
Differential Oriented Image Foresting
Transform Segmentation by Seed

Competition

Marcos A. T. Condori and Paulo A. V. Miranda(B)

Institute of Mathematics and Statistics, University of São Paulo,
São Paulo, SP 05508-090, Brazil

{mtejadac,pmiranda}@ime.usp.br

Abstract. The Image Foresting Transform (IFT) is a graph-based
framework to develop image operators based on optimum connectivity
between a root set and the remaining nodes, according to a given path-
cost function. Oriented Image Foresting Transform (OIFT) was proposed
as an extension of some IFT-based segmentation methods to directed
graphs, enabling them to support the processing of global object prop-
erties, such as connectedness, shape constraints, boundary polarity, and
hierarchical constraints, allowing their customization to a given target
object. OIFT lies in the intersection of the Generalized Graph Cut and
the General Fuzzy Connectedness frameworks, inheriting their proper-
ties. Its returned segmentation is optimal, with respect to an appro-
priate graph cut measure, among all segmentations satisfying the given
constraints. In this work, we propose the Differential Oriented Image
Foresting Transform (DOIFT), which allows multiple OIFT executions
for different root sets, making the processing time proportional to the
number of modified nodes. Experimental results show considerable effi-
ciency gains over the sequential flow of OIFTs in image segmentation,
while maintaining a good treatment of tie zones. We also demonstrate
that the differential flow makes it feasible to incorporate area constraints
in OIFT segmentation of multi-dimensional images.

Keywords: Oriented Image Foresting Transform · Image segmentation
in directed graphs · Generalized Graph Cut · Differential algorithms

1 Introduction

In graph-based methods, image segmentation can be seen as a graph par-
tition problem between sets of seed pixels. Oriented Image Foresting Trans-
form (OIFT) [14] and Oriented Relative Fuzzy Connectedness (ORFC) [1] are
extensions to directed weighted graphs of some methods from the Generalized

Thanks to Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico – CNPq
– (Grant 407242/2021-0, 313087/2021-0, 465446/2014-0, 166631/2018-3), CAPES
(88887.136422/2017-00) and FAPESP (2014/12236-1, 2014/50937-1).

c© Springer Nature Switzerland AG 2022
É. Baudrier et al. (Eds.): DGMM 2022, LNCS 13493, pp. 300–311, 2022.
https://doi.org/10.1007/978-3-031-19897-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19897-7_24&domain=pdf
http://orcid.org/0000-0002-4737-4240
http://orcid.org/0000-0001-6496-697X
https://doi.org/10.1007/978-3-031-19897-7_24

Differential OIFT Segmentation by Seed Competition 301

Graph Cut (GGC) framework [3], including Fuzzy Connectedness [4] and Water-
sheds [7]. OIFT generates an optimal cut in the graph according to an appropri-
ate graph cut measure, while having a lower computational complexity compared
to the min-cut/max-flow algorithm [2].

OIFT’s energy formulation on digraphs makes it a very versatile method,
supporting several high-level priors for object segmentation, including global
properties such as connectedness [12], shape constraints [15], boundary polar-
ity [13,14], and hierarchical constraints [11], which allow the customization of
the segmentation to a given target object.

In interactive region-based segmentation from markers (i.e., set of seeds),
the user can add markers to and/or remove markers from previous interactions
in order to improve the results. In the context of Image Foresting Transform
(IFT) [9], which is based on propagating paths from seeds, instead of starting
over the segmentation for each new set of seeds, Differential Image Foresting
Transform (DIFT) algorithm [8] can be employed to update the segmentation
in a differential manner, by correcting only the wrongly labeled parts of the
optimum-path forest in time proportional to the size of the modified regions
in the image (i.e., in sublinear time). This greatly increases efficiency, which is
crucial to obtain interactive response times in the segmentation of large 3D vol-
umes. However, DIFT [8] requires that the path-cost function be monotonically
incremental (MI), consequently not supporting the OIFT path-cost functions.

