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Abstract. In this article, we enrich the framework of morphological
hierarchies with new acyclic graphs and trees. These structures lie at the
convergence of hierarchical models and topological descriptors. We define
them in the context of digital grey-level imaging. We discuss their links
with component-trees, trees of shapes and adjacency trees. This analysis
leads to new notions, including a notion of topological tree of shapes.

1 Introduction

Many hierarchical, graph-based structures have been defined in the framework
of mathematical morphology, especially for designing connected operators [25].
The most popular are trees (i.e. rooted, connected, acyclic graphs). They model
finite sets of partitions organized with respect to the refinement order relation.
These partitions can be partial. This is the case of the component-tree and its
variants [9,24], the level-line tree (a.k.a. tree of shapes) and its variants [3,11].
These partitions can also be total. This is the case of the binary partition tree and
its variants [19,23,27] and the hierarchical watershed [13,26]. Other hierarchical
structures are directed acyclic graphs (DAGs), e.g. the component-hypertree [15],
the component-graph [17], the braid of partitions [8] and the directed component
hierarchy [18].

The partitions modeled by these hierarchical structures are composed of con-
nected sets defined with respect to a topology defined on a given space which is
generally discrete (e.g. a part of Z™ [22], a complex on/tesselation of R™). Hier-
archical structures carry intrinsic, topological information. However, these infor-
mation are often limited and generally not sufficient to perform high-level topo-
logical analysis of the modeled images/data. In particular, hierarchical structures
are generally less informative than high-level topological invariants/descriptors,
e.g. the homology groups/homology persistence [6] or the homotopy type.

In this article, we introduce a new family of hierarchical structures—DAGs and
trees, including a new notion of topological tree of shapes—dedicated to the model-
ing of grey-level images. They aim to gather (i) connectedness/intensity informa-
tion carried by component- (min- and max-) trees [24] and (ii) topological infor-
mation carried by the adjacency tree, a classical topological invariant [21]. Basi-
cally, we will first build a DAG that is composed by the min-tree and max-tree
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of a grey-level image, and we will enrich the nodes of these two trees by the adja-
cency tree structure at each grey-level, leading to the notion of a graph of valued
shapes. Then, we will establish that this graph of valued shape can be simplified
in a lossless fashion as a tree structure by discarding some transitive, redundant
edges. This will lead to a simpler tree structure called tree of valued shapes. By
factorizing some spatially equivalent nodes, we will then define a more compact
structure, called the complete tree of shapes. We will establish that this complete
tree of shapes can be reduced (in a lossy fashion) in two different ways, leading
on the one hand to the usual notion of a tree of shapes and on the other hand to
the new notion of a topological tree of shapes. (The chosen terminology of topo-
logical trees of shapes is justified by the way it is defined; however it will be shown
to be different from another homonymous notion previously introduced in the lit-
erature.) We will finally evoke the links between these new structures (graph and
tree of valued shapes, complete tree of shapes, topological tree of shapes) and usual
morphological trees (component-tree, tree of shapes, adjacency tree).

This article is organized as follows. Section 2 provides definitions related to
hierarchies and grey-level images. We introduce the notions of graph of valued
shapes and tree of valued shapes in Sects. 3 and 4, respectively. Section 5 derives
from the tree of valued shapes the two essential notions of this work, namely the
complete tree of shapes (that generalizes the tree of shapes) and the topologi-
cal tree of shapes. In Sect.6, we discuss on the links that exist between these
new notions and well-known morphological hierarchies. We provide concluding
remarks in Sect. 7.

2 Basics: Hierarchies and Images

Definition 1 (Hierarchical order). Let X be a set and < be an order on X.
We say that < is a hierarchical order if Vox € X the subset x' = {y € X |z <y}
1s totally ordered.

Definition 2 (Hierarchical function). Let X be a set and < a hierarchical
order on X . The hierarchical function (< : X — X is defined by (<(z) = N z!.
This function is defined everywhere on X except for the greatest elements of

(X,<).

