems and solutions for the future that are likely to partition knowledge at
those three levels to create sustainable and viable cognitive AI.
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6 Conclusion: Thrill-K’s Contribution to Robustness, Adaptation
and Higher Intelligence

While layering knowledge in three levels is essential for scale, cost, and energy, it is also
required for increasing the capabilities provided by AI systems. The following are some
capabilities that could be better supported by a Thrill-K system that integrates deeply
structured knowledge for extraction, and access to external repositories:

1. Improved multimodal machine understanding.
2. Increased adaptability to new circumstances and tasks by retrieval/extraction of new

information from repositories not available during pre-training or fine-tuning.
3. Refined handling of discrete objects, ontologies, taxonomies, causal relations, and

broad memorization of facts.
4. Enhanced robustness due to the use of symbolic entities and abstracted concepts.
5. Integration of commonsense knowledge not present in the training dataset.
6. Symbolic reasoning and explainability over explicitly structured knowledge.

Thrill-K offers a new blueprint for this type of future AI architecture. It has the
potential to permeate AI solutions across systems and industries and offer a method for
building intelligence effectively and efficiently.
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Abstract. The OpenCog Learning project explores novel techniques for
the induction of symbolic structure from environmental sources. As a first
application of these ideas, the automated learning of the grammatical
structure of English is explored. This document provides a summary of
results observed to date. The symbolic structure manifests itself as large,
complex graphs tying together words and grammatical structure. The
induction process provides probability distributions on the graphs. The
primary task is to describe and understand the nature of those graphs.

1 Introduction

The goal of the OpenCog Learning project is to induce structure from raw obser-
vational data. In the most direct sense, this would be visual or auditory data.
In a more sophisticated sense, “observational data” will already have been pro-
cessed by other information extraction layers, as the goal of learning is to do so
hierarchically, recursively: to deduce structure in structure inside of structure...
If this can be made to work, then, “starting in the middle” is not a bad place
to start. In the present case, “the middle” is a corpus of English text, and the
goal is to extract grammatical structure, including morphology, syntax and the
lower reaches of semantics.

The general theory of how this can be done is sketched out in a compan-
ion article [6]. The overall process is as follows: first, one computes the mutual
information (MI) between word-pairs occurring in the corpus. The MI assigns
a numerical score to how often a pair of words occur near each-other. This can
be used to generate a maximum spanning tree (MST) parse of the text, which
captures the syntactic structure of the text [7]. This parse tree can be disassem-
bled into individual “jigsaw pieces” which encode the syntactic structure of the
parse [4]. Individual jigsaws encode the local syntactic environment of a given
word, not unlike skip-grams. Collections of such jigsaws can be understood to
be vectors: each word is endowed with a lexis of all of the syntactic contexts in
which it was observed. But this is too fine-grained; one wishes to generalize from
the particular to the general. The vectors can be used both to discover words
that have similar syntactic contexts (based on the similarity of the local envi-
ronments) and also to factor out different word-senses, since different syntactic
contexts associate strongly with distinct word-senses [1,2].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Goertzel et al. (Eds.): AGI 2022, LNAI 13539, pp. 413–423, 2023.
https://doi.org/10.1007/978-3-031-19907-3_40
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This text reports on the algorithms developed to perform the above, and on
the statistical properties of the resulting graphical networks. The report is sum-
mary, encompassing more than a decade of research and development1. There are
obvious directions in which both the theory and the experiment could be taken,
but haven’t been so far. In the “downwards” direction lies morphology, needed
for Indo-European languages, and segmentation, needed for Chinese. Further
down, the extraction of phonetic structure and general audio processing. Lever-
ing the same tool-set upwards, one can search for high-MI pairs across multiple
paragraphs, both to resolve references and to detect entities. Syntactic rela-
tions can also be extracted between different sense streams, say, between words
and blueprints/diagrams, or words and photographs, or other hi-tech sensory
data. The author believes the basic algorithm is generic, and can be ratcheted
upwards, to arbitrarily high reaches. Whether this proves to be true cannot be
known without conducting actual experiments.

The remainder of this paper focuses on the narrow tasks defined above, in the
order given. The computation of word-pairs results in a graph, whose vertexes
are words, and whose edges are word-pairs. What are the statistical properties
of this graph? MST parsing and the creating of jigsaw pieces results in a matrix
of (word, connector-sequence) pairs. What are the statistical properties of this
matrix? Words are vectors in this matrix; the similarity between words can be
judged with assorted different vector measures; how do these behave, and how
does clustering and word-sense disambiguation proceed, in practice?

1.1 Software Infrastructure

All results were obtained by using the software found in the GitHub repo for the
OpenCog Learn project2. It is built on top of the OpenCog AtomSpace3 as a
foundational layer. The AtomSpace is an in-RAM graph database with powerful
graph query capabilities, tuned for performance. It has shims that allow data to
be stored in conventional disk databases and to be distributed across the net-
work. Most notable for the present task is the “matrix API”4: it allows arbitrary
collections of subgraphs to be used as the basis elements of a vector space. If
one has two such vector spaces, then pairs of elements form a matrix of rows
and columns. Given a matrix, one may compute marginal and conditional prob-
abilities. This is, of course, quite ordinary. What is new is that the AtomSpace
allows extremely sparse matrices to be represented: say, 100K × 100K entries, of
which all but a few million are zero. Conventional software packages do not pro-
vide tools for sparse data. Furthermore, the “base data” in the AtomSpace are
graphs; the matrices themselves are but slices through the graphs. For example,

1 A detailed diary of results, spanning a many hundreds of pages, can be found in the
Dairy, Parts One-Six, and the adjunct reports. Rather than peppering this text with
self-citations, footnotes will be used to indicate which of these to examine.

2 See https://github.com/opencog/learn.
3 See https://github.com/opencog/atomspace.
4 See https://github.com/opencog/atomspace/tree/master/opencog/matrix.

https://github.com/opencog/learn/tree/master/learn-lang--diary
https://github.com/opencog/learn
https://github.com/opencog/atomspace
https://github.com/opencog/atomspace/tree/master/opencog/matrix
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during word-sense disambiguation, columns correspond to connector sequences;
these are selected subgraphs taken from the total parse graph.

2 Pair Counting

Obtaining a suitable corpus for the English language is not as simple as it seems:
it is not enough to train on a dump of Wikipedia articles. Wikipedia is descrip-
tive, having a paucity of verbs and a surfeit of proper nouns and technical terms.
The verbs of everyday outdoor adventure: run, jump, catch, are missing. This
was remedied by working with a corpus of young adult adventure literature taken
from Project Gutenberg and publicly licensed fan fiction.

Word-pair counting is done by generating random planar parse trees, and
counting the connected pairs. This provides a uniform sampling over the space
of all possible parse trees, eliminating edge effects from conventional finite-sized
window sampling. Overall, though, the difference between this and window sam-
pling are not obviously discernible.

Data Sets. Five snapshots of an increasingly larger English-language corpus
were taken. These are summarized below5.

Corpus 1 2 3 4 5

log2 NL 16.678 17.097 18.214 18.600 19.019

log2 NR 16.690 17.117 18.228 18.620 19.039

log2 DTot 23.224 23.797 24.748 25.180 25.627

Sparsity 10.144 10.416 11.693 12.040 12.431

Rarity 6.540 6.690 6.527 6.570 6.598

log2 NTot/DTot 4.779 5.079 5.128 5.235 5.335

Total Entropy 17.827 17.889 18.378 18.503 18.631

Left Entropy 9.7963 9.8102 10.069 10.109 10.148

Right Entropy 9.5884 9.5463 9.8321 9.8801 9.9265

MI 1.5572 1.4677 1.5227 1.4863 1.4431

In the table above, NL and NR are the height and width of the matrix (the
number of unique words occurring on the left and right of observed word-pairs).
They are almost the same, but not quite: periods and question marks never occur
at the start of sentences; capitalized words rarely appear at the end. The sizes
are given as logarithms, as this makes comparison to entropies more immediate.
The total number of unique pairs is DTot while the total number of observations
of these pairs is NTot.

5 See Diary Part Two, page 75 and Diary Part Three, page 7. The corpus was divided
into five “tranches”; each dataset includes one more tranche of the corpus.
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The sparsity is − log2 DTot/NL × NR, and is expressed in bits. It indicates
what fraction of all possible word-pairs are actually observed. Observe how the
sparsity increased by two bits, as the dimensions of the matrix increased by
two bits (a factor of four; nontrivial in terms of compute-time, corpus size and
RAM usage.) Thus, rarity is defined as log2 DTot/

√
NL × NR, and is seen to be

approximately constant, independent of dataset size.
The total entropy is

HTot =
∑

w,v

p (w, v) log2 p (w, v)

with the sum ranging over all word-pairs (w, v) and the frequency p (w, v) =
N (w, v) /N (∗, ∗) where N (w, v) is the observation count of a pair, and N (∗, ∗)
is the total count over all word-pairs. The left entropy is

HLeft =
∑

w

p (w, ∗) log2 p (w, ∗)

where p (w, ∗) =
∑

v p (w, v) is the left-marginal sum; likewise for the right
entropy. The mutual information is

MI = HTot − HLeft − HRight =
∑

w,v

p (w, v) log2
p (w, v)

p (w, ∗) p (∗, v)

Notable trends are that the number of distinct pairs increases as the square-
root of the possible number of pairs. The total number of observations per pair is
very nearly constant, increasing only slowly with the size of the dataset. Notable
is that the MI really does appear to be constant, independent of the size of the
dataset! The low value of the MI, one and a half bits, indicates the paucity of
word-pairs. They convey some information, but not very much. On the other
hand, the sparsity is quite high: of all possible word pairs that could have been
observed, only minuscule fractions of a percent are actually observed.

Remarkably, the overall numbers appear to be language-independent; almost
identical values are seen for Mandarin Chinese text6. To perform this counting,
each Hanzi is taken to be a “word”. This is not technically correct, as Chinese
words may consist of one, two, three or more Hanzi. However, segmentation is
a challenge, and so at this level, for pair-counting, issues of segmentation are
ignored. Presumably, the discovery of Chinese words as set-phrases will occur
later in the learning pipeline.

MI Distribution. The distribution of word-pair MI is shown below. This is for
dataset 3, which contains 28 million pairs. The MI is sorted into 500 histogram
bins.

6 See the “Word Pair Distributions” document.
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The distribution is clearly not symmetric. The two sides appear to be
bounded by straight lines. The author is unaware of any theoretical explana-
tion for this shape. However, the following guess is offered. If word-pairs are
chosen completely at random, and the number of sampled pairs is much smaller
than the total possible pairs, then one obtains a Gaussian distribution. Such a
distribution is centered on a small but positive MI, due to sample-size effects.
For larger samples, the mean tends to zero. Thus, perhaps the left-hand-side of
this figure is just a Gaussian. An eyeballed, imprecise fit is shown.

Taking this to be “common-mode noise”, and subtracting it leaves an excess
of word pairs with positive MI, having a peak near MI ∼ 4. The straight-line
slope on the right suggests that the excess can be described by a log-normal
distribution. Again, an eye-balled, imprecise fit is shown. These two, summed
together, model the observed distribution almost perfectly.

Pairs with the highest MI are observed very infrequently. The highest observ-
able MI value is directly related to the sample size: it is a bit below the log of
the number of observations. Thus, the sharp drop on the right side is purely
a sample-size effect. Trimming does not appreciably change the shape of this
distribution, other than to eliminate the very highest MI values. This distribu-
tion is not language-specific; a nearly identical distribution is seen for Chinese
Mandarin Hanzi pairs7.

3 MST Parsing

Armed with word-pair data, one can proceed to perform Maximum Spanning
Tree (MST) parsing, as described by Yuret [7]. One considers all possible planar
trees connecting all of the words in a sentence, and, out of all of these trees, the
one with the greatest sum-total MI of the edges is selected. A variation is the
Maximum Planar Graph (MPG), which takes the above tree, and adds edges
for high-MI pairs, as long as edges don’t cross and the MI is above a threshold.
Experience with Link Grammar (LG) suggests that MPG parses offer a signif-
icant advantage over trees. There, cycles force grammatical agreement between
nearby words, which introduces a rigidness, resulting in a greater rejection of
bad parses. This result should carry over to the present case, and help constrain
the learned grammar.
7 See “Word-Pair Distributions”, page 18.
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Given an MST or MPG parse, each edge is cut in half, and the half-edge is
labeled with the word it used to connect to. This results in a connector sequence
for each word, some connectors connecting to the left, some to the right. Every
connector sequence d, or disjunct for short, is paired with a word w to form
a word-disjunct pair (w, d)8. Parsing a large corpus this way, the counts are
accumulated in the database, to give a count N (w, d).

The first thing one notices is that there are vastly more disjuncts than there
are words: two orders of magnitude more! This is easily explained: each disjunct
is a context for a word: it resembles a skip-gram in many ways [5]. Next, one
notices that the vast majority of disjuncts are observed only once. This raises
the question: what is signal and what is noise? This can be explored through
trimming, by removing words, disjuncts and word-disjunct pairs whenever their
observation counts fail to pass a minimal threshold.

Results are summarized in the table below9. The column labels indicate the
trimming thresholds; in the rightmost column, all words with an observation
count of less than 10 were removed; all disjuncts with an observation count of
less than 4, and all word-disjunct pairs with a count of less than 2. After this
initial trimming, an additional consistency trim is performed, to guarantee that
all remaining words can connect to some connector in some disjunct, and vice
versa.

Trim cuts full set 1-1-1 2-2-2 5-2-2 10-4-2

log2 Nwords 18.526 15.542 13.644 12.889 12.249

log2 Ndisjuncts 24.615 20.599 18.662 18.447 17.369

log2 DTot 24.761 20.967 19.247 19.086 18.443

Sparsity 18.380 15.174 13.058 12.251 11.175

Rarity 3.191 2.896 3.095 3.418 3.634

log2 NTot/DTot 0.356 2.248 3.384 3.461 3.889

Total Entropy 24.100 19.486 17.711 17.508 16.875

Left Entropy 23.494 18.346 16.417 16.163 15.379

Right Entropy 10.157 7.937 7.280 7.268 7.258

MI 9.550 6.796 5.987 5.923 5.763

Notable in this data is that even modest trimming removes the vast major-
ity of words and disjuncts in the dataset. The total entropy and sparsity is
strongly dependent on the trim; the rarity is almost a constant. It will later
become apparent that heavy trimming is perhaps not a good idea: there is a
considerable amount of information held in the infrequently-observed disjuncts.