More recently, a novel differential IFT algorithm, named Generalized DIFT
(GDIFT) [6], has been proposed, which extends the original DIFT algorithm
to handle connectivity functions with root-based increases (which can be non-
monotonically incremental), avoiding segmentation inconsistencies (e.g., discon-
nected regions) in applications to superpixel segmentation [10,16]. However,
there are still no studies of the differential computation for the case of the OIFT
path-cost functions. This work aims to close this gap by testing three alternatives
for Differential Oriented Image Foresting Transform (DOIFT). Our experimental
results show considerable efficiency gains of the differential flow of DOIFTs over
the sequential flow of OIFTs in image segmentation of medical images, while
maintaining a good treatment of tie zones for two of the presented solutions. We
also demonstrate that the differential flow makes it feasible to incorporate area
constraints in OIFT segmentation of multi-dimensional images, which is useful
for getting regions of interest in the image with less user interaction.

2 Background

A multi-dimensional and multi-spectral image Î is a pair 〈I, I〉, where I ⊂ Z
n

is the image domain and I(t) assigns a set of m scalars Ii(t), i = 1, 2, . . . ,m, to
each pixel t ∈ I. The subindex i is removed when m = 1.

An image can be interpreted as a weighted digraph G = 〈V,A, ω〉, whose
nodes V are the image pixels in its image domain I ⊂ Z

n, and whose arcs are
the ordered pixel pairs 〈s, t〉 ∈ A. (e.g., 4-neighborhood or 8-neighborhood, in
case of 2D images). The digraph G is symmetric if for any of its arcs 〈s, t〉 ∈ A,

302 M. A. T. Condori and P. A. V. Miranda

the pair 〈t, s〉 is also an arc of G. Each arc 〈s, t〉 ∈ A has a weight ω(s, t), such
as a dissimilarity measure between pixels s and t (e.g., ω(s, t) = |I(t) − I(s)|).

For a given image graph G = 〈V,A, ω〉, a path π = 〈t1, t2, . . . , tn〉 is a
sequence of adjacent pixels (i.e., 〈ti, ti+1〉 ∈ A, i = 1, 2, . . . , n − 1) with no
repeated vertices (ti �= tj for i �= j). Other greek letters, such as τ , can also
be used to denote different paths. A path πt = 〈t1, t2, . . . , tn = t〉 is a path with
terminus at a pixel t. When we want to explicitly indicate the origin of the path,
the notation πs�t = 〈t1 = s, t2, . . . , tn = t〉 may also be used, where s stands for
the origin and t for the destination node. A path is trivial when πt = 〈t〉. A path
πt = πs · 〈s, t〉 indicates the extension of a path πs by an arc 〈s, t〉.

A predecessor map is a function P : V → V ∪ {nil} that assigns to each pixel
t in V either some other adjacent pixel in V, or a distinctive marker nil not in V,
in which case t is said to be a root of the map. A spanning forest is a predecessor
map which contains no cycles, i.e., one which takes every pixel to nil in a finite
number of iterations. For any pixel t ∈ V, a spanning forest P defines a path πP

t

recursively as 〈t〉 if P (t) = nil, and πP
s · 〈s, t〉 if P (t) = s �= nil.

2.1 Image Foresting Transform (IFT)

The Image Foresting Transform (IFT) algorithm (Algorithm 1) is a generaliza-
tion of Dijkstra’s algorithm for multiple sources (root sets) and more general
connectivity functions [5,9]. A connectivity function computes a value f(πt) for
any path πt, usually based on arc weights. A path πt is optimum if f(πt) ≤ f(τt)
for any other path τt in G. By taking to each pixel t ∈ V one optimum path
with terminus at t, we obtain the optimum-path value V f

opt(t), which is uniquely
defined by V f

opt(t) = min∀πt in G{f(πt)}. The image foresting transform (IFT) [9]
takes an image graph G = 〈V,A, ω〉, and a path-cost function f ; and assigns
one optimum path to every pixel t ∈ V such that an optimum-path forest P
is obtained, i.e., a spanning forest where all paths πP

t for t ∈ V are optimum.
However, f must satisfy the conditions indicated in [5], otherwise, the paths πP

t

of the returned spanning forest may not be optimum.
The cost of a trivial path πt = 〈t〉 is usually given by a handicap value H(t).