Remark 3. Let < be the Hasse relation obtained from < by reflexive-transitive
reduction. Yo € X we have

z < (<(x) (1)

This formula induces an isomorphism between (X, <) and (X, (<).
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Definition 4 (Tree). Let X be a set and < a hierarchical order on X such that
(X, <) admits a mazimum. The Hasse diagram (X, <) is called a tree.

Let U be a discrete set endowed with a topological structure which provides
the notions of adjacency and connectedness, and where the separation theorem
(Jordan-Brouwer) holds.

Remark 5. In this article we choose U =Z" (n > 2) and we consider the usual
framework of digital topology on binary images [22], with the standard couples
of (2n,3™ — 1) and (3™ — 1, 2n)-adjacencies for the foreground and background.

Let K be a set of values endowed with a total order <x. Let F : U — K be
an application. We assume that there exist a finite, nonempty subset S C U and
two values L <g T € K such that for all x € U

{f(x):J_ if x¢§ @)
L<g F(x)<g T if x€S

We set V.= F(S)U{L, T}. It is a finite set that we equip with the total order
<y induced by <k.

Remark 6. The application F is isomorphic to a grey-level image taking its
values in an interval of Z of size |V|, e.g. [0,|V]| — 1]. See Fig. 1(a).

3 Graph of Valued Shapes

3.1 (Valued) Connected Components

We set <° = <y and <* = >vy. Let v € V. We define the threshold sets of F at
value v € V (see Fig. 1(b-i)) as

AS(F) ={xeUlv<® F(x)} 3)
A(F)={xeU|v<® F(x)}

Let X C U. When X is nonempty, we note I1[X] C 2Y the partition gathering
all the connected components of X. If X is empty, we set II[X] = 0.
Let v € V. We set

1

Zy =6y x{v} O, = H[A}(F)]
» =0 x{v} with ©f=II[A(F)] (4)

x {v} 6, =6, U6;

(n

i
Il
@
<
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Remark 7. We have 5% = Z% = 0. For any v € V\ {L, T}, we have =5 #
and Z5 # 0. In the sequel, (U, L) and (U, T) are considered as a unique element
noted co. Then, we have =5 = {(U, L)} = {oo} = {(U,T)} = =% and =, =
-—'T = {OO}
We set
EO = Uvev E;’) 0° = U,ev Oy
_:' = L_Jvev f; B and O° ={J,cyOp (5)
g =Z2°UE*=yev = O =0°U6°* =,y O,
3.2 Orders on Valued Connected Components
We define the partial orders £° on =° and C® on =* as
(X,v)C° (Y,w)) (X CY Aw<®0) (6)
(X,v)C* (Y,w) < (XY Aw< )

We define the order C¥ as the union of £° and C°, i.e. P C¥ Q iff P C° @ or
PC* Q.

Remark 8. C¥, C° and C°® are hierarchical orders. They admit oo as maxi-
mum.

Let v € V. We define the order TV on =, as
(X,v) 7 (Y,v)) & 7(X) C7(Y) (7)

where 7 : 2V — 2V is the hole closing application defined by 7(X) = X U|JZ
where Z C I1[X] is composed by the finite connected components of X = U\ X.

We define the order C¥ on = as C¥ = U, ey E5, 1e. P C¥ Q iff Jv € V such
that P C¥ Q.

Remark 9. Ew, and TV (v € V) are hierarchical orders. Each ordered set
(54, CY) (v € V) admits a mazimum (U, v) where U, C U is the unique element
of ©, which is infinite.

We note <1¥ (resp. <1°, <1*) and <% (resp. <) the Hasse relations associated
to C¥ (resp. C°, C*®) and C¥ (resp. CV). The graph (=, <1¥) is “similar” to the
union of the max- and min-trees, whereas (=, <) is “similar” to the union of the
adjacency trees of each threshold set of F. This will be more formally discussed
in Sect. 6.
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Remark 10. Let P = (X,v),Q = (Y,w) € =Z such that P <% Q. We have
P,Q € =* with = either o or e. In addition, we have X CY and v = (< (w).