8 For example, parsing “John hit the ball” results in a (w, d) pair (hit, John- &

ball+) for the verb “hit”: a subject on the left, and an object on the right. Details
can be found in [5].

9 The raw data is in Diary Part Six.
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Characterizing this precisely, understanding what it means remains an ongoing
task.

The MI between words ad disjuncts can be computed; this forms a distribu-
tion, shown below, both for the full dataset, and for the trimmed variants10.

10-6

10-5

10-4

10-3

10-2

10-1

100

-5  0  5  10  15  20

Fr
eq

ue
nc

y

MI

MI Distribution of word-dj Pairs

trim-0-0-0
trim-1-1-1
trim-2-2-2
trim-5-2-2

trim-10-4-2
Gauss(6,3)

Drawn for comparison is a Gaussian, centered at an MI of 6, with a standard
deviation of 3. There is no compelling reason to believe that the distribution
should be a normal distribution; just that it seems not inappropriate. Compared
to the Gaussian in the earlier figure for word-pairs, this one is clearly centered
far away from MI=0. A certain “amplification of information” appears to have
occurred.

4 Grammatically Similar Words

The machinery above brings us to the first interesting grammatical application:
determining what words are grammatically similar. Each row in the above matrix
is a vector; it corresponds to a word with a collection of disjuncts associated with
it. Each disjunct is a context for that word: it is very much like a skip-gram,
familiar from corpus linguistics. Unlike conventional skip-grams, it is determined
by MST/MPG parsing, rather than simple observation frequency. This should
result in much higher quality data, although this hasn’t been directly demon-
strated, yet. The interpretation is also different than a conventional skip-gram:
the context of the word is re-interpreted as jigsaw connectors; and connectors
must connect to form a valid parse of a sentence. This is very unlike conventional
neural net approaches, where there is no explicit appearance of any grammar.

How should similarity be compared? Conventional approaches employ the
cosine distance. Experimentally, this appears to be the worst-possible way of
determining similarity11. Other possibilities include the Jaccard distance, and
weighted variants thereof. One of these is optimal, in that it maximizes all pos-
sible similarities [3]. Any of these do quite well. Keeping with the information-
theoretic theme, using the mutual information between two vectors seems appro-
priate. This needs to be defined afresh, as it is not simply a restatement of that
10 An earlier version of this graph, for a different dataset, can be found in “Connector

Set Distributions” (2018) page 22.
11 See Diary Part Two, pages 55–74.
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given above. Let the joint probability p (w, d) of a word-disjunct pair (w, d) be as
before: p (w, d) = N (w, d) /N (∗, ∗). Define a vector inner product of two words
w, v as

i (w, v) =
∑

d

p (w, d) p (v, d)

The corresponding MI is then

MI (w, v) = log2
i (w, v) i (∗, ∗)
i (w, ∗) i (v, ∗)

Note that this MI is symmetric: MI (w, v) = MI (v, w), which follows from the
symmetry of the inner product.

How well does this work? Fantastically well; creating a list of the top-100
most similar words, as ranked by MI, provides excellent results, excellent in
the sense that just looking at the list it is clear that they really are synonyms,
or are obviously grammatically similar. But then a problem becomes evident:
all of the high-MI word pairs involve rare, infrequent words. If one is to build
a syntactical lexis, one really wants to begin by looking at common, frequent
words. A weighting that brings frequent words to the forefront is desirable.

Such a weighting is given by the “variation of information”. The variation of
information is given by

V I (w, v) = log2
i (w, v)√

i (w, ∗) i (v, ∗)

There are also other possibilities, which look even more promising; the above,
however, is the cheapest and easiest to compute12.

The graph below shows the distribution of MI similarities for the top-ranked
(most frequent) 1200 words13. In principle, there are N (N + 1) /2 = 720600
such pairs. In practice, 386380 pairs are observed; the remaining pairs have no
overlap! (and thus a −∞ for the MI.)
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Distribution of MI

The curve marked G is a Gaussian, with the indicated mean and standard
deviation. The negative mean MI is just saying that most words are not similar
to one-another (duh.) The graph for the VI is nearly identical, having the same
deviation, but with the mean shifted to 1.5.
12 See Diary Part Five.
13 See Diary Part Three, page 14; see also Diary Part Five.
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5 Clustering

How well does this work? Some of the top-most similar groups of words are
shown in the table below14.

Top-ranked Clusters

+ — “” ? . ! must would

, ; He It I There he she

was is of in to from are were

but and that as has was is had could might should will may

The clusters above are sets of words, all of which have a high pairwise-
VI amongst one-another. Most of these are obvious. The cluster of capitalized
words is perhaps surprising: but these are all sentence-starters: they are similar
because they all start occur first, and start similar sentences. (Recall, the corpus
is adventure literature, with a lot of dialog in it.)

To get adequate word-sense disambiguation (WSD), one must be more
sophisticated in clustering. A cluster should include only those disjuncts which
are shared by the majority, excluding those that are not. An example of this is
the word “saw”, which can be the past tense of “to see”, or a cutting implement.
In forming a cluster with other viewing (or listening) verbs, one wishes to accept
only the disjuncts pertinent to viewing/listening. Excluding the others leaves
behind the disjuncts for cutting tools. Thus WSD is accomplished.

This can be accomplished with “exclusive club - common-interests” mem-
bership15. Starting with the pair of words having the highest possible VI, one
searches for additional words having a high VI to these two. These form the can-
didate members to the club. Candidates are accepted if they pass a threshold.
It is useful to have a reasonably large club, which can be expanded by gradu-
ally lowering the threshold. As it is lowered, the candidate list increases, until
suddenly it explodes. The exclusive club is no longer exclusive, but is inviting
everyone to join. The graph below shows the size of the candidate list, as the
barrier to entry is lowered. The listed word pairs are the initial seed-words for
forming a cluster.

14 See Diary Part Five.
15 See Diary Part Four, pages 13–25.
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On the left, all of the seed-pairs are made of very frequent words. Does this
pattern continue to hold for infrequent words? It appears to, as the graph on
the right shows.

The above only provides a list of candidate members. Setting a high threshold
keeps the candidate list small. But which words, exactly, should be admitted to
the club? This can be determined by seeing what disjuncts the words share in
common. For a given candidate list, one simply counts the fraction of all disjuncts
that the words have in common (think of these as common interests in a social
club). Next, consider ejecting one of the candidates; does the fraction of shared
disjuncts increase, or not? If it increases, then the ejected candidate should be
thrown out of the club. If it decreases, then that candidate should be kept in.

In forming the group, only those disjuncts that the group members have in
common are kept as part of the group; the other, non-shared disjuncts presum-
ably belong to other word-senses. This algorithm performs word-sense disam-
biguation. If one includes disjuncts shared by a majority, then this algorithm
also performs generalization: it moves from particulars to generalities. Some
words may have been seen in some contexts; others in different, but generally
similar contexts. In admitting these disjuncts into the common group, all of the
group members gain the ability to engage in these contexts, thus generalizing.
The majority need not be a strict 50% majority; it can be a plurality, set at any
threshold. This can be understood as the Jaccard index for the group.

To summarize, high MI (or high VI) just indicates general similarity between
words. The actual list of shared disjuncts is computed with a Jaccard index. It
is this set of shared disjuncts that determine the grammatical behavior of the
group.

6 Conclusion

A collection of research results were described. Research is ongoing. An imme-
diate next step is to evaluate the quality of the resulting grammars. The most
important next step is to climb up the hierarchy: to repeat the process, but
now looking at multi-sentence, paragraph, and corpus-wide correlations, with
the intent of identifying entities and their properties. Equally important, yet
equally daunting, is to apply these techniques to vision, sound or other kinds
of information streams. The primary limitation to further research is the devel-
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opment of the tools, the software and infrastructure needed to carry out these
experiments. Based on the current results, the future looks extremely promising.
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Abstract. The monograph “Strong Artificial Intelligence. On the Approaches to
Superintelligence”, referenced by this paper, provides a cross-disciplinary review
of Artificial General Intelligence (AGI). As an anthropomorphic direction of
research, it considers Brain Principles Programming (BPP) – the formalization
of universal mechanisms (principles) of the brain’s work with information, which
are implemented at all levels of the organization of nervous tissue. Thismonograph
provides a formalization of these principles in terms of the category theory. How-
ever, this formalization is not enough to develop algorithms for working with this
information. In the paper, for the description and modeling of BPP, it is proposed
to apply mathematical models and algorithms developed by us earlier that model
cognitive functions, which are based on well-known physiological, psychologi-
cal and other natural science theories. The paper uses mathematical models and
algorithms of the following theories: P.K.Anokhin’s Theory of Functional Brain
Systems, Eleonor Rosh’s prototypical categorization theory, Bob Rehter’s theory
of causal models and “natural” classification. As a result, the formalization of the
BPP is obtained and computer examples are given that demonstrate the algorithm’s
operation.

Keywords: Brain principles · Categorization · Category theory · Formal
concepts

1 Introduction

In the monograph “Strong Artificial Intelligence. On the approaches to superintelli-
gence” [1] the first cross-disciplinary guide on Artificial General Intelligence (AGI)
is given: “General artificial intelligence is the next step in the development of AI, not
necessarily endowed with self-awareness, but, unlike modern neural networks, capable
of coping with a wide range of tasks in different conditions.“ As an anthropomorphic
direction of research, it considers Brain Principles Programming (BPP) – the formaliza-
tion of universal mechanisms (principles) of the brain’s work with information, which
are implemented at all levels of the organization of nervous tissue. The book provides
a formalization of these principles in terms of category theory. However, algorithms for
working with information do not follow from this formalization.
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In this paper, we apply mathematical models and algorithms developed by us earlier
that modeling cognitive functions and based on the well-known physiological, psycho-
logical and natural science theories, to model Brain Principles Programming. We will
rely on the following theories: P.K.Anokhin’s Theory of Functional Brain Systems [2, 3],
Eleonor Rosh’s prototypical categorization theory [4, 5], Bob Rehter’s theory of causal
models [6, 7] and works on “natural” classification [8].

2 Part I. Basic Theories and Formal Models

2.1 Basic Elements of Perception and the World

“Natural” Classification. Thefirst philosophical analysis of the “natural” classification
belongs to J.S. Mill [9]: “artificial” classifications differ from “natural” in that they can
be based on ... Features, so that different classes differ in that they include objects
with different meanings of these features. But if we consider the classes of “animals”
or “plants”, then they differ in such a large (potentially infinite) number of properties
that they cannot be enumerated. And all these properties will be based on statements
confirming this difference”.

J.S. Mill’s analysis has been confirmed by naturalists. L. Rutkovsky writes about
the similarity of properties in “natural” classes [10]: “The more essential features of
the compared objects are similar, the more likely their similarity is in other features.“
Smirnov E.S. [11]: “The taxonomic problem lies in the “indication”: from an infinitely
many number of features, we need to move to a limited number of them, which would
replace all other features”. From studies on “natural” classification, it follows that fea-
tures in “natural” classes are strongly correlated, since a potentially infinite number of
features are almost uniquely determined followL.Rutkovsky from the indicator features.
A formal model of “natural” classification is given in [6].

“Natural” Concepts and Prototypical Theory of Categorization. The high correla-
tion of features for “natural” classes has been confirmed in cognitive studies. In the
works of Eleanor Rosch [4, 5], the following principle of categorization of “natural” cat-
egorieswas formulated, confirming the statements of J.S.Mill and naturalists: “Perceived
World Structure: … perceived world – is not an unstructured total set of equiprobable
co-occurring attributes. Rather, the material objects of the world are perceived to pos-
sess…High correlational structure (emphasis added by EV).… In short, combinations
of what we perceive as the attributes of real objects do not occur uniformly. Some pairs,
triples, etc., are quite probable, appearing in combination sometimes with one, some-
times another attribute; others are rare; others logically cannot or empirically do not
occur». Therefore, directly perceived objects (so called basic objects) are information–
rich bundles of observable and functional properties that form a natural discontinuity
that creates categorization. These bundles form “prototypes” of class objects.Further
Eleanor Rosch’s theory of “natural” concepts was called the prototypical theory of
concepts (prototype theory).

The Theory of Causal Models. Studies have shown that people’s knowledge of cate-
gories is not reduced to the set of features, but includes a rich set of causal relationships
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between these features. In some experiments [7] it was shown that a feature is more
important if it is more strongly included in the causal network of interrelations of fea-
tures. Considering these studies, Bob Rehder put forward the theory of causal models
(causal-model theory), according to which the relation of an object to a category is no
longer based on a set of features and proximity by features, but on the basis of simi-
larity of the generative causal mechanism [7]. In [8] Bayesian networks were used to
represent causal knowledge. However, they cannot model cyclic causal relationships
because Bayesian networks do not support cycles. The probabilistic formal concepts,
that developed earlier and presented in the supplement of work [12], model cyclic causal
relationships by fixed points of causal relationships predictions.

2.2 Probabilistic Formal Concepts

We assume that “natural” classification and “natural” concepts are described by the same
formalism. From our point of view, the information processes of the brain were tuned
in the process of evolution to extract a highly correlated structure of features of “natu-
ral” objects by forming “natural” concepts of these objects. Causal relationships in the
perception of “natural” objects close on themselves forming a certain “resonance”. At
the same time, “resonance” occurs if and only if these causal relationships reflect some
holistic “natural” object. The resulting cycles of inferences on causal relationships are
mathematically described by “fixed points” of mutually interconnected features, which
gives an “image” or “prototype” of objects class. Therefore, the brain perceives a “nat-
ural” object not as a set of features, but as a “resonating” system of causal relationships
that forms a causal model.

The formalization of cyclic causal relationships in the form of probabilistic formal
concepts is given in the supplement of thework [12]. There is also a definition of causality
in the form of the Most Specific Causal Relationships (MSCR) that solve the problem
of statistical ambiguity (see references in the supplement). There is also an example of
the probabilistic formal concepts discovery.