For example, H(t) = 0 for all t ∈ S and H(t) = ∞ otherwise, where S is a seed
set. The costs for non-trivial paths follow a path-extension rule. For example:

fmax(πs · 〈s, t〉) = max{fmax(πs), ω(s, t)} (1)

In Algorithm 1, the root map R stores the origin of the paths and the path-
cost map V converges to V f

opt, when f satisfies the conditions indicated in [5].

Algorithm 1 – IFT Algorithm

Input: Image graph 〈V, A, ω〉, path-cost function f and an initial labeling
function λ : V → {0, . . . , l}.

Output: The label map L : V → {0, . . . , l}, root map R : V → V, path-cost
map V : V → R and the spanning forest P : V → V ∪ {nil}.

Auxiliary: Priority queue Q, variable tmp and an array of status S : V → {0, 1},
where S(t) = 1 for processed nodes and S(t) = 0 for unprocessed
nodes.

Differential OIFT Segmentation by Seed Competition 303

1. For each t ∈ V, do
2. Set S(t) ← 0.
3. Set P (t) ← nil, V (t) ← f(〈t〉), R(t) ← t and L(t) ← λ(t).
4. If V (t) �= +∞, then
5. insert t in Q.
6. While Q �= ∅, do
7. Remove s from Q such that V (s) = min∀t∈Q{V (t)}.
8. Set S(s) ← 1.
9. For each node t such that 〈s, t〉 ∈ A, do
10. If S(t) �= 1, then
11. Compute tmp ← f(πP

s · 〈s, t〉).
12. If tmp < V (t), then
13. If t ∈ Q, then remove t from Q.
14. Set P (t) ← s and V (t) ← tmp.
15. Set R(t) ← R(s) and L(t) ← L(s).
16. Insert t in Q.

2.2 Oriented Image Foresting Transform (OIFT)

In its first version [14], OIFT was built on the IFT framework by considering
the following path-cost function in a symmetric digraph with integer weights:

f♂
1 (〈t〉) =

{−1 if t ∈ S1 ∪ S0

+∞ otherwise

f♂
1 (πr�s · 〈s, t〉) =

{
max{f♂

1 (πr�s), 2 × w(s, t) + 1} if r ∈ S1

max{f♂
1 (πr�s), 2 × w(t, s)} if r ∈ S0

(2)

Later, a second version [13] with a better handling of ties was proposed based
on the following path-cost function:

f♂
2 (〈t〉) = f♂

1 (〈t〉)
f♂
2 (πr�s · 〈s, t〉) =

{
ω(s, t) if r ∈ S1

ω(t, s) otherwise (3)

The segmented object OP by OIFT is defined from the forest P computed
by Algorithm 1, with f♂

2 (or f♂
1), by taking as object pixels the set of pixels

that were conquered by paths rooted in S1 (i.e., t ∈ OP if and only if R(t) ∈ S1).
The functions f♂

1 and f♂
2 are non-monotonically incremental connectivity

functions, as described in [13,14]. The optimality of OP by OIFT is supported
by an energy criterion of cut in graphs involving arcs from object to background
pixels C(OP) (outer-cut boundary), according to Theorem 1 from [13,14].

C(O) = {〈s, t〉 ∈ A | s ∈ O and t /∈ O} (4)
E(O) = min

〈s,t〉∈C(O)
ω(s, t) (5)

304 M. A. T. Condori and P. A. V. Miranda

Theorem 1 (Outer-cut optimality by OIFT). For two given sets of seeds
S1 and S0, let U(S1,S0) = {O ⊆ V | S1 ⊆ O ⊆ V \ S0} denote the universe of
all possible objects satisfying the seed constraints. Any spanning forest P com-
puted by Algorithm 1 for function f♂

1 (or f♂
2) defines a segmented object OP

that maximizes E (Eq. 5) among all possible segmentation results in U . That is,
E(OP) = maxO∈U(S1,S0) E(O).