Remark 11. Let P = (X,v),Q = (Y,w) € = such that P <% Q. We have
(PeZ*and Q € °) or (P € Z° and Q € Z°). In addition, we have v = w
and T7(X) € II[Y].

‘We note Y= CE«F, (po = CEO7 (p. :an, 1/} = ng and Q/Jv = CE” (U €V>

3.3 Definition of the Graph of Valued Shapes
Let <= be the relation defined as the union of <% and <1¥.

Definition 12 (Graph of valued shapes). The graph of valued shapes (or
VS-graph, for brief) is the couple &ys = (£, <=).

Remark 13. The intersection between <1¥ and < is empty. We can then con-
sider ®ys as (£,<1z) or as (£,<?,<%) and equivalently as (=, p,1)).

Property 14. &vys = (5, <z) is a directed acyclic graph.
We define C= as the reflexive-transitive closure of <=.

Remark 15. (5,Cz=) is an ordered set that admits oo as mazimum.

4 Tree of Valued Shapes

4.1 Transitive Reduction of the Graph of Valued Shapes

Let 4= be the relation on = defined as the transitive reduction of <1=.
Let P € =. Let us consider the following three equalities

Remark 16. If P satisfies Eq. (8), then we have P <z ¢(P) and P Az (P).
If P satisfies Eq. (9) or (10), then we have P <z ¢(P) and P A= ¢(P).

Proposition 17. Let P € = be such that o(P) and v (P) exist. One of Egs. (8-
10) is satisfied.
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)

@F:U->V () AF(F) (©) AF(F) (d) AZ(F) (e) A3 (F)

At

) A7) (&) A3(F) (h) AZ(F) @ A7(F)

Fig. 1. (a) A grey-level image F : U — V (U = Z? and V = [0, 7]). (b-i) The threshold
sets A3 (F) (A5 (F) in white; A3 (F) in black), for v =0 (b) to 7 (i).

o] [2] [ [« [ [=] [2]

Fig. 2. Tree of valued shapes of the image F (Fig. 1(a)). The valued connected com-
ponents are depicted by squares (Z° on the left side; =° on the right side) and are
positioned with respect to the threshold value v (see on left), from 0 (top) to 7 (bot-
tom). Red and green arrows correspond to the <z relation. Green and black dotted
arrows correspond to the <1¥ relation. Red arrows are a subset of the <¥ relation, not

fully depicted for the sake of readibility. (Color figure online)
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Proof. Let P = (X,v) € 5 be such that ¢(P) and ¢(P) exist. Case 1: p(P) =
(U,L1) = oo and ¢(P) = (U,,v) (the unique element of IT[AS(F)] which is
infinite). It is plain that ¢!V1=2((U,,v)) = (U, T) = co = ¢(P), and Eq. (10) then
holds. Case 2: ¢(P) = (U, L) and 9(P) # (U,,v). It is plain that ?(P) exists
and p(¢?(P)) = (U, L) = ¢(P), thus Eq. (9) holds. Case 3: ¢(P) = (U, T).
Since 1 (P) exists (and is finite), it is plain that ¢?(P) also exists. But then
0(¥2(P)) = (U, T) = p(P), thus Eq. (9) holds. Case 4: ¢(P) # oo. If ¢(P) =
(Uy,v), it is plain that (o (P)) = (Uy,w) with (U,,v) = ¢((Uy, w)) and Eq. (8)
then holds. Let us now suppose that ¢(P) # (U,,v) and that Eq. (8) does not
hold, i.e. [p 09 0 ¢](P) # ¥ (P). Then we have P =¥ 1?(P) C¥ [p o o ¢](P).
Now, let us suppose that ¢(1)%2(P)) # ¢(P). Then we have ¢(P) =¥ ¢(y?(P))
and it comes ¢(P) C¥ ¥ (¢(P)) C¥ ¢(¥?(P)) in contradiction with the Jordan
theorem. Thus Eq. (9) holds. ]