Probabilistic formal concepts can be used to context (latin contextus – cohesion,
coherence, connection) detection as systems of interrelated concepts in a certain situa-
tion, discourse, a certain point of view, etc. In addition, in supplement, an example of
the context detection is given on the example of the social networks analysis.

The definition of probabilistic formal concepts and the proof of its properties is
carried out under the assumption that a probabilistic measure is known. In practical
tasks, we cannot assume this. Therefore, it is necessary to use a statistical criterion to
detect MSCR on data. For that a Fisher ‘s independence exact criterion with some level
of significance α was used. Then we can got a set Rα of statistical approximations of
MSCR detected on data with a confidence level α. They can cause contradictions in
fixed points of probabilistic formal concepts. Therefore, it is necessary to introduce a
criterion of approximations Rα consistency in predictions on some data A. As a result
we can discover a fixed points by consistently applying the prediction operator ϒ(A)

to data A, taking into account the consistency of predictions. The operator ϒ(A) adds
some new element to the set A if it is predicted by some approximation fromRα based
on data A and it is not contradict to the predictions of others by approximations in such
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a way that the consistency criterion strictly increases. Either the operator ϒ(A) removes
some element from A if there are approximations that predicting its negation and also
in such a way that the consistency criterion again strictly increases. When the operator
can no longer add a certain element to A, or remove an element in such a way that the
operator strictly increases, we get a fixed point, which is denoted as ϒ∞(A). A detailed
description of this process is given in supplement of the work [12].

2.3 “Intelligent Object” and “Intelligent Function”

The formalization of “Brain Principles Programming, (BPP)” described in [1] is based on
the category theory and the concepts of “intellectual object” and “intellectual function”
formulated in it. Here is an informal definition of “intellectual object” and “intellectual
function” from [1]:

• “intellectual object”, by which wemean any single integrity that we distinguish in this
space – for example, when we see a table, signals from the optic nerve are processed
by the brain, and the combination of individual lines is recognized as a table;

• the “intellectual function”, which describes all possible operations in the system under
consideration, is all that the psyche candowith an intellectual object.Whenwe identify
a table as an object, we can estimate its size or figure out how to use it;

• “essence” is the specific meaning of an object for the psyche. That is, the knowledge
of what the table can be used for.

Formally, an “intelligent object” is defined as a mapping [1]:

• some data set (A);
• the observer as a reflection of the world after interacting with it (�);
• the relation of the world to the observer, which is a function of the internal state/

expectation (f) – an intellectual function A
f−→ �.

Here A is a data set that characterizes any unit wholeness;
� – distinguishing ability: “the relationship of an intellectual object with “me” does

not yetmean any awareness, representation of this intellectual object in consciousness – it
is enough for something to be somehow perceived and recognized to a degree sufficient
for this “something” to be taken into account in the future in one way or another…
Since the main task of thinking… is to predict or produce a competitive future, then
how the perceived object will eventually appear to us will depend on our mood, or,
as phenomenologists would say, on our intentionality” [13]. More formally, “Some
requirements will be imposed on the object � modeling the distinguishing ability, thus:
first of all, it should be a partially ordered set, the elements of which correspond to
“more” or “less” high values” [13].

Next, the waiting function ExpA : A × A → � is defined (expectation) and the
following explanations of this function are given: “at all levels of perception… we are
essentially dealing with a situation, with some expected state of affairs… Our psyche
irresistibly tends to put the whole set of stimuli into a kind of understandable, clear
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and seemingly consistent picture of reality (cursive 1 – E.V.)… These representations
of reality, in turn, are a specific filter-interpreter – any new stimuli, finding themselves,
figuratively speaking, in the field of gravity of the corresponding system of representa-
tions, inevitably seem to change their trajectory – some are repelled (ignored), others,
complementary, on the contrary, are attracted, others are modified (interpreted) in favor
of the prevailing attitudes (cursive 2 – E.V.)… As a result, with respect to any element
x that is part of the intellectual object A, it is meaningful to say how different it is,
firstly, from itself in the sense of what we expect to see in its place, and, secondly, how
appropriate it is in the situation in general, i.e. how close it is to the rest of the elements
distinguished in the situation.”

More formally [13], the expectation function ExpA : A × A → � assigns to each
pair of elements x, y ∈ A a measure of their consistency (coherence) on our existential
partially-ordered scale �. At the same time, the measure of the object’s x ∈ A consis-
tency with itself ExpA(x, x) can be understood as a measure of the proximity of x to
its essence… And denoted as EssA(x) (essence). If we consider the prototype of class
objects as an “invariant” of class objects, then the fixed point of the operator ϒ∞(X (y))
obtained on the set of properties X (y) = {P1&...&Pm} of some element y ∈ Awill differ
from the attributes X (y) of the element itself exactly as a measure of the object’s consis-
tency with itself. Therefore, the operator ϒ∞ gives a certain measure of the proximity
of the object to its essence (invariant).

The waiting function allows to define the intelligent object more fully [13]. By an
intelligent object we will understand… an object A := (A,ExpA) that includes a set of
data A and an expectation function ExpA : A × A → � that essentially depends on the
subject experience � and its internal state.

The structure of an intelligent object described in cursive 1 above actually means
that an intelligent object is a context, represented by a probabilistic formal concept, in
which an operator ϒ∞ having the same meaning – minimizing contradictions in a set
of stimuli – generates the most consistent picture of reality from the input set of stimuli
A, supplementing it with all relevant information. At the same time (see cursive 2), new
stimuli either change their trajectory, or repel, or attract. All these effects, which are
taken into account in the expectation function ExpA : A × A → �, are modeled by
the interaction of probabilistic formal concepts of elements of the set A. A change in
the trajectory is the features moving closer to the prototype, repulsion is the braking of
features, which is described in the supplement of the work [12], and attraction is mutual
support at a fixed point.

Intelligent Function. The work of the intellectual function is not only to recreate the
intellectual objects associated with the data elements A and the set A itself, but also
to connect these intellectual objects with all other intellectual objects that exist in the
psyche and are relevant to a given situation, for example, to a need or some task (goal).
The result of the work of the intellectual function is the creation of a “heavy intellectual
object” by “enlarging the knowledge we have, which we believe relates to some problem
that interests us” [13]. Thus, an intellectual object “is, as it were, raised to the degree
of the knowledge (intellectual objects) that we possess, and acquires an appropriate
meaning for us” [13].
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Raising of some intellectual object “to the degree” of knowledge is formally repre-
sented as a relation: “If (this) relation is thought of as a certain kind of directional connec-
tion, then it seems quite natural to designate intellectual objects with letters A,B, C…,
and the relations between them with arrows… r :A → B” [13]. In addition, this relation
“must respect those differences and identifications that were posited by the expectation
function ExpA : A × A → �” and satisfy the following conditions:

∀a, b ∈ A(EssB(r(a)) ≤ EssA(a)), ExpA(a, b) ≤ ExpB(r(a), r(b)).

All arrows of the ratio r, showing the path of enrichment of the intellectual object,
form a “cone”. The limit of the enrichment diagram is the cone generated by the “heavy”
object contained in all other cones. The operator ϒ∞(A) automatically forms a context
generated by elements A of some intellectual object and probabilistic formal concepts of
its elements, since for all causal relationships linking elements A with other knowledge
available in the psyche, the predicted elements of the psyche will automatically be
included in the context by these causal relationships.

3 Part II. Brain Principles Programming Formalization

3.1 The Principle of the Complexity Generation

The principle of the complexity generation in [1, p. 217] is formulated as follows:
“The brain works with a very limited amount of information from the surrounding
reality coming to its sensors … As this initially scarce information is used, the brain,
at all levels of its organization, repeatedly increases its volume, correlating the received
introductory data with the data already existing in it… The principle of complexity
generation allows the brain, having received the smallest external signal, to reproduce
knowledge (an intellectual object) with incomparably greater power in the human mind,
enriching the model of this object with information, which is relevant for the brain
within the framework of its tasks (its goals).“ This complexity generation is performed
by the intellectual function introduced earlier in [1, p. 214], which “seems to be raised
to the degree of the knowledge (intellectual objects) that we possess, and acquires an
appropriate meaning for us”.

The formalization of the “intellectual object” and “intellectual function” by
probabilistic formal concepts gives us the following models of complexity generation:

1. If we consider the features of digits (see Fig. 2 in supplement of the work [12]) as
features perceived by the primary visual cortex, and the set A as a set of perceived
digits, then the set of probabilistic formal concepts that have been discovered for
these digits generates a set of intellectual objectsA0 := (0,Exp0),A1 := (1,Exp1),
…, A9 := (9,Exp9) – “invariants” of these digits. They are examples of generated
complexity based on the simplest features (see description in supplement of work
[12]).

2. The formation of contexts as probabilistic formal concepts, which generates a
typology of social network users (see description in the supplement of the work
[12]).
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3. In general, when a certain task or a certain goal is set, the generation of complexity
by the corresponding intellectual function will consist in generation of the context
according to the given initial conditions A by “raising them to the degree” of the
knowledge that is directly related to them. Formally, this generation is a probabilistic
formal concept generated by operatorϒ(A)∞, using all the knowledge related to the
task or goal, represented by a set of MSCR approximations Rα .

3.2 The Principle of the Relationship

In psychology, this principle was originally called the Gestalt principle. The brain reacts
not to a specific stimulus, but to what this stimulus becomes when corresponding with
the information that is already contained in the brain [1]. “The evaluation of informa-
tion arising in the brain… is carried out exclusively through the act of correlating one
information with another, and the brain itself reacts not to the object of reality as such,
but to how it correlates with other information located in the brain” [1].

Gestalt psychology puts forward the principle of integrity as the main explanatory
principle. “The integrity of perception is a property of perception, consisting in the
fact that every object, and even more a spatial objective situation, is perceived as a
stable systemic whole, even if some parts of it cannot be observed at the moment (for
example, the back of a thing)” (Wikipedia). The integrity of perception, which is formed
in the process of perception of a “natural” concept or prototype of a class, as well as
the context of a certain task, is formally expressed in a probabilistic formal concept by
cyclic mutual prediction of features of the concept or elements of the context. Therefore,
the probabilistic formal concepts form the very “stable system whole” that characterizes
integrity.

Therefore, formally, the operator ϒ(A)∞ is just the “stable system whole” in which,
not individual elements of A are perceived, but their inseparable relationship with the
rest of the fixed point ϒ(A)∞ elements.

3.3 The Principle of Approximation to the Essence

The principle of approximation described in [1] as follows: “… in reality, there are
no absolutely identical objects, so the brain performs approximation, that is, ignores
differences if it manages to assign one or another “essence” to an object by specific
features.At the same time, “essence”means the functionality of an object –whatmeaning
it has for the brain (what role it performs) within the framework of the tasks it solves
(its goals)… When a person is tired and wants to rest – in the forest, a stump can serve
as a chair, since you can sit on it”.

The formation of “entities” occurs in the context of tasks being solved. Every context
clarifies and correlates the elements of the context with a system of mutually predicted
properties by causal relationships. This leads to the formation of “essences” associated
with the context. For example, a knife in different contexts: cooking, combat situations,
office work and hiking conditions should have different properties arising from the con-
text: for a kitchen knife, the relationship of width, weight and blade edge is important,
for a combat knife – the ratio of tip, length, weight and width, for a stationery knife –
small weight, length and safety, for a penknife – relative smallness of size. Therefore,
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“essences” of “kitchen knife”, “combat knife”, “stationery knife”, “penknife” will auto-
matically generate probabilistic formal concepts, since features and fix-points of their
interrelation are different.

The functional, which has a certain meaning for the brain within the framework of
the tasks and goals it solves, will in a certain way affect the totality of the properties
of the object, which, mutually assuming each other, and hence automatically form the
corresponding probabilistic formal concept corresponding to its functional “essence”.

Therefore, “essence” is a probabilistic formal concept ϒ(A)∞ generated by such
elements A – features of the objects used, which will be selected in accordance with the
context of the task being solved or the goal being achieved.

3.4 The Principle of Locality-Distribution

The principle of locality-distribution [1]: “All information entering the brain can be
duplicatedmany times in it, and its copies are processed in parallel by different structures
independently, and only then this information is integrated into a holistic image.” The
brain processes information about a certain object in several modalities at once and in
parallel – visual, auditory, tactile, etc. In each of these modalities, a hierarchy of the
simplest “natural” concepts is formed, for example, in the visual cortex, on the basis
of perceived sticks, images of digits can be formed, as in the example (see supplement
of the work [12]) and “secondary” features – lines, angles, circles, etc., in the auditory
cortex phonemes, words, text, etc. The integration of modalities is carried out through
the perception of the integrity of the object, which integrates and binds the perception
of parts into a “stable system whole” by some probabilistic formal concept.

Therefore, formally, this principle is also represented by an operator ϒ(A)∞ gener-
ating probabilistic formal concepts, for elements of A coming in parallel from different
modalities.

3.5 The Principle of Heaviness

The principle of heaviness [1]: “The number of neural connections included in the
creation of the object model, the number of relationships between the elements of the
continuum of intelligent objects, the amount of information introduced into the object
(attributes of the entity), the number ofways to calculate information about the object and
the combination of multi-channel (modality) information about it into a single whole,
correlatedwith the relevanceof the task (goal) of the system, determine the “heaviness” of
the intellectual object. The “heaviness” of the intellectual object determines the decision
of the system. So, for example, if a person is hungry, he will look for food that will satisfy
his hunger, but if he begins to face immediate danger (for example, from a predator),
then a defensive strategy will begin to prevail, and he will stop looking for food and
begin to escape”.

In 1911, the dominant principle was put forward by A.A. Ukhtomsky [18]. This
principle has also been preserved in the theory of functional systems [2, 3], as the
dominanceprinciple of the leading functional system,which creates themost “heaviness”
context for satisfaction of some need (see supplement of the work [12]).
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In general, when it comes to solving a certain task, possible solutions are obtained
by different ways of enriching the original intellectual object “problem statement” or
goal and form the corresponding “cones” and the contexts generated by them, which in
the case of functional systems, we denote by a set {C := (C,ExpC)}. The choice of the
“heaviest” of them is determined by the choice of the most desirable “heavy” solution,
generated by the “heavy” object contained in all other cones.