2.3 Differential Image Foresting Transform (DIFT)

Let a sequence of IFTs be represented as 〈IFT(S1), IFT(S2), . . . , IFT(Sn)〉, where
n is the total number of IFT executions on the image. At each execution, the
seed set Si is modified by adding and/or removing seeds to obtain a new set
Si+1. We define a scene Gi as the set of maps Gi = {P i, V i, Li, Ri}, resulting
from the ith iteration in a sequence of IFTs.

The DIFT algorithm [6,8] allows to efficiently compute a scene Gi from
the previous scene Gi−1, a set Δ+

Si = Si \ Si−1 of new seeds for addi-
tion, and a set Δ−

Si = Si−1 \ Si of seeds marked for removal. In the exe-
cution flow by DIFT, after the first execution of IFT(S1), we have that
the scenes Gi for i ≥ 2 are calculated based on the scene Gi−1, taking
advantage of the trees that were computed in the previous iteration, thus
reducing the processing time. Hence, we have the following differential flow:
〈IFT(S1),DIFT(Δ+

S2 ,Δ−
S2 ,G1),DIFT(Δ+

S3 ,Δ−
S3 ,G2), . . . , DIFT(Δ+

Sn ,Δ−
Sn ,Gn−1)〉.

3 Differential OIFT (DOIFT)

Figure 1 shows that the Generalized DIFT (GDIFT) algorithm [6] with f♂
2 , to

differentially compute the sequence 〈IFT(S1), IFT(S2)〉, where S1 = S1
1 ∪ S1

0 =
{a} ∪ {i, l} and S2 = S2

1 ∪ S2
0 = {a} ∪ {i}, may generate a result not predicted

by IFT(S2) via Algorithm 1. The problem occurs because nodes b and g are
initially processed in a given order during the first run of the IFT (Fig. 1b), but
later become frontier nodes, i.e., neighboring nodes of removed trees/subtrees
(Fig. 1c) that can be reprocessed in a different order than the original (Fig. 1d).
Due to the strictly minor inequality of Line 12 of Algorithm 1, in the case of
ties in offered costs, we have that the node that first sees its contested neighbor
will win the dispute. Therefore, multiple processing orders affect the conquest
of neighboring nodes (such as nodes c and f in Fig. 1).

The DIFT algorithms [6,8] do not attempt to address this issue, as they
assume that the usage of the “≤” comparison on Line 12 of Algorithm 1 would
also be perfectly valid. However, in the case of functions such as f♂

2 , in which
the cost along the path is not a non-decreasing function, these problems in
the processing order of frontier nodes are severely aggravated and can generate
solutions that would never be obtained in the sequential flow. To resolve these
issues, it would be necessary to explicitly store the processing order of the nodes,
to ensure that later, the frontier nodes would be reprocessed in the same previous

Differential OIFT Segmentation by Seed Competition 305

order. However, in addition to spending more memory, it would be complex
to ensure the consistency in maintaining this new map of order over several
iterations.

In order to address these issues without compromising the execution time of
the algorithms, we chose to develop solutions for the differential OIFT focused
only on the issue of generating segmentation labels that are consistent with the
sequential flow labeling (consequently ensuring an optimal cut as in Theorem 1),
without worrying about minor topology details of the resulting forest, that are
irrelevant to the segmentation task.

The first proposed solution is simply to consider the usage of the Generalized
DIFT (GDIFT) algorithm from [6] with the f♂

1 path-cost function. Note that
f♂
1 is a function with non-decreasing costs along the path, with cost variations

depending only on the root label and the arc weights ω(s, t) and ω(t, s), which
perfectly fits the conditions required in [6]. Note that problems like the one
reported in Fig. 1 do not occur with f♂

1 , since there are no cost ties between
object and background in this formulation, as they are treated as odd and even
numbers, respectively, and the background is always favored.

The second proposed solution is to use Algorithm 2, which considers
for each path πt a lexicographical path-cost function with two components
〈F♂

2 (πt), T (πt)〉, where F♂
2 (π = 〈t1, . . . , tn〉) = maxi=1,2,...,n{f♂

2 (〈t1, . . . , ti〉)}
and T (πt) is related to the number of maximum valued arcs crossed along the
path, aiming at a better handling of tie zones, but we use odd numbers in T (πt)
for paths from the background seeds and even numbers for the object, so that
there are no ties in the second component between object and background.