If follows from Proposition 17 that for any P € = such that both ¢ (P) and
©(P) exist we have P Az 1(P) or P A= ¢(P). Since (£, Cz) admits a maximum
(namely o0), for each P € =, P # 0o, we have either P 4=z ¢(P) or P 4z ¢(P).
The following property derives from these facts.

Property 18. Let P € =.

- If o(P) is defined and ¢ (P) is not, then P 4= ¢(P).
- If Y(P) is defined and o(P) is not, then P 4= ¢(P).
- If o(P) and ¥ (P) are defined, then either P 4z ¢(P) or P 4= ¥(P).

Remark 19. The transitive reduction from &ys = (£, <z) to (2, 4z) is a loss-

less compression. The graph &ys = (=, <z) can be reconstructed from (5, 4z).

4.2 Definition of the Tree of Valued Shapes

Property 20. (=, 4z) is a tree. Equivalently, Cz is a hierarchical order on =.

Definition 21 (Tree of valued shapes). The tree of valued shapes (or VS-
tree, for brief) is the couple Tys = (=, 4=). See Fig. 2.

5 Complete Tree of Shapes and Topological Tree
of Shapes

5.1 Spatial Compression: From the Tree of Valued Shapes
to the Complete Tree of Shapes

Let mo : & — O be the function defined by mo((X,v)) = X. Let ~go be the
equivalence relation on = defined by
Pr~o Qe mo(P) =m6(Q) (11)

Property 22. The function 7o : 5 /~o — O defined by To([Pl~s) = 7o (P)
s a bijection.
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Remark 23. Based on the above property, we identify = /~o and ©. More pre-
cisely, for any P = (X,v) € 5, we identify [P]., and X. In particular, we have
[00]ne = {00} € Z/~o and it is identified to U € ©.

Property 24. Let K € 5 /~g. Let Ck be the order induced by C= on K. Then
(K,Ck) is a totally ordered set.

For any K € Z/~g, we note (K)o = A\
EZCEE' )

K and (K))e = \/-_ K. We note

Remark 25. From Property 24, it follows that ¥p € [1,|K| — 1] we have

p2((K)e) € K. In particular, we have p|EK|71(<K>@) = (K)o whereas

P2 (K)e) ¢ K.

Proposition 26. Let K € 5 /~g, K # {c0}. Let P = p|§|(<K>@). We have
P = ([Plxo)o-
| K]

Proof. Let P = p= '((K)o) = p=((K)e), with (K)o = (X,v) and P =
(Y,w). In particular, we have (K)o 4z P and thus (K)o <=z P. Let Q =
(Y,u) = ([Pl~o)o. Case 1: (K)o <¥ P. This implies X C Y and w <* v
(with x = either o or e). As P ¢ K, we have X C Y, and it follows that
w <* v. We have w <* u. If u # w, then we have w <* w and it follows that
(K)o =% Q =¥ P, and thus (K)o 4% P: a contradiction. Then, we have
u = w, and it follows that P = ([P].,)e. Case 2: (K)o <¥ P. We have
X € either ©F or ©¢ (for instance, @F; the same reasoning holds with ©¢) and
o({(K)o) exists. Let R = (Z,t) = p({K)o). We have X C Z, and since R ¢ K,
it comes X C Z. Let us suppose that P # Q. Then, we have S = (Y,t) € [P],.
It follows that 7(X) = 7(Z). Consequently, we have R <% S. But then, we
obtain {K)g <¥ R <¥ S < P, in contradiction with (K)o 4z P. Then, we
have P = {[P].,)o- [ |

For any K € Z/~g, we consider (K)o € = as canonical element, and we
identify (K)o = (X,v) with X € 6.