Therefore, formally, the principle of heaviness consists in choosing themost desirable
“heavy” intellectual object generated by one of the contexts that are generated by the
operator ϒ∞(A ∪ C), depending on the statement of the task/goal A := (A,ExpA) and
the available experience C of solution of such a tasks/goals.

3.6 Conclusions

Algorithms for detecting probabilistic formal concepts, class prototypes, “natural” con-
cepts and contexts are practically confirmed in the works (see supplement of the work
[12]). The model of functional systems has also shown its effectiveness [14–17].

This approach can be generalized to the tasks-driven approach to the artificial general
intelligence, as planned in [19–21]. This approach solves the AGI problem formulated
in [1] as: “general intelligence in AGI recognizes the ability to achieve goals in a wide
range of environments, taking into account limitations”. Therefore, Brain Principles
Programming, formulated in [1] as principles of brain programming, based on research
in cognitive sciences, can be implemented as a task-based approach to AGI, which,
on the one hand, is able to solve a fairly wide class of tasks, and, on the other hand,
corresponds fairly accurately to models of cognitive processes.
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Abstract. We introduce a formal meta-language for probabilistic programming,
capable of expressing both programs and the type systems in which they are
embedded. We are motivated here by the desire to allow an AGI to learn not
only relevant knowledge (programs/proofs), but also appropriate ways of reason-
ing (logics/type systems). We draw on the frameworks of cubical type theory and
dependent typed metagraphs to formalize our approach. In doing so, we show
that specific constructions within the meta-language can be related via bisim-
ulation (implying path equivalence) to the type systems they correspond. This
allows our approach to provide a convenient means of deriving synthetic deno-
tational semantics for various type systems. Particularly, we derive bisimulations
for pure type systems (PTS), and probabilistic dependent type systems (PDTS).
We discuss further the relationship of PTS to non-well-founded set theory, and
demonstrate the feasibility of our approach with an implementation of a bisimu-
lation proof in a Guarded Cubical Type Theory type checker.

1 Introduction

Probabilistic programming offers a fertile ground between logic-based and machine-
learning-based approaches to A(G)I. Formalization within type theory offers a rigorous
approach to deriving semantics for probabilistic languages [15], and formalization of
dependently typed probabilistic languages offers the promise of drawing a tight con-
nection with probabilistic logics of various kinds (e.g. Markov Logic [19], Probabilistic
Paraconsistent Logic [7]).

While the exploration of such individual systems is highly important, we might
consider more abstractly how to embody general principles for the formation of diverse
probabilistic type systems, logics, and programming languages within a single meta-
language. Such a language can be considered a meta-theoretical language or logical
framework for expressing individual type systems and logics. However, previous frame-
works (such as [9]) have not been designed with probabilistic type systems and logics
specifically in mind. Here, we outline a formal language, M, designed for such a pur-
pose. This language is intended as a formal model of the MeTTa language, currently
being developed as part of the OpenCog project [8,14,16]. The language allows for
(probabilistic) reasoning not only about the knowledge embedded in a system, but also
about the logic employed by the system itself.
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Our approach may also be seen in relation to recent methods to derive synthetic
denotational semantics for logical systems using guarded cubical type theory (GCTT)
[11,13,18]. Such approaches are particularly promising, offering as they do a unified
approach to deriving semantics for recursive datatypes as final co-algebras of appro-
priate functors in the context of a formulation of univalent type theory with a fully
computational semantics. We draw on methods from [10] to formalize our approach
in this context. This allows us to rigorously define the relationship between an object-
language and its expression in our meta-language as one of bisimulation, corresponding
to path equivalence in GCTT. We further show how dependently typed metagraphs can
be formalized in GCTT as the basis for our framework [6,12], and how this leads to
systems embedding natural type-theoretic equivalents of non-well-founded sets.

We begin by developing a general framework for representing metagraphs in GCTT,
before outlining how the final co-algebra of a labeled transition system over this recur-
sive datatype can be used to model our meta-language. We then derive bisimulations for
various object-languages in our system, including simply typed (and untyped) lambda
calulus, pure type systems, and probabilistic dependent type systems, hence deriving
synthetic denotational semantics for these systems. Finally, we demonstrate the feasi-
bility of our approach with an implementation of a bisimulation proof for a small-scale
type system in a Guarded Cubical Type Theory type checker [4], before concluding
with a discussion.

2 Labeled Metagraphs as a Guarded Recursive Datatype

We begin by defining a recursive datatype for typed metagraphs (M(T ,L,�T )) using
guarded cubical type theory. Here, T ,L are types of type-symbols and edge labels
respectively, and �T : T × T → B is a partial order on type-symbols. The recursive
datatype is defined as the final co-algebra of the functor M′

(T ,L,�T )(A), which when
applied to type A returns the following datatype (letting Δ stand for the assumptions
L, T , A : U0; the ε, edge, and connect constructors used here follow the approach of
[12] and [6]):

Γ � Δ
Γ � M′

(T ,L)(A)

Γ � Δ
Γ � ε : M′

(T ,L)(A)

Γ � Δ,n : N, t0 : T , t : Vec(n, T ), l0 : L
Γ � edge(n, t0, l0, t) : M′

(T ,L)(A)

Γ � Δ, a1, a2 : A, t0 : T , l0 : L, q : N → N0,∞

Γ � connect(a1, a2, t0, l0, q) : M′
(T ,L)(A)

(1)
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where Vec(n,A) is the type of vectors over A of length n, and N0,∞ is N extended
with 0 and ∞. We note that for notational convenience, we do not explicitly include
target labels/indices in the definition of M′

(T ,L)(A) above (in contrast to [6], where L
refers to target indices and V is used for edge values). If explicit indices are required to
identify target ‘levels’, these may be included by letting L = L0 ×

∑
n Vec(n,N), so

that each edge label is paired with a vector of target indices. M(T ,L,�T ) is then defined
as a final fixed-point of M′

(T ,L), such that a set of constraints are satisfied:

M(T ,L,�T ) =
∑

M : ν(M′
(T ,L)).C(M,�T ) (2)

where C(M,�T ) represents the constraints:

C(M,�T ) = ∀n1, n2 : N, t1, t2 : T
f(M,n1) = t1 ∧
f(M,n2) = t2 ∧
q′
M (n1) = n2 ⇒ t1 �T t2 (3)

Here, f(M,n) represents a function, which for metagraph M returns the type of its
n’th edge or target. Specifically, when M is of the form edge(n, t0, l0, t), f(M, 0) is
the type of the edge, and f(M,n > 0) is the type of the n’th target, and when M is of
the form connect(a1, a2, t0, l0, q), f(M, 0) is the type of the whole metagraph, while
the types of the edges/targets of a1 and a2 are interleaved when evaluating f(M,n >
0) for odd/even values of n respectively. Further, the function q′

M : N → N0,∞ is
recursively defined on ν(M′

(T ,L)) (via the q function in the connect constructor of
Eq. 1) to indicate that the n1’th target of M is connected to the n2’th edge/target of
M , whenever q(n1) = n2, with n2 = ∞ indicating that the target has no connection.
C(M,�T ) thus provides a set of constraints that ensure the connections in a metagraph
respect the �T relation; further constraints are needed to ensure for instance that targets
receive input from only one other target (as may be appropriate for some metagraphs).
Further, ν = fixX.F (�(α : T).X[α])) is the guarded fixed-point operator [10]. By
[10], Prop. 3.2, M(T ,L,�T ) is both a subset of the initial algebra and final coalgebra of
M′

(T ,L) ◦ �. Finally, we note that our connect constructor corresponds to ConnectQ in
[6], and the Union constructor is simply connect with q(n) = ∞ for all n (meaning that
no new connections are added).

We briefly give some examples of typed metagraphs. For convenience, we set L =
{null}, and T = {A,B,C,D,
}, with �T the identity relation along with t �T 

for all t. In our first example, we can construct metagraphs X = edge(3, A, null, [D,
B,C]), and Y = edge(2, B, null, [D,A]). Then, a combined graph can be con-
structed as Z ′ = connect(X,Y,
, null, {(1, 1), (2, 0)}), Z ′′ = connect(Y,X,
, null,
{(1, 1), (2, 0)}), Z ′′′ = connect(Z ′, Z ′′,
, null, {}), Z = connect(X,Z ′′′, C, null,
{(3, 0)}). The entire metagraph is shown in Fig. 1A. We note that, in general,
any metagraph with a finite number of edges and targets can be represented by
a term in the initial algebra of M′

(T ,L) (as is Z). Some graphs, however, may
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Fig. 1. Typed metagraph examples. Boxes show metagraphs, which may be single edges (contain-
ing no further boxes) or include several edges. Solid circles edge target types and dotted circles
show metagraph types. Arrows show target-target or target-edge connections. Metagraph letter
names are shown on the box of the metagraph to which they refer in the text.

be conveniently be represented also by terms in the final coalgebra. Consider for
instance Fig. 1B. Here, we may define X ′′ = edge(3,
, null, [B,B,A]) and X ′ =
connect(X ′′,X ′′, A, null, {(1, 2), (2, 1), (3, 0)}), representing X ′ by a term in the ini-
tial algebra (suppressing visualization of the X ′′ subgraph). Alternatively, we may
define X ′

co = connect(edge(3, A, null, [B,B,A]),X ′
co, A, null, {(1, 2), (2, 1), (3, 0)}),

which implicitly determines a term in the coalgebra as a solution to the recursive
equation.

3 M as the Final Coalgebra of a Labeled Transition System

We define the formal meta-probabilistic-programming language, M, as a labeled tran-
sition system over typed metagraphs. Here, we are interested in typed metagraphs with
a particular form. Specifically, we begin by defining T by the abstract syntax:

T ::= tn | T → T |
∏

a : T .MM |
Eq(T ,MM,MM) | T ∪ T | T ∩ T |
Type | 
Type | 
 | J | X (4)

These syntactic constructions represent base-level types, function types, dependent
types, equality types, type unions and intersections, a base universe of small types,
the union of all small types, the union of all types, judgments and execution states
respectively. Notice also that in Eq. 4, T is defined by mutual recursion with the type
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MM, defined in Eq. 6. We then define L as L = S ∪ V ∪ K ∪ T × N. Notice that L
includes T , so that types may simultaneously serve as labels. Further, S = {s1, s2, ...}
and V = {v1, v2, ...} denote collections of symbols and variables respectively, and K is
a special set of M keywords/key-symbols:

K = {:,�,=,→,Eq, fun-app, transform,@, †} (5)

Further, L includes an edge-specific identifier N to deduplicate edges which are identi-
cal in other respects.

The state of an M program is represented by a typed metagraph in the following
space:

MM =
∑

�T : (T × T → B).
∑

M : M(T ,L,�T ).CM(M,�T ) (6)

Hence, this is the space of all metagraphs over L and T , with a varying �T relation,
where CM(M,�T ) represents a set of ’M-specific constraints’ on the structure of the
metagraph (to be outlined below). This state represents the Atomspace of the program,
and the subgraphs of the Atomspace are the individual atoms (as in MeTTa, see [8,
14]). We note that, since M serves both as a language for defining programs and type-
systems within which these programs are embedded, the atoms may represent base-
level propositions and programs (expressions), as well as judgments and computational
state information, as reflected by their types. The M-specific constraints, CM(M,�T ),
determine the interaction of the keywords/key-symbols with the type system:

∀m ∈ M.∃n, n1 : N.

m = edge(2,J , (:, n), [
Type 
]) ∨
m = edge(2,J , (�, n), [Type Type]) ∧

(mM [1] = edge(0,Type, (tn1 , 0), []) ∧
mM [2] = edge(0,Type, (tn2 , 0), []) ⇒ (tn1 � tn2)) ∨

m = edge(2,J , (=, n), [
Type 
Type]) ∨
m = edge(2,Type, (→, n), [Type Type]) ∧

((m1)M [2] = m ∧ l(m1) = (:, n1) ∧ t(mM [1]) = A ∧
t(mM [2]) = B ⇒ t((m1)M [1]) � A → B) ∨

m = edge(2,Type, (→, n), [Type 
]) ∧
((m1)M [2] = m ∧ l(m1) = (:, n1) ∧ t(mM [1]) = A ∧
mM [2] = m2 ⇒ t((m1)M [1]) �

∏
a : A.m2) ∨

m = edge(3,Type, (Eq, n), [Type tn1 tn1 ]) ∧
mM [1] = edge(0,Type, (tn1 , 0), []) ∧
((m1)M [2] = m ∧ l(m1) = (Eq, n1) ∧ l(mM [1]) = (T, n1) ∧
mM [2] = A ∧ mM [3] = B ⇒ t((m1)M [1]) = Eq(T,A,B)) ∨

m = edge(2,
, (transform, n), [
 
]) ∨
m = edge(1,X , (@, n), [
]) ∧
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m = edge(1,X , (†, 0), [
]) ∧
m = edge(0,
, (S ∪ V ∪ T , n), []) ∧
m = edge(2, B, (fun-app, n), [A → B′ A]) ∧ B′ � B ∨
m = edge(2, B, (fun-app, n), [

∏
a : A.m1 A]) ∧

m1[a = mM [1]] � B ∨
m = connect( , , , , ) ∧

∀n, n1, n2 : N.tn � 
 ∧
sn : 
Type ∨ sn : Type ∧
vn : 
Type ∨ vn : Type ∧
tn : Type ∧

(tn1 � tn2 ∧ tn2 � tn ⇒ tn1 � tn) ∧
tn � tn ∪ tn1 ∧

tn ∩ tn1 � tn (7)

where the notation mM [n] denotes the n’th target of subgraph m in metagraph M , t[m]
and l[m] denote the type and label of metagraph m respectively, and we write a : A as
shorthand for ‘there exits an :-edge in M connecting a and A’. We note that, for conve-
nience, the above formulation does not include some constructions that may be appro-
priate in a full implementation, but can be derived from others. For instance, tuples can
be constructed by introducing a dependent function tuple :

∏
A,B : Type.A → B →

Type. The left and right projection functions are then defined by π1(tuple(A,B, a, b)) =
a and π2(tuple(A,B, a, b)) = b. Dependent sums can likewise be defined as dependent
tuples, tuple′ :

∏
A : Type.