Algorithm 2 – Algorithm DOIFT

Input: Image graph G = 〈V, A, ω〉, the set Δ+
S of seeds for addition, set Δ−

S of
seeds for removal, the maps L, V and P initialized with the result from
the previous OIFT/DOIFT execution, and an initial labeling function
λ : Δ+

S → {0, 1} for the new seeds. We consider V (t) = 〈V1(t), V2(t)〉
as we work with lexicographical costs.

Output: The updated maps L, V and P .
Auxiliary: Priority queue Q, and variables tmp1 and tmp2.

1. Set Q ← ∅.
2. If Δ−

S �= ∅, then
3. (L, V, P, Q) ← DOIFT-RemoveSubTrees(G, L, V, P, Q, Δ−

S)
4. For each s ∈ Δ+

S , do
5. Set L(s) ← λ(s), P (s) ← nil, V (s) ← 〈−1, L(s) + 1〉
6. If s /∈ Q, then insert s in Q.
7. While Q �= ∅, do

8. Remove s from Q such that V (s)
lex≤ V (r) for all r ∈ Q.

9. For each node t such that 〈s, t〉 ∈ A, do

10. Compute tmp1 ← F♂
2 (πP

s · 〈s, t〉).
11. If tmp1 �= f♂

2 (πP
s · 〈s, t〉), then

12. Set tmp2 ← V2(s).

306 M. A. T. Condori and P. A. V. Miranda

Fig. 1. (a) Input graph with marked seeds S1
1 = {a} and S1

0 = {i, l}. (b) Initial

computed forest by OIFT with f♂
2 , assuming node b was processed first than node

g. The values within the nodes indicate the costs of the paths and the arrows point
to the predecessor of each node. (c) The tree of node l is marked for removal and its
nodes are made available for a new dispute between the frontier nodes of neighboring
trees (marked with a pink background). (d) A possible result of the differential flow,
where the frontier node g was processed first than b, thus gaining c, but leading to a
result that cannot be generated by the sequential flow via Algorithm 1. (e–f) The two

possible outcomes of sequential flow for f♂
2 with S2

1 = {a} and S2
0 = {i}.

13. Else If V1(s) = tmp1, then
14. Set tmp2 ← V2(s) + 2.
15. Else , then
16. Set tmp2 ← L(s) + 1.

17. If 〈tmp1, tmp2〉 lex
< V (t), then

18. Set P (t) ← s, V (t) ← 〈tmp1, tmp2〉, L(t) ← L(s).
19. If t /∈ Q, then insert t in Q.
20. Else If s = P (t), then
21. If tmp1 �= V1(t) or tmp2 > V2(t) or L(t) �= L(s), then
22. (L, V, P, Q) ← DOIFT-RemoveSubTrees(G, L, V, P, Q, {t})
23. Break; #GOTO LINE 8

Procedure DOIFT-RemoveSubTrees in Algorithm 3, releases the entire sub-
trees, converting its pixels to trivial trees of infinite cost, and transforms all of
its neighboring pixels into frontier pixels, inserting them in Q, assuming that
the graph is symmetric. It plays the role of both DIFT-RemoveSubTree and
DIFT-TreeRemoval from [6], but has been modified to not rely on the use of a
root map to save memory.

Differential OIFT Segmentation by Seed Competition 307

Algorithm 3 – Procedure DOIFT-RemoveSubTrees

Input: Image graph G, the maps L, V and P , the priority queue Q, and a set
R of roots of the subtrees to be removed.

Output: The updated maps L, V and P , and the updated priority queue Q.
Auxiliary: Queue J and a set F .

1. Set J ← ∅, F ← ∅.
2. For each t ∈ R, do
3. If t ∈ Q, then remove t from Q.
4. Set V (t) ← 〈∞, ∞〉, P (t) ← nil.
5. Insert t in J .
6. While J �= ∅, do
7. Remove s from J .
8. For each node t such that 〈s, t〉 ∈ A, do
9. If s = P (t), then
10. Insert t in J .
11. If t ∈ Q, then remove t from Q.
12. Set V (t) ← 〈∞, ∞〉, P (t) ← nil.
13. Else If V (t) �= 〈∞, ∞〉 and t /∈ Q, then
14. Insert t in F .
15. While F �= ∅, do
16. Remove t from F .
17. If V (t) �= 〈∞, ∞〉 and t /∈ Q, then
18. Insert t in Q.