Let Cg be the order on {(K)g | K € 5/~o} C Z—and equivalently on ©—
induced by C=.

We note kg = 7?(;1. Let po : © — O be the function defined by

po(X) = 1o (p((K))) (12)
with K = ke(X).

Remark 27. From the above property, we have pe = (c,. We note 4o the
relation on @ associated to po, namely the Hasse relation of Cg.

Definition 28 (Complete tree of shapes). The complete tree of shapes (or
CS-tree, for brief) is the couple Tcs = (O, 4g). See Fig. 3 (left).

The following proposition directly derives from the above results.
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Proposition 29. The equivalence relation ~g induces a decreasing homeomor-
phism from Tys = (5, 4=) to Tes = (O, 4g).

Remark 30. The homeomorphism from Tys = (=2, 4z) to Tes = (O, 4p) is
a lossless compression. The tree Tys = (=, A=) can be fully reconstructed from

Tos = (0, 40).

=]
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Fig. 3. From left to right: (1) the complete tree of shapes; (2) the topological tree of
shapes; (3) the tree of shapes of the image F of Fig. 1. The complete tree of shapes
(1) derives from the reduction of the tree of valued shapes of Fig.2. Green arrows
are originated from the <1¥ relation. Red arrows are originated from the <% relation.
(Color figure online)
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5.2 Topological Compression: From the Tree of Valued Shapes
to the Topological Tree of Shapes

Let X,Y € U, with Y C X. We aim to characterize the preservation of topologi-
cal properties by a decreasing transformation from X to Y. A frequent strategy
is to consider the notion of homotopic transformation. In particular, if there
exists a (decreasing) homotopic transformation from X to Y, then X and Y
have the same homotopy type. However, this is hardly tractable in 3D [10] and
in higher dimensions. Then we consider a weaker topological invariant induced
by the notion of strongly deletable set [20]. More precisely, if X \ Y is strongly
deletable, then the inclusion relation induces a bijection between the (foreground
and background) connected components of X and those of Y.

Remark 31. If U = Z2, the notion of strongly deletable set is equivalent to the
notion of simple set [14]. This implies that if X \'Y is strongly deletable, then X
and Y have the same homotopy type and Y is obtained from X by a decreasing
homotopic transformation defined as the iterative removal of a sequence of simple

points [4].

Let P,Q € = besuch that p=(P) = Q. If pz' ({Q}) = {P} and 76 (Q)\7e (P)
is a strongly deletable set, then we note @ \, P.

Remark 32. If Q N\, P, then we have p=z(P) = ¢(P).

Proposition 33. Let P € Z. Let A = o *({p(P)}) Uy~ ({p(P)}). Let B =
{e(P)} Uyt ({P}). We have o(P) \, P iff the restriction g4 : A — B is a
bijection.

Proof. Let X = mg(P). By definition, X is connected, i.e. IT[X] = {X}. The
set IT[X] is composed by one infinite set Xg = U\ 7(X) and k > 0 sets X;
(1 < i < k) such that {X;}f | = 7(re(¥"({P}))). Let Y = 7mo(¢(P)). By
definition, Y is connected, i.e. IT[Y] = {Y}. The set II[Y] is composed by one
infinite set Yo = U\ 7(Y) and [ > 0 sets Y; (1 < j < 1) such that {Y;}\_, =
T(ro(¥~t({p(P)}))). Let D = Y \ X. Let us suppose that ¢(P) \, P. Then,
we have o~ 1({p(P)}) = {P}, i.e. ¢ is bijective between ¢~ !({p(P)}) and {P}.
Since D is deletable we have k = [ and (up to reindexing), for any i € [0, k],
Y; C X;. For each i € [0, k], there exist P; = (X;,v) € ¥~}({P}) such that X; =
7(X;) and Q; = (Vi,w) € v~ ({@({P})}) such that Y; = 7(Y;). We have Y; C X;
and then 7(2) C T()?Z) We set D; = DN X;. We have T()?l\Dl) = T()?Z)\Dl =
7(Y:). Tt follows that ¥; C X;, and ¢ is then bijective between 1~ ({(P)}) and
»~L({P}). Let us suppose that ¢ is bijective between =1 ({(P)}) and {p(P)}.
Then both P = ¢(P)\ D and ¢(P) are connected and P C ¢(P). Let us suppose
that ¢ is bijective between =1 ({¢(P)}) and =1 ({P}). The function To7g is a
bijection between ¢ ~1({P}) (resp. v *({p(P)})) and {X;}F_; (resp. {Yj}ézl)
It follows that @(P) \, P. [ ]