∏
B : (A → Type).

∏
a : A.B(a) → Type.

3.1 Labeled Transition System Based on Metagraph Rewriting

In guarded cubical type theory, a guarded labeled transition system (GLTS) may be
defined via a state-space X , a space of actions A, and a function mapping states to
sets of (action,state) pairs, f : X → Pfin(A × �X)), where Pfin is the finite powerset
functor. The space of all processes, or runs of the GLTS may the be defined as the final
coalgebra of the following functor: Proc = fixX.Pfin(A×�(α : T).X[α])) (see [10]). In
order to characterize the process of evaluation inM, we characterize the computational
dynamics ofM via a GLTS. Here, the state space is the space of allM metgraphs, X =
MM. The actions are specified by single pushout (SPO) rewriting rules, or sequences
of such rules. We therefore introduce the type, A′ = M(L,R)

M
× homp(MM), whose

values (M ′, φ) consist of a M metagraph whose label set is L′ = L × {L,R,LR} ×
{[], ∗, ∗∗}, i.e. identical to above, but with L and R labels added to each edge to indicate
its membership of the left or right-hand side of the rule (notice that these may overlap),
* and ** to indicate the input and output nodes of the rule (see below), and φ, a partial
metagraph homomorphism between the L and R metagraphs of M ′ (defining a partial
metagraph homomorphism as in [8]). Since we wish to allow sequences of rewrite rules
as actions, we define the full action space to be A =

∑
n : N.Vec(n,A′), and write the
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Fig. 2. Metagraph rewriting rules. Notation as in Fig. 1. Subgraphs involving only one variable
are not shown explicitly, but notated directly on the targets they are connected to. See Eqs. 8 and
9 for explicit expressions for the graphs.

members of A as a1 ◦ a2 ◦ ... ◦ an, where a1...n : A′. The dynamics are then defined
(via f ) by mapping a given metagraph state M1 to the set of all pairs (A,M2) such that
M2 results from an application of action A to M1. For individual rewrite rules a ∈ A′,
their action is determined via a partial homomorphism between a and M1. We note that,
when there are no partial homomorphisms between a and M1, or when the rewrite rule
produces an invalid M graph, we set M2 = M1. Further, we note that the update may
change the � relation, for instance by introducing an edge of the form t1 � t2.

3.2 M-Interpretation as Metagraph Dynamics

We can now describe interpretation in M via the GLTS defined above. To do so, we
map specific symbols/edges in the metagraph to actions in A (corresponding to the
grounding domain F in [8]). Specifically, edges carrying symbols of a function type,
A → B, dependent product type,

∏
a : A.B, or the transform symbol, are mapped to

specific forms of rewrite rule, as specified below. All other edges are mapped to the null
transform. Figure 2 specifies the general forms of the rewrite rules for function applica-
tion, and transform rules (we note the transform is equivalent to the 2-argument match
keyword/function in the current version of the MeTTa language, see [16]). The depen-
dent product rule is identical to Fig. 2a, with A → B replaced with

∏
a : A.m1 For

explicitness, we give these below also in equational form. We note that, for convenience
variable names are denoted using $, although these should be ultimately mapped to the
names v1, v2, ....

R1
fun-app = edge(2, $T2, (fun-app, $n0, L), [$T1 → $T2 $T1])

R2
fun-app = edge(2,J , (=, $n1, LR), [$T2 $T2])
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R3
fun-app = edge(2, $T2, (fun-app, $n2, LR), [$T1 → $T2 $T1])

R4
fun-app = edge(0, $T1 → $T2, ($f, $n3, LR), [])

R5
fun-app = edge(0, $T1, ($v1, $n4, LR), [])

R6
fun-app = edge(0, $T2, ($v2, $n5, LR ∗ ∗), [])

R7
fun-app = connect(connect(R1

fun-app, R
4
fun-app,
, null, {(1, 0)})),

R5
fun-app,
, (null, null, ∗), {(5, 0)})

R8
fun-app = connect(connect(R3

fun-app, R
4
fun-app,
, null, {(1, 0)})),

R5
fun-app,
, null, {(5, 0)})

R9
fun-app = connect(connect(R2

fun-app, R
3
fun-app,
, null, {(1, 0)})),

R5
fun-app,
, null, {(5, 0)})

Rfun-app = R7
fun-app ∪ R8

fun-app ∪ R9
fun-app (8)

R1
transform = edge(2,Type, (transform, $n0, L), [
 
])

R2
transform = connect(connect(R1

transform, $M1,
, null, {(1, 0)})),
$M2,
, (null, null, L∗), {(5, 0)})

R3
transform = edge(2,Type, (tuple, $n0, R ∗ ∗), [
 
])

R4
transform = $M ′

1 ∪ $M ′′
1 ∪ $M ′

2 ∪ $M ′′
2 ∪ edge(0,
, (null, null, LR), [])

R5
transform = connect(R3

transform, R4
transform,
, (null, null, null), {(1, 1), (2, 2)}))

Rtransform = R2
transform ∪ R5

transform (9)

In Eq. 9, M ′
1 and M ′

2 denote metagraphs isomorphic to M1 and M2, using a disjoint
set of variables, while M ′′

1 and M ′′
2 are defined similarly, with variables disjoint to the

previous subsets. The rule in Eq. 9 is defined so as to return a 2-tuple of matches; in
general, the size of the tuple returned should be large enough to allow for any number
of matches (i.e. the number of nodes in M ), and if the number of matches is less than
this, it will be padded with null values.

Fun-App Nodes. For a given annotated fun-app node, i.e. connect(@, F, null,
{(1, 0)})), where @ = edge(1,X , (@, n), [
]) and F is a graph consisting of a tar-
get fun-app node and its two arguments, the full rewrite rule rewriteF is found by
forming a metagraph homomorphism between R7

fun-app (labeled by ∗ as the input of
the rule), and F , replacing the variables in Rfun-app by their values in F . The resulting
graph is denoted Rfun-app(F ). The rule rewriteF is then defined by the subgraphs L =
connect($M0, connect(@, lfun-app(F ), null, {(1, 0)})), null, {((n1,m1), (n2,m1), ...}),
R = connect(($M0, rfun-app(F ), null, {((n1,m), (n2,m), ...}), where M0 is the graph
of all nodes in M targeting F , m1 is the index of the fun-app node in F , m2 is the index
of the ∗∗ output node in rfun-app(F ), and φ is defined by the partial homomorphism con-
sisting of the identity map on all nodes labeled LR.

Transform Nodes. For a given annotated transform node, the full rewrite rule is defined
similarly. Hence, for connect(@, F, null, {(1, 0)})), where@ = edge(1,X , (@, n), [
])
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and F is a graph consisting of a target transform node and its two argu-
ments, the full rewrite rule rewriteF is found by forming a metagraph homo-
morphism between R2

transform (labeled by ∗ as the input of the rule), and F ,
replacing the variables in Rtransform by their values in F . The resulting graph is
denoted Rtransform(F ). The rule rewriteF is then defined by the subgraphs L =
connect($M0, connect(@, ltransform(F ), null,{(1, 0)})), null,{((n1,m1), (n2,m1), ...}),
R = connect(($M0, rtransform(F ), null, {((n1,m), (n2,m), ...}), where M0 is the graph
of all nodes in M targeting F , m1 is the index of the transform node in F , m2 is the
index of the ∗∗ output node in rtransform(F ), and φ is defined by the partial homomor-
phism consisting of the identity map on all nodes labeled LR.

M-Evaluation. The above provides groundings for activated nodes in a metagraph; as
noted, nodes not of the form above result in a null update. Evaluation in M involves
repeatedly updating the current pointed metgraph according to the grounding of the
node currently pointed to. The conditions in Eq. 7 imply there will be at most one edge
labeled with † in a metagraph, whose target F specifies the rule by which the graph is
updated. This is expressed via the single partial function, update : MM → MM. The
action of update is determined by the form of F . If F is not an activated subgraph, i.e.
it is not the target of an @-edge, the action update cannot be applied (i.e. evaluation
halts). If however F is the target of an @-edge, update first checks if F itself has any
activated targets. If so, then update simply applies a graph rewrite which moves the
pointer † to the first such activated target (in the ordering of the edge). If not, update
applies rewriteF , which automatically ensures that the update will finish with † pointing
to the output subgraph, labeled ∗∗. These dynamics define a reduced GLTS, with X =
MM, A = {update}, and f(M) = {(update,M ′|update(M) = M ′)}. Note that there
may be multiple M ′’s for which update(M) = M ′ if rewriteF for a fun-app node is
non-deterministic. Processes are defined by the fixed point Proc = ν(Pfin(A × �X))).
Normal forms of MM are metagraphs for which update cannot be applied (i.e. their
grounding is null). Processes which reach a normal form are said to be terminating,
and the initial expression of the process is said to evaluate to the normal form reached.
Alternatively, certain expressions may not reach a normal form, resulting instead in a
non-terminating computation.

4 Bisimulation of Type Systems inM

As described in [10], in guarded cubical type theory, a bisimulation R : X → X → U
for the GLTS (X,A, f) may be defined via the following dependent type:

isGLTSBisimfR =
∏

x, y : X.R(x, y) →

(
∏

x′ : �X.
∏

a : A.(a, x′) ∈ f(x) → ∃y′ : �X.
∏

a : A.

(a, y′) ∈ f(y) × �(α : T).R(x′[α])(y′[α])) ×
(
∏

y′ : �X.
∏

a : A.(a, y′) ∈ f(y) → ∃x′ : �X.
∏

a : A.

(a, x′) ∈ f(x) × �(α : T).R(x′[α])(y′[α])). (10)
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As shown in [10], this type is equivalent to the path type over the recursive data type of
processes defined by the GLTS, Proc = fixX.Pfin(A×�(α : T).X[α])). We may further
define a bisimulation R2 : X1 → X2 → U between two GLTS’s over a common action
space, (X1, A, f1) and (X2, A, f2) via a bisimulation over their coproduct (see [1]):

is2GLTSBisimf1,f2R2 = isGLTSBisimf1+f2R
′
2 × ∀x1 : X1.∃x2 : X2.R2(x1, x2) ×

∀x2 : X2.∃x1 : X2.R1(x1, x2) (11)

where R′
2 : (X1 + X2) → (X1 + X2) → U , R′

2((a, x), (b, y)) = R(x, y) when
a = 1∧b = 2, R′

2(x, y) = ⊥ otherwise, and f1+f2 : (X1+X2) → P(A×(X1+X2))
defined similarly. Since R2(x1, x2) contains at least one matching element for each x1

and x2, we may extract functions g1 : X1 → X2 and g2 : X2 → X1 as subsets of R2,
where an element in the codomain of each is chosen arbitrarily when there are multiple
matches inR2. Since bisimulation corresponds to path-equivalence for elements of each
type, g1 and g2, we can choose π1 and π2 such that g1◦g2◦π1 = i1 and g2◦g1◦π2 = i2,
where i1 and i2 are the identity on X1 and X2 respectively, and π1(x) = x′ ⇒ ∃p :
PathX1(x, x′), π2(x) = x′ ⇒ ∃p : PathX2(x, x′). Hence, (g1, g2) is an equivalence
between the recursive process types Proc1 and Proc2 of the two GLTS’s, meaning that
PathU (Proc1,Proc2) is inhabited by univalence.

For a given type system, its computational content may be modeled by a GLTS by
setting X to be the type of expressions in the system, A to contain an update action
along with ‘actions’ corresponding to the judgmental and syntactic relations between
expressions (e.g. is-of-type, is-of-subtype, is-a-body-of-lambda-term, and their oppo-
site relations), and f to be the relation over expressions corresponding to the reduction
relation in the system for the action update (for instance β-reduction). To show that
M can be used as a metalanguage for a given type system, we thus show that there is
a bisimulation between M with a specific form of Atomspace (i.e. containing specific
atoms and/or additional constraints to those of Eq. 7), along with an expanded action
space to incorporate the typing and syntactic relations relevant to the specific system,
and the GLTS corresponding to computation in the target type system; hence the pro-
cess spaces induced by the two systems are equivalent. Below, we sketch how this can
be achieved for three type systems of interest, focusing on the how the computational
dynamics of the update rule correspond to reduction in the target system (the typing and
syntactic relations in each system straightforwardly correspond in M to the inbuilt typ-
ing relation and relationships definable in terms of submetagraph composition respec-
tively).

4.1 Simply Typed Lambda Calculus

The syntax for the simply typed lambda calculus may be defined via mutually recursive
definitions of variable, type and expression datatypes:

V ::= vn

T ::= tn | T → T
E ::= V | (E E) | λvn : T .E (12)
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We refrain from explicitly stating the rules for type assignment as can be found in [2],
which determine a typing relation : between E and T given a context Γ , which can be
modeled as a partial map from V to T . Together, these determine a set of valid expres-
sions, E( : ,Γ ), and the computational dynamics is defined by the β-reduction relation
over this type:

((λvn1 : tn2 .en3) en4) →β en3 [vn1/en4 ] (13)

where a[b/c] denotes substitution of b for c in a, where any bound variables in c are
renamed so as not to clash with bound variables in a.