Other differences of Algorithm 2 in relation to GDIFT [6], are the absence of
the state map used in [6], which proved to be unnecessary for functions with non-
decreasing costs along the paths, as for the lexicographical cost 〈F♂

2 (πt), T (πt)〉,
and modifications to avoid using the root map to save memory. Another differ-
ence is the inclusion of Line 23 in Algorithm 2, to immediately break the inner-
most loop, thus avoiding the repeated processing of part of the neighborhood.

Fig. 2. (a) Input graph. (b) Initial forest by OIFT with f♂
2 for S1 = {f}. (c) The

updated result by Algorithm 2, as a new object seed j is inserted, so that S2 = {f, j}.

The values within nodes reflect the costs of f♂
2 . (d) The correct result by Proposition 1.

308 M. A. T. Condori and P. A. V. Miranda

The third proposed version of DOIFT is a variant of the second, modified so
that disputed nodes with the same cost are given to the first processed neighbor,
so as to respect Proposition 1, that will be defined next.

For any function f(π), let F (π) denote the maximum cost along the path:

F (π = 〈t1, . . . , tn〉) = max
i=1,2,...,n

{f(〈t1, . . . , ti〉)} (6)

Consider the following lemma:

Lemma 1. Let P be a predecessor map computed by Algorithm 1. For any two
paths δP

t = 〈t1, t2, . . . , tn = t〉 and τP
s = 〈s1, s2, . . . , sm = s〉, defined by P , if

F (δP
t) < F (τP

s), then we have that node t was removed before s from Q on Line
7 of Algorithm 1.

Proof. Let sk be a node in τP
s , such that f(〈s1, . . . , sk〉) = F (τP

s). From Eq. 6,
we have that f(〈t1, . . . , ti〉) ≤ F (δP

t), i = 1, 2, . . . , n. From the assumptions of
Lemma 1, we may conclude that F (δP

t) < f(〈s1, . . . , sk〉). Thus, f(〈t1, . . . , ti〉) <
f(〈s1, . . . , sk〉), i = 1, 2, . . . , n.

From the dynamic of execution of Algorithm 1, we know that paths δP
t and

τP
s stored in the map P are gradually computed by the removal from Q of nodes

with minimum cost (Line 7). After sk gets inserted in Q with cost V (sk) =
f(〈s1, . . . , sk〉), it won’t be removed from Q before all nodes ti, i = 1, 2, . . . , n, are
consecutively processed in Q, with lower costs V (ti) = f(〈t1, . . . , ti〉). Therefore,
we have that t = tn is removed prior to s from Q.

From Lemma 1, we can also conclude the following proposition:

Proposition 1. Let P be a predecessor map computed by Algorithm 1. For any
two paths δP

s and τP
s′ , s �= s′, defined in P , if F (τP

s′) < F (δP
s) and f(δP

s · 〈s, t〉) =
f(τP

s′ · 〈s′, t〉), then we have that πP
t �= δP

s · 〈s, t〉.
Proof. Algorithm 1 will assign t to the first optimum path that reaches it,
because of the strict inequality in Line 12. According to Lemma 1, we have
that s′ leaves Q before s. Consequently, the path τP

s′ · 〈s′, t〉 is evaluated before
δP
s · 〈s, t〉, offering the same cost (i.e., f(δP

s · 〈s, t〉) = f(τP
s′ · 〈s′, t〉)). Therefore,

we have that πP
t cannot be δP

s · 〈s, t〉.
Figure 2 discusses the consequences of Proposition 1 in the differential execu-

tion of OIFT. Note that Algorithm 2 does not satisfy Proposition 1. To correct
this issue, the condition of Line 17 of Algorithm 2 must be changed to a much
more complex condition:

tmp1 < V1(t) or (tmp1 = V1(t) and ((tmp2 < V2(t) and notH2) or H1))

where X, H1 and H2 are boolean variables defined as:

X ← V1(t) = f♂
2 (πP

s · 〈s, t〉) > V1(s) and V1(t) > V1(P (t))

H1 ← P (t) �= nil and X and V (s)
lex
< V (P (t))

H2 ← P (t) �= nil and X and V (s)
lex
> V (P (t)) (7)

With these modifications, we have the third version of the DOIFT algorithm.