Let ~p be the equivalence relation on = defined as the reflexive-transitive-
symmetric closure of \.
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Remark 34. We have [00]~, = {oo} € 5/~p.

Property 35. Let K € Z/~py. Let Tk be the order induced by Cz on K.
(K,Ck) is a totally ordered set.

For any K € Z/~p, we note (K)y = Ac_ K and (K))ng =V _K.

Remark 36. From these results, it follows that ¥p € [1,|K| — 1] we have

p=((K)u) € K. In particular, we have p|5K|71(<K)H) = (K)g whereas
K

o= (K)m) ¢ K.

Property 37. Let K € E/~p, K # {oo}. Let P = p‘EKl(<K>H). We have
P ={[Pley)n-

For any K € =/~p, we consider (K)y € = as canonical element, and we
identify (K)py = (X,v) with X € ©. We set H = 5 /~p.

Let Ty be the order on {{K)y | K € H} C Z—and equivalently on H—
induced by Cz=.

Let py : H — H be the function defined by

i (K) = P2 (K)o (13)

We define the relation 4y on H, induced by the relation 4z on = by K 4y
pu(K).

Definition 38 (Topological tree of shapes). The topological tree of shapes
(or TS-tree, for brief) is the couple Trs = (H, 4yr). See Fig. 3 (centre).

The following proposition directly derives from the two above properties.

Proposition 39. The equivalence relation ~ g induces a decreasing homeomor-
phism from Tys = (5, 4z) to Trs = (H, 4m).

Remark 40. The homeomorphism from Tys = (=, 4z) to Trs = (H, 4g) is a
topologically lossless but a geometrically lossy compression. The structure of the
tree Tys = (=, A=) can be fully reconstructed from T1g = (O, 4g), but not the
shapes of its nodes.

6 Links with Other Trees

The graph of valued shapes &vyg presents a DAG structure, similarly to other
morphological hierarchies, e.g. the component-graph [17], the directed compo-
nent hierarchy [18] or the braid of partitions [8]. &yg is also organized via two
kinds of relations, similarly to the component-hypertree [15] and the directed
component hierarchy [18] (where the initial order can be split into two distinct
orders).
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But, contrary to these morphological hierarchies, &yg can be modeled as
a tree structure, namely Tvyg. This should open the way to efficient construc-
tion strategies, compared, e.g. to the component-hypertree [12], the component-
graph [16] or the braid of partitions [29], whose construction remains complex
and/or costly.

Beyond these considerations, the graph of valued shapes and the induced
trees (trees of valued shapes, complete tree of shapes) also allow to unify various
morphological trees.