To simulate the simply typed lambda calculus inM, we restrict theM atomspace to
include only metagraphs labeled with types using the restricted type syntax of Eq. 12,
and including only keywords/symbols {:,=,→, fun-app,@, †}. Then, we add the fol-
lowing constraint to those of Eq. 7:

∀m ∈ M.l(m) = (:, n1) ⇒ (mM [1] ∈ S ∨ V) ∧ mM [2] ∈ T (14)

Hence, all typing relations are between symbols or variables (representing global and
local variables respectively) and types. The context Γ is then represented by an atom-
space consisting of a set of : edges between symbols and types. A given lambda expres-
sion e = λx : t1.e

′, where e′ : t2 is then simulated by choosing an unused symbol,
fe ∈ S, and introducing the following atoms to atomspace:

(: fe (→ t1 t2))
(= (fe $x) me′) (15)

where me′ is the metagraph corresponding to expression e′ (we note that Eq. 15 defines
a combinator corresponding to the lambda term e). With the atomspace so specified,
reduction of an expression e in context Γ in the simply typed lambda calculus corre-
sponds to repeated application of update to the pointed atomspace containing Γ andme,
with @ edges attached to all function application nodes, and the † pointing to me. The
computation terminates with † pointing to the normal form of e. The required bisimu-
lation thus involves pairing tuples (Γ, e) in the simply typed lambda calculus with their
corresponding pointed atomspaces inM. We note further that the untyped lambda calcu-
lus can be defined by simply removing T from the syntax in Eq. 12, and letting lambda
expressions take the form λvn.E . All members of E . are considered legal expressions,
and the M bisimulation is achieved by converting all type symbols to 
Type, hence
treating 
Type as a Scott domain.

4.2 Pure Type Systems

In a pure type system (PTS, [2]), types and terms are not distinguished syntactically.
PTS expressions follow the syntax:
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V ::= vn

C ::= s1...N

E ::= V | C | (E E) | λvn : E .E |
∏

vn : E .E (16)

Here, C is a set of constant symbols, which in a PTS are used to represent sorts. The
typing relation : for a PTS is defined via a set of axioms and rules. The former consist
of a set of judgements A = {sm : sn|(m,n) ∈ A ⊂ N × N}, and the latter a set
of triplets R = {(sl, sm, sn)|(l,m, n) ∈ R ⊂ N × N × N}. The typing rules for
a PTS are identical to the typed lambda calculus, except for the introduction rule for
dependent products, which takes the form:

Γ � A : sl Γ,A : sl � B : sm (sl, sm, sn) ∈ R
Γ � (

∏
x : A.B) : sn

The legal expressions then consist of the sorts, and any expression that can be typed in
a context Γ , consisting of multiple typing judgments e1 : e2. The β-reduction relation
is established identically to the simple lambda calculus above. Notice that there is no
restriction on the form of A and R; hence the typing relation :may be arbitrary between
sorts (and hence may contain cycles), while the dependent product (i.e. dependent func-
tion types) may live in arbitrary sorts with respect to their inputs.

To simulate a PTS in M, we select a collection of fixed types t1...tN to represent
the sorts. We then add edges of the following forms to atomspace:

(: tm tn), ∀(sm, sn) ∈ A
(: (→ $ta $tb) (transform (: $ta tl) ∧ (: $tb tm) tn)), ∀(sl, sm, sn) ∈ R
(: (

∏
$x : $ta.$m) (transform (: $ta tl) ∧ (: $m tm) tn)), ∀(sl, sm, sn) ∈ R

(17)

As above, lambda expressions are simulated by adding atoms of the form in Eq. 15
to the atomspace, and a context Γ is simulated by adding atoms corresponding to the
typing relations it contains. Reduction of expression e in context Γ is simulated as
previously by applying update to the pointed atomspace consisting of {Γ, e} and the
above constructions, along with † pointing to e. Further, we note that we can use PTS’s
can be regarded as a type-theoretic analogue of non-well-founded sets; from this view-
point, a cyclical : relation corresponds to an accessible pointed graph (apg) underlying
a non-well-founded set. For instance, including the axiom s1 : s1 in A defines s1 as a
type-theoretic analogue of a Quine atom. We note, however, that in the type-theoretic
context, a cyclic PTS carries more structure than a non-well-founded set, since the rules
(R) carry information about how the → constructor interacts with the : relation. An
interesting conjecture though would be that appropriately defined PTS’s provide bisim-
ulations of systems of non-well-founded sets definable within a recursive datatype (via
a coalgebra on the powerset functor, definable in GCTT), as a general system of set
equations ([3]) involving both ∈ and → relations.
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4.3 Probabilistic Dependent Types

Finally, we outline a version of the probabilistic dependent type system introduced in
[19], and its bisimulation in M. The syntax is a variation on the dependently typed
lambda calculus:

V ::= vn

T ::= tn |
∏

vn : T .E | D(T ) | T ∪ T | T ∩ T | Type

E ::= V | (E E) | λvn : T .E | randomρ(E , E) | sample(E) | thunk(E)
(18)

Further, we allow the judgments E : T (typing), T � T (subtyping), and E →ρ
β E

(weighted β-reduction), where ρ ∈ R. The typing rules are as for the dependent typed
lambda calculus for expressions not involving subtypes or probabilistic terms. The typ-
ing rules for subtypes include the standard Γ � a : A, A � B ⇒ Γ � a : B,
Γ � A,B : Type ⇒ Γ � A ∩ B � A, A ∩ B � B, A � A ∪ B B � A ∪ B, Γ �
A � B ⇒

∏
vn : B.E �

∏
vn : A.E , Γ, x : t � A � B ⇒

∏
x : t.A �

∏
x : t.B.

These interact with the probabilistic terms via the following special rules:

Γ � a : t1, b : t2
Γ � randomρ(a, b) : t1 ∪ t2

Γ � A : Type, pA : D(A)
Γ � sample(pA) : A

Γ � a : A
Γ � thunk(a) : D(A)

where, we note that D(A) denotes the type of distributions over A (so, for instance, if
a : t1, b : t2, then thunk(randomρ(a, b)) : D(t1∪t2)). For all expressions not involving
probabilistic terms, e1 →β e2 in the dependent typed lambda calculus implies e1 →1

β

e2 in the PDTS above. For probabilistic terms, we have the following computational
rules:

randomρ(a, b) →ρ
β a

randomρ(a, b) →1−ρ
β a

sample(thunk(pA)) →1
β pA (19)

Computationally, evaluation may proceed by stochastic β-reduction (i.e. sampling a
reduction according to the weights ρ), or a ‘full evaluation’ may be made, by returning
the set of all possible reduction sequences from a term, annotated with the total prob-
ability of each. We note that in any given reduction sequence, e1 →ρ

β e2 for ρ > 0
implies t2 � t1 where e1 : t1, e2 : t2.

For the formulation inM, we constrain the typing relation and encode lambda terms
as in Eqs. 14 and 15; further, as above we encode contexts Γ by fixing atoms of the
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form : in atomspace. To encode the probabilistic terms, we choose fixed symbols s1...4

to correspond to Distribution, random, sample, thunk. Then, we fix the following atoms
in atomspace:

(: Distribution (→ Type Type)),
(: random (→ $t1 $t2 $t1 ∪ $t2)),
(= (random $a $b) $a),
(= (random $a $b) $b),
(: sample (→ (Distribution $t1) $t1)),
(: thunk (→ $t1 (Distribution $t1))),
(= (sample (thunk $a)) $a) (20)

Application of update to the pointed atomspace so defined, with † pointing to me (cor-
responding to expression e), results in a simulation of a probabilistic reduction of e in
the PDTS above. As defined, update will simulate the ‘full evaluation’ of all possible
paths, and hence a bisimulation exists between full evaluation dynamics in the PDTS
GLTS using βρ-reduction and the GLTS defined by M with the restricted atomspace
above. We note that, in both cases, the weights on particular paths are lost, since the ρ
values are not explicitly recorded; however. it is straightforward to define a GLTS over
the extended system, (X × R, A, f), where f(x) = {((x1, p1), a1), ((x2, p2), a2), ...}
denotes that action a on x results in x1 with probability p1, x2 with probability p2, and
so on.

5 Implementation of Bisimulation Proof in a Guarded Cubical
Type Theory Type Checker

We briefly give an example to show the feasibility of our approach with an implemen-
tation of a bisimulation proof for a small-scale type system in a Guarded Cubical Type
Theory type checker [4]. Here, we model a minimal type system, which has one type
constant A : Type with two constructors v1, v2 : A; one function constant f1 : A → A,
where f1(v1) = v2 and f1(v2) = v1; and includes the sample and thunk constructs,
which are combined following the syntax of Eq. 18. Our implementation models a frag-
ment of this system where expressions are restricted to include at most three subexpres-
sions. Hence, valid expressions of the language include: (f1 (f1 v1)), (thunk (f1 v2)),
(sample (thunk v1)), (f1 v2). Our implementation in a Haskell-based Guarded Cubical
Type Theory type checker [4] is given in Appendix A. Here, we implement evaluation
in this system via (i) a pattern matcher over an atomspace (‘update’), and (ii) direct
implementation of β-reduction via case analysis over the expression space (‘beta3’).
We define GLTS’s using both forms of evaluation (‘str1’ and ‘str2’), and finally derive
a proof that these GLTS’s are bisimilar (‘bisim’). The code for this example is also
provided at: https://github.com/jwarrell/metta bisimulation

6 Discussion

In the above, we have introduced a formal meta-probabilistic programming language,
formalized in GCTT, and proposed that bisimutations link the specific object-languages

https://github.com/jwarrell/metta_bisimulation
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(or domain specific languages) outlined above with their simulations inM. Specifically,
we have proposed that the restricted forms of M outlined in Sects. 4.1 and 4.2 and 4.3
form bisimulations of the simply typed lambda calculus, arbitrary PTS’s, and the target
PDTS, respectively.

Finally, we mention some of the areas of investigation opened up by the formal
model outlined. First, we note that, while we have focused on ‘full’ probabilistic pro-
gramming evaluation, other possibilities include investigation of sampling based eval-
uation which performs only one meta-graph update at each step, stochastically chosen
from the possible graph rewriting locations. Second, we intend to derive further bisim-
ulations for other kinds of probabilistic logic, particularly, probabilistic paraconsistent
logic [7], and probabilistic analogues of pure type systems [2], which may be suitable
for models involving infinite-order probabilities [5]. Lastly, we intend to expand our
implementation of aspects of this framework in Guarded Cubical Agda [17] to provide
more complete implementations of the metalanguage and type systems explored here.

Appendices

A Proof of Bisimulation for Small-Scale Type System
in a Guarded Cubical Type Theory Type Checker

Below, we provide the code for the example discussed in Sect. 5, which uses a Haskell-
based GCTT type checker [4]. The code for this example is also provided at: https://
github.com/jwarrell/metta bisimulation.

https://github.com/jwarrell/metta_bisimulation
https://github.com/jwarrell/metta_bisimulation
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Abstract. How to evaluate Artificial General Intelligence (AGI) is a
critical problem that is discussed and unsolved for a long period. In the
research of narrow AI, this seems not a severe problem, since researchers
in that field focus on some specific problems as well as one or some aspects
of cognition, and the criteria for evaluation are explicitly defined. By con-
trast, an AGI agent should solve problems that are never-encountered by
both agents and developers. However, once a developer tests and debugs
the agent with a problem, the never-encountered problem becomes the
encountered problem, as a result, the problem is solved by the developers
to some extent, exploiting their experience, rather than the agents. This
conflict, as we call the trap of developers’ experience, leads to that this
kind of problems is probably hard to become an acknowledged criterion.
In this paper, we propose an evaluation method named Artificial Open
World, aiming to jump out of the trap. The intuition is that most of the
experience in the actual world should not be necessary to be applied to
the artificial world, and the world should be open in some sense, such
that developers are unable to perceive the world and solve problems by
themselves before testing, though after that they are allowed to check all
the data. The world is generated in a similar way as the actual world,
and a general form of problems is proposed. A metric is proposed aiming
to quantify the progress of research. This paper describes the conceptual
design of the Artificial Open World, though the formalization and the
implementation are left to the future.

Keywords: Evaluation · Artificial Open World · Artificial General
Intelligence

1 Introduction

In AGI research, how to evaluate AGI is a critical problem. In “narrow AI [8,20]”,
evaluation seems not a severe problem, since in that field the criteria are explicit,
for example, in the field of Image Recognition, researchers aim to rise up the
accuracy of classification and use any tricks to solve that problem. Few may deny
that datasets, as problems for evaluation, play an important role in the rapid
progress of narrow AI. However, in AGI research, it is quite a different story on
evaluation. Despite different definitions, goals, and pathways of AGI [20], under
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the perspectives of intelligence in Sect. 2, we hold that an AGI agent should
solve problems that are unknown to both agents and developers. However, once
a developer tests and debugs the agent with a problem, the unknown problem
becomes a known problem, as a result, that problem is no longer suitable for
evaluating AGI agents – the developers are able to construct a problem-specific
system that could not be applied to other situations, and the performance of a
system in this problem does not reflect the progress on AGI. We call this trouble
the trap of developers’ experience. To deal with this trouble, an alternative is to
design new problems constantly [5], though we adopt a different path to jump
out of the trap in this paper, i.e., designing an artificial world. The Artificial
Open World is generated in a similar way as the actual world, currently based
on a classical world-outlook. The world should be open, in the sense that the
causations in the world are time-varying on some abstract level, and problems
to be solved are continuously changing. Implicitly infinite instances of the world
can be generated so that for any of the instances, developers are possibly unable
to perceive the world and solve problems by themselves based on their experience
of the actual world. Nevertheless, after testing, developers are allowed to check
all the data and analyze the activities of agents, and then perceive the instance
of the world. The developers’ knowledge of one instance of the world is not
necessary to be applied to another instance, such that facing a new instance, an
agent has to solve problems by exploiting its own intelligence. The world should
be generated in a similar way as the actual world, so that the knowledge of
the generation is allowed to be known by agents in advance, because the agent
with the knowledge would be still able to adapt to the actual world, without
being disturbed by problem-specific knowledge from developers. To quantify the
progress of AGI research, a metric is also proposed. We consider three aspects
of performance, i.e., the speediness of adaptation, the goodness of adaptation,
and the goodness of generalization (see Sect. 3.3), and they should be merged
together into one value, as the measure of intelligence. It should be noted that
the value is a lower-bound of intelligence, and complicated situations partially
stem from the competition between different agents in the world.

2 What Intelligence is

Before proposing the evaluation method, in this section, we should first figure
out what that thing which is called intelligence is. We are not trying to propose
a definition of intelligence within a brief sentence, but we are trying to describe
our perspectives on that thing which is called intelligence.