Differential OIFT Segmentation by Seed Competition 309

4 OIFT with Area/volume Constraint

Let EA = maxO∈U(A,S0) E(O) denote the optimum energy value by Eq. 5 of a
segmentation by OIFT using set A as internal seeds in Theorem 1. In order to
introduce the idea of the incorporation of a size constraint in OIFT, we need
first to establish some supporting propositions.

Proposition 2. The optimum energy EA∪B among all objects in U(A∪B,S0),
satisfies EA∪B = min{EA, EB}.
Proposition 3. For a given strongly connected and symmetric digraph G, and
sets of seeds S1 and S0, such that S1 = {t} we have that E{t} = V

f∗
max

opt (t), where
f∗
max is the path-cost function from Eq. 1, but being computed in the transpose
graph and only from the external seeds in S0.

The proofs of Proposition 2 and 3 are given in [12].
Suppose we want to define an optimal object of maximum energy via OIFT

but having area/volume below a given threshold. Let’s assume that the defined
background must be connected to the originally selected background seeds. If the
object has an area above the threshold, we can reduce its size by inserting new
background seeds in its boundary. In order to apply Propositions 2 and 3, we can
temporarily invert the object and background labels, in order to take advantage
of the analogous and symmetrical problem. In this complementary problem, the
energies of background nodes could be computed by the IFT with fmax from the
object seeds S1 in the original graph. In order to get an optimal object, at each
iteration we must then select a new background seed at the highest energy node
of the object’s boundary. We can then repeat this procedure until the area of the
resulting object falls below the given threshold. We therefore have a sequence of
OIFTs for each new seed inserted that can be calculated faster by DOIFT.

5 Experimental Results

Figure 3 shows the experimental curves for the segmentation of the talus bone
using 40 slices from MR images of the foot using a robot user. In the first row,
the arc weights were defined as ω(s, t) = |I(t)−I(s)| and with boundary polarity
parameter defined as -50% (see [14]). In the second row, we repeat the experiment
but with the arc weights quantized in a smaller range of values, corresponding
to a quarter of the original range. DOIFT1 and OIFT (with f♂

2 and a heap
priority queue) had a performance drop in the second case, due to their worse
handling of tie zones. DOIFT2 and DOIFT3 had an accuracy performance
consistent with the OIFT with FIFO tie-breaking policy using f♂

2 . In case of
OIFT (FIFO), we considered a bucket sorting for Q and a binary heap was
used for all other cases. Even using a slower queue Q, differential approaches
were faster than OIFT (FIFO) with the exception of the first iteration.

We also carried out experiments in a 3D MR image. We consider the accu-
mulated time over the iterations of the automatic seed selection via the area

310 M. A. T. Condori and P. A. V. Miranda

Fig. 3. The mean curves of accuracy, time, and accumulated time.

Fig. 4. Brain segmentation in MR images. Only three markers were selected in the
indicated coronal slice.

procedure described in Sect. 4 to segment the brain. We considered a region
adjacency graph of supervoxels by [16] with an average of 100 voxels per region.
Figure 4 shows the results obtained for different values of the maximum volume
threshold Ta, which is expressed in number of supervoxels. Regarding the exe-
cution time, for Ta = 9, 000 we had 1 s for the differential flow by DOIFT2 and
75 s for the sequential flow by OIFT with heap. For Ta = 10, 000, we had 0.86 s
for DOIFT2 and 64 s for OIFT.

6 Conclusion

We have successfully tested different approaches to implement the differential
OIFT and its use in implementing an area/volume constraint in OIFT. The use
of area constraints can help to improve segmentation considerably, without the
need to select multiple markers. As future works we intend to evaluate other
applications for DOIFT and to create a hierarchy of OIFT segmentations by
varying the area threshold.