With the notations introduced in Sect. 3, the max-tree (resp. min-tree) [24] of
F is defined as Tiax = (Omax, €max) (resp. Tmin = (Omin, €min)) With Opax =
O° (resp. Omin = O°) and dmax (resp. dymin) is the Hasse relation induced by
the restriction of C on O ax (resp. Omin)-

Proposition 41. There is a decreasing homeomorphism from the subgraph
(E°,<°) (resp. (E°,<°)) of Gys to the maz-tree Tmax = (Omaxs 4max) (TESP.
the min-tree Tmin = (Omin, 4min) )-

Proof. The proof is similar to that of Proposition 29 (Properties 22, 24, 26) by
considering =° and ©° (resp. Z° and ©°) instead of = and O. ]

The adjacency tree [21] of a binary set X C U is defined as Tnq; =

(Oadj(X), 4aqj) where Onq;(X) = II[X] U II[X] and d,g; is the Hasse relation
induced by the “surrounding” order relation on G.q;(X).

Proposition 42. Let v € V. The subgraph (6,,<") of Gys is isomorphic to
the adjacency-tree Tagj = (Oadj(AL(F)), Hadj)-

Proof. This proposition directly derives from the equivalence of the definitions.
]

The tree of shapes [11] of F is defined as Tehape = (Oshape, ¥shape) Where
Oshape = T(O) and <snape is the Hasse relation induced by C on Ogpape. See
Fig.3 (right).

Proposition 43. There is a decreasing homeomorphism from the tree (O, 4o)
to the tree of shapes Tshape = (Oshape; shape)-

Proof. The proof is similar to that of Proposition 29 (Properties 22, 24 and
Proposition 26) by considering © instead of = and the equivalence relation on
O defined by X ~g Y < 7(X) = 7(Y). |

Remark 44. In [28], the notion of a topological monotonic tree was introduced,
where “monotonic tree” has the same meaning as “tree of shapes”. However, the
topological monotonic tree of [28] is indeed different from our topological tree of
shapes. Unformally, the difference between both structures lies in the fact that
our topological tree of shapes relies on a topological equivalence relation between
the nodes of the complete tree of shapes, whereas the topological monotonic as
defined in [28] relies on a similar equivalence relation between the external border
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of the nodes. From [28], there is a decreasing homeomorphism from the tree of
shapes to the topological monotonic tree. It can be proved that there is also a
decreasing homeomorphism from our topological tree of shapes to the topological
monotonic tree. These links are not formalized here by lack of room; they will be
more deeply investigated in our further works.

The following result derives from the above propositions and properties.
Property 45. We have
H| <10] < 2] < (S| + 1)V (14)
|@shape| S |@| = |@max| + |@min| -1 S 2|S‘ (15)

7 Concluding Remarks and Perspectives

This article gathers some preliminary results about the notions of graph/tree
of valued shapes and complete/topological tree of shapes. These notions shed
a new light on well known morphological hierarchies, namely the component-
tree and the tree of shapes. In particular they allow to unifiy and extend these
notions and to link them to topological invariants related to the adjacency tree,
the deletable sets and—under favourable hypotheses—the homotopy type. We
believe that these structures constitute a promising subject of research in the
framework of morphological hierarchies. At this stage, our introductive study
focused only on the structural side of these notions.

Our perspective works will also consider the algorithmic aspects, in partic-
ular the way to build these structures efficiently. Due to their strong links with
the component-tree, it is possible to propose first, naive strategies to build the
graph and then the tree of valued shapes from the min- and max-trees [2], and
then to derive the complete and topological trees of shapes. It is also possi-
ble to start from the construction of the tree of shapes [7] to derive the same
structures. However, such approaches, although tractable, are not optimal, and
seeking dedicated construction algorithms makes sense.

We initially designed the graph of valued shapes by “mixing” the min-/max-
trees and adjacency trees with a precise idea in mind. Our purpose was to develop
conceptual tools that would allow one to carry out the topological analysis of
objects in non-binary paradigms (e.g. for grey-level images or fuzzy modeling).
In this regard, our next step will be to investigate the links that exist between
these new structures and frameworks developed in topological analysis, especially
with respect to grey-scale topology [5] and to homology persistence and Morse
theory [1].

More generally, we also believe that these new structures could be useful
for developing approaches dedicated e.g. to homotopic morphology, topological
compression or topological comparison.
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