Different perspectives on intelligence lead to different work. If one regards
intelligence as the ability to solve complex problems, he or she would specify
a sufficiently complex problem to be solved by a machine [2,14]. If one treats
intelligence as a set of cognitive functions, he or she would model human cog-
nition with a cognitive architecture [9] or would let machines have capabilities
that are presented in human beings, such as image recognition, natural language
processing, etc. However, an agent, which possesses that thing which is called
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intelligence, should not merely solve several specified problems, no matter how
complex they are, and should not has only parts of the capabilities of human
cognition. Therefore, to distinguish the goal of creating a general-purpose system
and the specific methods of solving specified problems, the term AGI (Artificial
General Intelligence) is invented [8]. An AGI agent should own that thing which
is called intelligence. What is that thing after all?

The definitions of intelligence is discussed by a lot of predecessors(e.g.,
[6,11,19]). Among the definitions, Pei Wang’s grasped some essential aspects of
intelligence. In Wang’s definition, “Intelligence is the capacity of an information-
processing system to adapt to its environment while operating with insufficient
knowledge and resources” [16,19], where insufficient knowledge and resources
means being finite, being open, and working in real-time. Being finite means a
system has insufficient spatial resources to store information and insufficient time
to process information. As an intuition, an algorithm which searches exhaustively
an answer, which is stored in an infinite memory, is not of intelligence. In this
sense, insufficiency is critical. Being open, in Wang’s theory, means the content
of tasks should not be specified before the system has been developed. Working
in real-time means multiple tasks may occur in the same time, and one task may
interrupt another. Adaptation in the definition refers to “the mechanism for a
system to summarize its past experience to predict the future situations accord-
ingly, and to allocate its bounded resources to meet the unbounded demands”.
In Pei Wang’s theory [18], the constraints of insufficient knowledge and resources
have been placed at the forefront, though they are obvious in human beings’ and
machines’ lives.

François Chollet proposed the “generalization spectrum” – absence of gener-
alization, local generalization, broad generalization, and extreme generalization –
and use the word intelligence to refer to the extreme generalization [3]. An agent,
e.g. a sorting algorithm, with absence of generalization can only handle those
situations with no uncertainty. An agent, e.g. current machine learning systems,
with local generalization, should handle a single task or a few tasks, which are
well scoped by developers. An agent, with broad generalization, should general-
ize to unknown unknowns across a broad category of related tasks, for example,
an image classifier could recognize dog while it is trained with cat images. An
agent, with intelligence, as Chollet considered, should generalize to unknown
unknowns across an unknown range of tasks and domains. Chollet may pre-
suppose implicitly that unknowns and knowns have similarity on some abstract
level, and an agent who is able to identify that kind of similarity is of intelli-
gence. We generally agree Chollet’s view that an agent with intelligence should
adapt to “unknown unknowns across an unknown range of tasks and domains”,
though the meaning of “adapt” here may not be the same as that in Chollet’s
definition, the meaning of which we approve is closer to that in Wang’s.

As our position, we hold that intelligence is a unity, which implies that it is a
whole which can be described from different points of view. From one perspective,
intelligence is a property with which an agent is able to deal with tasks in an
open environment with limited resources. From another perspective, intelligence
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is an object which involves principles of representation-interaction. Informally,
an environment is open, which means that causations in the environment is
time-varying to some extent.

As a further illustration, facing with the open environment, on one hand,
an agent with intelligence should generalize to unknowns scenes, which means
that, facing problems which are not encountered before, the agent should take
reasonable solutions based on its past experience. The agent have to use the
similarity on some abstract level to deal with the unknowns. On the other hand,
after encountering a series of similar problems, which are expected to be solved
by the agent, it should adapt to the problems as quickly as possible and performs
as well as possible. Further more, as an explicit claim, the agent should be able
to match a special-purpose system designed for specific tasks without losing the
ability to adapt to new problems. Intelligence is the thing which facilitates an
agent to meet the requirements mentioned above.

3 Evaluation

It is merely impossible to exhaustively review plenty of proposals and work on
evaluating intelligence in this paper. Nevertheless, we briefly review some pieces
of work and then propose our solution. A typical sort of evaluation is similar to
I-athlon (Olympic Decathlon of Intelligence) [1]: a series of cognitive tasks are
defined to test different capabilities. Broadly speaking, that evaluation method
seems to assume that the more tasks an agent can fulfill and the better the
agent performs in a task, the more intelligent the agent is. Some work focuses on
the difficulty of problems and designs some puzzles to be solved by agents, e.g.,
the “Bongard problem” [10]. To evaluate cognitive architecture, some metrics
are proposed, e.g. [22], and we agree with some of them, especially the metric
“taskability”, which is the ability to adapt to new tasks. To evaluate human-level
AGI, Goertzel and Bugaj proposed to build a school environment and educate
agents in it, and whether an agent has some skills, e.g., logical-math, music,
story understanding, etc., determines the extent of intelligence [7]. Regardless of
the feasibility in practice, there is a more severe problem: as Wang pointed out,

Though such activities do stimulate interesting research, it still has the
danger of leading the research to problem-specific solutions, no matter
how carefully the problems are selected - after all, this was why problems
like theorem proving and game playing were selected in the early days of
AI, and the resulting techniques have not been generalized to other fields
very well [17].

3.1 The Trap of Developer’s Experience

Those of AGI evaluation also encountered the same trouble as those work on eval-
uating narrow AI, e.g. datasets such as ImageNet [4], games such as Chess [2] and
Go [14], etc.: developers may solve the problem and exploit their problem-specific
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knowledge, using any tricks, to program an agent. The problems for evaluation
are hard to avoid this kind of cheating, such that a problem-specific method
performs better than a general system, which makes the problems unsuitable to
evaluate a general system.

Even if at first a problem is not permitted to be seen by developers, after
testing an agent, the problem should be presented to the developers for further
analysis, otherwise, this kind of problems is almost not suitable for advancing
the research. As thus, the unknown problem becomes a known problem, and
developers’ experience on the specific problems would inevitably impact their
designing the model of intelligence.

The agent with intelligence is necessary to adapt to an open environment,
as we claim in Sect. 2. The environment could be complex or simple, actual or
artificial, however, openness plays a critical role. The environment human faces
is an actual, complex, and open one. The environment AlphaGo [14] faces is an
artificial, simple, and closed one. The environment of ImageNet [4] is an actual,
complex, and closed one. If the environment is closed, which means that the
problems can be one by one solved by human developers, it is almost inevitable
for developers to introduce their problem-specific experience to the machine.
Eventually, it is not a machine but a human who solves problems.

This trouble, which is the reason why the traditional problems have the
danger of leading the research to problem-specific solutions, is what we call the
trap of developer’s experience.

What we need is an admitted criterion, which could be used to compare
different AGI agents within a relatively long period. To jump out of the trap of
developers’ experience, we first consider some overall principles of designing the
evaluation method and then give some more detailed description of our proposal,
the Artificial Open World.

3.2 Overall Principles

An AGI agent is required to be adaptive when faced with various problem in an
open environment, and to find reasonable solutions without adaptation facing
with new circumstances; simultaneously, for a specific problem, the agent should
perform well with sufficient training, while it is still able to adapt to other
problems and environments. Therefore, we should test how fast and how well
an agent adapt to new environments and how well the agent generalize to new
environments which are similar to the past.

Further, we suggest several criteria, for designing the Artificial Open World,
that an AGI test should follow:

(1) Independence. The test should be abstract and independent of the actual
world, which means that developers’ experience of the actual world is not
necessary to be applied to the artificial world. When solving problems in
such a world, there are no problem-specific priors of developers, because the
developers and the agents live in two worlds independent of each other – for
example, knowledge of vision in the actual world does not have to be true
in the artificial world.
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(2) Similarity. The artificial world is similar with the actual world in the pro-
cess of generation, i.e., the actual world is similar to one instance of the
artificial world. If an agent performs well in the artificial world, it will be
adaptive not only to our humans’ actual world, but also to any worlds which
has common natures in some sense. The knowledge about the generation is
permitted to be priori knowledge of developers, since even though a devel-
oper convert this knowledge into a skill of an agent, the agent is still able
to adapt to the actual world.

(3) Openness. The world should be open in the sense that causations in the
world are time-varying to some extent, and new problems can be generated
continuously.

(4) Asymmetry. To generate the world is easy, but to conjecture directly the
parameters or structures of the world inversely should be hard or even impos-
sible, so that developers cannot use the artificial-world-specific algorithm to
acquire knowledge, which is only applied to one instance of the world.

3.3 Conceptual Design of Artificial Open World

Generation. There are three steps to generating the world. The first step is
differentiation. As shown in Fig. 1a, two different kinds of entities are generated:
one is positive, and another is negative. A number of entities are generated in
the world, and the basic property of an entity is its spatial position. The second
step is generating causations, as shown in Fig. 1b and Fig. 1c. Every two entities

Fig. 1. The generation process of the Artificial Open World.
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interact with each other, and several entities combine together as a whole, the
whole as an entity interacts with others. A relation of the interaction is called
a causation. Through the combination, the world is hierarchical, as shown in
Fig. 1d. The third step is to import the mind. The entities with a mind constitute
an agent, and the entities themselves constitute the body of the mind. There is
also a set of causations, as an interface, between the mind and the body. The
world without the mind is mechanical, rigid, and inanimate, however, the mind
makes the world complex and vibrant – just as in a board of Go, players’ mind
leads to various complex situations.

The causations should be generated in some way. For example, the causation
between two entities were a second-order differential equation, and the coeffi-
cients in the equation were randomly generated; further, the equation were not
necessary to be a second-order differential equation, and the form of the equa-
tion were randomly generated. The causations do not have to be the same as
those in the actual world so that the developers’ experience of the actual world
is almost unsuitable to the generated world.

Some of the causations are stable, while some of the causations are time-
varying. For example, in the hierarchical structures shown in Fig. 1d, the cau-
sations in lower levels are fixed, and the ones in higher levels are continuously
changing. This is similar to the actual world: the dynamics of microscopic par-
ticles are stable, while the weather of an area is changing.

Furthermore, it should be noted that the complexity of the world partially
stems from the intelligent agents, though there are some basic rules of the world.
For example, in the game of Go, the two agents, as players, lead to complex
situations, though the basic rules of Go are simple. As the development of the
Artificial Open World with agents, the environments would evolve more and
more complex; some of the evolved environments could be used as benchmarks,
so that agents could adapt to them and be evaluated.

Mind-Body Interface. Here, we use the term mind to refer to intelligence,
though they are not completely equivalent in some sense [23]. To enable an agent
with the mind act and solve problems in the world, there are two kinds of mind-
body interfaces, i.e., sensor and motor. The former is a causation where the cause
is the entities outside the mind, and the latter is a causation where the cause
is the mind. Through sensor, the mind can sense the basic entities (in Fig. 1a),
however, due to the limitation of resources, the data sensed is a projection of
the entities, with a certain resolution, as shown in Fig. 1e. For example, the
retina cannot sense every atom accurately but can sense the environment with
a certain resolution. Through motor, the mind can affect spatial positions of
the body, which is a set of entities, and through further interactions between
entities, the mind can affect a broader range of the world.

At the current stage, there are two considerations on the body. One is that
the mind has a fixed body, which would not be destroyed by the environment so
that the mind can survive in the world to solve problems for further evaluation.
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The other is that the body is evolved and could be destroyed, and one goal of
the mind is to maintain the existence of the body.

Problems. To measure the intelligence, we should define the problems to be
solved in the world. However, once a specific problem is defined, developers
would solve the problem and put the skills into a machine, as a result, it is not
machines but developers who solve problems. To avoid the trap of the developers’
experience, we consider a general form of the problems.

The objective status of the entities at time t is denoted as st, and the target
status at time t is denoted as s′

t. A problem is defined as the pair (st, s′
t). To

solve the problem is defined as to find a series of actions, which is denoted as a,
so that st is evolved to s′

t. An agent is informed of the problem in a certain way
and gave a score for solving the problem. The considerations for calculating the
score are illustrated in the next sub-section Metric.

As thus, the implicitly countless problems could be generated, even if a devel-
oper debugs the program and checks how an agent solves a problem, the future
encountered problems are not solved by the developer, and the developer’s expe-
rience is not necessarily suitable for those cases.

Metric. To evaluate the adaptability of an agent, an intuition is that the agent
should solve the problems with fewer observations and attempts, simultaneously,
for a problem which are similar, on some abstract level, to those solved ones,
an agent should solve the problem, to some extent, without attempts, i.e., the
agent should generalize its experience to the new problem.

Based on these considerations, there are some indicators to be measured. We
denote the number of observations for an agent to solve a problem as O and the
duration consumed as D. The indicators O and D are objective in the sense that
they are independent of the implementation of agents. We denote the memory
resources consumed for an agent to solve a problem as M and the calculation
resources consumed as C. The indicators M and C are subjective in the sense
that they depend on the implementation, e.g., programming language, hardware,
theoretical model, etc. Whenever an agent solves a problem, it obtains a score,
denoted as S. The score S should be negatively related to O and D. The score S
can be normalized by M and C so that different AGI models can be Relatively
fairly compared.

Given the scores which varies with time, the time derivative of S, dS/dt,
is calculated, and the typical curves are drawn in Fig. 2a. The derivative dS/dt
reflects the performance of adaptation to some extent. The faster a curve rises up,
the faster the agent adapts to a new circumstance, i.e. it reflects the speediness of
adaptation; the higher a curve reach, the better the agent adapts to a particular
circumstance, i.e. it reflects the goodness of adaptation. After the causations
are changed, the performance of the agent to obtain the scores would draw-
down, and the extent of it reflects the goodness of generalization. In some way,
indicators α, which denotes the speediness of adaptation, β, which denotes the
goodness of adaptation, and γ, which denotes the goodness of generalization,
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are calculated all based on dS/dt. Finally, there should be an overall metric of
intelligence, I = M(α, β, γ), where M is a function to merge the three indicators
into one value I.

We argue that the metric I is a lower-bound of the measure: an agent is
voluntary in some sense, which means that it may choose to do nothing at all in
the world, without presenting its wisdom. Nonetheless, in a test, to increase the
lower-bound, developers are allowed to modify some parameters of their models,
so that agents are proactive in solving problems. In this sense, the metric I
provides evidence that an agent is of intelligence.