Differential OIFT Segmentation by Seed Competition 311

References

1. Bejar, H.H., Miranda, P.A.: Oriented relative fuzzy connectedness: theory, algo-
rithms, and its applications in hybrid image segmentation methods. EURASIP J.
Image Video Process. 2015(21) (2015)

2. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int.
J. Comput. Vision 70(2), 109–131 (2006)

3. Ciesielski, K., Udupa, J., Falcão, A., Miranda, P.: A unifying graph-cut image
segmentation framework: algorithms it encompasses and equivalences among them.
In: Proceedings of SPIE on Medical Imaging: Image Processing, vol. 8314 (2012)

4. Ciesielski, K., Udupa, J., Saha, P., Zhuge, Y.: Iterative relative fuzzy connectedness
for multiple objects with multiple seeds. Comput. Vision Image Underst. 107(3),
160–182 (2007)

5. Ciesielski, K.C., Falcão, A.X., Miranda, P.A.V.: Path-value functions for which
Dijkstra’s algorithm returns optimal mapping. J. Math. Imaging Vision 60(7),
1025–1036 (2018)

6. Condori, M.A., Cappabianco, F.A., Falcão, A.X., Miranda, P.A.: An extension of
the differential image foresting transform and its application to superpixel gener-
ation. J. Visual Commun. Image Represent. 71, 102748 (2020)

7. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum
spanning forests and the drop of water principle. IEEE Trans. Pattern Anal. Mach.
Intell. 31(8), 1362–1374 (2008)

8. Falcão, A.X., Bergo, F.P.: Interactive volume segmentation with differential image
foresting transforms. IEEE Trans. Med. Imaging 23(9), 1100–1108 (2004)

9. Falcão, A., Stolfi, J., Lotufo, R.: The image foresting transform: theory, algorithms,
and applications. IEEE TPAMI 26(1), 19–29 (2004)

10. Galvão, F.L., Falcão, A.X., Chowdhury, A.S.: RISF: recursive iterative spanning
forest for superpixel segmentation. In: 31st SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI), pp. 408–415 (2018)

11. Leon, L.M., Ciesielski, K.C., Miranda, P.A.: Efficient hierarchical multi-object seg-
mentation in layered graphs. Math. Morphol. Theory Appl. 5(1), 21–42 (2021).
https://doi.org/10.1515/mathm-2020-0108

12. Mansilla, L.A.C., Miranda, P.A.V., Cappabianco, F.A.M.: Oriented image foresting
transform segmentation with connectivity constraints. In: 2016 IEEE International
Conference on Image Processing (ICIP), pp. 2554–2558 (2016)

13. Mansilla, L., Miranda, P.: Image segmentation by oriented image foresting trans-
form: Handling ties and colored images. In: 18th International Conference on Dig-
ital Signal Processing, Greece, pp. 1–6 (2013)

14. Miranda, P., Mansilla, L.: Oriented image foresting transform segmentation by
seed competition. IEEE Trans. Image Process. 23(1), 389–398 (2014)

15. de Moraes Braz, C., Miranda, P.A., Ciesielski, K.C., Cappabianco, F.A.: Optimum
cuts in graphs by general fuzzy connectedness with local band constraints. J. Math.
Imaging Vision 62, 659–672 (2020)

16. Vargas-Muñoz, J.E., Chowdhury, A.S., Alexandre, E.B., Galvão, F.L., Miranda,
P.A.V., Falcão, A.X.: An iterative spanning forest framework for superpixel seg-
mentation. IEEE Trans. Image Process. 28(7), 3477–3489 (2019)

https://doi.org/10.1515/mathm-2020-0108

	Differential Oriented Image Foresting Transform Segmentation by Seed Competition
	1 Introduction
	2 Background
	2.1 Image Foresting Transform (IFT)
	2.2 Oriented Image Foresting Transform (OIFT)
	2.3 Differential Image Foresting Transform (DIFT)

	3 Differential OIFT (DOIFT)
	4 OIFT with Area/volume Constraint
	5 Experimental Results
	6 Conclusion
	References