We argue that there would be two stages of evaluating AGI. At the first stage,
an agent is tested in the artificial world without other agents participating in;
thus, at this stage, the metric I is an absolute one, which only reflects the
ability of understanding the world. At the second stage, multiple agents lives
in the same world, and more complex phenomena would emerge. Agents would
compete and cooperate with each other, and communicate with each other, when
game behaviors and language might emerge; thus, at this stage, the metric I is
a relative one, and those agents who is better at game, or has the capability of
language, might obtain relatively higher I.

Fig. 2. Curves for evaluation. (a) Comparison on adaptation, where α indicates the
speediness of adaptation, and β indicates the goodness of adaptation. In this figure,
α1 > α3 > α2 and β1 > β2 > β3. (b) Comparison on generalization, where γ indicates
the goodness of generalization. In this figure, γ1 > γ2.

Future Work. We will formalize the description in Sect. 3.3 and implement
the Artificial Open World in the future so that researchers can easily install the
environment, test their agents, and compare their models with others’ practically.

There are still some theoretical troubles of Metric in Sect. 3.3. For example,
how to quantify the subjective indicators M and C in practice, and how to adjust
the indicators O and D according to the difficulty of st reaching s′

t without
agents’ efforts.

The previous problems, including Game of Go, theorem proving, image recog-
nition, natural language understanding, etc, should be special cases of the prob-
lems in the artificial world, however, this deserves further justification. The issue
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of causation, which is an important concept in our design, is discussed for a long
time in philosophy [13], as well as in AGI [21], and the term causation should
be further clarified.

It should be clarified that the current Artificial Open World is generated
under a classical world view. However, with the development of quantum com-
puting, a world with quantum effects might be considered.

4 Discussion

The trap of developers’ experience is not a novel and fantastic idea, which may
be realized by many researchers before, however, we put it in the first place when
designing the evaluation method. It might be a misunderstanding that the trap
could be an another name of “developers training in a test-dataset”. In fact, even
if a developer has never seen the test-dataset, his experience on the training data
can lead to falling into the trap. For example, when a developer is creating an
agent to answer questions according to given images, the developer is possible
to assign the format of the input and output data, as well as the loss function of
a neural network, which are the developers’ experience on the problem, so that
the agent cannot adapt to other situations, such as mastering the game of Go,
without modifying any codes; If developers find that objects always locate in
the center of images, which is another type of developers’ experience, they could
make the agent always focus on the center by clipping the images, and this agent
are possibly not able to adapt to those images where objects locate at arbitrary
positions.

The Artificial Open World might be similar to an environment for multi-
agent reinforcement learning at first glance, however, it is essentially different
from traditional environments. Traditional reinforcement learning environments,
such as Melting Pot [12], are faced with the trap of developers’ experience, since
developers are possible to solve the predefined problems in the environments by
themselves. Another similar evaluation environment is XLand [15], where the
environment is generated somehow, and plenty of tasks are generated temporar-
ily in XLand, however, the trouble of the trap above is still not avoided, as a
developer is possible to research the patterns in each of the tasks. These prob-
lems designed for evaluation, just as those such as datasets of image recognition,
are valuable in terms of guiding a researcher in creating his own model of intel-
ligence if he keeps away from importing problem-specific experience cautiously,
while they are not suitable to be treated as benchmarks or criteria around the
community, whereas cheating is unavoidable to some extent. By contrast, the
Artificial Open World aims to ensure that it is the agents, rather than their
developers, who solves problems by exploiting their own intelligence.

An interesting issue is the logic in the Artificial Open World. The logic can
be adaptive, which means that the logic rules and their truth functions are
acquired through interactions with the world, but are not designed and fixed.
The following illustration is under the context of Non-Axiomatic Logic [18]. For
example, an acquired relation is represented as 〈(∗, T1, T2) → R〉, where R is the
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relation term; a syllogistic rule can be

〈(∧, 〈(∗, $M, $P ) → inheritance〉, 〈(∗, $S, $M) → inheritance〉)
⇒ 〈(∗, $S, $P ) → inheritance〉〉. (1)

Suppose that the truth value of the two premises 〈(∗, $M, $P ) → inheritance〉
and 〈(∗, $S, $M) → inheritance〉 are (f1, c1) and (f2, c2), and that the truth
value of the conclusion 〈(∗, $S, $P ) → inheritance〉 is (f, c). The truth value
(f, c) is determined by (f1, c1) and (f2, c2) through a function F (f1, c1, f2, c2).
The function F (·) is acquired via experience, rather than identified in advance.
Further, the syllogistic rule (Eq. 1) does not have to be true and can be acquired
via experience. The intriguing questions occur: will the agent in the artificial
open world follow the same logic which is discovered in the actual world? Will
the logics, which are learned by agents in different configurations of the world,
be the same to some extent? Will the logics emerged be appropriate for the
agent in the actual world? If the answers are “yes”, it will be quite strange that
the logic seems a universal existence. If the answers are “no”, then the artificial
open world puts forward a higher demand for researchers to design an adaptive
logic.
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Abstract. To hold developers responsible, it is important to establish the concept
of AGI ownership. In this paper we review different obstacles to ownership claims
over advanced intelligent systems, including unexplainability, unpredictability,
uncontrollability, self-modification, AGI-rights, ease of theft when it comes to
AGImodels and code obfuscation.We conclude that it is difficult if not impossible
to establish ownership claims over AGI models beyond a reasonable doubt.
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1 Introduction

In order to establish responsible parties for potential AI failures, to allocate credit for cre-
ative outputs of intelligent software, and to address legal issues arising from advancedAI
it is important to define and establish ways to prove ownership over intelligent systems.
Chandrasekaran et al. write: “trust requires that one make unforgeable and undeniable
claims of ownership about an ML model and its training data. This establishes the con-
cept of identity, which identifies a key principal in the ML application: its owner. This is
a prerequisite to holding model developers accountable for the potential negative conse-
quences of theirML algorithms: if one is unable to prove that amodel belongs to a certain
entity, it will be impossible to hold the entity accountable for the model’s limitations.”
[1].

While intuitively, most people understand the concept of owner and ownership such
concepts are far more complex and nuanced from the legal point of view and are even
more challenging to rigorously define and evaluate with respect to new cutting-edge
technology such as intelligent software, Artificial General Intelligence (AGI) or Super-
intelligence. Chandrasekaran et al. provide a number of relevant definitions [1], the
Model Owner “(i.e., the company or institution creating and deploying the model) …
This principal is one with a particular task that can be solved using ML. They commu-
nicate their requirements to the model builders, and clearly specifies how this trained
model can be accessed (and by whom). Model ownership is often a broad term used to
refer to the ownership of the model’s sensitive parameters that were obtained after the
(computationally intensive) training process. Defining ownership is necessitated by the
existence of various threats that infringe the confidentiality of the model, and the need
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to be able to hold principals that own ML models accountable for the failures of their
models.” In the next subsection we will review proposals for establishing ownership
over particular AI models.

2 Proposals for Establishing Ownership

Anumber of approaches have been suggested for establishing ownership overAI systems
[1].

• Yampolskiy suggested [2] use of AI-Complete [3] CAPTCHAs [4] as zero knowledge
proofs [5] of access to an artificial superintelligence (ASI) without having to reveal
the system itself. However, suchmethod does not bind an agent claiming ownership to
a particular implementation, only shows access to a system of ASI-level of capability.

• Watermarking of ML models has been proposed via encoding of particular query
response pairs during the training phase, and retrieval of such response during testing
[6]. Unfortunately, watermark removal techniques have also been proposed [7].

• Inspired by proof-of-work algorithms, Jia et al. developed a proof-of-learning algo-
rithm which relies on secret information known only to the original AI trainer, such
as order of data samples, hyperparameters, and intermediate weights, to prove to
a validator knowledge of intermediate states which are otherwise obscured by the
stochastic nature of the training process [8]. Additional training of the model by an
adversary can introduce new intermediate states which would be not known to the
original owner and so invalidate ownership claims.

• Maini et al. suggest that ownership can be proven indirectly by showing that model
was trained on a particular dataset, ownership of which is easier to establish, including
via copyright protections [9]. However, this is problematic as a lot of large datasets
share data or are in public domain, ex. Wikipedia.

While a number of methods for establishing ownership have been proposed, all have
limitations and do not provide indisputable attribution.

3 Obstacles to Ownership

To claim ownership of an extrapersonal intangible object such as an advanced AI, one
must demonstrate that they have control over it [10]. However, several established prop-
erties of AI make possibility of making such claims unlikely, if not impossible. Reasons
why AI would not be ownable include but are not limited to:

Unpredictability [11], an impossibility result in the domain of intelligent system
research, which establishes that it is impossible for a lower intelligence agent to accu-
rately predict all decisions of a more intelligent agent. The proof is based on the obser-
vation that if a lower intelligence agent could predict decisions of a smarter agent, lower
intelligence agent would be at least as intelligent, which is a contradiction. Unpredictable
decisions lead to unpredictable outcomes, aka unforeseeable outcomes, but one cannot
claim a natural right to own an unforeseeable outcome. As potential benefits/harms from
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AI can’t be anticipated in advance, ownership of such undetermined outcomes is prob-
lematic. Impact from AI may impact all, not just those who implemented AI and want
to make claims of ownership. Consequently, a popular social justice goal – “AI4ALL”
must be understood as not just partaking in sharing the benefits of AI, but also being
ready to absorb any potential harms.

Unexplainability [12], yet another impossibility result concerning AI, states that
advanced AI systems would not be able to explain their decision-making process to peo-
ple and the provided explanations for complex decisions would either be trivializations
of the true process or incomprehensible to people. The impact of unexplainability on
unownability is that the designer of the system can’t explain its internal workings.

Uncontrollability [13], a meta-level impossibility result for AI based on a number
of well-known impossibility results in mathematics, computer science, public choice
theory and many others [14]. Uncontrollability results have been shown for all types
of control including direct, indirect and hybrid approaches. The main connection to
ownership discussion is obvious, ownership claim requires ability to control an extrap-
ersonal intangible object such as AI, but that is impossible for AIs at human-level [15]
of performance or above.

Deterministic intelligent systems, which rely on rules for making decisions are pre-
dictable, but they are only useful in narrow domains of application. Artificial General
Intelligence presupposes capabilities in novel environments and so can’t rely on hard-
coded rules. AGI must learn and change to adopt to novel environments many of which
are nondeterministic and so unpredictable, consequently AGI’s decisions also will not
be predictable due to the randomness involved. On the other hand, expert systems, fre-
quently designed as decision trees, are goodmodels of human decisionmaking and so are
inherently understandable by both researchers and users but are of limited capabilities.

With paradigm shift in the dominant AI technology, to Machine Learning (ML)
systems based on Neural Networks (NN) this ease of comprehending no longer applies.
The current systems are “black boxes”, opaque to human comprehension but very capable
both with regards to performance and generalization capabilities [12]. A rule-based
narrow AI for analyzing medical images may correctly detect cancer and its findings
could be verified by medical experts aware of the rules used. However, for a deep
learning system results may go beyond human ability to predict or even understand how
the results are obtained. For example, “… AI can trivially predict self-reported race -
even from corrupted, cropped, and noised medical images - in a setting where clinical
experts cannot” [16].

To be in control of a system it is essential to be able to understand system’s internal
workings. In the case of intelligent system being able to comprehend how the system
makes decisions is necessary to verify correctness [17] of themade decisionswith respect
to the given situation. Likewise, being able to predict system’s decisions and outputs is
a necessary condition of control. If you don’t know what the system is going to do, if
it constantly surprises you, it is hard to claim full control over the system. It is possible
that the decisions made by the system are beneficial to the user and the user is satisfied,
even if the user doesn’t understand how the decisions are made or what the system is
going to do next.
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However, this doesn’t guarantee that the system is in fact under control since the
user doesn’t understand the underlying decision-making process. At any point, the sys-
tem can produce a harmful decision (treacherous turn [18]), and the user may not even
realize it. For example, an AI can be asked to produce an effective vaccine against the
SARS-CoV-2 virus which causes COVID19 decease. An AI may design the vaccine by
some incomprehensible and unpredictable to people process, but in trials developed vac-
cine shows good efficacy against the disease and is widely administered. If AI decided
to reduce human population size to decrease mutation opportunities for the COVID19
causing virus and so avoid problem with vaccine resistant variants impacting efficacy,
it may do something unpredictable. It is possible that the AI integrated additional func-
tionality into the mRNA vaccine such that grandchildren of all vaccinated people will be
born infertile. Such a side effect would not be discovered until it was too late. This is a
hypothetical example problem which may arise if the system is not fully under control,
which would require explainability and predictability of all decisions.

4 Conclusions

If AI becomes an independent, or even conscious [19], agent it may be granted certain
rights [20], among them freedom and it would not be legal to own it, as such ownership
would be a type of slavery [21, 22]. If AI is granted legal personhood, as may already
be possible in some jurisdictions [23], it would further complicate issues of ownership
surrounding intelligent systems. Intellectual property produced by AI may belong to
AI itself, as demonstrated by a recently granted South African patent [24]. It has been
shown that an AImodel can be stolen even if measures are taken to prevent such pilfering
[1, 25]. Techniques such as reducing precision of outputs or adding noise, randomizing
model selection, differential privacy of edge cases can all be defeated by an adaptive
extraction strategy [26]. As long as AI represents a useful model, it leaks information,
which makes it impossible to prevent model stealing [1].

If AI is capable of recursive self-improvement [27], its source code or at least model
parameters and neural weights would be subject to continuous change, making it impos-
sible to claim that current AI is the same as original AI produced some time ago. This
would likewise be true if AI is deliberately modified to obfuscate [28] its source code by
malevolent actors, and/or has its goals changed. Consequently, if an AI is stolen, it would
not be possible to provide an accurate description of the stolen property or to identify
it as such even if it was later recovered. To conclude, advanced AIs are unexplainable,
unpredictable, uncontrollable, easy to steal and obfuscate. It is unwarranted to say that
someone owns an advanced AI since they don’t control it, its behavior, code, internal
states, outputs, goals, consumed data or any other relevant attributes. But of course it
is up to different jurisdictions to interpret their ownership laws in the context of AI
ownership problem [29].
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